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ABSTRACT
Automatically planning motion for robots or humans in a virtual environment is a complex task. The navigation
cannot be done directly on the geometric scene. An internal representation of the environment is necessary. How-
ever, virtual environments complexity is growing at an important rate, and it is not unusual to work with millions of
triangles and area as large as some square kilometers. In these cases, grid based methods require too much mem-
ory, and are too slow for A* algorithms. Polygons based methods are more memory and computation efficient,
but they are difficult to generate and require complex preprocessing of the input mesh to ensure nice topological
properties. In this paper, we propose an hybrid method, which uses 3D voxelization to generate a clean polygon
mesh simple enough to perform fast A* search. Using this approach, we robustly generate Navigation Meshes for
large environments with fine details, described by millions of triangles, without any assumption on the quality of
the input mesh. The input mesh can contains holes, degenerated or intersecting triangles.
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1 INTRODUCTION
1.1 Motivations
Many tasks in computer animation require the compu-
tation of free paths. Computing them must be done in a
very short time, as the requirement on the frame rate of
this kind of application is very high.
To achieve such performances, path planning algo-
rithms use internal representations detailed enough to
model the complex virtual worlds, and simple enough
to allow fast path request.
Computing these internal representations from the orig-
inal meshes is a difficult task, virtual environments fre-
quently being detailed, complex, large, and of various
quality.
In this paper, we propose a method to efficiently and
robustly compute polygon based maps, usually referred
as Navigation Meshes from any triangles mesh.

1.2 Related works
As stated in apper [1], an important work has been done
in the field of free path computation.
Lamarche [10] distinguish three approaches to path
planning:

• Graph based methods, commonly referred as
roadmap methods. The navigable environment is

represented by a set of connected paths. They do
not represent the entire environment and can lead to
suboptimal paths. See papers [9] and [14].

• Cell decomposition methods, where the navigable
environment is represented as a set of connected ar-
eas. The resulting map is referred as a Navigation
Mesh. They were introduced by Snook [16].

• Potential fields methods, where the navigation is
done according to the gradient of a potential field.

Paper [10] reviews of all these methods.
We choose to use Navigation Meshes, a good choice
for applications requiring collision detection on envi-
ronment boundaries, as well as path planning with arbi-
trary clearance.

1.2.1 Navigation Meshes
Path planning maps are usually based on two kinds of
internal representations:

• Grid based discretization: the virtual environment is
discretized using voxels.

• Polygon based discretization: the navigable areas
are discretized using polygons.

In both cases, the discretization is associated with topo-
logical information regarding the connections between
adjacent voxels or polygons.
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Most of the proposed methods for path planning on
Navigation Meshes are based on the seminal paper [3]
introducing the A∗ algorithm. This method has been
applied with success on both polygonal [10] and voxels
grids [1].
In the case of grid based method, generating the dis-
cretization and the topological information is a straight-
forward process. Some papers [2, 11, 12], propose im-
plementation on GPU. However, for large environments
with fine details, these method requires large amounts
of memory, and became inefficient for path planning.
This approach was introduced by Bandi in [1].
Polygons based methods are much more optimal inter-
nal representation. They require less memory and allow
faster path finding. They can even be used for dynamic
environments [17].
Many path requests can be done on such representa-
tions. Kallmann [7] explores the use of triangulation as
Navigation Meshes. In paper [8] a method is proposed
to compute shortest pathes with arbitrary clearance.
However, creating Navigation Meshes by hand is a te-
dious and error prone process, and automatically gener-
ate them from any input mesh is a challenging task.
Lamarche [10] has proposed a method using prismatic
spatial subdivision, but it implies that all triangles inter-
sections are materialized by edges. This assumption on
the quality of the input mesh requires a potentially time
consuming cleaning step.
Mononen [13] has published an open source imple-
mentation of Navigation Mesh generation similar to
our method. He uses voxelization to extract walka-
ble areas, and triangulate them to create the Naviga-
tion Mesh. However, this method is not scalable, and
doesn’t handle staircases or very large and detailed en-
vironment. He also doesn’t guarantee that all the Nav-
igation Meshes vertices lies on boundaries, which pre-
vents the use of path planning algorithms with arbitrary
clearance.
Finally, Oliva et al. [15] propose a method to automati-
cally generate suboptimal Navigation Meshes, but they
need clean polygons as an input.
We present a method that can robustly generate such
polygonal maps from any input mesh, with low memory
requirement, and in a matter of seconds. This method
also handles ramps and staircases.

