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ABSTRACT
Pose uncertainty estimation of calibrated cameras is a common task in the field of computer vision and uses
location uncertainties of image features. For spherical cameras, those uncertainties cannot be optimally described
using conventional latitude-longitude representation. Increasing distortions close to the poles of the spherical
coordinate system prevent a suitable description through Gaussians.
To overcome this limitation, we present a consistent location uncertainty representation for spherical image fea-
tures: Our approach is based on normal vectors in Cartesian space and applicable to any kind of camera with
convex projection surfaces, such as catadioptric and spherical systems. We compare its performance against
latitude-longitude representation by estimating camera pose uncertainties through first order error propagation
in a weighted least squares pose estimation scenario. Our experiments on synthetic and real data show that the
proposed approach delivers consistent results outperforming conventional latitude-longitude representation.
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1 INTRODUCTION

Spherical imaging experienced increasing attention in
the recent past: Microsofts Streetside project as well
as Googles Street View project [ADF+10] exemplify
the usability of spherical images for large scale applica-
tions. The availability of omnidirectional cameras like
SpheronVRs SceneCam[VR], Weiss AGs Civetta [Wei]
or the Ladybug camera from Point Grey Research also
corroborate the interest on spherical imaging.

Since those cameras provide the largest possible field of
view (FOV), their usage avoids problems, known from
perspective imaging: Visual SLAM can be performed
without loosing image features caused by camera rota-
tion in combination with a limited FOV as studied by
Gutierrez et al. [GRMG11]. Furthermore provide om-
nidirectional cameras due to the extended FOV more
extractable features for spherical Structure from Motion
(SfM) algorithms as proposed by Pagani et al. [PS11]
and Torii et al. [TIO05].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

The propagation of image feature uncertainties can aug-
ment spherical SfM and SLAM algorithms and im-
proves for example outlier detection or surface fitting
in a subsequent reconstruction process.

Since feature uncertainty description in perspective im-
ages can be handled based on Gaussian error approx-
imation in the Cartesian coordinate system [BBS07,
ZGS+09], this approach is not applicable for spherical
images. A spherical image is hereby considered as a
mapping from a given three-dimensional environment
through the camera center onto a unit sphere. As this
sphere is a two-dimensional manifold, two parameters
are sufficient to identify any point unambiguously.

Building on that, spherical cameras typically provide
images in an unwrapped form of the widely used
latitude-longitude representation relying on (θ ,φ)-co-
ordinates with 0≤ θ ≤ π and 0≤ φ ≤ 2π (Figure 1(b)
and 2(a)).

Problem: Since the description of image feature uncer-
tainties implies the neighborhood of the features, local
distortions as they occur close to the poles of the spher-
ical coordinate system, affect the uncertainty descrip-
tion. A Gaussian distributed uncertainty on a sphere is
therefore not adequately describable by a single Gaus-
sian in (θ ,φ)-coordinates (Figure 1(a) and 1(b)). Due
to the discontinuity of the longitude-coordinate at the
poles, location uncertainties spreading over the image
pole cannot be represented at all.
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Figure 1: The Monte-Carlo based transformation from a Gaussian distribution on a sphere (a) to latitude-longitude
representation (b) illustrates, that the resulting distribution cannot be properly described by a Gaussian. We propose
therefore to quantify feature uncertainties through 3D uncertainties attached to normal vectors (c). Compared
to latitude-longitude representation, this approach describes uncertainties consistently throughout the spherical
image.

Contribution: In this work, we introduce an uncer-
tainty representation based on normal vectors (Figure
1(c)) to overcome the previously mentioned limitations.
Our proposed normal vector representation is not only
limited to full spherical images. Spherical or cata-
dioptric cameras producing a locally varying pixel-per-
angle ratio as examined by Streckel and Koch [SK05]
can be handled by replacing the sphere with ellipsoidal
shapes.

Related work: In the field of computer vision and
SfM much effort has been put into the deduction of un-
certainty propagation techniques within the last years
[CF05, CZZF97, DLLP11, Har98, HZ00], including
approaches like first order error propagation [BBS07]
or sparse grids [JU04]. Even though the listed work
covers exclusively perspective imaging.

The approach taken in this work to avoid given singu-
larities of latitude-longitude representation can to a cer-
tain extend be considered to be analogue to the concept
of quaternions: Stuelpnagel shows in [Stu64] that all
three-parameter representations of rotations are highly
nonlinear and possess singularities in their description
in three dimensional space. In order to prevent the oc-
currence of these singularities, the usage of quaternions
introduces an additional dimension. Our usage of the
normal vector exploits the same principle of introduc-
ing an additional third dimension to avoid singularities
in feature uncertainty representation on a sphere.

