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ABSTRACT
In this paper we present an approach for the acquisition and segmentation of spectral Bidirectional Reflectance
Distribution Function (BRDF) measurements of real-world objects. The acquisition setup is a priori fully calibrated
and provides pixel-synchronous image and depth data of the examined objects. Based on one single viewing
and illumination geometry, we are able to determine spectrally distinct surface regions for objects with abruptly
changing surface materials (painted surface patches) and for objects with gradually changing materials (partially
oxidized iron). For clustering we apply the k-means algorithm and the mean-shift algorithm. The segmented
clusters are used to adapt individual spectral BRDFs (Lambert, Phong, Cook-Torrance) to the obtained cluster
data. Additionally, the elemental abundances of iron and rust on a metal surface are analyzed using spectral
unmixing. The paper presents a detailed discussion of our method and provides critical insight into the obtained
results.
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1 INTRODUCTION
The amount of light perceived from a point on an ar-
bitrary illuminated object surface depends on the type
and direction of the incident light, the surface geom-
etry, the scene geometry, and, especially, on the ob-
ject material at any given point. Industrial applica-
tions show that it is desirable to develop methods for
the determination of regions with common or distinct
spectral reflectance behavior. The knowledge of lo-
cal material properties can then be used for e.g. ma-
terial identification or image based surface reconstruc-
tion [HB86, Woo80, HW12]. While successful material
separation has been presented by different researchers
(e.g. [Tom02, NRN03, LKG+03]), their data acquisi-
tion involved a varying light source position and a vary-
ing camera position, which requires an intricate mea-
surement scenario involving a high effort for data ac-
quisition.
In this paper, we present a method for the separation
of material components based on their multispectral re-
flectance characteristics using a static object, a single
light source position, and a fixed camera position. For
industrial applications, it is desirable to use as few light
and camera positions as possible, since this facilitates
the acquisition process and reduces the required record-
ing time. However, this comes at the cost of the mea-
surements covering only a small range of possible an-
gles of observance (ϑo ∈ [−90◦...+90 ◦] ⊂ R) and in-

cidence (ϑi ∈ [−90◦...+ 90◦] ⊂ R). While it is chal-
lenging to cluster and/or perform model fits using that
data basis, we will show that it is possible if the under-
lying models are modified. We are thus able to obtain
correct segmentations for almost the whole object, even
though there is no wide range of illumination and view-
ing angles available due to the single view single light
configuration.
We compare the application of different clustering ap-
proaches (k-means clustering and mean-shift cluster-
ing) for the examination of a surface with sharp ma-
terial changes (color patches), and for a surface with
smooth material changes (iron vs. iron oxide). For the
segmentation, it is physically impossible to cluster the
data based on specular reflections, since these only de-
pend on the color of the incident light and are inde-
pendent of the surface color as explained in detail by
[Sha85]. The segmentation can thus be performed on
the diffuse part only. We show that it is possible to im-
prove the segmentation results considerably by an em-
pirical modification of the modeled reflectance behav-
ior.
In the subsequent stage we use each cluster to obtain
the parameters of a model-based spectral BRDF1, and
we compare the performance of the Phong [Pho75] and
Cook-Torrance [CT81] models. Additionally, we show

1 Bidirectional Reflectance Distribution Function



that the clustered data can be used to determine the
abundance distribution of – in our case – iron and iron
oxide using linear unmixing without any adjustment of
the underlying BRDF.