1.3 Contributions
In this paper we introduce new algorithms dedicated to
produce a quality Navigation Mesh using a tiling pro-
cess.
In particular, we address the difficult problem of merg-
ing the regions segmented independently on each tile
without introducing intermediate vertices. The pro-
posed algorithms perform this operation robustly, while

Figure 1: The input mesh has been split in four tiles.

using a tiling process allows to perform a significant
part of the computations in parallel as well as allowing
to handle large 3D environments.

1.4 Method overview
Our method does not impose any requirement on the
input triangles, and can be applied without any prepro-
cessing. It ensures the following properties:

1. No assumption is made on the quality of the input
mesh.

2. All the vertices of the Navigation Mesh are on the
boundary. There is no intermediate vertices, intro-
duced by the generation. This is a strong require-
ment on the quality of the Navigation Mesh, allow-
ing to use complex navigation algorithms.

3. It handles large input, with area extending on square
kilometers, and containing small details. Scenes can
contain tenth of millions of triangles.

4. It does not required too much memory.
5. It is parallelized to ensure good performances.

To guarantee the first requirement, we choose to trans-
form the input mesh in a voxel grid. This transforma-
tion can be processed on any input mesh. However, de-
pending on the geometrical scene dimension, and the
voxels size, it can use a large amount of memory.

To satisfy points 3 and 4, i.e. to support large input and
consume a reasonable amount of memory we propose
to handle the voxelization tile by tile. See Figure 1.
This tile by tile processing also provides good perfor-
mances on multi core architectures as its parallelisation
is straightforward.

However, it introduces an important pitfall : point 2
states that we don’t want any vertices to be artificially
introduced in the Navigation Mesh by the method. All
the vertices of the resulting mesh must belong either to
the boundaries or to the obstacles. But the tiling pro-
cess can add artificial vertices on the tiles boundaries.
We propose to carefully merge the tiles to avoid this
problem.

This method boils down to six steps :
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1. Filtering of the non navigable triangles of the input
mesh

2. Voxelization of the filtered triangles
3. Tile based segmentation
4. Tile based contours extraction
5. Tiles merging region by region
6. Navigation graph building

The two first steps are detailed in section 2. The seg-
mentation is described in section 3, while contour ex-
traction is explained in section 4.1 and 4.2. Section 4.3
presents tile merging and section 5 graph building. Fi-
nally, results are discussed in Section 6.

2 VOXELIZATION

Most applications generating Navigation Mesh use as
an input a geometry described by triangles. The qual-
ity of this triangulation depends on various factors: the
geometric modeler, the designer, the triangulation pro-
cess, the storage format, ... As a result, there is no guar-
antee on the topological properties of the input mesh.

In paper [10], a mesh cleaner is used to ensure these
properties, but that implies the use of external libraries,
and can be computationally intensive. And for very
complex scenes, this cleaning can be intractable.

For these reasons, we design our navigation mesh gen-
eration method such that the input mesh doesn’t have to
satisfy any assumption. We don’t perform any prepro-
cessing on the mesh, and just need a list of triangles.

2.1 Tiling process

Instead, as Bandi [1] has proposed we voxelize the input
mesh. However to ensure large input meshes process-
ing, we work tile by tile, as shown in Figure 1. This lim-
its the memory requirement, allows parallelization and
authorizes generation of Navigation Meshes spreading
on square kilometres with centimetric precision.

The tile size in voxels2 can be set arbitrary, depend-
ing on the memory available on the computer and the
algorithm implementation. In our applications, we usu-
ally choose a square tile of size between 256×256 and
1024×1024 voxels2.

