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Left: Natural lakes form on uneven terrain. Center, right: Examples of bodies blocking flow.

ABSTRACT
Water is an important part of nature. Interactively simulating large areas of flowing water would be a welcome
addition to many virtual worlds, but the simulation is computationally demanding. Another problem is combining
the simulation with rigid bodies, which are the most common interaction solution in virtual worlds. Heightfield
water simulation is fast, but is especially hard to couple with rigid bodies: Usually water simply flows through
the bodies. We propose a method that generalizes the extremely fast virtual pipe method to handle large, dynamic
bodies. Our method diverts water around the objects. This enables us, for example, to dynamically build and
destroy dams on rivers in a large virtual world.
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1 INTRODUCTION

Water is a fascinating element because it exhibits such
complex behaviour. It is also always present in many
forms in our daily lives. In video games and other real-
time virtual worlds, rivers, lakes, and oceans are often
implemented as static geometry with a variety of pro-
cedural techniques to improve the visual quality. As
hardware improves, the trend is towards large and inter-
active worlds, where everything is allowed to change.
The traditional approach is not always versatile enough
in these situations. In many applications, the water flow
will need to be simulated to see how streams behave and
where lakes form.

There are several approaches to water simulation. Full
3D engineering methods can be extremely accurate and
can capture the complex behavior of water down to the
smallest detail. However, they are also extremely tax-
ing on computational resources and often very complex.
Unfortunately, they rarely run in real-time unless the
simulation resolution is very small.

Luckily, virtual environments often only need to be
convincing instead of realistic. Many of the details can
be filled in using visual tricks. On the other hand, real-
time performance is needed, and often even more, be-
cause the limited computational resources need to be
split between several competing subsystems. Besides
just the near-photorealistic graphics with a plethora of
effects, also artificial intelligence and other such tasks
need their share. If a water simulation system is to be-
come popular in these applications, it needs to run in
real-time with only a few percent of the available re-
sources and be extremely easy to adopt.

There are many ways to simplify the traditional meth-
ods. One of the most common is to resort to height-
fields, which reduce the number of cells needed from
O(n3) to O(n2), wheren is the number of cells per di-
mension (which determines the resolution). This means
that even if hardware and algorithms progress to a
point where full 3D large-scale simulation is viable in
real time, heightfield methods will be able to simulate
even larger areas (or with better resolution, whichever



is needed). Heightfield methods are unable to repre-
sent many interesting water phenomena, such as wa-
terfalls or splashes. However, some of the shortcom-
ings can be compensated by adding a particle sys-
tem [OH95, HW04, CM10].

Our motivation is that, in our experience, even the sim-
plest methods seem to be too much of a burden on re-
sources for large-scale adoption, but the lack of realism
does not pose such a problem. Therefore, we have cho-
sen to build on the simplest possible model, based on
virtual pipes.

The dynamics of virtual worlds is nowadays routinely
based on off-the-shelf physics engines, which typically
simulate rigid bodies. The bodies should naturally also
interact with any simulated water that is present in the
scene. The two simulations need to be coupled in two
ways: Water affects the bodies via buoyancy, advection,
and drag. On the other hand, the bodies affect the water,
since water cannot enter them. This gives rise to waves
and redirects the flow around the bodies.

Heightfield water simulation methods often implement
an uneven terrain as another heightfield. Interaction
with the terrain is well-established and easily imple-
mented in many methods [MDH07, TMFSG07, CM10,
Kel12]. However, two-way coupling with general, dy-
namic rigid bodies is more difficult. Water effects on
objects are often easily handled, but object-to-water
coupling causes problems. In all implementations we
have seen, water enters the bodies and flows through
them. Usually loosely physically based waves are gen-
erated around the object. This approach works when
a small object is floating on a calm water surface, but
makes no sense if the objects are large or the water
flow is very dynamic (imagine floodwater from a dam
break).

We present a novel coupling method that redirects the
flow to avoid obstacles naturally. Water never enters the
bodies. The method enables, e.g., building dams out of
dynamic bodies. We focus on interaction with large and
heavy objects that can block the flow. Therefore, we
currently only implement the object to water coupling.
That is, the objects do not float and are not pushed by
the water. We do have plans to extend the model to
cover these effects.

