
A GPGPU-based Pipeline for Accelerated Rendering of
Point Clouds

Christian Günther1

guechr
Thomas Kanzok1

tkan
Lars Linsen2

l.linsen

Paul Rosenthal1

ropau

1 Chemnitz University of Technology
Department of Computer Science

Visual Computing Laboratory
Straße der Nationen 62

09111 Chemnitz, Germany
[acronym]@hrz.tu-chemnitz.de

2 Jacobs University
School of Engineering & Science

Visualization and Computer Graphics Laboratory
Campus Ring 1

28759 Bremen, Germany
[acronym]@jacobs-university.de

ABSTRACT
Direct rendering of large point clouds has become common practice in architecture and archaeology in recent years.
Due to the high point density no mesh is reconstructed from the scanned data, but the points can be rendered directly
as primitives of a graphics API like OpenGL. However, these APIs and the hardware, which they are based on,
have been optimized to process triangle meshes. Although current API versions provide lots of control over the
hardware, e.g. by using shaders, some hardware components concerned with rasterization of primitives are still
hidden from the programmer. In this paper we show that it might be beneficial for point primitives to abandon the
standard graphics APIs and directly switch to a GPGPU API like OpenCL.

Keywords
OpenCL, GPGPU, OpenGL, Point Cloud Rendering

1 INTRODUCTION
In architecture as well as archaeology laser scanning
has become a valuable tool to capture spacious envi-
ronments for processing and inspection. The common
use cases include airborne Lidar-scanning [RD10] or
terrestrial laser scanning systems for urban reconstruc-
tion [NSZ+10], virtual inspection of caves and cata-
combs [SZW09], as well as documentation of excava-
tion sites [LNCV10]. Regardless of the particular appli-
cation, the scanning process usually produces a dense
point cloud, often consisting of several hundred million
samples. Those are comprised of a geometric locus and
are sometimes enhanced with color or normal informa-
tion. In order to work with the data in an interactive
manner it has to be visualized efficiently, which often
involves preprocessing the point clouds to cope with the
data size [Lev99, SMK07].

While some approaches aim at the reconstruction of
a mesh surface from the data [PV09], several others
content with the direct visualization of the point data,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

either as simple point primitives [WS06] or by using
splatting [WBB+08]. Although the latter usually pro-
duces renderings of higher quality, there are several pre-
processing steps involved, which limit the applicability
for direct on-site previews of the captured data.

Raw point primitives on the other hand suffer from the
fact that closed surfaces can only be achieved if the
sampling density, projected to the screen, exceeds the
viewport resolution. However, also in the presence of
slightly undersampled data satisfactory depictions can be
produced by filtering and post-processing the generated
rendering in screen space [KLR12, RL08].

For the actual rendering of its preferred representation
virtually every approach uses one of the standard graph-
ics APIs, like DirectX or - in the scientific community
predominantly - OpenGL. These APIs are designed to
make use of the massive parallel processing power of
todays GPUs by following a quite strict pipeline, which
all graphics primitives have to traverse before they are
displayed to the screen. Although the APIs provide dif-
ferent primitive types to render, what they are optimized
for is the primitive type that is commonly used in the
consumer market - triangle meshes, like they occur in
practically all modern 3D games.

The widespread use of this geometric structure has led
to spezialized hardware with dedicated processing units
for the different pipeline stages. Although many units
are programmable using shaders, some parts of the hard-



ware, in particular the rasterization units, are still not
exposed to the programmer. These units, although im-
mensely useful for dealing with large numbers of trian-
gles, do not offer any benefit for direct point rendering,
where each point gets projected to exactly one fragment
during vertex processing. Unfortunately, they can not
be deactivated or circumvented in the current API im-
plementations and therefore form an unnecessary bottle-
neck for point cloud rendering by restricting the prim-
itive throughput to just a few rasterization processors
instead of thousands of shader cores.
Direct access to parallel computing hardware is provided
by OpenCL or CUDA, which leads to the question if
reimplementing a graphics pipeline specifically tailored
towards point primitives could provide significant per-
formance improvements when dealing with this kind
of data. In this paper we present such an implementa-
tion using OpenCL and show results, which show major
speedups compared to the standard OpenGL pipeline in
real world datasets.
The rest of the paper is organized as follows: After
giving a short overview over the field of point cloud ren-
dering and related work on self-implemented rendering
pipelines we describe the challenges and design consid-
erations that went into our implementation. Afterwards
we present the implementation of our pipeline and pro-
vide a detailed performance analysis on both real and
synthetic data.