The concept of normal vectors for position representa-
tion is furthermore not limited to spherical image fea-
ture representation but is also used in different context:
Gade proposes for example a method for global naviga-
tion based on normal vectors [Gad10].

In the course of this work location uncertainties of im-
age features are assumed to be Gaussian distributed in
image coordinate system. Zeisl et al. [ZGS+09] show
that this assumption is valid for the uncertainty charac-
terization of SIFT [Low04] and SURF [BTVG06] de-

scriptors. For other state of the art descriptors, such as
CARD [AY11], BRISK [LCS11], DAISY [TLF10] or
ORB [RRKB11] the appropriate feature uncertainties
can be deduced under consideration of their particular
manner of feature extraction.

Outline: The extraction of feature uncertainties from
spherical images is described in section 2. The follow-
ing section 3 outlines the proposed uncertainty descrip-
tion. Section 4 contains a comparison of our method
with the conventional latitude-longitude representation
by performing uncertainty propagation and calculating
camera pose uncertainties for different scenarios. Sec-
tion 5 summarizes the obtained results. The work is
concluded in section 6. A video introducing the prob-
lem statement and the proposed approach is available in
[Kro13].

2 FEATURE UNCERTAINTY EX-
TRACTION

In this section we propose a method to extract feature
uncertainties from spherical images. This was achieved
by decomposing a given spherical image into virtual
perspective images. The positions of the appendant vir-
tual cameras were set to the center of the spherical cam-
era and their viewing directions were uniformly dis-
tributed throughout the sphere (Figure 2).

In the next step, features were extracted within the
resulting perspective images and transformed to
latitude-longitude representation of the spherical
coordinate system. The performed calculations are
hereby equivalent to transformations between world
coordinate system and perspective camera coordinate
system as outlined in Hartley et al. [HZ00], assuming
the spherical camera aligned with world coordinates.
The transformation between Cartesian and spherical
coordinates is given in [KK00].

Within the perspective images, the uncertainty distribu-
tion of the extracted features was obtained based on the
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Figure 2: Spherical image (14’000 × 7’000 pixel) of the Mogao cave number 322 in China. A set of 11 spherical
HDR-images was acquired to perform pose uncertainty estimation and 3D reconstruction (a). Illustration of the
decomposition of a spherical image into perspective ones (b). Resulting perspective images, in which the features
are extracted (c). Note, that those cut-outs have to overlap to assure that all image data of the sphere was considered.

method introduced by Zeisl et al. [ZGS+09]. The distri-
butions are represented by a 2D covariance matrix such
as

σ2D =

(
σxx σxy
σyx σyy

)
. (1)

When describing these uncertainties in latitude-
longitude representation of the spherical image, their
essential characteristic of being Gaussian distributed
is lost (Figure 1(b)). Approximating the resulting
distribution by a Gaussian is inaccurate and other
descriptions, such as mixture of Gaussians complicate
further propagation of the obtained uncertainties.

A representation, which allows an appropriate descrip-
tion of the extracted uncertainties as Gaussians will
therefore be presented in the following section.

3 UNCERTAINTY DESCRIPTION
This section introduces the proposed uncertainty repre-
sentation of spherical images. Instead of representing a
given feature in spherical coordinates through latitude-
longitude representation, we propose to use a normal
vector n. This vector, described in the 3D Cartesian
camera coordinate system is characterized by its per-
pendicular alignment to the spheres surface and its unit
constraint. The previously obtained 2D uncertainties of
the image features as specified in equation 1 can then
be expressed by assigning an appropriate uncertainty to
the normal vector n.

The requirement of this method is a globally strictly
convex and differentiable shape, the image is repre-
sented on. This assures that each point on the shape is
uniquely identifiable by the normal emanating from the
surface at that position. The considered spherical cam-
era as well as other catadioptric camera models meet
this requirement.

The position of an image feature P on the sphere,
available in latitude-longitude representation as
(θP,φP)-coordinates, can simply be transformed into
the corresponding normal vector description nP by

nP =

sin(θP)sin(φP)
sin(θP)cos(φP)

cos(θP)

 , (2)

whereat the condition ‖nP‖= 1 holds.