There is no perfect solution for the coupling, if the wa-
ter is represented as a single heightfield. The objects
may divide the water to arbitrarily many layers in the
vertical direction and cause air pockets. We chose to
simplify the situation by assuming that the bodies occu-
pying each cell are vertically continuous and that there
are no air pockets below the water surface. We ignore
bodies that are above the water and do therefore not in-
teract with it.

Our method is a generalization of the fast virtual pipe
method, and runs easily in real-time for large grids us-
ing parallel computation enabled by the modern GPUs.

This paper is structured as follows. Section 2 recaps
the relevant previous literature. The pipe method is de-
scribed in Section 3. Our novel coupling algorithm is
presented in Section 4. Section 5 evaluates the present
work and establishes directions for future work.

2 RELATED WORK
In real-time animation, more or less procedural meth-
ods are often used to create waves on water. Examples
of these methods are those based on the Fourier Trans-
formation [Tes99]. These methods often create visually
spectacular results for very large areas. However, they
are mostly limited to visual effects on static areas of
water. Dynamic flow over uneven terrain or rich inter-
action with moving rigid bodies does not fit naturally to
these approaches.

Fluid simulation, on the other hand, has long traditions
in the engineering discipline and is most often based
on solving theNavier–Stokes equations(NSE) numeri-
cally. While this approach yields realistic results, such
methods are very computation-intensive. These solvers
can be divided into two categories. Eulerian methods
subdivide the domain into a grid where the fluid prop-
erties are observed. Lagrangian methods track discrete
particles as they are advected along the flow.

Since the full 3D methods are out of scope for
this work, we refer the interested reader to Brid-
son [BMF07] on Eulerian methods and Solenthaler and
Pajarola [SP09] on Lagrangian methods.

One hybrid method that is relevant to us is the tall-cell
method, where a 3D simulation is employed near the
surface, but a 2D simulation is used for deeper parts.
An impressive recent example using an adaptive grid is
presented in [CM11]. We especially find this method
very promising for the future, since it only needsO(n2)
cells just as heightfields, but still has many of the ad-
vantages of full 3D methods. However, the algorithms
are very complex and the performance is still orders of
magnitude slower than some of the 2D methods for a
given horizontal resolution [Kel12].

2.1 Heightfield Methods
Almost all practical solutions still resort to heightfields,
and the rest of this paper concentrates on those. They
are naturally suited for large masses of water, such as
rivers and oceans, where most of the water is relatively
calm, since only the water surface is simulated.

Additional requirements for a heightfield water simula-
tion method are dynamic free surfaces and interaction
with a heightfield terrain. Free surfaces are needed if



the part of the domain that is occupied by water is al-
lowed to change. Heightfield terrains are widely used
in applications and allow for much more interesting sit-
uations than mere open-water simulations.

TheShallow Water Equations(SWE) are a simplifica-
tion of the NSE, and can be solved to create a fast,
yet realistic heightfield water simulation [LvdP02]. Re-
cently, Chentanez and Müller added breaking waves
and made many other improvements, yielding a fast
method suitable for large areas [CM10].

An approach based on wave particles was proposed
in [YHK07], and some researchers use Lattice Boltz-
mann methods [LWK03, GCTW10]. Both of these
methods are well suited for open waters, but to our
knowledge, have not been extended to cope with un-
even terrain and dynamic free surfaces.

The simplest heightfield method is based on modeling
virtual pipesbetween columns. This method was pio-
neered by Kass and Miller [KM90], who simplified the
SWE further to reach the 2D wave equation on the wa-
ter surface. They already note that the results are not
realistic enough for engineering, but are promising for
visualization purposes. O’Brien and Hodgins [OH95]
extended the method by adding particles to overcome
the limits of heightfields and used an intuitively simple
virtual pipe formulation, which we adopt in this paper.

The model has then been developed further. Mould and
Yang [MY97] added a heightfield terrain below the wa-
ter and generalized the pipe model to consist of several
layers per column, which adds realism by removing the
assumption of vertical isotropy. Holmberg and Wün-
sche [HW04] combined the model with particles to sim-
ulate natural phenomena such as rivers and waterfalls.
Maeset al. [MFC06] implemented the method on the
GPU.