2 RELATED WORK
Point based rendering is a well studied field in computer
graphics and there exists a large amount of literature on
that topic. Since this paper’s contribution does not lie
in any new rendering technique, we give only a short
overview of the two main classes of local surface re-
construction methods used in this field and refer the
reader to the survey literature [GP07, KB04] for a more
in-depth explanation.
A common problem when using point primitives is that,
unless the sampling density of the model is really high,
there can always be more or less prevalent holes in the
rendering. We divide the reconstruction techniques used
to produce a hole-free rendering into object space ap-
proaches, which require some kind of preprocessing to
work, and pure image space approaches, which operate
only on the rendering of the raw point cloud.
The most dominant object space approach has arguably
become splatting, which was initially introduced for vol-
umetric data by Westover [Wes90]. The approach was
later adapted to only use surface samples [PZvBG00,
RL00] and it has undergone several extensions and im-
provements since [GGP04, PSL05, ZPvBG01], even
making it applicable for ray tracing [LMR07, SJ00].
However, all these approaches have to compute local
surface parameters like splat size, normal direction,

curvature etc. in advance. This can take a consider-
able amount of time when processing really large point
clouds as produced by modern laser scanning systems.
On the other hand, GPU computing capabilities have
increased vastly in recent years, making it possible to
compute the splat parameters purely in image space
for only those points that are actually visible [PJW12].
When the data is dense enough to only exhibit small
holes in the rendering these holes can be filled using
interpolation [GD98, PGA11] or special morphological
filters [DRL10, RL08].

With triangle rasterization being implemented in graph-
ics cards there has not been much practical need to
reimplement the process in software. There are some
cases that benefit from a custom rasterizer, although
they are mostly limited to applications on gaming con-
soles [Val11] or to the usage of non-triangular paramet-
ric surface patches [Eis09].

Actual GPGPU implementations of triangle rasterizers
using CUDA have mainly been developed out of aca-
demic interest and as a benchmark application for the
current state of GPGPU computing [LK11, LHLW10].
These primarily have to overcome the problem of as-
signing the triangles to different threads in a way that
maximizes the amount of parallel coverage computa-
tions for them [MCEF08].

However, their results suffer heavily from the necessary
sorting and therefore still do not reach the performance
of the hard-wired hardware implementation. Since point
primitives only cover one fragment, these prior results
are not applicable to our problem. In the following chap-
ters we show that GPGPU-based software rasterization
of point clouds is not only not slower than the hardware
pipeline, but can yield a significant performance increase
with datasets common in architecture and archaeology.

3 DESIGN CONSIDERATIONS
Our goal in this work is to develop a point cloud ren-
dering pipeline that produces results true to the ones
obtained when using OpenGL rendering. For best per-
formance in OpenGL, we setup a minimalistic OpenGL
4 pipeline using the early depth test, which saves some
fragment shader instantiations under certain conditions.
In order to achieve the same results we have to rebuild
the basic OpenGL rendering pipeline in GPGPU soft-
ware. Since we are dealing with zero-dimensional prim-
itives we can omit a tessellation or geometry shader
stage (although the latter could be added on demand –
provided its output is point primitives again). Also we
did not yet include normal information for shading and
restricted our first prototype to only use geometry and
color information. However, these additions can be eas-
ily implemented when needed without major changes
in relative render times. The pipeline implemented in
our software is shown in Figure 1. We decided to use



OpenCL in favor of CUDA to ensure platform indepen-
dence. Theoretically, our renderer would not even have
to run on a graphics card but could also be used on
any other multicore processing unit, e.g. CPUs, hybrids
of CPU and GPU like AMDs Accelerated Processing
Units [Bro10] or Intels recently introduced Xeon Phi
coprocessors [Xeo12].

mvp trans-
formation

frustum
culling

transform
to screen

space

depth test

update
color and

depth

discard

VBp

UB

D

FBc

VBc

passed

failed

passed

failed

Figure 1: The rendering pipeline implemented by our
software. After fetching the vertex coordinates from a
vertex buffer object VBp we project them from object
space to clip space via a model-view-projection matrix
from a uniform buffer object UB. In this space we can al-
ready discard many points outside the view frustum. The
remaining points are transformed to screen space using
the screen resolution from the same uniform buffer ob-
ject, where their respective positions in the depth buffer
D is known and can be used to discard occluded points.
For the remaining points, we fetch their color informa-
tion from the vertex buffer object VBc and write color
and depth to the depth buffer and color buffer FBc, re-
spectively.

