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ABSTRACT
We propose a framework that captures multiple high dynamic range environment maps and decomposes them
into sets of directional light sources in real-time. The environment maps, captured and processed on stand-alone
devices (e.g. Nokia N900 smartphone), are available to rendering engines via a server that provides wireless access.
We compare three different importance sampling techniques in terms of the quality of sampling pattern, temporal
coherence, and performance. Furthermore, we propose a novel idea of merging the directional light sources from
multiple cameras by interpolation. We then discuss the pros and cons when using multiple cameras.
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1 INTRODUCTION
The augmented reality (AR) allows us to merge real-
world images with computer generated content. AR
applications have gained increasing attention over past
years. We aim to enhance the believability of rendered
images in AR by novel methods for real-time consis-
tent illumination computation. We focus on methods
for live acquisition of high dynamic range (HDR) en-
vironment maps in indoor environments. We compare
three methods for their decomposition into sets of direc-
tional light sources by means of importance sampling.

There are three interconnected ideas discussed in this
paper. Firstly, we propose a framework for live cap-
turing of HDR environment maps and their importance
sampling. Secondly, we compare three existing im-
portance sampling techniques in terms of the quality
of sampling pattern, temporal coherence, and perfor-
mance. Thirdly, we introduce a novel idea of using mul-
tiple cameras to allow for the interpolation of acquired
environment maps.

For efficient illumination of the scene with the acquired
environment map, we approximate them by a set of
directional light sources [19] with the use of impor-
tance sampling algorithms. Most of these algorithms
published in the past targeted static environment maps.
When dealing with dynamic environment sequences, it
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is important to maintain a temporal coherence of the
sampling pattern to avoid visually disturbing frame-to-
frame flickering. Apart from that, if the algorithm is
to be used in an interactive application, the processing
must run at interactive frame rates.
One of our design goals is to provide a low-cost hard-
ware platform. Therefore we use already available mo-
bile smart phone on the market, Nokia N900. It has a
programmable camera [1] and provides sufficient com-
putational resources to do all the processing on-chip.
Thanks to the mass production of smartphones their use
is cost effective compared to custom hardware. Fur-
thermore, modern smartphones provide a broad range
of connectivity (e.g.WiFi), and have a built-in camera
of reasonable resolution, frame rate and quality. These
features make them a suitable piece of hardware for
online environment map acquisition and processing in
mobile AR settings. Processing the captured images
on-chip reduces the bandwidth required to transfer the
data to a computer running the rendering engine. At-
taching a fish-eye lens to the build-in camera provides
nearly 180-degrees field of view. The smartphone can
be programmed to capture a burst of varying exposure
images that are fused into a single HDR image.
The framework has been proposed to be used for il-
lumination computation in AR applications. Existing
AR systems include e.g. the Studierstube [20] and
Spinnstube [24]. Ideally, the virtual objects should be
merged seamlessly into the real scene (see [14] for an
overview of common illumination techniques). The
ability to illuminate virtual objects based on the light-
ing conditions of the surrounding environment adds re-
alism to the augmented scene and enhances the user ex-
perience. For a detailed discussion of existing AR for
example in virtual television studios, see [9, 3].



The paper is further structured as follows. In the next
section we recall the related work. In Section 3 we de-
scribe the used importance sampling algorithms in de-
tail. The selected algorithms are then extended in Sec-
tion 4 by novel techniques that allow to merge data from
multiple cameras. After describing some implementa-
tion details in Section 5 we present an evaluation of the
selected algorithms and their extensions in Section 6.
The last section 7 concludes the paper.

2 RELATED WORK
In this section, we review existing methods for envi-
ronment map sampling and discuss their suitability for
sampling of live video environment maps.

Structured importance sampling proposed by Agarwal
et al. [2] combines stratified and importance sampling.
The proposed importance metric takes into account
both surface area and integrated illumination of a
hemispherical region. The number of samples can be
controlled. For dynamic sequences, temporal coher-
ence of sampling pattern is poor [12]. The computation
time (tens of seconds) is far from interactive.

The algorithm based on Lloyd’s relaxation, proposed by
Kollig et al. [15], yields good results for static environ-
ment maps. The number of samples can be easily con-
trolled. The time to process single environment map is
dozens of seconds, too high for real-time applications.
Also, the algorithm exhibits very poor temporal coher-
ence as even local changes can cause global changes in
the sampling pattern of the entire environment map.