Any location uncertainty of the 2D point, such as ex-
tracted SIFT-location uncertainty, also has to be trans-
ferred from the two-dimensional representation in the
local perspective images to the 3D normal vector rep-
resentation. The 3D uncertainty of the normal vector is
initialized as

σn =

(
σ2D 02
0T

2 σε

)
=

σxx σxy 0
σyx σyy 0
0 0 σε

 (3)

by considering equation 1 for the feature uncertainty
in 2D. This equation adds a third dimension to the un-
certainty representation. When it comes to the imple-
mentation of this equation, it is necessary to ensure nu-
merical stability by choosing σn to be positive-definite
through setting σn33 = σε > 0. The value of σε was
chosen to

σε �min(λ1,λ2), (4)

where λ1 and λ2 represent the eigenvalues of σ2D. Fig-
ure 3(a) shows a geometrical visualization of σn.

The following calculations outline the correct align-
ment of the uncertainty distribution σn with the accor-
dant n-vector, splitting up into two consecutive steps.
Firstly, σn is converted to comply with the location of
the image feature on the sphere as illustrated in figure
3(b). Afterwards, the correct orientation of the uncer-
tainty is ensured as shown in figure 3(c).

The first step is described through the rotation vector
rA, conforming to the constraint

nP = R(rA) êz. (5)

R(·) represents hereby a rotation matrix based on axis
angle by applying the Rodrigues formula [ZF92]. The
vector rA is obtained through
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Figure 3: Uncertainty representation with the proposed normal-vector method: An ellipsoid representing the 1σ

(68% confidence) neighbourhood of the extracted feature uncertainty is by default initialized at the image pole
along the êz-axis (a). Then the uncertainty distribution is aligned with its corresponding location by applying rA
(b). Finally, the rotation rB is applied to ensure the orientation of the originally extracted uncertainties (c).

rA = cos−1(êz ·nP)
êz×nP

‖êz×nP‖
. (6)

The geometrical alignment of rA is visualized in figure
3(b) by the dashed line, oriented perpendicular to êz and
nP. The term 1

‖êz×nP‖ normalizes the vector êz×nP and
cos−1(êz · nP) assigns the length to the vector, which
corresponds to the rotation angle. Finally, a further ro-
tation with nP as rotation axis is applied trough

rB = cos−1
(

sgn(nPy) ·nPx

‖nPx,y‖

)
·nP. (7)

Based on this rotation, it is assured that location uncer-
tainties of features are oriented in the way they were
extracted from the perspective image (Figure 3(c)). nPx

determines the x-element of the vector nP. nPx,y repre-
sents the vector (nPx nPy)

>. The term sgn(nPy) identifies
the correct quadrant for the evaluation of cos−1(·).

4 APPLICATION: ESTIMATION OF
CAMERA POSE UNCERTAINTY

To evaluate the capability of our approach, we esti-
mated the pose uncertainty of a spherical camera based
on our proposed representation and compared the re-
sults against those obtained with latitude-longitude rep-
resentation. The camera pose uncertainty is calcu-
lated based on correspondences between features of the
spherical image and 3D points in the world coordinate
system (wcs). Without loss of generality, we choose
the wcs and the camera coordinate system (ccs) of the
spherical camera to be congruent. This simplifies the
transition of a 3D point Mw in wcs to Mc in ccs given
through

Mc = RcwMw + tcw (8)

to an identity operation Mc = Mw, whereas the su-
perscript [·]cw identifies the direction of transformation

from wcs to ccs. Additionally R and t identify the rota-
tion and translation of wcs against ccs.

The image points Ms of the spherical image are finally
obtained by projecting all points Mc through the cen-
tral projection point of the camera, given as tcw, onto
a unit sphere. Based on this step, 2D-3D correspon-
dences between all points Ms in 2D latitude-longitude
representation and Mw in wcs are established.

Our evaluations have been performed on synthetical
and real data. For synthetical evaluations, n 3D points
in wcs as well as the camera model and the image fea-
tures were generated with Matlab R©. For evaluation
with real data, sphercial images of calibrated cameras
were chosen: The camera pose had previously been
calibrared using an SfM-approach for spherical images
and was optimized by minimizing the squared repro-
jection error between image points and 3D points, pro-
jected into the image. Software such as the Sparse
Bundle Adjustment Package provided by Lourakis and
Argyros [LA09] perform this task efficiently. For the
minimization of the reprojection error, the measure-
ment function h was chosen according to Pagani and
Stricker [PS11] as

n

∑
j=1

h(Ms j ,Mc j) =
n

∑
j=1

cos−1
(
(Ms j)T Mc j

‖Mc j‖

)
, (9)

which corresponds to the geodesic distance between the
2D-3D correspondences. The point Ms j denotes hereby
the jth image point on the spherical image, represented
as 3D unit vector, Mc j identifies the jth 3D point in ccs.(
(Ms j )T Mc j

‖Mc j ‖

)
represents finally the normalized scalar

product between Ms j and Mc j .