To maximize parallel throughput we have to relax the
OpenGL paradigm that "Commands are always pro-
cessed in the order in which they are received. [...]
This means, for example, that one primitive must be
drawn completely before any subsequent one can af-
fect the frame buffer" [SA12]. One could argue that
we consider complete point clouds as one primitive for

which the restriction holds. Anyhow, we found that this
does not pose a serious limitation since point cloud data
from laser scanners does usually not contain transparent
points for which the ordering of draw calls would make
a difference. What can happen is a temporal flickering
of points when z-fighting (the term is used here to refer
to points that receive the same depth value after projec-
tion) occurs under a random draw order. However, this
was not noticeable in our experiments.
The central problem of parallel software rendering is to
ensure a thread-safe depth test. This test is necessary to
guarantee that for each fragment only the point closest
to the viewer gets drawn to the frame buffer. To achieve
this in a thread safe way, we have to use a global depth
buffer that is shared over all compute units of the GPU in
connection with atomic operations provided by OpenCL.
Unfortunately, as of now it is not possible to use the
actual OpenGL depth buffer as shared OpenCL buffer.
That is why we allocated our own pure OpenCL buffer
for this proof of concept. We could implement a thread-
safe depth test on an integer buffer using OpenCL atom-
ics (atomic_min). However, this would only work if
we wanted to render only to the depth buffer. When we
also want to write color or other attributes (see Algo-
rithm 1) this approach could lead to a race condition, as
depicted in Figure 2.

1: if zDepth < atomic_min(depthMap,zDepth) then
2: write color information for the current fragment

to the color buffer
3: end if

Algorithm 1: Not thread-safe depth test

To overcome this, we have to expand our critical section
(i.e. the section of code, which may not be executed
in parallel) to include all buffer reads and writes. Such
a behavior can be implemented using an atomic flag
that indicates whether any thread is currently accessing
the section and in this way assures mutual exclusion
(mutex). The following section will provide details on
the implementation of this solution.

4 IMPLEMENTATION
4.1 Basic Approach
OpenCL offers the possibility to share buffer objects
with OpenGL (except depth buffers), which makes it
possible to use nearly the same buffer layout for OpenGL
and OpenCL rendering. In particular we are using two
vertex buffer objects VBp and VBc for the point cloud’s
position (as an array of float[3]) and color (as an
array of unsigned char[3]), respectively. The ren-
dering is done into the color attachment FBc of a frame
buffer object. To transfer the necessary information
about the transformation matrices and viewport resolu-
tion, we are using a shared uniform buffer object UB
with the following layout:



z

P1 P2

t

z < atomic_min(depthMap,z) {

write color
}

0.6 0.8

0.8
0.6

1.0

0.6
0.6
0.6

stall

depth color

Figure 2: Race condition with a naive depth buffering
approach. Assume two points P1 and P2 get processed in
parallel by the GPU and they are projected to the same
fragment. After projection P1 is closest to the viewer and
therefore its color should be written to the color buffer.
However, if the first line of Algorithm 1 is processed
first for P2 (letting P2 pass the depth test for now) and
the processing thread is stalled for some reason before
line two is reached, then the color of P1, which passed
the depth test in the meantime and was written to the
color buffer, would be overwritten without re-checking
the depth buffer.

• UBMVP the pre-multiplied model-view-projection
matrix

• UBr the viewport resolution

Additionally, we allocate our own depth buffer D that
contains the current closest depth value Dz interleaved
with a binary lock Dl for each fragment (see also Figure 1
for the usage pattern of these buffers). The points are
processed in parallel, so each work item is responsible
for exactly one point.

The thread-safe variant of our rasterization kernel is
depicted in Algorithm 2. After extending the vertex
coordinates to homogeneous coordinates, applying the
standard transformations, and discarding all points that
are not in the view frustum (lines 1 to 5), we try to
lock the fragment to which our point was projected by
using atomic_cmpxchg on the lock-component of
our depth buffer. If we are able to obtain the lock, we
can perform the depth test and write new color and depth
information if the test was successful. If we can not
acquire the lock we have to wait for it to be freed again.
This "busy waiting" is a waste of processing time, since
many points would probably not pass the depth test in
the first place.

For that reason we added an early-out mechanism by
enclosing the whole critical section into the else branch
of an upstream z-test (see Algorithm 3).