The pipe method is naturally parallel and therefore
straightforward to implement efficiently on the GPU.
The method is extremely fast and simple, yet captures
the main dynamics of water flowing on irregular ter-
rains. The most obvious downside is the lack of vor-
tices, which create much of the interesting behavior of
water. However, even this simple method would be a
huge improvement to many current virtual worlds that
completely lack dynamic water.

Even more interesting scenarios can be simulated if the
heightfield terrain is allowed to be dynamic. All of
these problems have been solved for the pipe method
(e.g. [MDH07]) and SWE (e.g. [CM10]. For an impres-
sive example of these techniques, see the Augmented
Reality Sandbox1. However, since the terrain is still
always a heightfield, even more dynamic situations can
be achieved using generic rigid bodies.

1 http://idav.ucdavis.edu/~okreylos/ResDev/
SARndbox/ (cited March 8, 2013)

2.2 Coupling with Rigid Bodies

There exists a large literature of sophisticated solid-
fluid coupling methods for full 3D methods. See,
e.g., [AIA+12] for a recent solution in the Lagrangian
framework and [RMEF09] for an Eulerian approach.
However, the 3D methods are still rarely real-time, so
they typically aim for much more realistic solutions
than is affordable in our context of large-scale real-time
simulation. Therefore, we concentrate on solutions
applicable to heightfield-based fluids.

The effects of water on rigid bodies are typically easy
to model in all of the heightfield methods and many
publications include some kind of a solution [YHK07,
CM10, OH95, MY97, TMFSG07]. The body-to-water
effect is more difficult, since even a single, convex body
violates the heightfield assumption when submerged. It
is obvious that there can be no physically based solu-
tion without generalising the heightfield somehow, e.g.,
to consist of more than one layer.

Previous solutions concentrate on small, floating ob-
jects or objects that are dropped into the water. Various
methods are used to generate waves. In practically all
methods we are aware of, water is allowed to enter the
bodies. This does solve the problem of objects breaking
the heightfield assumption, but is not believable unless
the object is very small.

O’Brien and Hodgins [OH95] discuss the case of an ob-
ject hitting the surface. A force is estimated so that the
entering mass is situated nearly on the surface. This
causes an external pressure to the water, causing it to
flow to the neighboring columns. The model is physi-
cally based only for an object with no volume. A simi-
lar model is adopted by Mould and Yang [MY97].

Thürey et al. [TMFSG07] recognize the problem of
the previous methods not taking volume into account.
They first mention pushing the water columns down
until overlaps are removed and redistributing the re-
moved water in the neighborhood. As they state, this
method would run into problems if the object is fully
submerged, because the water does not close the gap
above the object.

Thürey et al. citeThurey therefore propose a method
where the volume of displaced water is tracked in each
cell. The change in this volume is distributed to neigh-
boring cells and can be negative, closing up the gaps
caused by submerged objects. This corresponds closely
to our virtual volume described in Section . In their
method, water still enters the volume of the body and
flows through it.

To our knowledge, our approach is the first heightfield-
based method where water does not enter the bodies.
We see this as a compulsory first step towards more
physically based coupling with rigid bodies.



3 THE PIPE MODEL
Our version of the pipe model is mostly the same as
in Mei et al. [MDH07], but the model is briefly re-
peated here to help the reader. We have made only mi-
nor changes and additions.

The scene is divided to a uniform grid of square cells.
The variables that are tracked at each cell center(x,y)
are terrain heighth(x,y) and depth of waterd(x,y).
We denote the total water level byH(x,y) = h(x,y)+
d(x,y). We will often omit the cell coordinates when-
ever there is no danger of confusion.

Each cell is connected to its four direct neighbors (the
von Neumann neighborhood) by a virtual pipe. Some
versions use the Moore neighborhood, but since we are
aiming for an extremely lightweight method, we do not
find doubling the calculations worth the added quality.

The pipes store current outflowfo(x,y, i), where
i ∈ {L,R,U,D} is the direction from the cell
(x,y). The outflows from a cell form the vector
fo = [ fo(L), fo(R), fo(U), fo(D)].