2 RELATED WORK
The problem of separating material from shape and il-
lumination has been examined by some authors previ-
ously. However, most of them use some sort of varying
light source position and/or varying viewpoint.
[Tom02] applies multispectral data to the problem of
circuit board element segmentation. Initially, two im-
ages are recorded with different illumination directions,
which are used for a very coarse initial segmentation
and measurements that contain specular reflections are
removed. The remaining pixels are clustered based on
a set of empirically defined if-then-else classification
rules, which emerge from a priori knowledge of the
spectral reflectance properties of the circuit board el-
ements. In summary, [Tom02] operate on the diffuse
part only, require different illumination directions, and
rely on a priori knowledge for the clustering process.
[NRN03] present “photometric invariants”, which can
be used for various tasks, including material segmen-
tation. In detail, they aim for a separation of mate-
rial from lighting and shape based on a scene descrip-
tion with separable BRDFs. The availability of mul-
tispectral data (color images) under different illumina-
tion conditions then allows for solving for a geometric
invariant by simply computing ratios of matrix determi-
nants. The authors show successful application of their
method to isolated homogeneous objects, homogeneous
objects in complex environments, objects consisting of
different materials, inhomogeneous objects, and objects
with a specular surface. However, the invariants require
changes in illumination, viewpoint, and/or object posi-
tion between consecutive acquisitions.
[LKG+03] acquire geometric and photometric data us-
ing different light source positions and viewpoints for a
set of “lumitexels”, which are assembled as a vector of
geometric and photometric measurements. Afterwards,
they fit the Lafortune BRDF model to all lumitexels to
create two BRDF models along with a covariance ma-
trix of the fitting parameters. Based on the error be-
tween lumitexels and those two BRDFs, they split the
surface consecutively into two clusters. This procedure
is repeated for the cluster with the greatest deviation of
measured and fitted BRDF until a clear segmentation of
all material components is achieved.

3 CONTRIBUTION
We present a novel method for the segmentation of
multispectral data. In contrast to [LKG+03] and
[NRN03], we apply a fixed object, light source, and
camera position. Unlike [Tom02], we do not require
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Figure 1: Experimental setup including light source (1), cam-
era (3), 3D scanner (2+3) and interference bandpass filters (4)
for acquisition of the object data (5).

any prior knowledge of the material reflectance. Fig. 1
shows an image of the experimental setup and Fig. 2
gives an overview of our algorithm. Initially, we record
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Figure 2: Methodical overview.

the depth data with a 3D laser pattern projector2 and
acquire image data for N = 8 distinct wavelengths

2 ViALUX zSnapper Vario, 2048 px× 2048 px, lateral resolu-
tion ≈ 40 µm



between 450 and 800nm) using bandpass interference
filters3. The light source positions and intensities are
known a priori following the calibration procedure
described by [LHW12]. Additionally, the image data of
a white diffuse reflectance standard4 is recorded, which
is later used to infer the BRDF from the observed
intensity data (Section 4).
Afterwards, compensate the influence of the incident
and viewing directions is compensated, the spectral
mean is removed, and the k-means and/or mean-shift
algorithms are employed for clustering. With the
clustering boundaries available, we are able to obtain
BRDF parameters for each cluster and each multispec-
tral channel within these clusters. Algorithmic details
for these stages are explained in the following section.

4 ALGORITHMIC DETAILS
4.1 Data preparation
In order to account for even slight camera shifts dur-
ing bandpass filter replacements or by the optically ac-
tive bandpass filters themselves, we conduct an image
registration and subsequent affine transformation step
to account for these distortions. The dynamic range of
the images is increased by using high dynamic range
imaging (HDR), which allows capturing bright specu-
lar regions and dark surface regions without reaching
saturation or losing low-contrasted details in the cam-
era noise.
Since the depth data are corrupted by a considerable
amount of noise, we perform a model-based fit to the
acquired data. The models are chosen to simply match
the object shape, i.e. a cylindrical model for the “cup”
dataset and a plate for the “triangle” dataset (see Fig. 3
and Fig. 10). This is achieved by a minimization of
the mean squared distance between the measured data
points and the model surface. A whole description of
that process lies beyond the focus of this paper and is
therefore omitted, a detailed description can be found
e.g. in [LMM98, Ebe08]. Note, that the multispectral
data segmentation algorithm below is not restricted to
the application of these models. The models only ac-
count for the partially severe amount of noise present in
our 3D scans. The model fitting step is unnecessary, if
the scanned surface contains only low noise.