The possibility to discard points early that would not
influence the final rendering causes major speedups in
cases where there are lots of points projected to one
fragment.

1: p← VBp(i) {load one point position p per thread i,
append homogeneous 1}

2: p← UBMVP ·p {transform to clip space}
3: perform frustum culling
4: p← p · 1

pw
{transform to normalized device

coordinates}
5: p← (p+[1,1,1,1]T ) ·0.5 · [UBr.x,UBr.y,1,1]T

{transform to screen space}
6: while p not processed do
7: try to lock Dl(px, py) with atomic_cmpxchg
8: if got the lock then
9: if pz < Dz(px, py) then
10: Dz(px, py)← pz
11: FBc← VBc(i)
12: end if
13: mark as processed
14: free the lock Dl(px, py)
15: end if
16: Barrier
17: end while
Algorithm 2: The basic point rasterization algorithm
with thread-safe depth test.

1: . . .
2: while p not processed do
3: if pz ≥ Dz(px, py) then
4: mark as processed
5: else
6: [lines 7 to 16 of Algorithm 2]
7: end if
8: end while
Algorithm 3: The early-out optimization for the thread-
safe depth test of Algorithm 2.

4.2 Challenges and Solutions
During implementation we noticed several pitfalls and
shortcomings of current drivers and the OpenCL API,
which we had to find workarounds for. In this section
we will present the problems we found and explain how
we were able to solve them.

4.2.1 Implicit Compiler Optimizations

The OpenCL compiler, which is included in the ven-
dors graphics card driver, performs lots of implicit opti-
mizations on the code. It reorders the OpenCL code to
achieve the highest possible instruction level parallelism.
This is achieved by analyzing the code, especially find-
ing reads and writes to the same memory locations and
evaluating dependencies in computations. Unfortunately
for a mutex structure, the actual critical section works on
completely different memory than the lock, which can
be missed by the compiler. To ensure correct locking
behavior, we have to insert a memory barrier in our code.
This barrier ensures that the reordering does not exceed
this point during compilation and run time.



4.2.2 Accuracy
Strict frustum culling is essential for the software ren-
dering. One has to make sure to only read or write in the
valid ranges of the depth and color buffers (otherwise
the graphics driver may freeze). Unfortunately, it seems
that unsafe internal math optimizations can lead to out-
of-bound buffer accesses when only doing the culling
in clip space. Therefore we have to add an additional
range check after transforming the coordinates to the
viewport.
In addition, the performance of our approach can receive
a huge performance boost when using the full floating
point range for depth testing. Normally, OpenGL takes
normalized real depth values in the range of [−1,1] from
the normalized device coordinates (after the division by
w) of a point, maps them to [0,1], and stretches this
interval to a 24 bit integer which is used for the depth
test. Our implementation uses a floating point buffer
with 32 bit precision. Mapping these depth values to
the [0,1] interval may introduce discretization errors in
the binary representation that can be alleviated when
omitting the division by w for the depth value.
This does not lead to inconsistent depth values as it
would when using triangles, since we do not have to
interpolate this value in image space.
The described procedure does not only lead to a signif-
icant boost in performance, due to the more efficient
early-out mechanism (see Table 1), but also eliminates
the occasional depth flickering which was noticeable
with the previous approach.

4.2.3 Depth Sharing
Sharing an OpenGL depth buffer with OpenCL is still
not supported in current drivers, although there are ef-
forts in this direction via a proposed extension [CLE12].
As of now, one has to render the depth buffer to the
OpenGL depth buffer in a consequent pass. Since the ex-
tension specification was published in November 2012,
we are confident that future drivers will support shared
depth buffers, which makes it easier to integrate OpenCL
rendering into existing engines.

4.2.4 Caching Effects
Normally the driver would cache read and write opera-
tions to buffer objects, which is generally not a problem,
since most buffers are either read-only or write-only. For
our depth buffer, however, we need reading as well as
writing in combination with atomic operations. This
pattern can lead to problems when caches of several
compute units are involved in the computation. In fact,
it can happen that one thread uses a value from its cache
while the actual depth value in the buffer has already
changed. To overcome this problem, the depth buffer
has to be declared volatile, causing the driver to
broadcast changes to every compute unit that uses the
buffer.