To update from timet to t + 1, any water from exter-
nal sources is first added to the depth. Then, the new
flow is created by the pressure difference at the heads
of each pipe. The created flow is also proportional to
the cross-section of the pipe, but neither O’Brien and
Hodgins [OH95] or Meiet al [MDH07] explicitly men-
tion how they calculate it: Is it just an assumed constant
or is the geometry of the situation taken into account?

Our solution, inspired by the cross-sections
used in [MY97], is to calculate the height of
the interval I(x,y, i) where the water column
at (x,y) touches air in the directioni, e.g.,
|I(x,y,L)| = max(h(x,y),H(x − 1,y)) − H(x,y).
The result is proportional to the pressure difference,
but takes into account the case where the water level at
the target cell is lower than the terrain at the source. In
addition, we use a constant pipe areaA that can be set
by the user to change water behavior. Now, new flow
is created in proportion to the height of the water–air
interval in all four directions:

f t+1
o (x,y, i) :=max(0,µ f t

o(x,y, i)+

∆t ·A
g|I(x,y, i)|

ℓ
),

(1)

wherei ∈ {L,R,U,D} is the direction,µ is an artificial
friction coefficient as in [MY97],∆t is the time step,A
is the pipe area (constant for all pipes),g is the acceler-
ation due to gravity, andℓ is the pipe length.|I(x,y, i)|
is the interval height as discussed above.

To prevent negative water levels from occurring, a fac-
tor K is calculated in each cell. It is chosen so that scal-
ing by it limits the total outflow to the amount of water
in the cell, as in [MDH07]:

K = min(1,
d

∆t ∑ fo
), (2)

where the sum is over the four elements offo and thus
equals the total outflow.

Finally, the water depth is updated. For this, an in-
flow vector fi(x,y) analogous to the outflow vector is
gathered from the scaled outflows at the corresponding
neighbors. For example,fi(x,y,L) =K(x−1,y) · fo(x−
1,y,R). Now, the final change of depth is calculated
simply as follows:

∆d =
∆t · (∑ fi −K ·∑ fo)

ℓ2 . (3)

The horizontal velocity fieldv(x,y) is needed for visual
effects (and possibly water-to-object coupling in the fu-
ture) and is calculated almost as in [MDH07]. For the
left-right direction

vx =
fi(L)− fo(L)+ fo(R)− fi(R)

2ℓd
. (4)

The calculation is similar for the up-down direction.

We handle the domain boundaries by not running the
simulation on the border cells. The border cell depths
are initialized to zero and never updated. This is not a
realistic solution, but in the pipe method this is enough
to make the borders drain water with little reflection.
Other conditions could be used if needed, but this sim-
ple solution suits our purposes.

To achieve stability, a smaller timestep is required as
ℓ is decreased [MDH07]. With some parameter bal-
ancing, we did not encounter any stability problems
with timesteps up to∆t = 25 ms andℓ = 1 m. See,
e.g., [MDH07] for further discussion.

4 COUPLING WITH RIGID BODIES
We now present our novel coupling method. It is a gen-
eralization of the pipe method described above in the
sense that if no bodies are present, everything reduces
to the basic method.

We aim for a situation where the bodies block flow,
which creates most of the coupling physically. There-
fore, the basic invariant in our model is that water can
never exist inside a rigid body (to the precision of the
simulation grid). We take that this is a necessary as-
sumption for rich and believable water–body interac-
tion, but it has been neglected in the previous height-
field methods.

Our method assumes that each cell is blocked by a
single contiguous vertical interval of bodies,[b−,b+],
whereb− is the lower limit of the interval andb+ the
upper. It is also useful to ignore bodies that are com-
pletely above the water. We assume thatb− = ∞ and
b+ =−∞ if no body is present in a cell.
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Figure 1: The layers in a single cell. Left: no wa-
ter above the object (object is floating if2© is empty).
Right: water above the object. In this case, water level
H is calculated as terrain level + amount of water +
height of body.

The method could be extended to have a number of lay-
ers similarly to what Mould and Yang [MY97] use to
get rid of vertical velocity isotropy. However, the per-
formance cost would probably outweigh the benefits for
most applications. Storing several layers would make it
necessary to store and update multiple depth and flow
values per cell or pipe even in areas without bodies.
Also drawing the result would become more complex.
We therefore stay with a single-layer model.