4.2 BRDF measurement
The main idea for BRDF measurement determination
lies in acquiring multispectral object and reflectance
standard data, which are then related to each other as

3 Thorlabs bandpass intereference filters, center wave length
CWL = [450,500,550,600,650,700,750,800]nm, full width
at half maximum FWHM = 10nm

4 SphereOptics Zenith Polymer Diffuse Reflectance Standard
SG3052

explained in the following. This derivation thus aims
for an expression of the observed BRDF values fr. The
measured object intensity can be expressed as

Iob =C · I0

r2
l,obr2

c,ob
· fr,ob · cosϑi,ob, (1)

where the distance from the light source to the object
and the camera to the object are denoted rl,ob and rc,ob,
respectively. The light source intensity is I0, the BRDF
is fr,ob. Further influencing quantities like camera gain
or interference filter attenuation are all contained within
the constant C. ϑi,ob denotes the angle of light incidence
on the object surface, i.e. the angle between the local di-
rection l of the incident light and the local normal vector
nob of the surface such that cosϑi,ob = 〈l ·nob〉.
Analogously, the reflectance standard is described by

Ire(x0,y0) =C · I0

r2
l,rer2

c,re
· fr,re · cos[ϑi,re(x0,y0)] (2)

In contrast to Eq. (1), we can include more prior knowl-
edge here. For the reflectance standard, we can specify
an approximately diffuse reflectance behavior and an a
priori known spectral albedo ρre = 0.99 specified by the
manufacturer. We thus replace the general BRDF fr,re
by a Lambertian reflectance term, i.e. fr,re =

ρre
π

, yield-
ing

Ire(x0,y0) =C · I0

r2
l,rer2

c,re
· ρre

π
· cos[ϑi,re(x0,y0)]. (3)

Dividing Eq. (1) by Eq. (3) then leads to

fr,ob =
Iob

Ire
· ρre

π

cosϑi,re(x0,y0)

cosϑi,ob
·

r2
l,obr2

c,ob

r2
l,rer2

c,re
, (4)

which is connected to the reflectance Rob by

fr,ob = Rob ·
1

cos(ϑi,ob)
. (5)

It is apparent that the relation of measured object in-
tensities with reflectance standard data provides an el-
egant way for BRDF measurement determination. The
BRDF obtained from Eq. (4) can now be used to seg-
ment areas based on their spectral reflectance. Ideally,
the separated areas correspond to areas with the same
material characteristics. Practically, a specular reflec-
tion within the surface leads to incorrect segmentation
results. Due to the lack of varying light source or view-
point position, a precise estimation of these illumina-
tion effects can not be achieved. Instead, we modify
the measured reflectance samples Rob (or, respectively,
measured BRDF fr) such that

Sn,m =
Rob

cosn ϑi cosm ϑo
=

fr

cosn+1 ϑi cosm ϑo
, (6)



which has been found to alleviate that effect. The an-
gles ϑi = arccos(〈l ·n〉) and ϑo = arccos(〈v ·n〉) denote
the angles between incident light direction l and ob-
servance direction v with the local surface normal n,
respectively. Additionally, we apply a spectral mean
subtraction to Eq. (6) prior to segmentation since this
has been found to improve the segmentation results (see
Section 5) because it stresses the spectral gradient in
comparison to the spectral offset.

4.3 Clustering and BRDF fitting
For clustering similar BRDF measurements, we use the
k-means algorithm [Mar09] and the mean-shift algo-
rithm [CM02] in their classical form, i.e. without func-
tional adaptations. For the mean-shift algorithm, we
apply a disk-shaped kernel that evenly weights the in-
volved measurements [Fin06]. Once the clusters are
obtained, we estimate a Phong [Pho75] and a Cook-
Torrance [CT81] BRDF by nonlinearly fitting the u =
[1...U ]⊂N observed measurements f observed

r,u to the cor-
responding model based estimations f modeled

r,u such that

P∗ = argmin
P

U

∑
u=1

( f observed
r,u − f modeled

r,u )2 (7)

becomes minimized with respect to the model parame-
ters P. Both BRDF models include a Lambertian term
kd
π

to describe (ideal) diffuse reflection. The applied
physically plausible Phong BRDF is

fr =
kd

π
+ ks

a+2
2π
〈r ·v〉a︸ ︷︷ ︸
cosa ϑrv

, (8)

where a denotes an exponential coefficient for varying
the angular extent of the specular component. The spec-
ular characteristics are modeled based on the angle ϑrv
between the direction of mirror reflection r and obser-
vation v.
The Cook-Torrance BRDF model consists the follow-
ing terms:

fr = kd
1
π
+ ks

F(n)
π

D(m) ·G
cosϑi cosϑo

. (9)

The amount of reflected light depends of the three
components F , D, and G, which denote the Fresnel
reflection coefficient, the distribution function of the
directions of the microfacets, and the geometrical
attenuation factor, respectively. F improves the model
exactness for grazing incidence angles, D defines
the influence of surface roughness on lobe width,
and G accounts for self shadowing and occlusion.
The parameters of the Cook-Torrance BRDF are the
weights kd and ks, the index of refraction n and the
surface roughness m. Details can be obtained from
[CT81].