For the calculation of the pose uncertainties, we as-
sume an optimization to be performed based on equa-
tion 9. Since such an optimization does not deliver
perfect agreement of image features and backprojected
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Figure 4: Two omnidirectional cameras in identical environments. 3D points are projected into the spherical
images and uncertainties are attached to them. Based on their location on the sphere, their accuracy of description
varies when using latitude-longitude representation, depending on their latitude-longitude position.

3D points for real data, this fact was also considered
in our simulations. Image features where firstly gener-
ated through backprojection of 3D points. After apply-
ing Gaussian noise to those 3D points, they were once
again backprojected creating deviation between back-
projected 3D points and image features.

The uncertainty of the camera pose for simulated and
real data was then obtained by performing a first order
error propagation with respect to the covariance matri-
ces of tcw and Rcw. Without loss of generality, in the
current work evaluations are limited to the translation
covariance of the camera to proof the reliability of the
proposed representations.

The derivation of the needed Jacobian matrices from
the measurement function h for performing camera
pose uncertainty estimation is outlined below and
implies the following preconditions: Uncertainties of
all error-prone measurements, such as image points Ms

on the sphere and 3D world points Mw are assumed to
be Gaussian distributed. The subsequent uncertainty
propagation is furthermore restricted to linear propaga-
tion methods. It is assumed, that the camera pose was
optimized towards its environment by minimizing the
reprojection error of 2D3D-correspondences between
image points Ms j and world points Mw j , which have
to be transferred to the camera coordinate system (ccs)
by applying equation 8. This optimization step can
reliably be performed by software-packages based
on the Levenberg-Marquardt-algorithm, such as SBA
[LA09]. For quantifying the reprojection error between
the 2D3D correspondences, the geodesic error as
measurement function h is used (Equation 9).

After the optimization step, the uncertainty of the cam-
era pose σpose is calculated using the retrieved results
as linearization point. Bleser et al. [BBS07] present
those calculations for perspective cameras. Since we
limit our calculations to the translational component of
the pose uncertainty, we obtain for spherical cameras
and n 2D3D-correspondences

σt ≈

 n

∑
j=1

(
∂h

∂ tcw
j

)>
P−1

j
∂h

∂ tcw
j

−1

. (10)

For ∂h/∂ tcw j we obtain

∂h
∂ tcw j

=
1
ξ j

(
1
κ j

Mc j
(
(Ms j)>Mw j

)
− Ms j

‖Mw j‖

)
,

(11)
with

κ j =
(
(Mw j

x )2 +(Mw j
y )2 +(Mw j

z )2
)3/2

(12)

and

ξ j =

√
1−
(
(Ms j)>Mw j

‖Mw j‖

)2

(13)

since ∂ cos−1(α)
∂α

=− 1√
1−α2

.

Pj is approximated as

Pj ≈
(

∂h
∂Mw j

∂h
∂Ms j

)(
σMw j 0

0 σMs j

)( ∂h
∂Mw j

∂h
∂Ms j

)
.

(14)
σMw j and σMs j describe the uncertainties of the world

and image points as Gaussians. The matrix ∂h/∂Mw j

represents the Jacobian of h with respect to Mw j and
∂h/∂Ms j the equivalent with respect to Ms j :

∂h
∂Mw j

=
1

ξ jκ j
((Ms j)>Mw j)

(
(Rcw)>Mw j

)
− 1

ξ j

(Rcw)>Ms j

‖Mw j‖
(15)

∂h
∂Ms j

= −ξ j‖Mw j‖ ·Mc j (16)



Based on this, the resulting pose uncertainties of the
spherical cameras were evaluated for the common
latitude-longitude representation as well as for the
normal-vector representation. The results for the
calculated pose uncertainties will be detailed in the
next section.

5 EVALUATION AND RESULTS
This section presents results of pose uncertainty estima-
tion for spherical cameras in several scenarios.

Since omnidirectional cameras are able to register im-
age features in arbitrary directions, the calculated pose
uncertainty can be expected to be independent from
the camera orientation Rcw, when considering tcw to be
constant. This is not the case, when choosing latitude-
longitude representation for the uncertainty calculation
(Figure 4).