5 RESULTS AND DISCUSSION
To evaluate the performance of our approach, we per-
formed benchmarks on a synthetic and a real-world
dataset. The synthetic one enables us to evaluate the
two determining factors – the number of points in the
dataset and the number of z-tests in the depth buffer – in
detail. The real-world scan provides a direct comparison
between a minimalistic OpenGL 4 pipeline with early
depth test and our own OpenCL rendering pipeline.

For our experiments we used a viewport with a size of
1024×1024 pixels and designed the synthetic dataset to
align with the viewport pixels when using parallel pro-
jection. For now we focused our experiments on AMD
hardware, i.e. the Radeon HD 7970 GPU, because it
supports all modern OpenCL features and offers the
best balance between large memory – useful for exper-
iments with large amounts of data – and an affordable
price. Nevertheless we also validated our results with an
Nvidia GeForce GTX 680 graphics card.

5.1 Synthetic Data
The synthetic dataset was created as a cuboid of n planes
with 10242 points each. This facilitates direct control
over the number of z-tests during rendering. The number
of planes was chosen to be the largest possible such that
the entire dataset fitted into the 3GB of GPU memory.
To eliminate possible effects caused by the structure of
the data, all vertices were shuffled in memory to ensure a
random point distribution. Finally, smaller subsets with
k < n planes were created to be used for incremental
growth of the dataset during testing.

The left part of Figure 3 shows the rendering perfor-
mance in milliseconds per frame while we were grad-
ually increasing the number of points in the dataset.
In each step one plane of 10242 points was added to
the cuboid, effectively increasing the number of z-tests
per fragment by one. The benchmarks indicate that
our pipeline is – with a rendering speed of 4.47ms vs.
2.24ms per frame – slightly slower than the OpenGL
implementation when there are few z-tests in the image.
As the number of z-tests increases the speed of OpenCL
rendering compared to OpenGL rendering grows lin-
early until the OpenCL rendering is as fast as the one
with OpenGL at 46 z-tests per fragment.

When the full GPU memory capacity was reached with
170 planes (around 178 million points) the speed com-
pared to OpenGL reached 121%. Afterwards we had
to rearrange the dataset to increase the number of z-
tests. We decreased the base resolution until the whole
dataset lay in one single pixel. The performance results
of this step can be seen in the right part of Figure 3. The
OpenGL rendering times are still increasing while our
pipeline gets even faster with more z-tests, because large
amounts of points can be discarded early.



20 40 60 80100

101

102

103

z-tests per fragment

tim
e

pe
rf

ra
m

e
[m

s]
building cube plane wise

103 104 105 106 107 108 109100

101

102

103

z-tests per fragment
tim

e
pe

rf
ra

m
e

[m
s]

further increasing number of z-tests

AMD CLclip Nvidia CLclip AMD GL Nvidia GL

Figure 3: Rendering time in milliseconds (on a logarithmic scale) for different dataset sizes. The left plot shows the
results of gradually increasing the number of planes in a 10242 cuboid, leading to increased amount of necessary
z-tests. In the right plot the overall size of the dataset stays the same, while we gradually rearranged it to cover
fewer pixels. In each step the effective resolution was halved in alternating directions, leading to a doubling of the
amount of z-tests. In the end the whole dataset is projected to one single pixel. The timings represent the median of
100 distinct measurements. The flattening in the end of the OpenCL series for the Radeon HD 7970 is probably due
to efficient caching in local memory (It begins at 32 covered fragments which corresponds to one fragment per each
of the 32 compute units).

5.2 Real World Data
To compare the real-world performance of our rendering
approach with the fixed-function one, we use a real laser
scanning dataset with 138 million points. The data was
obtained from a bridge and is composed of five single
scans registered into one dataset.

In Figure 4 we show a comparison of the rendering re-
sults using OpenGL and OpenCL for the same view of
the dataset. There are no noticable differences in render-
ing quality, but the performance of the OpenCL renderer
was more than ten times as high as the OpenGL perfor-
mance (18ms vs. 129ms or 56fps vs. 5fps, respectively).
This can be attributed to the immensely large number
of z-tests, especially in the vicinity of the scanners (see
Figure 5).