Note that splitting the input mesh in tiles creates arti-
ficial tiles boundaries that add artificial vertices which
do not lies on real boundaries or obstacles. See Fig-
ure 6. This prevents the use of algorithms for planning
with arbitrary clearance described in paper [8], as these
algorithms require that the vertices of the triangulation
belong to the obstacles.

Section 4.3 explains how to efficiently and robustly
merge the tiles to remove these artificial points.

Figure 2: The vertical spans stored in a 2D grid.

2.2 Tiled Voxelization
To further improve the memory use, we don’t use a 3D
grid, but 2.5D grid, as in paper [13]. I.e. we use a 2D
uniform grid in the X-Y plan, and each cell contains a
list of vertical spans. See Figure 2. Each tile has its own
2.5D grid, whose each cell contains a list of spans.
Span have the following attributes:

• zmin zmax : min and max discrete altitude of the vox-
els span.

• l : a label identifying the associated region. Initially
unset.

Note that zmax, the voxels span upper boundary might
be a potential floor, whereas zmin might be a potential
ceiling. The label l is originally undefined and is set in
section 3, during the segmentation phase.

2.3 Filtering
2.3.1 Slope filtering
Before applying the tile based voxelization, it is inter-
esting to filter the input to remove triangles than aren’t
navigable. For instance a man in a wheel chair cannot
roll on a plan whose slope exceed 25%.

2.3.2 Tagging non navigable vertical spans
It is also important to tag non navigable vertical spans.
For instance, the first span1 of two consecutive spans
with the same x,y coordinates must be tagged as non
navigable if the distance ∆z = zmin,span2 − zmax,span1 is
less than a robot height.

3 SEGMENTATION
Once the 2.5D voxelization has been performed, we
segment the vertical spans in connected regions. The
vertical spans coordinates x-y are integers as well as
their minimal and maximal zmin,max. This is important
as it eases the segmentation process since we don’t have
to bother with additional epsilon parameters.
This segmentation is done on a per tile basis, and we
choose to perform it slice by slice. This could intro-
duce discontinuities in the regions, depending on the
height of the vertical span, but these discontinuities can
be easily removed as shown in section 5.2.
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Figure 3: The green vertical spans are connected. They are
neighbours and all have the same zmax. Some of the red ver-
tical spans have green vertical spans as neighbours, but they
don’t have the same zmax, so they are not connected.

3.1 Flood fill
We use a very simple region growing algorithm to per-
form the segmentation. Mononen [13] uses the water-
shed based method proposed in paper [4], but we found
this method to introduce over-segmentation in this con-
text.

3.1.1 Connected vertical spans

Before proceeding to the segmentation itself, we must
define the criteria satisfied by two vertical spans to be
considered as connected:

1. They must have the same discrete zmax.
2. They must be neighbours, i.e. a connected vertical

span must be one of the eight immediate neighbours
of a vertical span.

These properties are summarized in Figure 3.

3.1.2 Segmentation algorithm

Knowing how to decide whether two vertical spans be-
long to the same zone, we can start the segmentation.
The input of our algorithm is the 2.5D grid of vertical
spans for the current tile. We use a flood fill. The ba-
sic idea of region growing algorithm is to start with a
vertical spans, and to check whether his neighbours are
connected. If this is the case, they belong to the same
region and get the same label. The region growing is
then continued using these connected neighbours.

We describe this simple algorithm in Algorithm 1 and
2.

Once the algorithm terminates, the list Zs has been filled
with lists of spans that are interconnected according to
our criteria, and we are ready for extracting the contours
of these regions.