4.4 Spectral unmixing
Spectral unmixing denotes the decomposition of the
spectrum of a compound material into the spectra of the
known pure materials out of which it consists by esti-
mating the corresponding relative frequencies [KM02].
To estimate a distribution of a compound of two mate-
rials (“endmembers”) – in our case: iron and iron oxide
(rust), see Fig. 10(a) – we use a linear unmixing ap-
proach [KM02] such that the pixel-wise spectral BRDF
fr = [ fr,1, ..., fr,N ]

T ∈RN×1 sampled at N distinct wave-
lengths is supposed to be composed of two components
xiron ∈ RN×1 and xrust ∈ RN×1 according to

xiron +xrust = BRDF = fr. (10)

These x, in turn, are weighted variants of the spectral
BRDFs of the pure elements (riron and rrust):

xiron = airon · riron xrust = arust · rrust. (11)

The vectors riron and rrust represent reference spectra of
iron and rust, which have been determined by averaging
K ∈N manually chosen BRDF samples riron,k and rrust,k
with k = 1...K from the image:

riron =
1
K

K

∑
k=1

riron,k, rrust =
1
K

K

∑
k=1

rrust,k. (12)

This approach corresponds to the concept of image-
based endmember selection [KM02]. To estimate the
actual abundance distribution airon ∈ [0...1] ⊂ R and
arust ∈ [0...1] ⊂ R, we apply the following least-square
transformation of Eq. (11):

airon = (rT
ironriron)

−1rT
ironxiron (13)

arust = (rT
rustrrust)

−1rT
rustxrust (14)

For this to be physical meaningful, the following two
constraints have to be satisfied:

airon(i)> 0, arust(i)> 0 (15)
airon(i)+arust(i) = 1 (16)

These constraints are added to Eq. (13) and Eq. (14)
[KM02], which are then solved accordingly. Note that
this derivation can be applied to the separation of two
arbitrary materials with known or measured pure ma-
terial BRDFs rMaterial 1 and rMaterial 2. In that case, the
BRDF vectors riron and rrust are replaced by the new
BRDF vectors in the derivation above. The linear un-
mixing approach is also applicable to N ∈ N> 2 mate-
rial components.

5 EXPERIMENTS AND RESULTS
The following sections provide a detailed discussion of
the “cup” dataset, which contains sharp boundaries (see
Section 5.1), and of the “triangle” dataset, which ex-
hibits a gradual transition between iron and iron oxide
(see Section 5.2).



5.1 Object with sharp region boundaries
The first part of this work deals with the segmentation
of a dataset with abruptly changing regions on the sur-
face of a cup as shown in Fig. 3(a). To compare seg-
mentation results quantitatively, we manually created
a reference cluster map, which is shown in Fig. 3(b).
With that being available as a ground truth, the detec-
tion rate D is defined to be

D =
tp
all
·100%, (17)

i.e. the percentage of correctly classified pixels (tp)
within the whole set of classifiable pixels in the image
(all).

(a) Color regions of the exam-
ined cup
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(b) Manually defined reference
clusters

Figure 3: Detection rate ground truth

Fig. 4 illustrates the pixel-wise detection rate for k-
means and mean-shift for a varying number of clusters,
bandwidth, and BRDF modification factor Sn,m, as de-
scribed in Eq. (6). The red curve is equivalent to a direct
BRDF segmentation (spectral mean free) without any
BRDF modification. Both segmentation algorithms, es-
pecially mean-shift, benefit from the reflection model
modification.