The hierarchical importance sampling algorithm pro-
posed by Ostromoukhov et al. [17], based on Penrose
tiling, can operate at interactive frame rates. Further-
more, the sampling pattern produced by this algorithm
exhibits relatively good temporal coherence. However,
it is difficult to control the number of samples as it de-
pends on the environment map being sampled.

The median cut sampling algorithm proposed by De-
bevec [7] is fast enough to be used in interactive sys-
tems. However, it exhibits poor temporal coherence
of sampling pattern. Localized changes in illumination
affect the entire sampling pattern. Another drawback
of this algorithm is that the control over the number of
samples is limited.

The probability density function (PDF) based impor-
tance sampling method, proposed by Havran et al. [12],
targets dynamic environment maps specifically. The
sampling algorithm uses an inverse transform method
for hemispheres proposed by Havran et al. [11]. It is
similar to the standard inversion procedure, used for im-
portance sampling of static environment maps by Pharr
and Humphreys [18] and Burke et al. [5]. However,
the inverse transform method proposed by Havran et
al. [12] exhibits better continuity and uniformity, which

leads to better stratification of the resulting sample po-
sitions. To handle dynamic environments, the method
uses two low pass filters to improve on temporal coher-
ence. The first filter normalizes the intensity of light
sources to preserve total energy of the system. The sec-
ond filter suppresses high frequency movements of light
sources. Invisible light source elimination and light
source clustering methods are used to improve render-
ing performance. The method exhibits good temporal
coherence, real-time performance and the number of
light sources can be chosen. However, the temporal fil-
tering causes a temporal lag for abrupt lighting changes.

The importance sampling method for dynamic envi-
ronment maps, proposed by Wan et al. [23], is based
on quadrilateral subdivision of a sphere. Firstly, the
sphere is mapped into 2-dimensional space using the
HEALPix mapping [13, 10]. A quad tree is adap-
tively constructed over the quadrilaterals (referred to
as quads). At every step, the region with highest im-
portance is further subdivided into four quads. This
process is repeated until required number of samples
is reached. The number of samples can be adaptively
changed. The method is fast and the results for static
scenes are comparable with methods such as structured
sampling [2] and Penrose-based sampling [17]. It ex-
hibits very good temporal coherence, which makes this
method well suited for dynamic scene lighting.

Spatio-temporal sampling proposed by Wan et al. [22],
based on Q2-Tree sampling [23], further exploits tem-
poral and spatial coherence of environment sequences.
Their method treats an environment map sequence as a
volume constructed by stacking up all the frames in the
chronological order. The proposed method produces a
temporally coherent sampling pattern with slightly bet-
ter characteristics than the original Q2-Tree sampling
algorithm. A limitation of this method is that the entire
environment sequence needs to be known in advance.
For this reason, the method cannot be adopted for on-
line processing of video frames in real-time.

A mobile system using environment map illumination
was presented by Son et al. [21]. It uses a custom based
camera. Processing of the environment maps and ren-
dering images runs on an iPhone. The proposed system
also uses markers for position tracking.

3 ENVIRONMENT MAP SAMPLING
Our framework builds up on three existing environment
map sampling algorithms. In this section, we provide
details of the three algorithms. We then discuss our ex-
tension of these algorithms in Section 4.

Throughout this paper, we will use the following termi-
nology. We will refer to the re-implementation of the
PDF-based sampling algorithm for static environment
maps [18] as Pharr. The extension of this algorithm for
dynamic environment sequences [12], we will refer to



as Hemigon. The re-implementation of the algorithm
based on Spherical Q2-Tree for sampling dynamic en-
vironment sequences [23], we will refer to as Q2-Tree.

3.1 Importance Sampling Methods based
on Probability Distribution Function

Several environment map sampling algorithms based
on the probability distribution function have been
proposed in the past [18, 5, 12]. PDF-based importance
sampling of dynamic environment maps suffers poor
temporal coherence. Even if the same quaisi-random
sequence is used for consecutive frames, localized
changes in the environment map largely affect the
global sampling pattern. As has been shown by Havran
et al. [12], low pass filtering in the time domain can
decrease the flickering artifacts. In this section, we
recall inverse transform methods (e.g. described in [8])
based on the PDF and its application to environment
maps.
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Figure 1: Sampling of a 1-dimensional function via
standard inversion method. (a) A probability distribu-
tion function (PDF), (c) corresponding cumulative dis-
tribution function (CDF). (b) and (d) are the two func-
tions with drawn (the same) samples.