The reason for this is illustrated in figure 1(b), exem-
plifying that a Gaussian distribution on a sphere can-
not be adequately described by a Gaussian near the im-
age poles. This leads to the conclusion, that the (θ ,φ )-
representation is not valid to reliably approximate error
distributions with Gaussians.

To highlight this, we reduced the distribution of ar-
tificially generated image features in our evaluations
with synthetic data to a very limited solid angle of the
spherical image, emphasizing the influence of chang-
ing camera orientation for (θ ,φ )-representation. The
parameter σε specified in equation 4 was chosen as
σε = 10−10 ·min(λ1,λ2) throughout the evaluations.
This choice of σε is justified by evaluations showing
negligible impact to the results with σε < 10−8.

Figure 5(a-e) visualizes the resulting pose uncertainty
for rotation around the êx-axis and the êz-axis for syn-
thetic data: The evaluation was based on a distribution
of n = 20 3D points Mw. The coordinates of those
points as well as the vector tcw were kept constant in
wcs throughout the evaluation process. Only the ori-
entation of the omnidirectional camera was rotated in
steps of 10◦ by varying Rcw accordingly. With each it-
eration step, the distance of the points towards the pole
changed.

Due to the distortion in latitude-longitude representa-
tion, the image feature uncertainties enter differently
into the pose calculations. Results of pose uncertainty
calculation at the image poles differ up to 27% from
the uncertainty obtained at the image equator. Reason
for this disparity is an overestimation of uncertainties at
the poles when using latitude-longitude-representation.
The resulting twofold symmetry of the pose uncer-
tainty is explained by the fact, that the point distribution
passes both poles during the evaluation steps. Through-
out the whole evaluation process, the pose uncertainty
calculated based on the normal vector representation is

unchanged and complies with the expectation of obtain-
ing constant results.

Our evaluation with real data was based on two
datasets: The first dataset contains a set of 10 images
of the Mogao cave number 322 in China. The second
dataset consists of 183 images taken of a street crossing
in Berlin (Oberwallstraße, Jägerstraße). All images
were taken as high-dynamic range (HDR) images and
have a resolution of 14’000 × 7’000 pixel. Therefore
up to 108’000 image features were extracted in a single
image and considered for the calculation of the camera
pose uncertainty.

Since the extracted features were distributed uniformly
throughout the whole image, the camera pose uncer-
tainty in conventional latitude-longitude representation
varied less compared to the synthetic scenario. When
using standard low-dynamic range images, a non-
uniformal distribution of features throughout the
images is more likely, leading to higher disparities
between the presented approaches. Figure 5(f) shows a
typical result for a spherical image.

6 CONCLUSION AND FUTURE
WORK

A method for uncertainty representation of spher-
ical image features based on normal vectors has
been proposed and compared to the commonly used
latitude-longitude representation. It was shown,
that this method - in contrast to latitude-longitude
representation - is able to reliably represent image
features throughout the whole sphere, since the used
normal vector concept is not subject to distortions,
discontinuities or nonlinear effects at the image poles.

Basing the pose uncertainty estimation of spherical
cameras on the proposed approach improves its relia-
bility and makes the quality of its results comparable
to perspective estimates, such as [BBS07].

The proposed method is furthermore expected to be ro-
bust against up and down-sampling of the images, as
long as a consistent uncertainty extraction of the im-
age features is assured for different scales (e.g. by us-
ing scale-invariant SIFT [Low04], SURF [BTVG06] or
ORB [RRKB11] features). A detailed evaluation has to
be considered as future work.

Also the use of the proposed uncertainty representation,
e.g. as additional information for surface fitting, meth-
ods for uncertainty propagation through subsequent re-
construction algorithms such as sparse reconstruction
and pointcloud generation will be part of future work.
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Figure 5: Subfigure (a) shows a synthetic point distribution Ms represented as normal vectors and two exemplarily
evaluated rotation planes, the vectors were rotated in. Point uncertainties in latitude-longitude representation are
visualized, when being located at the equator (b) and at the image poles (c). Subfigure (d) and (e) show the
resulting camera pose uncertainties, expressed through the eigenvalues of the camera pose uncertainty matrices.
These eigenvalues furthermore represent the expansion of the uncertainty ellipsoids of the cameras along the three
principle axis (1st, 2nd, 3rd axis) and were normalized to the first evaluation step. Subfigure (f) finally illustrates
a typical pose uncertainty distribution for a real spherical image with 101778 extracted features. Note that within
the figures (d)-(f) all normal vector graphs (abbrev.: n-vec) overlap in a single plotted line.
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