There are two fundamentally different situations,
which are differentiated by whether there is water
above the blocking body. To simplify the terminology,
we call these ”floating” (no water on the body) and
”submerged”, even if the floating state also includes
situations where the body is not touching the water or
has just hit the surface but is sinking rapidly (which is
always the case in the current version of the method,
since there is no buoyancy yet).

The layers in a single cell are presented in Fig. 1, where
the contents are divided into six disjoint and possibly
empty intervals in the vertical direction. The intervals
are from bottom up:0© terrain, 1© lower water layer,2©
air below body,3© body, 4© upper water layer and5©
air above the body. Terrain continues to−∞ and air to
∞. If no body is present, intervals3©– 5© are empty (so
of the two air layers,2© is chosen to exist).| · | denotes
the height of an interval.

To reduce the storage and processing needs, we make
another assumption. If there is water above a body,
there is no air below it. The body in each cell is al-
ways either completely above the water, touching the
water, or submerged. This means that either2© or 4©
must be empty. This way we only need to store a single
value for the amount of water per cell, and a single flow
value per pipe. More importantly, blocking the water
from entering the body becomes easier. Another ben-
efit is that drawing the water remains simple, since a

a) b) c) cell border

Figure 2: Some situations with multiple bodies. In a),
the upper body is ignored since it does not touch water.
In b), the area between bodies is erroneously blocked
because of our assumption of contiguous blockers in the
vertical direction. In c), two bodies are in neighboring
cells and water should flow between them, but another
assumption blocks this (see 4.3 for discussion).

single heightfield is easy to build. On the other hand,
our method erroneously blocks flow in situations such
as b) in Fig. 2.

We modify the depths described previously so thatd
describes the total amount of water in the cell. Some
of it might be below the bodies and some above (d =
| 1©|+ | 4©|). We generalizeH to mean the water surface
level, taking possible bodies in the cell into account:

H = h+d+

{

0 if h+d ≤ b−,

b+−b− otherwise.
(5)

It is essential to understand that we only storeh andd
directly. The water levelH is calculated when needed.
If a body is floating,H = h+d, but for submerged bod-
ies the two differ. This is demonstrated by the dashed
line in Fig. 3.

For each time step, our method consists of the following
phases: (a) simulate rigid bodies, (b) calculate blocked
interval, (c) fix invariant and conserve volume, (d) cal-
culate flow, (e) update depth, (f) prepare heightfield,
and finally, (g) draw. The phases are described in de-
tail below.

Phases b–f are implemented as OpenGL fragment
shader passes, so each cell is processed in parallel. The
method is crafted to make the cells independent and to
only use information from the previous phases.

4.1 Finding Blocked Intervals (Phase b)

To find the blocked intervalb= [b−,b+] at each cell, the
rigid body geometry is rendered from above and below
into a texture using orthographic projection. The tex-
ture has the size of our simulation domain. Thus each
texel corresponds to a single cell. The first pass writes
the upper limitsb+ to a single channel of the texture us-
ing the depth buffer. The second pass inverts the depth
test and writes the lower limitsb− to a second channel.
The bodies that are completely above water level are
not drawn.
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Figure 3: Comparing methods in different situations.
Left: traditional solution, where water penetrates the
body. Right: our method. Above: floating body, be-
low: submerged body. Dots represent values in the cell
centers. The dashed line shows calculatedH, which
is different fromh+d for submerged bodies (U is the
height of water above the body). Dotted line shows the
visual treatment for dents near floating bodies (see Sub-
section 4.4 and Fig. 7).

4.2 Invariant Update and Volume Con-
servation (Phase c)

After rigid bodies have moved, water may be located
inside the bodies, which breaks our invariant. We need
to fix this while conserving volume. This proves more
difficult than one would imagine, since the blocked ver-
tical interval can vary greatly due to aliasing caused by
the grid as the body rotates. A straightforward idea
would be to simply hold the amount of water above the
object constant, but we found this solution unworkable
because of the instability it causes. Instead, we solve
this phase in a novel way that evades the instability. We
first remove the old body and then add the new one.
For this, we need the blocked interval at previous and
current timesteps,bt andbt+1.