Algorithm 1 Region growing based segmentation
Require: S filled with all the vertical spans of the current tile
1: while stack S is not empty do
2: Pop vertical span v from the stack S
3: Set a new label lnew to v
4: Add an empty new list Lv of regions in Zs.
5: Add v to this new list Lv.
6: Push v to Zc
7: while Zc is not empty do
8: Pop vertical span vi from Zc
9: call handleNeighbours(vi, Zc, Lv)
10: end while
11: end while

Algorithm 2 Handle vertical span neighbours depending on
their connexion
1: handleNeighbours(vi, Zc, Lv)
2: for each neighbour cells cn of vi of the 2.5D grid do
3: for each vertical span vn of cn do
4: if vn and vi are connected then
5: Set vn label as lnew
6: Add vn to list Lv.
7: Push vn into stack Zc
8: end if
9: end for
10: end for

4 MERGING TILE REGION
4.1 Corner Points Extraction
4.1.1 Identifying contour edges
The Figure 4 represents a typical region, with complex
boundaries, holes, and connected holes. Contours con-
nect the vertices stressed by the small spheres. These
vertices can be easily identified by looking at the verti-
cal spans connectivity. Let’s call these vertices corner
points. When looking at this region, two observations
can be made:

1. If you browse contours rows by rows and columns
by columns, it appears that there is an alternation
in the connection between the corner points. Hence
the first corner point of a row always connect to the
second one ; the second one is never connected to the
third ; the third always connected to the fourth ; ...
This is in fact an application of the Jordan Theorem.

2. However, there is an exception to this rule: vertices
shared by two holes. This is the case for the two red
spheres. Let’s call these vertices slash and antislash
points depending on the holes position. See Figure
4.

4.1.2 Slash and Antislash Points
The third observation can be easily circumvented by
identifying the slash and antislash and by duplicated
them. Once duplicated, the second observation is al-
ways true. See Figure 7.
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Figure 4: Corner points extraction. The upper red sphere is
a slash point, as its surrounding holes form a slash diagonal.
The lower red sphere is an antislash point, as its surrounding
holes form an antislash diagonal.

4.1.3 Corners Points Extraction
Corner points are defined by their connectivity. As
shown in Figure 5, the floor of each vertical span has
4 vertices, and these vertices are corner points if they
are not surrounded by 4 vertical spans belonging to the
same region. We define the neighbour configuration of
a vertical span as the integer nc on 8 bits encoding its
neighbours.

For instance, a vertical span with no neighbours vertical
spans has nc = 0. A vertical span surrounded by vertical
spans has nc = 1+2+4+8+16+32+64+128= 255.
And a vertical span neighbours of vertical span 8 and 16
has nc = 8+16.

Knowing this configuration, it is straightforward to
identify the corner points using the following mask:

1. point 1 is corner if : nc&11 6∈ {11,8,2}
2. point 2 is corner if : nc&22 6∈ {22,2,16}
3. point 4 is corner if : nc&104 6∈ {104,8,64}
4. point 8 is corner if : nc&208 6∈ {208,16,64}

Slash and antislash points can also be detected simi-
larly. These kind of points are corner points, and must
pass the tests above as well as:

1. point 1 is a antislash point if : nc&11 = 1
2. point 2 is slash point if : nc&22 = 4
3. point 4 is slash point if : nc&104 = 32
4. point 8 is antislash point if : nc&208 = 128

Hence, to identify corners points, for each region of
a tile, we iterate through all the spans, compute their
neighbour configuration, apply the tests above, and
store them region by region in Lc.

4.1.4 Handling vertices on the tile boundaries
The input mesh being processed tiles by tiles, some
navigable regions lying on more than one tile are ar-
tificially cut into multiple regions. Regions merging is
then required, and is described in section 4.3.

Figure 5: The 4 vertices of the vertical span floor are labelled
1,2,4 and 8, whereas the neighbour vertical spans are labelled
1, 2, 4, 8, 16, 32 and 128. Hence, the neighbour configuration
of a vertical span can be encoded on 8 bits i.e. a unsigned
char.

Figure 6: Handling tiles boundaries. Green and red spheres
indicate corners point detected using the method above. Red
ones must be removed as they are artificially added by tiling.
Blue ones are added by taking into account neighbour tiles
border vertical spans to ensure continuity.

However, to merge regions, we need to ensure some
continuity on adjacent tiles boundaries. It is also impor-
tant to distinguish vertices that are really corner points
from vertices that are artificially labelled corner points
due to the tiling process. See Figure 6.

Borders corner points can be classified in three cate-
gories :

1. Real corner points. These are the green spheres of
Figure 6.

2. corner points if adjacent tiles are taken into account.
These are the blue spheres of Figure 6.