A detailed image of the best segmentation result yielded
by mean-shift using S1.6,0.5 is shown in Fig. 5. The seg-
mentation error in the lower left part of the cup can be
attributed to slightly overexposed input data originating
from spurious illumination from interreflections with
the experimental environment. The correct separation
of the three reddish regions 4, 5 and 8 (see Fig. 4(a))
is especially challenging, due to the fact that the corre-
sponding spectra are very similar and need to be distin-
guished based on merely 8 spectral measurements.
Additionally, an oversegmentation of the orange cluster
Â can be observed. A toleration of the oversegmenta-
tion leads to a segmentation result with a detection rate
of D ≈ 95% as shown in Fig. 5(c) and Fig. 5(d). Note
that the segmentation is correct over nearly the whole
cup, i.e. even regions with steep surface gradients (cup
borders), whose measurements are typically hard to ob-
tain due to rapidly changing incidence and viewing an-
gles, have been segmented correctly.

(a) k-means detection rate over number of clusters

(b) mean-shift detection rate over bandwidth

Figure 4: Comparison of the correct segmentation rate be-
tween k-means and mean-shift for abrupt cluster transitions.
Each curve (red, black, blue, green) corresponds to a different
BRDF modification factor S.

(a) (b)

(c) (d)

Figure 5: Segmentation result for S1.6,0.5. (a) Best mean-
shift segmentation result without further treatment. (b) Cor-
rect detected areas (detection rate: 88.45 %). (c) Best mean-
shift segmentation result with toleration of the oversegmented
orange cluster. (d) Correct detected areas (detection rate:
94.79 %). Note the oversegmentation of the orange cluster
((a) and (b)), which can be neglected ((c) and (d)). Note that
areas at the border of the cup with steep surface gradients have
been segmented correctly.

The measured BRDF can now be approximated by a
Phong and/or a Cook-Torrance BRDF model for each



determined segmented cluster. Using the obtained
BRDF parameters allows for a determination of a
BRDF value for every half polar observation angle
ϑo ∈ [−90◦, ...,90◦] ⊂ R, for each incident light angle
ϑi ∈ [−90◦, ...,90◦] ⊂ R, and for each pixel belonging
to the cluster. In our case, we analyze a pixel of a
BRDF at 600 nm wavelength, which is located closely
to a specular highlight. This pixel corresponds to clus-
ter À, which is generated by a mean-shift clustering of
S1.42,1 and visualized in Fig. 6(a) and Fig. 6(b).

(a) (b)

Figure 6: Data point and corresponding clusters. (a) Mea-
sured BRDF at a wavelength of 600 nm. Observed point near
measured specular maximum is marked green. (b) Segmented
cluster including observed data point (mean-shift approach
with S1.42,1).

Fig. 7, Fig. 8 and Fig. 9 show the results of BRDF
estimation for the Phong model (single lobe as well
as lobe+spike variant) and the Cook-Torrance model
(lobe+spike). Note that the range of incidence and
viewing angles available for BRDF estimation is nar-
row but the estimation is robust due to the large number
of pixels involved. The obtained BRDF may become
inaccurate for angles a long way off from the underly-
ing samples used during the parameter estimation stage,
but model usage far off the data basis should be avoided
anyway.
An important observation is that the BRDF decreases
for large absolute viewing angles |ϑo| ≥ 60◦. This ef-
fect has also been observed with other objects and scene
settings. Relating this effect to the varying specular part
of reflection does not seem very realistic due the fact
that this decrease occurs at angles far away from the
ideal specular reflection angle ϑrv = 0◦. In fact, a non-
ideal diffuse reflection for grazing viewing angles is a
more plausible explanation. [ON94] introduce a more
detailed and complex diffuse reflectance term, but they
describe an increased reflectance, which is contrary to
our observations. The reflectance in this work better
corresponds with a “diffuse fall-off” described e.g. by
[DRS08]. This effect models decreasing reflectance for
larger angles of observance and is partially taken into
account by [LFTG97].
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Figure 7: Phong fit (lobe).
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Figure 8: Phong fit (lobe+spike).
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Figure 9: Cook-Torrance fit (lobe+spike).