In this phase, we often need to add or remove water.
To hold volume constant, each cell tracksvirtual vol-
ume V: positive if water was removed and needs to be
reinserted in the vicinity; negative if water was added
and needs to be removed. A constant fractionτ of this
volume is spread at the beginning of this step to each
of the four neighbouring cells. Some volume loss could
be caused if negative virtual volume ends up in areas
where no water exists.

First the old body is removed. Ifbt is non-empty and
bt
+ < h+ d, the body in this cell was submerged and

the volume underwater wasU1 = bt
+−bt

−. In this case
we addU1 to the depth, holding the water surfaceH
constant. Volume is conserved in the long run by sub-
tractingU1 from V, possibly causing negative virtual
volume. If the body was floating,U1 = 0 and nothing
needs to be done.

We then insert the new body, removing any water from
the interval it occupies. Ifbt+1

− < h+d, the new body
is underwater and the submerged volumeU2 =min(h+
d−bt+1

− , |bt+1|). U2 is removed from depthd and corre-
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Figure 4: An example of enforcing the invariant. The
submerged body at timet is removed and water amount-
ing to U1 is added so thatH stays unchanged. In this
case, the body at timet + 1 is floating (originalH is
inside it), soH needs to be pushed down byU2. The
volume changes are subtracted from the original virtual
volumeVt to conserve water volume.

spondingly added toV, again conserving volume. If the
new body is floating, this pushesH down tob−. Other-
wise, the body is above the water,U2 = 0 andH stays
constant.

Finally, if there is currently no body in the cell, a portion
α ∈ (0,1] of the virtual volume is converted to actual
water. If the virtual water is negative, water is removed,
but naturally only until there is no water in the cell.

An example of removing and adding a body in this step
is seen in Fig. 4. In this case,U1 > U2 so more water
is added than removed. This causes some negative vir-
tual volume, which will spread to the nearby cells and
destroy a corresponding amount of water.

Virtual volume is inspired by Thüreyet al. [TMFSG07].
They use a functionally very similar idea to remove
some water from inside the bodies and propagate it to
the neighboring cells, which is the core of their object-
to-water coupling. However, we found that in both
their and our method, the constantα needs to be rather
small in order to keep the long time steps stable (we
use α = 0.01 for δ t = 20ms). This means that the
waves caused by the objects are also small and some-
thing more is needed.

4.3 Calculating Blocked Flow (Phase d)
Flow is governed by Eq. 1. We need to block two parts
that are represented by the two terms on the right side of
the equation: the existing flow (µ f t

o) and the new flow.

Let us first tackle the new flow, which is proportional
to |I |, the height of the air–water interval. Consider the
outflow from cell i to its neighborj. The outflow can
be caused by the water either above or below the object
in cell i, i.e., intervals1©i or 4©i . The air part could be
either of the two air intervals of cellj, i.e., 2© j or 5© j .
The intersections of these intervals are what cause new
flow. The total length of water–air interface fromi to j
is therefore

|I ′|= | 1©i ∩ ( 2© j ∪ 5© j)|+ | 4©i ∩ ( 2© j ∪ 5© j)|. (6)
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Figure 5: Limiting the existing flow below a body.Ib
is the unlimited interval that is about to flow out dur-
ing a time step. Limiting it by the lower border of the
body in the neighbor,b−, results inI ′b. But the binding
limit here is caused by requiring that2© j is not over-
filled (|I ′b| ≤ | 2© j |/4, since flows come from four direc-
tions).

Recall that if no bodies are present, intervals4© and 5©
are empty and the formula reduces to that of the basic
method.

The result of Eq. 6 is used in Eq. 1 instead of|I | to
calculate the new outflow vectorfo. This takes care of
blocking the new flow.

Let us now handle the existing flow. We find the interval
I from where water is leaving. The amount of water
in the cell is nowdt and would bedt+1 = dt −∆t ∑ fo
after the outflow. Fromdt anddt+1 we calculateI using
Eq. 5 with both valuesdt anddt+1. I is divided to parts
leaving from above and below the body,Ia andIb. If a
body is present, one of them is almost always zero. If
no body is present, we setIa = Ib = I .