3. False corner points that wouldn’t exist without the
tiling. These are the red spheres of Figure 6.

There is nothing special to do with the first class of
points.

For the second and third classes of points, we must ap-
ply the method above on tile extended by a band of
one vertical span on each of its four boundaries. Points
of the second class will be detected by this operation,
while points of the third class will be removed. It is then
straightforward to identify these points by comparison
with the corner points of the unextended tile.
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Figure 7: Contour extraction for duplicated corner points.
Blue point is the first duplicate, while red one is the second.
Vertical connection follow the rules of Table 1.

4.2 Contour Extraction
Once we have identified the corner points of the region
extracted during the segmentation, we proceed to the
extraction of the contour. This extraction is done region
by region. Remember that all the vertices in a region
have the same z coordinate.
Our algorithm use two main structures:

• A list rows of corner vertices, stored rows by rows
• A list cols of corner vertices, stored columns by

columns

The idea behind this algorithm is to exploit the fact that
we are using discrete points in conjunction with the
even-odd rule given by the Jordan theorem. We pro-
cess the vertices row by row, and col by col, and add
them in the rows and cols structures. Special slash and
antislash points are duplicated. See Algorithm 3.

Algorithm 3 Fill rows and cols lists.
Require: Lc: the list of corner points stored region by region
1: for each region r do
2: for each corner point s(x,y) in r do
3: if s(x,y) is a slash or antislash point then
4: Add s twice to rows[y].
5: Add s twice to cols[x]
6: else
7: Add s to rows[y]
8: Add s to cols[x]
9: end if
10: end for
11: end for

first \ second normal slash antislash
normal p→ p p→ p2 p→ p1
slash p1→ p p1→ p1
antislash p2→ p p2→ p2

Table 1: Vertical connection between corner point depend-
ing on their type : normal, slash, antislash. p1 and p2 stands
respectively for the first and second duplicate of slash or an-
tislash points.

Then, we connect vertices by pair, horizontally, and ver-
tically, using the even-odd rule, with special attention

for duplicated points. See Algorithm 4 and Table 1. As
a result we get Nh and Nv that give respectively the hor-
izontal and vertical neighbour of each vertices v ∈ Lc.

Algorithm 4 Build contour graph
Require: rows and cols
1: for each row of rows do
2: Sort corner points of row in increasing x order.
3: end for
4: for each col of cols do
5: Sort corner points of col in increasing y order.
6: end for
7: for each row of rows do
8: for each n−1 corner points si in row do
9: if i is even then
10: Set Nh(si) = si+1
11: Set Nh(si+1) = si
12: end if
13: end for
14: end for
15: for each col of cols do
16: for each n−1 corner points si in col do
17: if i is even then
18: if si and si+1 are not a slash neither a antislash

points then
19: Set Nv(si) = si+1
20: Set Nv(si+1) = si
21: else
22: set si neighbour according to Table 1
23: end if
24: end if
25: end for
26: end for

Finally, we connect all the vertices together to get all
the contours of the region, including holes contour, and
we store them in conts. See Algorithm 5.

Algorithm 5 Connect all contours vertices.
Require: Lc, Nv and Nh
Ensure: The list of contours conts
1: while all vertices in Lc have not been connected do
2: Pick a non connected vertex s in Lc
3: Create a new empty contour cont, i.e. an empty list of

vertices
4: Add s into cont.
5: Let sc be the vertical neighbour of s
6: while sc 6= s do
7: Add sc into cont
8: if Nh(sc) already belongs to a contour then
9: Set sc = Nv(sc)
10: else
11: Set sc = Nh(sc)
12: end if
13: end while
14: Add cont to conts
15: end while
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4.3 Regions merging
The algorithms used to extract the contours are per-
formed tiles by tiles. This creates two difficulties :

• It artificially splits regions : as shown in Figure 6,
if a navigable region of the input mesh lies on two
or more tiles, it is cut in two or more unconnected
regions.

• It creates artificial points. They augment the com-
plexity of the resulting navigation mesh and pre-
clude the possibility of using path planning with ar-
bitrary clearance.