To further analyze these results, we also measure the
rendering performance of our approach from a variety
of different representative viewpoints in the scene. The
results, which can be seen in Table 1, show that the
OpenCL renderer outperforms the OpenGL one in all
given situations. Although Nvidia’s driver support for
OpenCL lacks the efficiency of their CUDA one, we
also tested the same situations on a GeForce GTX680.
Because Nvidia’s OpenCL driver does not allow for

sharing larger buffer objects, we had to downsample
the dataset to half its original size. In this test we were
able to achieve better performance in most cases, while
the complete overview with plenty of z-tests was faster
in OpenGL when using normalized depth values. We
assume that our early depth test does not perform as good
on Nvidia’s hardware as on the one by AMD. However,
when doing the depth test in clip space this is accelerated
by a factor of 5. In any case the whole pipeline is faster
in common use cases.

It can, however, only reach its full potential, when there
is a large amount of z-tests. This makes it difficult
to make any assumptions as to how OpenCL render-
ing could influence existing point cloud rendering sys-
tems [RD10, WBB+08, WS06], since they all incorpo-
rate some level-of-detail mechanism, which inherently
minimizes the amount of z-tests. What could be done in
such a case to further improve performance in our ren-
derer, is to superimpose some space partitioning struc-
ture to enable early frustum culling. We left this for
future work, since we wanted to investigate the theoreti-
cal possibilities of the brute-force method first.



(a) (b)

Figure 4: Comparison of (a) OpenGL rendering and (b) OpenCL rendering. As one can see, rendering results
are almost identical. There are only small differences in far away parts of the scene, because we use eight bits
more depth buffer precision than OpenGL. While the OpenGL version runs at about 5 frames per second, our
implementation reaches 56 fps.

Figure 5: An overview of the amount of z-tests in the
view of Figure 4. The scale is logarithmic and ranges
from 1 (blue) to 116243 (red) points per fragment.

6 CONCLUSIONS
We have presented an implementation of a point render-
ing pipeline using OpenCL. Although the approach is
certainly not completely optimized yet, point cloud ren-
dering in OpenCL already promises huge gains in render-
ing time compared to OpenGL. We were able to achieve
speedups of one order of magnitude for typical datasets
and view parameters. Hierarchical frustum culling and
clever reordering strategies on the GPU could push the
boundaries even further.

There are several points we had to postpone for now,
because the current specifications of OpenCL do not
account for the desired behavior. If those possibilities
were to be added in the future we would like to include
them in our implementation. First of all, using a shared

depth buffer will be essential for combined OpenCL-
OpenGL rendering. Although the necessary extension
has been specified, we have to wait for hardware ven-
dors to implement it in their drivers. Also it would be
great (but is not planned at the moment) if a possibility
existed to stall waiting threads directly from the OpenCL
code. That way waiting threads could be rescheduled
for a while, letting the respective compute unit process
other points while some fragment is locked. Third, a
further investigation of register usage by the OpenCL
compiler could provide helpful insights. There seems
to be quasi-random utilization of GPU registers by the
OpenCL compiler, even when using very strict scopes
for variables. This leads to significant performance dif-
ferences when compiling nearly identical code on the
same or on different platforms. Overcoming this prob-
lem seems to be impossible with the current drivers

7 ACKNOWLEDGMENTS
The authors would like to thank the enertec engineering
AG (Winterthur, Switzerland) for providing us with the
data and for their close collaboration. This work was
partially funded by EUREKA Eurostars (Project E!7001
"enercloud - Instantaneous Visual Inspection of High-
resolution Engineering Construction Scans").

8 REFERENCES
[Bro10] Nathan Brookwood. Amd FusionTM Fam-

ily of Apus: Enabling a Superior, Immersive PC
Experience. Technical report, Advanced Micro
Devices, Inc., March 2010.



(a) View 2 (b) View 3 (c) View 4

Point distribution CLc Radeon HD 7970 GeForce GTX 680
View Culled Early Out Z-Test GL CLn GL/CLn CLc GL/CLc GL CLn GL/CLn CLc GL/CLc

1 6.50 128.78 3.26 5.21 58.68 11.27 61.46 11.80 6.98 19.24 2.76 23.26 3.33
2 8.70 126.24 3.62 5.73 55.04 9.61 59.91 10.45 6.97 19.73 2.83 23.96 3.43
3 130.57 5.31 2.67 13.14 97.56 7.43 102.50 7.80 7.04 77.29 10.97 78.95 11.20
4 0 138.07 0.48 2.91 15.36 5.28 90.66 31.14 6.22 2.13 0.34 36.38 5.84