In Figure 1, we illustrate the inverse transform method
on a 1-dimensional function. Firstly, a cumulative dis-
tribution function (CDF) is constructed from PDF. The
construction of a CDF is computed in linear time using
an iterative formulation. Then, a sequence of random
numbers is drawn with uniform probability. Each of
these numbers is projected via the CDF. Figure 1(d) il-
lustrates the inversion of CDF in form x = CDF−1(y)
that generates samples in x.

Sampling of an environment map is in principle im-
portance sampling of a 2-dimensional discrete function,
defined over hemisphere. A 2-dimensional PDF is con-
structed from the luminance of the pixels of the envi-
ronment map. Supposing the environment map is in
a latitude-longitude format, the intensity of each pixel

needs to be multiplied by sin(θ) to account for smaller
angular extent near the poles, where θ is the altitude an-
gle. In practice, quasi-random number generators with
uniform distribution, such as Halton sequence [8], are
often used. These 2-dimensional quasi-random number
vectors are then mapped via the CDFs to an altitude an-
gle θ and an azimuth angle φ . This method has been
successfully applied for importance sampling of static
environment maps by Burke et al. [5], and Pharr and
Humphreys [18].

Havran et al. [12] proposed an extension of this method
to improve the temporal coherence for dynamic envi-
ronment mapping. They use a mapping of PDF over
hemisphere proposed by Havran et al. [11]. It avoids
discontinuity for north pole and for φ = 0. To decrease
temporal flickering during the sampling of a dynamic
environment sequence, a history of the sampling pat-
terns for a few past frames is kept, and two low pass
filters are applied, operating in the time domain.

The first low pass filter operates on the total energy of
the light sources. It suppresses flickering caused by
high frequency light sources, such as fluorescent tubes.
The second low pass filter operates on the trajectories of
the samples, suppressing high frequency movements.

3.2 Importance Sampling Methods based
on Subdivision

As opposed to PDF-based sampling methods, this class
of importance sampling methods constructs a hierar-
chical data structure by adaptively subdividing the en-
vironment map into spherical regions [17, 23, 7, 22].
There are two approaches to the construction of such
subdivisions. The first one, which we will refer to as
median split, splits a region into two or more subre-
gions of equal importance [7]. The second approach,
referred to as uniform split, decides whether to fur-
ther split the region or not, depending on its impor-
tance [17, 23, 22]. By region splitting two or more
equally sized subregions are created. The importance
metric typically takes into account the luminance of the
region and its angular extent (see Equation 1). Usually
one sample is placed inside each created region at the
bottom of the hierarchy (leaf nodes).

Sampling patterns produced by median split can exhibit
poor temporal coherence. This is because even local
changes in the illumination affect the size or shape of
subregions at the top of the hierarchy, so the sampling
pattern differs dramatically. Thus, their use in dynamic
environment sampling is limited. On the other hand,
sampling patterns produced by uniform split usually ex-
hibit good temporal coherence. This is due to the local
nature of this class of subdivision methods. The size
and shape of a subregion at a particular level of the
hierarchy is independent of the environment map be-
ing sampled. The sampling pattern for each subregion



is not affected by illumination changes in other subre-
gions, which stabilizes the sampling temporally.

In particular, the Q2-Tree sampling algorithm [23] is
suitable for sampling of live video environment maps.
It is fast, produces sampling patterns that exhibit strong
temporal coherence and the number of samples can be
adaptively changed without the impact on the temporal
coherence for consecutive frames. The Q2-Tree algo-
rithm is described in the rest of this section.
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Figure 2: Visualization of the Q2-Tree sampling algo-
rithm.

Firstly, the sphere is mapped into 12 quadrilaterals
(quads for short) using the HEALPix mapping [13, 10].
Then, a quad tree is iteratively constructed on the base
quads. At every iteration, the quad of the highest impor-
tance is subdivided into four equally-sized subquads.
All quads at the same level of subdivision have always
the same surface area. The construction is complete
when the required number of leaf nodes has been cre-
ated. The construction is illustrated in Figure 2, show-
ing a subdivided environment map in HEALPix map-
ping and a corresponding Q2-Tree.

The pseudo-code for Q2-Tree construction is given in
Algorithm 1. It maintains an importance-sorted list of
interior and leaf nodes. At every iteration, the left-most
leaf node (highest importance) is subdivided into four
quads, until the needed number of leaf nodes is created.