These difficulties can be circumvented by performing
inter-tiles regions merging.

4.3.1 Vertices based merging
To reduce the complexity of the merging by one order
of magnitude, we don’t merge region on a vertical span
basis, but on a border vertices basis. We proceed us-
ing an incremental approach. We process the regions of
each tile sequentially.

Algorithm 6 Handle vertical spans neighbours depending
on their connexion
Require: That each tile regions and contours have been computed
1: for each tile t do
2: for each region r of t do
3: Get the contour c of r
4: Get the vertices Lv3 of third class in the contour c
5: if some regions Lsr of Lr have some points in Lv3 then
6: Merge the regions in Lsr in a unique region ru
7: Add the region ru to Lr
8: else
9: Add the region r to Lr
10: end if
11: end for
12: end for
13: for each region r of Lr do
14: Remove the useless vertices of the third class
15: end for

First, we store the vertices artificially added by the till-
ing, those of the third class, in a dedicated array Lv3 .
These vertices will be removed. If there is no such
points, we create a new region, fill it with all the ver-
tices and contour information, and add it to Lr.

Otherwise, we test these vertices, which by construc-
tion are shared with other regions, against the vertices
of the region already stored in Lr. Again, if there is no
such region, we create a new region, add all the vertices
and contour information into, and add it to Lr. Other-
wise, this gives us the list Lsr of regions whose contours
share these vertices. We merge the regions in Lrs into a
unique region ru and add it to Lr. The regions listed in
Lrs are removed from Lr.

Once all the regions of all the tiles have been processed
this way, we iterate through the resulting regions, and
remove the points of the third category.

Figure 8: The triangulation for a unique region originally
spreading on two different tiles.

See Algorithm 6 for a complete overview.

After this step, we have a list of regions defined by their
vertices and their associated contours, and these regions
are completely free from any artifact coming from the
tiling process.

5 BUILDING THE NAVIGATION
GRAPH

5.1 Triangulation
At this step, we have a list of unconnected and indepen-
dent regions, defined by their contour, and which might
contains holes. In order to display them, and apply our
path planning algorithm, they must be triangulated.

This step is quite straightforward. We just have to iden-
tify the external contours, which surround the region,
and the internal contours, which surround the potential
holes.

5.1.1 Labelling contours
We sort the edges list Le(r) of each region r such that
the first edge e0 in Le(r) contains the bottom left vertex
of the region contours.

Hence, using the Algorithm 7, we label the contours of
the region so that the contour with label 0 is the external
contour. All the others contours are internal contours
surrounding holes.

5.1.2 Identifying holes edges
The Algorithm 7 also stores the bottom left vertex vs
for each contour. These vertices are used during the
triangulation as seed to remove triangles inside holes.
Figure 8 shows an example of region triangulation with
holes.

5.1.3 Convex Partitioning
Finally, we use the simple convex partitioning algo-
rithm presented in paper [6] to simplify our mesh by
regrouping triangles into convex polygons. The method
proposed in paper [15] can be used for a more optimal
convex partitioning.
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Algorithm 7 Label contours of region r
Require: Le(r) filled with all the edges of the current region
1: Fill the stack Se with the edges of Le(r)
2: Set the current contour label lc = 0
3: while Se is not empty do
4: Pop an edge e from the stack Se
5: Let ae,be be the vertices of e
6: Set ae and be contour label to lc
7: Set the bottom left vertices of current contour

Lower(lc) = ae
8: Create an empty stack Si
9: Find the edge ea sharing ae with e
10: if there is such a ea edge then
11: Remove ea from Se
12: Push ea into Si
13: end if
14: Find the edge eb sharing be with e
15: if there is such a eb edge then
16: Remove eb from Se
17: Push eb into Si
18: end if
19: while Si is not empty do
20: Pop edge ei from Si
21: Let aei ,bei be the vertices of ei
22: Set aei and bei contour label to lc
23: Update Lower(lc) = ae according to vertices aei ,bei

positions
24: Find the edge eaei

sharing aei with ei
25: if there is such a eaei

edge then
26: Remove eaei

from Se
27: Push eaei

into Si
28: end if
29: Find the edge ebei

sharing bei with ei
30: if there is such a ebei

edge then
31: Remove ebei

from Se
32: Push ebei

into Si
33: end if
34: end while
35: Increment current contour label lc = lc +1
36: end while

This algorithm is applied to all the regions detected in the
previous step.