5.2 Object with gradual region bound-
aries

Initially, we performed a k-means segmentation (see
Fig. 10) of the oxidized iron object without any mod-
ifications of the BRDF, i.e. we used S(1,1). To obtain
a robust segmentation result without the influence of
spurious effects like specular reflections and other il-
lumination inhomogeneities, we have chosen a planar
arrangement of the object with high values of the spec-
ular angle ϑrv in order to minimize the occurrence of
specular reflections. However, due to the roughness
of the surface there is an inevitable amount of small
surface parts that reflect light specularly into the cam-
era. These have been taken into account by a k-means
segmentation with 3 clusters, i.e. iron, oxidized iron,
and a “garbage” class that collects outliers. Based on
10 manually chosen reference data points for iron and
rust (as required for the linear unmixing approach de-
scribed in Section 4.4), an abundance distribution of
both materials can be estimated as shown in Fig. 11(a)
and Fig. 11(b). On the basis of this distribution and an



(a) Probed oxidized iron object. (b) Segmentation with k-means
(3 clusters).

Figure 10: Visual comparison between original and seg-
mented clusters. A third class (“garbage class”) besides iron
and rust has been introduced to collect outliers.

image registration approach that relates the color im-
age Fig. 10(a) with the measurement data Fig. 11(a) and
Fig. 11(b), a mask of the two materials can be generated
as shown in Fig. 11(c) and Fig. 11(d).

(a) Generated abundance distri-
bution of iron.

(b) Generated abundance distri-
bution of rust.

(c) Areas with at least 60%
iron.

(d) Areas with at least 60% rust.

Figure 11: Linear unmixing results.

6 SUMMARY AND CONCLUSION
We have presented an approach for the acquisition
and segmentation of spectral BRDF data. The data
are recorded by relating object intensity data and
reflectance standard data, which then directly provides
BRDF measurements. We used those data to show that
it is possible to obtain accurate segmentation results
and endmember abundance estimates for objects with
rapidly and with gradually changing materials, even
if only a single light source position and a single
viewpoint is available. The object surface with abrupt
region boundaries has been classified with an accu-
racy of 88.5% (94.8% with some oversegmentation
tolerance). The application of linear spectral unmixing
to the separation of iron from rust for the gradually
changing material has provided a qualitatively realistic
result.
In summary, we thus note that it is possible to deter-
mine object regions correctly even if only a single light
source and a single viewpoint are available, which is

very important for e.g. industrial measurement setups.
We have observed some limitation when using raw
measured depth data, which has been found to be
too noisy for correct incidence and viewing angle
determination. This problem has been solved by
using a model-based cylindrical and plane fit for the
respective objects. Using laser range scanners with
higher depth and lateral resolution can overcome that
limitation easily.
The Phong and Cook-Torrance BRDF models were
then fitted to the previously segmented cluster data.
Due to the sparse data input (limited rage of incidence
and viewing directions), some uncertainties in de-
termining a hemispherical BRDF remain, especially
for obliquely viewed surface parts. Additionally, the
obtained BRDF tends to exhibit lower reflectance
values for large observation angles |ϑo| ≥ 60◦, which
can be explained by a “diffuse fall-off” [DRS08].
This issue requires considerable attention in further
research, since it requires a phenomenological (rather
than empirical) adjustment of the reflectance model.
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8 APPENDIX
Fig. 12 and Fig. 13 show image data for four exemplary
wavelengths (λ = 450nm,550nm,650nm,750nm).
Note, that the pixels that correspond to a certain color
/ material have a designated intensity characteristic.
The mean shift and k-means approaches described in
the paper analyze that characteristic and group similar
characteristics. It can be observed that e.g. rust has a
lower 450nm component than iron (i.e. less blue), but
contains a more intense 650nm and 750nm component
(more red). These relations exist over the whole
dataset and thus allow the application of the unmixing
approach.

(a) 450nm (b) 550nm

(c) 650nm (d) 750nm

Figure 12: Camera image examples from the “cup” dataset.
All images have been converted to the same reference inten-
sity to facilitate image comparisons.

(a) 450nm (b) 550nm

(c) 650nm (d) 750nm

Figure 13: Camera image examples from the “triangle”
dataset. All images have been converted to the same refer-
ence intensity to facilitate image comparisons.