Algorithm 1 Sampling dynamic environment map with
a Q2-Tree.

Input:
EnvironmentMap: Spherical light probe of the environment
RequiredNumberOfSamples: Integer

Output:
LightSources: List of directional light sources

Algorithm:
Q2TREE = HEALPixMappingTo12Quads( EnvironmentMap )
EvaluateImportance( Q2TREE.Nodes )
while(Q2TREE.NumberOfNodes < RequiredNumberOfSamples)
NewNodes = Subdivide( Q2TREE.LeafNodes[0] )
EvaluateImportance( NewNodes )
Q2TREE.MoveToInterior( Q2TREE.LeafNodes[0] )
Q2TREE.AddLeafNodes( NewNodes )

LightSources = CreateLightSources ( Q2TREE.LeafNodes )
return LightSources

During the sampling process, it is desirable to sample
more densely the bright regions and less densely the
dark regions. On the other hand, oversampling small

bright regions should be avoided as they can be well ap-
proximated with fewer samples due to their small solid
angle. The Q2-Tree sampling algorithm uses impor-
tance metric proposed by Agarwal et al. [2]. It com-
bines good stratification of samples and higher density
of samples in bright regions. The importance is given
by the following equation.

p = (L)a · (∆ω)b, (1)

where L is the total illumination of the region and ∆ω

is the solid angle. Parameters a and b are non-negative
constants that are used to favor illumination (large value
of a) or solid angle (large value of b) component. The
result, p in the above equation, is the importance of the
region. In their work, Wan et al. use constants of a = 1
and b = 1

4 [23].
The equal solid angle property of the subdivision pro-
posed by Wan et al. allows for computation of both
terms of the importance metric in constant time. The
solid angle of a quad at level i can be directly computed
as ∆ω = π

3·4i . The illumination term is computed us-
ing a technique commonly used for texture prefiltering,
known as summed area tables [6].
When the Q2-Tree is constructed, a single directional
light source is positioned inside each of the leaf quads.
The color and intensity of the light source is given by
summed illumination of corresponding pixels. Wan et
al. propose that the light source should be jittered deter-
ministically around the centroid of the region to avoid
regularity but maintain determinism.
For dynamic sequences of environment maps, the Q2-
Tree need not be rebuilt from scratch for every frame.
First, the importance of each region is re-evaluated, cre-
ating inconsistency in the importance-sorted list. A se-
ries of merge-and-split operations is then performed un-
til the sorted order of the list is recovered.

4 MERGING OF SAMPLING DATA
FROM MULTIPLE CAMERAS

As we have already mentioned, the acquisition and pro-
cessing of the environment maps run on a smartphone.
We use a wireless connection between the smartphone
and the computer that runs the rendering engine (re-
ferred to as client). Such a design makes it possible
to place the camera (i.e. smartphone) anywhere in the
room where the lighting is to be measured. Further-
more, it is possible to place several cameras at differ-
ent places. As the processing is done on-chip and the
amount of data to be sent per frame is low, the num-
ber of cameras is not limited by the computational re-
sources nor the bandwidth of the client computer. We
investigated the advantages and limitations of such use
of multiple cameras. We propose algorithms for merg-
ing of sampling data from multiple cameras and de-
scribe them in this section. We present the results in
Section 6.



In order to compute consistent common illumination
between the real and virtual objects, the illumination
should be recorded at the spot where the virtual object
is to be placed. This is often impractical as for exam-
ple the virtual objects move in virtual television studios
and it would require to move the camera together with
the virtual object. Second, in AR display systems, the
presence of a device inside the workspace would be
disruptive for the user. It is thus inviting to approxi-
mate the illumination inside the workspace by placing
several cameras around it. Furthermore, using multi-
ple cameras could be used to improve the frame rate,
temporal coherence and robustness of the system.

Before the data from multiple cameras can be merged
correctly, it is necessary to perform geometric and pho-
tometric calibration. The photometric calibration re-
quires a lux meter and is performed once for each cam-
era. The geometric calibration needs to be repeated
when the lens of the camera is repositioned. We have
used external software tools based on OpenCV [4].
Multiple views of a checkerboard are taken, and the
camera calibration is computed from detected corners
of the checkerboard. The complete calibration of one
device takes about 10 minutes to perform and does not
have to be repeated unless the lens are replaced. Be-
cause of lack of space we do not discuss details in the
paper.