5.2 Connection Graph
After the partitioning, our input mesh has been trans-
formed into a list of unconnected regions. To enable
navigation between these regions, we must build a nav-
igation graph linking the regions, to allow navigation
on the whole navigation mesh

This navigation graph will be used for path planning
using the A* algorithm [3].

5.2.1 Reconnect discontinuities due to dis-
cretization

Due to the voxelization process, some regions that were
originally connected might have been artificially dis-
connected depending on the voxel height. These re-
gions must be reconnected.

Figure 9: The blue polygons are the Navigation Mesh gener-
ated for this escalator.

Two regions that have been disconnected by the vox-
elization must have edges in common. The vertices of
these edges have the same x,y discrete coordinates, and
their discrete z coordinate must differ by only 1 voxel
height.

Hence, to reconnect these regions, we simply add a link
in the navigation graph that connects two polygons of
two different regions which have each an edge satisfy-
ing the constraint above.

5.2.2 Stairs handling
Handling stairs is quite similar to disconnected region
reconnection. See Figure 9. Two regions ra and rb are
identified as connected stairs if there exists two edges
ea ∈ ra and eb ∈ rb such that :

• ∆z < maxclimb
• ||v1a

x,y− v1b
x,y||< r and ||v2a

x,y− v2b
x,y||< r

Where v1a and v2a are the two vertices of ea, v1b and
v2b are the two vertices of eb, and ∆z is the difference
between the z coordinates of ea and eb. Note that v1 and
v2 have the same z coordinate when they belongs to the
same region.

A link is added in the navigation graph for each two
polygons whose one of the edges satisfy these require-
ments.

6 RESULTS
6.1 Settings used
Our method uses only three parameters :

• The voxel dimensions: cx,cy,cz
• The maximum height of a step: maxclimb
• The tile size in voxels: nvx

To evaluate the robustness of our method, we choose 5
different settings for these parameters. See Table 2.

The default set uses sensible parameters, that allow a
good precision while keeping the number of voxels at a
reasonable level.

The setting S2 use small voxels, with exotic dimen-
sions.
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Table 2: The settings used to test the robustness of our
method

Set. cx cy cz maxclimb nvx
def. 0.05 0.05 0.02 0.5 256
S2 0.0356 0.0356 0.02 0.5 256
S3 0.0666 0.0666 0.5010 0.5 256
S4 0.666 0.666 0.587 0.5 256
S5 0.05 0.05 0.02 0.5 467

Figure 10: The subway station using the default set-
tings. The navigation mesh is represented in light blue.
An example of path found using the escalator is shown
by the red line. The path planning query took 1.329ms.

Table 3: Results for the subway station
Set. #polys #voxels #links time (s)
def. 12 288 7021 * 804 * 415 18 088 14.122
S2 11 550 9861 * 1129 * 443 24 358 26.035
S3 2342 5271 * 603 * 17 4 334 5.314
S4 286 527 * 60 * 14 650 0.726
S5 11 188 8776 * 1005 * 553 23 916 19.79

The setting S3 use high voxels with a tight basis, also
with exotic dimensions. Moreover, the voxels dimen-
sion cz is bigger than the value maxclimb. This means
that it will be impossible to detect steps.

The setting S4 use big voxels, whose dimension cz is
bigger than the value maxclimb. This setting should cre-
ate coarser navigation mesh, with less polygons, but in
a shorter time, as less vertical spans are created.

Finally, the setting S5 just changes the size of the tiles.
This should just change the performances.

6.2 Navigation Mesh generation results
The 5 settings presented above have been tested on var-
ious meshes. We choose to present the results for 3
representative meshes. See Figure 10, 11 and 12.

A coherent navigation mesh have been generated for
each pair settings/3D scene.