Table 1: Rendering performance for some representative points of view in frames per second. Compared is
the rendering performance of OpenGL (GL) and OpenCL with depth test in clip space (CLc) or in the space of
normalized device coordinates (CLn). The views include large amounts of z-tests in combination with some frustum
culling (View 1, see Figure 4, and View 2), intense frustum culling with few z-tests (View 3) and an overview of the
complete dataset with an enormous amount of z-tests and no frustum culling (View 4). The same experiments were
carried out on an Nvidia GeForce GTX680 (right). Unfortunately, we had to reduce the amount of points to 50%
here, because the driver did not allow the sharing of larger buffer objects. Additionally we measured the amount of
points that were processed in the different stages of our pipeline (all values are given in millions). The exact relation
between early out and z-test depends on scheduling and latencies, which are slightly influenced by the measurement
itself. Summing up the points that were culled, rejected by the early-out mechanism and finally processed by the
depth test gives the dataset size of 138 million Points.

[CLE12] The OpenCL Extension Specification Ver-
sion 1.2. Technical report, Khronos OpenCL Work-
ing Group, November 2012.

[DRL10] Petar Dobrev, Paul Rosenthal, and Lars
Linsen. Interactive Image-space Point Cloud Ren-
dering with Transparency and Shadows. In Vaclav
Skala editor, Communication Papers Proceedings
of WSCG, The 18th International Conference on
Computer Graphics, Visualization and Computer Vi-
sion, pages 101–108, Plzen, Czech Republic, 2 2010.
UNION Agency–Science Press.

[Eis09] Charles Loop Christian Eisenacher. Real-
time patch-based sort-middle rendering on massively
parallel hardware. Technical report, Microsoft Re-
search, May 2009.

[GD98] J. P. Grossman and William J. Dally. Point
sample rendering. In Rendering Techniques 98,
pages 181–192. Springer, 1998.

[GGP04] Loïc Barthe Gaël Guennebaud and Math-
ias Paulin. Deferred splatting. Computer Graphics
Forum, 23(3):653–660, 2004.

[GP07] Markus Gross and Hanspeter Pfister, ed-
itors. Point-Based Graphics. Morgan Kaufmann,
2007.

[KB04] Leif Kobbelt and Mario Botsch. A sur-

vey of point-based techniques in computer graphics.
Computers &; Graphics, 28(6):801 – 814, 2004.

[KLR12] Thomas Kanzok, Lars Linsen, and Paul
Rosenthal. On-the-fly luminance correction for ren-
dering of inconsistently lit point clouds. Journal of
WSCG, 20(2):161 – 169, 2012.

[Lev99] M. Levoy. The digital michelangelo project.
In 3-D Digital Imaging and Modeling, 1999. Pro-
ceedings. Second International Conference on, page
2–11, 1999.

[LHLW10] Fang Liu, Meng-Cheng Huang, Xue-Hui
Liu, and En-Hua Wu. Freepipe: a programmable
parallel rendering architecture for efficient multi-
fragment effects. In Proceedings of the 2010 ACM
SIGGRAPH symposium on Interactive 3D Graphics
and Games, I3D ’10, pages 75–82, New York, NY,
USA, 2010. ACM.

[LK11] Samuli Laine and Tero Karras. High-
performance software rasterization on gpus. In
Proceedings of the ACM SIGGRAPH Symposium on
High Performance Graphics, HPG ’11, pages 79–88,
New York, NY, USA, 2011. ACM.

[LMR07] Lars Linsen, Karsten Müller, and Paul
Rosenthal. Splat-based ray tracing of point clouds.
Journal of WSCG, 15(1-3):51–58, 2007.



[LNCV10] José Luis Lerma, Santiago Navarro, Miriam
Cabrelles, and Valentín Villaverde. Terrestrial laser
scanning and close range photogrammetry for 3D
archaeological documentation: the upper palae-
olithic cave of parpalló as a case study. Journal
of Archaeological Science, 37(3):499–507, March
2010.

[MCEF08] Steven Molnar, Michael Cox, David
Ellsworth, and Henry Fuchs. A sorting classifi-
cation of parallel rendering. In ACM SIGGRAPH
ASIA 2008 courses, SIGGRAPH Asia ’08, pages
35:1–35:11, New York, NY, USA, 2008. ACM.

[NSZ+10] Liangliang Nan, Andrei Sharf, Hao Zhang,
Daniel Cohen-Or, and Baoquan Chen. SmartBoxes
for interactive urban reconstruction. In ACM SIG-
GRAPH 2010 papers, page 93:1–93:10, New York,
NY, USA, 2010. ACM.