4.1 Merging for PDF-based Methods
For the sampling algorithms based on probability dis-
tribution function (Pharr and Hemigon), the merging is
straightforward. Given that the number of samples is
the same for all cameras and that the samples were gen-
erated using the same sequence of quasi-random vec-
tors, the direction, color, and intensity of each sample
can be computed by linearly interpolating the direction,
color, and intensity of the corresponding samples from
each of the cameras.

In order for the linear interpolation of directions to be
applicable, it is essential that each set of samples to
be interpolated was generated from the same quasi-
random vector. Typically, probability distribution func-
tion based sampling algorithms use low-discrepancy se-
quences, such as Halton sequence [8]. By using the
same quasi-random sequence for each of the cameras,
the correspondence between samples can be determined
trivially from their index, supposing azimuth alignment
of the cameras. Obviously, the result of such interpo-
lation is only approximate of the real ground truth data
measured in the spot, for which the interpolation was
computed.

4.2 Merging for Subdivision Methods
For the Q2-Tree sampling algorithm, merging of data
from multiple cameras is more complicated. The depth

of subdivision of a particular branch can be different for
each camera. Merging the Q2-Trees naively would pro-
duce non-deterministic number of samples, dependent
on the environment maps. Also, the luminance of the
merged tree needs to be normalized in order to preserve
the total power.

+ => =>

Tree A
(13 samples)

Tree B
(16 samples)

Merged
(22 samples)

Reduced
(16 samples)

Figure 3: Visualization of the Q2-Tree merging algo-
rithm. The two trees A and B are first merged together
and later simplified to the number of samples needed.

Below, we present our Q2-Tree merging algorithm,
given in pseudo-code in Algorithm 2. Since the orig-
inal Q2-Tree construction algorithm uses a list-based
representation of the tree, we first need to build a hi-
erarchical structure for each of the trees to be merged.
We then perform a parallel traversal of the input trees,
producing a merged tree. The input trees are traversed
to the maximum depth and for each node, we compute
the sum of luminance of the corresponding input nodes
that are available. Since the depth of a subtree can be
different in each of the inputs, this step produces a tree
of potentially more nodes than any of the inputs. Given
camera i produced Ni samples, the merged tree can
have anything between mink

i=1(Ni) samples to ∑
k
i=1 Ni

samples. See figure 3 for illustration.

Algorithm 2 Merging of multiple Q2-Trees

Input:
N: Required number of samples
Q2[k]: List of Q2-Tree nodes for each of k cameras

Output:
Samples[N]: List of samples

(direction, luminance, color)

Algorithm:
// Step 1: Tree reconstruction
Q2Trees[] = ReconstructTrees(Q2)
// Step 2: Merging (parallel traversal)
MergedTree = Merge(Q2Trees)
// Step 3: Normalization of luminance
NormalizeLuminance(MergedTree)
// Step 4: Importance re-evaluation (I = L^a * W^b)
EvaluateImportance(MergedTree)
// Step 5: Reduction to N leaves (sort-and-merge)
FinalTree = Reduce(MergedTree, N)
// Step 6: Sampling (Inverse HEALPix mapping)
Samples = PlaceSamples(FinalTree)
// Return list of samples
return Samples[]

Also, the property that the luminance of an interior node
equals the sum of luminances of its children no longer
holds. This property is restored by the next step of our
algorithm. First, the luminance of the root node is com-
puted by averaging the luminance of the root nodes of
the input trees (i.e. total luminance of the environment



map). Then, the merged tree is traversed and for each
interior node, the luminance is recomputed using the
following formula: L′i = Li · LP

∑
4
k=1 Lk

, where Li is lumi-

nance of child i, LP is luminance of the parent, and
∑

4
k=1 Lk is the sum of luminances of the four children

of P (including node i). Since the tree is traversed top-
down and the root is already normalized, the correct
value LP is computed for each interior node before the
node is visited.

We then re-evaluate the importance of each interior
node, using the formula p = (L)a · (∆ω)b proposed by
Agarwal et al. [2]. The same values of the constants
a and b are used as in the Q2-Tree construction (a = 1
and b = 1

4 ). The list of interior nodes is then sorted in
order of importance.

The next step reduces the number of leaf nodes to a
user defined constant, using the importance-sorted list.
At each iteration, we take the interior node of the low-
est importance and cut off its subtree. As each interior
node has four immediate children, this operation usu-
ally reduces the number of leaves by three (although a
higher number is possible if the input trees differ sig-
nificantly). This operation is repeated until the number
of leaves drops below a user defined constant.