6.2.1 Subway station
This scene has 568 418 triangles. The results of the
navigation meshes generation are summarized in Table
3.

The navigation meshes have been generated in a short
time for all settings. The resulting navigation meshes
are very simple, and contain a small number of poly-
gons in comparison with the original 568 418 triangles.

Figure 11: The platform using the default settings. This
is a complex scene on multiple levels, with many details
: pipe, stairs, cranes, ... An example of path found on
multiple level using the stairs is shown by the red line.
The path planning query took 4.836ms.

Table 4: Results for the platform.
Set. #polys #voxels #links time (s)
def. 21 331 800 * 1045 * 2404 41 864 9.727
S2 32 976 1124 * 1468 * 2572 65 488 12.586
S3 9 511 601 * 785 * 96 18 834 3.339
S4 537 60 * 78 * 82 972 0.097
S5 30 424 1000 * 1307 * 3206 59 616 15.812

The results are coherent with the parameters. Smaller
voxels leads to more detailed navigation meshes, with
more polygons. Using smaller voxels also increased the
generation time.

As shown in figure 10, the escalator have been detected
with the defaults parameters and the settings S2 and S5.
The detection of stairs allows to use walking algorithms
like the one described in paper [5], which was impossi-
ble in Recast [13].

6.2.2 Platform
The scene platform has 119 601 triangles. The results
of the navigation meshes generation are summarized in
Table 4.

This scene is a complex one, with multiples intercon-
nected levels. There is a lot of details, with many
pipes, stairs, cables, cranes, ... There are also intersect-
ing triangles so the method proposed by Lamarche [10]
would not work on this 3D scene without prior clean-
ing. Cleaning a complex scene like this one can be te-
dious and remove important details.

Moreover, in paper [10], the House scene has a com-
plexity similar to this Platform scene, i.e. 120 160 tri-
angles, and they create the navigation mesh in 904.32s.
Our method is about 10 times faster.

The stairs have been detected with the defaults parame-
ters and the settings S2 and S5.

6.2.3 Buildings
The scene building has 1 121 127 triangles. See Table
5 for all results.

This scene is a not very complex, but is very large. Its
dimensions are about 500 ∗ 500 ∗ 16m3. This lead to
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Figure 12: The buildings scenes using the default settings.
It’s a very large scene. The path planning query took 5.581ms.

Table 5: Results for the buildings.

Set. #polys #voxels #links time (s)
def. 117 488 8463 * 10977 * 804 235 964 229.854
S2 180 173 11886 * 15417 * 860 364 132 612.833
S3 54 139 6353 * 8241 * 32 107 122 63.863
S4 2 622 635 * 824 * 27 4 980 1.591
S5 164 577 10579 * 13721 * 1073 333 554 400.257

a huge number of voxels when using small voxels di-
mension. Using the default parameters, we manage to
create the navigation mesh in less than 4 minutes. Pure
voxels method like the one detailed in pape [1] can’t
handle scene large as this one with a resolution as low
as 0.05*0.05*0.02 m3 as the number of voxels make it
impossible to compute the path planning in a reasonable
time. The memory requirement, when no tiling is used,
would also prevent the use of the method proposed in
paper [1].

Our method successfully creates the navigation meshes
for each settings, and we were able to handle path plan-
ning request in less than 5ms.

7 CONCLUSION
In this paper we have detailed all the necessary steps
to robustly generate Navigation Meshes from any trian-
gles scene. Our method support very large scenes, with
stairs, and uneven terrains. Absolutely no assumption
is made on the quality of the input mesh. The resulting
Navigation Meshes support path planning with arbitrary
clearance. Moreover, the performances are excellent, as
we are about 10 time faster than the method presented
in paper [10].

We have applied this method with success in various
context: serious gaming, security, virtual human walk,
robot control, or crowd simulation. We plan to further
improve our algorithm by supporting Multi Resolution
Analysis, and by automatically setting the voxels size
depending on the level of details in each tile. We will
also explore hierarchical representation of uneven ter-
rains in order to reduce navigation graph complexity.
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