[PGA11] Ruggero Pintus, Enrico Gobbetti, and
Marco Agus. Real-time rendering of massive un-
structured raw point clouds using screen-space
operators. In Franco Niccolucci, Matteo Dellepi-
ane, Sebastián Peña Serna, Holly E. Rushmeier, and
Luc J. Van Gool, editors, VAST, pages 105–112.
Eurographics Association, 2011.

[PJW12] Reinhold Preiner, Stefan Jeschke, and
Michael Wimmer. Auto splats: Dynamic point
cloud visualization on the gpu. In Proceedings of
Eurographics Symposium on Parallel Graphics and
Visualization, 2012.

[PSL05] Renato Pajarola, Miguel Sainz, and
Roberto Lario. Xsplat: External memory multireso-
lution point visualization. In IASTED International
Conference on Visualization, Imaging and Image
Processing, JUL 2005.

[PV09] Shi Pu and George Vosselman. Knowl-
edge based reconstruction of building models from
terrestrial laser scanning data. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 64(6):575–584,
November 2009.

[PZvBG00] Hanspeter Pfister, Matthias Zwicker, Jeroen
van Baar, and Markus Gross. Surfels: surface el-
ements as rendering primitives. In Proceedings of
the 27th annual conference on Computer graph-
ics and interactive techniques, SIGGRAPH ’00,
pages 335–342, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

[RD10] Rico Richter and Jürgen Döllner. Out-of-
core real-time visualization of massive 3D point
clouds. In Proceedings of the 7th International
Conference on Computer Graphics, Virtual Real-
ity, Visualisation and Interaction in Africa, page
121–128, 2010.

[RL00] Szymon Rusinkiewicz and Marc Levoy.
Qsplat: a multiresolution point rendering system for

large meshes. In Proceedings of the 27th annual
conference on Computer graphics and interactive
techniques, SIGGRAPH ’00, pages 343–352, New
York, NY, USA, 2000. ACM Press/Addison-Wesley
Publishing Co.

[RL08] Paul Rosenthal and Lars Linsen. Image-
space point cloud rendering. In Proceedings of
Computer Graphics International, pages 136–143,
2008.

[SA12] Mark Segal and Kurt Akeley. The OpenGL
Graphics System: A Specification (Version 4.3 (Core
Profile)). Technical report, The Khronos Group Inc.,
August 2012.

[SJ00] Gernot Schaufler and Henrik Wann Jensen.
Ray tracing point sampled geometry. In Rendering
Techniques 2000: 11th Eurographics Workshop on
Rendering, pages 319–328, 2000.

[SMK07] Ruwen Schnabel, Sebastian Möser, and
Reinhard Klein. A parallelly decodeable compres-
sion scheme for efficient point-cloud rendering. In
Proceedings of Symposium on Point-Based Graphics,
page 214–226, 2007.

[SZW09] Claus Scheiblauer, N. Zimmermann, and
Michael Wimmer. Interactive domitilla catacomb
exploration. In Kurt Debattista, Cinzia Perlingieri,
Denis Pitzalis, and Sandro Spina, editors, VAST,
pages 65–72. Eurographics Association, 2009.

[Val11] Michal Valient. Practical occlusion culling
in Killzone 3. Siggraph2011, 2011.

[WBB+08] Michael Wand, Alexander Berner, Martin
Bokeloh, Philipp Jenke, Aarno Fleck, Mark Hoff-
mann, Benjamin Maier, Dirk Staneker, Andreas
Schilling, and Hans-Peter Seidel. Processing and
interactive editing of huge point clouds from 3D
scanners. Computers & Graphics, 32(2):204–220,
2008.

[Wes90] Lee Westover. Footprint evaluation for vol-
ume rendering. In Proceedings of the 17th annual
conference on Computer graphics and interactive
techniques, SIGGRAPH ’90, pages 367–376, New
York, NY, USA, 1990. ACM.

[WS06] Michael Wimmer and Claus Scheiblauer.
Instant points: Fast rendering of unprocessed point
clouds. In Proceedings Symposium on Point-Based
Graphics 2006, page 129–136, 2006.

[Xeo12] Intel R© Xeon PhiTM Coprocessor. Tech-
nical Report 328209-001EN, Intel Corporation,
November 2012.

[ZPvBG01] Matthias Zwicker, Hanspeter Pfister, Jeroen
van Baar, and Markus Gross. Surface splatting.
In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, SIG-
GRAPH ’01, pages 371–378, New York, NY, USA,
2001. ACM.