Now that the merged tree has approximately N leaf
nodes and their luminance is correctly normalized, one
sample is placed inside each leaf. The leaf nodes
correspond to quadrilaterals in the HEALPix mapping
[13, 10], so we use the inverse HEALPix mapping to
project the sample positions back into the world coor-
dinate system. The number of samples can be chosen
with the precision of three samples, as four leaves can
be always collapsed to a single leaf. The asymptotic
time complexity of the proposed merging algorithm is
limited by sorting of the interior nodes, O(n · logn). The
space complexity is linear in the number of samples.

5 IMPLEMENTATION
In this section, we present the architecture of our frame-
work. It was one of our design goals to implement a
framework that is cost-efficient, robust, extensible and
easy to integrate into existing rendering engines.

The light probes (i.e. environment maps) are being cap-
tured on stand-alone devices that are capable of wireless
communication. Such a device has a programmable
camera and sufficient computational power to process
the light probes on a chip. The on-chip processing steps
include capturing a burst of varying exposure images,
HDR image fusion, mapping of the captured image into
the polar coordinate system, computing luminance, and
importance sampling. Also, the device runs an HTTP
server that provides an interface between the environ-
ment map acquisition and processing algorithm, run-
ning on a chip, and the rendering engine, running on

a remote computer. Compliance with the HTTP proto-
col simplifies the configuration and debugging, because
a standard web browser can be used to communicate
with the device. The conceptual diagram is illustrated
in Figure 4.

Server

Web Browser

Configuration

C++/OpenGL Application

Renderer

C++ Application

Visualization

HTTP Communication
(e.g. over WiFi)

Camera thread

Server side
(N900)

Client side
(multiple devices)

Any

other clients...

AR platform

Augmented reality

Figure 4: Conceptual diagram of our framework. The
device running the sampling algorithm as a server com-
municates possibly with multiple clients over network.

The framework allows for multiple acquisition devices
running asynchronously. The rendering engine can then
communicate with all of these devices and merge the
sampling data they provide. It is also possible for sev-
eral client applications (rendering engines, configura-
tion tools, etc.) to communicate simultaneously with a
single acquisition device.

We have used the Nokia N900 smartphone as the envi-
ronment map acquisition and processing hardware. Us-
ing a cell phone has several benefits, but also limita-
tions. First of all, the computational resources are less
powerful than those of a desktop computer. Especially
the cache size is very limited. This makes it more chal-
lenging to design an efficient implementation. In par-
ticular, the benefit of accessing memory at spatially and
temporally coherent locations is more pronounced. On
the other hand, the small size of the device that inte-
grates all the required features and is readily available
on the market makes it a good choice for mobile aug-
mented reality settings. It is easy to manipulate and
cost-efficient.

Although we use a particular model of a cell phone
(Nokia N900) in this paper, the implementation is plat-
form independent to the extent of accessing the pro-
grammable camera and could be easily adopted to other
hardware.

6 RESULTS
In this section we present the results of our work, where
the test scenario is shown in Figure 5. Firstly, we



compare the three discussed importance sampling algo-
rithms. Then, we discuss the advantages and limitations
of merging the data from multiple cameras.

6.1 Comparison of Importance Sampling
Algorithms

Below we summarize the results briefly for all three
algorithms. Both PDF-based methods produce good
results for environment sequences where the frame-to-
frame changes of illumination are subtle. Temporal fil-
tering of sample positions and intensities improves on
temporal coherence but causes unwanted temporal lag
if the changes are abrupt. The sampling method based
on subdivision handles abrupt changes successfully, es-
pecially if the changes are local, but has problems han-
dling subtle light source movements.

Quality of Sampling Pattern

Both implemented PDF-based importance sampling al-
gorithms (Pharr and Hemigon) produce samples of
equal power (in fact the brightness as luminance is
taken as PDF). This means that the distribution of the
samples is proportional solely to the distribution of the
power in the captured environment map. While in gen-
eral such a sampling pattern makes a good approxi-
mation of the environment map, in some cases under
sampling of relatively dark regions might be a prob-
lem. Suppose we have an environment map that con-
tains one bright light source and several much dimmer
light sources. A sampling pattern that puts almost all of
the samples in the small bright region would be reason-
able for most views of the rendered scene. But when
the main light source gets obstructed and the view be-
ing rendered is in a shadow, then the dim light sources
come into play. Sampling small bright regions thor-
oughly and under sampling the rest of the environment
produces poor results in such cases. For these reasons,
it is desirable to maintain a good stratification of sam-
ples. Using such an importance metric that takes into
account both brightness and angular extent of a region
produces better results in these situations.

Due to the nature of HEALPix mapping, the Q2-Tree
algorithm requires relatively many samples to approxi-
mate an environment map well (approx. 200 or more
samples). The environment map is subdivided uni-
formly into twelve regions. An adaptive quad tree sub-
division is then constructed separately on each of the
twelve regions, placing one sampling into each of the
leaf subregions. If we take only a few dozens of sam-
ples, the directions of light sources and thus the shad-
ows cast in the renderer do not match the real envi-
ronment and cause strong artifacts. Furthermore, for
subtle movements of light sources, such as a swinging
light bulb, the sampling pattern does not change, only

the power of each sample changes. The rendered se-
quence looks unrealistic and diminishes the overall im-
pression of the virtual environment, as the human visual
system is sensitive to shadows, providing an important
cue about the environment.

Figure 6 shows the sampling patterns produced by each
of the three algorithms, and a scene renderer using
the respective set of light sources. Note that while
Pharr and Hemigon algorithms produced similar sam-
pling pattern, the Q2-Tree algorithm spreads the sam-
ples across a broader area because the importance is
weighted by angular extent as well as brightness.

Temporal Coherence
An important aspect of importance sampling algorithms
for dynamic sequences is the temporal coherence of
the sampling pattern for consecutive frames. Frame-
to-frame changes of the light source positions and their
intensities could cause disturbing temporal flickering in
the rendered animation. The images with samples from
the three algorithms are shown in Figure 7.

In the implementation of the first algorithm, Pharr, we
used a Halton generator to generate a sequence of quasi-
random vectors in two-dimensional space. Even though
we use the same sequence for every frame, positions
of samples change globally due to local changes. This
problem is caused by the global nature of cumulative
probability distribution function.

The second implemented algorithm, Hemigon, at-
tempts to solve these issues by several improvements,
described in Section 3.1. These processing steps
increase the temporal coherence, but introduce visible
temporal lag in rendered images for abrupt changes
of the illumination. Despite these issues, for a typical
scene with subtle frame-to-frame illumination changes,
this method produces reasonable results.

The Q2-Tree sampling method handles local illumina-
tion changes successfully. On the other hand, it fails to
capture subtle light source movements. Furthermore, it
requires more samples than the other methods to sam-
ple the environment map adequately.

We found that the PDF-based methods produce better
results for scenes with subtle illumination changes and
with moving light sources. The subdivision methods,
on the other hand, produce better results for scenes with
abrupt and localized illumination changes.

Performance
In this section, we analyze the time complexity and
present the results of performance measurements of the
three implemented algorithms.

The measurements were performed on a Nokia N900
smartphone. The source code was compiled in GCC
compiler, version 3.4.4, with the -O3 option enabled.



(a) Scenario 1 (photograph) (b) Scenario 1 (screenshot) (c) Scenario 2 (photograph) (d) Scenario 2 (screenshot)

Figure 5: Photographs and rendered images from a testing setup for two scenarios, when the user moves a flashlight
around the camera. Changes of the illumination are interactively observed in the renderer; (a) and (b) flashlight on
the left, (c) and (d) flashlight on the right.

(a) Pharr (b) Hemigon (c) Q2-Tree

Figure 6: The upper row shows the sampling patterns
produced by the three algorithms for an environment
map of resolution 360× 90 pixels, using 16 samples;
the bottom row shows a render of a bunny lit by each
respective set of light sources.

Pharr Hemigon Q2-Tree
Figure 7: Snapshots of the sampling patterns produced
by the three implemented sampling algorithms for three
subsequent frames of a video sequence.

Three images of varying exposure were fused into one
HDR image. The images were captured at resolution
640× 480 pixels and mapped to a polar image of res-
olution one pixel per degree (i.e. 360× 90 for a hemi-
sphere). The Q2-Tree algorithm used a HEALPix map-
ping of resolution 12×100×100 pixels.

The overall asymptotic time complexity is O(w · h +
n · (logw + logh)) for the PDF-based algorithms and
O(w · h + n · logn) for the Q2-Tree, where w× h is

the image resolution of the environment map and n is
the number of samples. The first term, O(w · h), ac-
counts for the processing of the environment map prior
to placement of samples. This includes, for example,
the construction of the CDFs in PDF-based sampling
algorithms and construction of the summed area table
in the Q2-Tree sampling algorithm. The second term
accounts for placement of samples and depends on the
particular algorithm used. Post-processing of samples,
including color computation, takes O(n) time.

The bottleneck of the execution is the capture and pro-
cessing of the HDR light probe. For a single frame,
three varying exposure images are captured, fused into
a single HDR image [19], and mapped into polar co-
ordinate system. Using the configuration described
above, the acquisition of a single HDR environment
map takes 120 milliseconds. Table 1 shows the sam-
pling times of the three compared algorithms, exclud-
ing the environment map acquisition time.

#samples HDR acquisition
Sample generation

Pharr Hemigon Q2-Tree
200

120
10 150 30

1000 10 150 50
10000 80 170 430

Table 1: Comparison of performance of the three dis-
cussed methods. All times are in milliseconds.

6.2 Multiple Cameras
In this section, we present the results of merging of
sampling data from multiple cameras. The image ren-
derer with light sources generated by merging the data
from four displaced cameras is depicted in Figure 8
together with the reference ground truth image using
samples computed from a single camera in the center.
Principally the samples as a result of merging from spa-
tially dislocated cameras can be different to the sam-
ples computed from the reference camera in depen-
dence on the changes of indoor illumination. However,
in practice we observe these differences are very small
or zero. This is true only under the assumption, when



the distances between cameras and hence the environ-
ment maps are not too different.

(a)

(b) (c)

Figure 8: (a) A photograph of the system in operation.
The data from the four displaced cameras are merged
and the results are compared against the reference cam-
era in the center. The four outer cameras form a square
sized 1000×1000mm. (b) Bunny lit by the illumina-
tion acquired on the reference camera in the center. (c)
Bunny lit by the illumination computed from the four
displaced cameras for Pharr algorithm.

The results of merging for the algorithm Pharr and Q2-
tree are shown in Figure 9. For the Q2-Tree sampling
our merging algorithm produces the same results as av-
eraging of the calibrated HDR light probes per pixel and
building a Q2-Tree from scratch on the resulting image.

In order to test this hypothesis empirically, we imple-
mented a simple testing application - it downloads the
HDR light probe in .hdr format from each of the cam-
eras, computes an average per pixel and runs the Q2-
Tree sampling algorithm [23] on the final HDR environ-
ment map. We obtained exactly the same set of sam-
ples as produced by our Q2-Tree merging algorithm.
Clearly, the advantage of merging Q2-Trees instead of
averaging light probes is reduced bandwidth. The Q2-
Tree representation of a light probe is very compact,
typically not exceeding several KBytes for a reason-
able number of samples, as opposed to the substantially
higher memory requirements consumed by the repre-
sentation of a complete HDR light probe.

In addition, the system with multiple cameras increases
on robustness - it is capable of providing reasonable
data to the rendering engine even if one or more of the
cameras fail or has data dropout (for example, due to
network problems) as long as the failure is detected.
Also, the use of multiple asynchronously running cam-
eras increases the frequency of light sources update and
the data can be used to create a temporal blur, improv-
ing the temporal coherence.

(a) Pharr

(b) Q2-Tree

Figure 9: Results of merging for (a) Pharr and (b) Q2-
Tree algorithm. The four windows on the right show
sampling patterns and environment maps captured by
four displaced cameras. The windows on the left show
the resulting sampling pattern and a scene illuminated
by the resulting set of directional light sources.

7 CONCLUSIONS
We presented a framework for live capturing of HDR
light probes and their decomposition into sets of direc-
tional light sources. We implemented three importance
sampling algorithms and compared them in terms of
the quality of the sampling pattern, temporal coherence,
and performance. We extended the existing techniques
by merging data from multiple cameras to better ap-
proximate the lighting of the real environment, and dis-
cussed the associated advantages and limitations. We
have shown a proof of concept implementation of our



ideas. Our framework with multiple cameras is useful
for example in mobile setting of virtual television stu-
dios and augmented reality display systems.
As future work we want to further examine the possibil-
ities of using multiple cameras. Existing image-based
lighting methods assume only distant lighting, repre-
sented by directional light sources. This assumption
is not valid, especially for indoor scenes, and causes
artifacts in mixed reality applications, where the light
source position is required for shadow detection and
generation. By using two or more displaced cameras,
it would be possible to estimate the position of point
light sources and thus even improve the results of con-
sistent illumination computation similar to the outdoor
scenarios [16].
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