First of all, we only take into account flows from above
to above and from below to below. In practice, the other
flows are very rare: They can only happen when two
distinct objects are right next to each other as in case
c) of Fig. 2. A small change in positions would reduce
this to case b) where no flow occurs anyway. Therefore
this extra assumption is rarely relevant.

Now, Ia is limited from below byb+ in the target neigh-
bor andIb similarly from above byb−. The existing
flows are limited in proportion to the intervals (i.e.,
if half of the interval is blocked, only half of the un-
blocked flow is allowed). Note that if no body is present
in the neighbor,b+ = −∞ andb− = ∞, and the flow is
not limited in that case.

However, there is a complication. The interval2© j at
the target cell must not be overfilled, because that would
cause water to enter the body. But we cannot know

the inflows from the other directions without breaking
the parallel structure or adding an additional iterative
phase to the process. We overcome this problem with
the following approximate solution.

Sum of the inflows below any body at the target cell
j must be limited to| 2© j |. Since there are four neigh-
bours, we set a maximum of| 2© j/4| to eachIb going
to cell j and limit the flow accordingly. This prevents
2© j from overfilling, but it is still filled eventually. This
solution could cause artifacts in some situations, e.g.,
when water is flowing fast just below a bridge. How-
ever, in our experience it is an essential addition, since
the lack of this limitation is easily visible, but the prob-
lems caused by it are not. The process of limitingIb is
visualized in Fig. 5.

The limited outflow from the cell is now max(Ia, Ib)/∆t,
i.e., we take the larger of the two intervals and convert it
back to flow. This works both when no body is present
and when eitherIa or Ib is zero. The flow is further lim-
ited byK according to Equation 2, just as in the basic
simulation.

A somewhat problematic situation that is unaddressed
by this method happens when water flows from above
a body but there is room for it below the body in the
neighborj, i.e.,|Ia|> 0 and| 2© j |> 0. In this case, wa-
ter is transferred through the body from above to below.
However, we have not noticed this visually in our tests.

4.4 Updating Depth and Constructing the
Heightfield (Phases e and f)

Now that the flows have been limited, depth can be up-
dated as in the basic method using Eq. 3. The velocity
field is also calculated just as before using Eq. 4.

Before drawing the water, we need an extra phase to
build the heightfield. The simplest implementation is
to calculateH from the stored variablesh, d, b−, and
b+ using Eq. 5, which is indicated by the dashed line in
Fig. 3. This approach causes visual dents near floating
objects, because the object pushes water down below
itself and thus the water mesh seems to curve down al-
ready outside the object.

We treat the denting problem by finding the cells where
the object has probably pushed water down (b− is
within someε of H). We adjust the values at these
cells to be the maximum ofH values in their Moore
neighborhood. This value will most probably be the
level from outside the body and takes care of most of
the visual problems. This is demonstrated by the dotted
line in Fig. 3.

Some problems still remain, however. Objects that
are nearly submerged sometimes cause flicker, because
small changes ind can cause large variations inH. The
water-object borders are not always as clean as they
could be.



Figure 6: A dam is built on a river.

Luckily, many of these problems could be masked by
adding foam and particle effects to places where rapid
change is happening, since the problems occur exactly
where the foam would normally appear. This is an im-
portant task for future work.

5 EVALUATION AND FUTURE WORK
We have implemented the proposed method using
OpenGL and GLSL shaders. The implementation
uses relatively basic rendering techniques. One of the
most important visual feature is visualizing the flow by
using two bump textures with alternating weights. The
velocity field generated by the method is used to advect
these textures. The textures are reset when their weight
is zero to prevent excess stretching. This method is
used in many current games, e.g., [Vla10].

The rigid bodies are simulated using the open source
Bullet physics engine2. The engine handles body dy-
namics and collisions. Currently the physics simulation
is done on the CPU. The bounding boxes of the bod-
ies are needed when eliminating bodies that are above
water level in Section 4.3. We read back theH val-
ues and do the elimination on the CPU. This is a major
performance problem that can be avoided in the future
by simulating the bodies on the GPU and sharing data
between the two simulations.

Our method prevents water from entering and flowing
through the bodies. Water also visually seems to flow
around the objects due to the calculated velocity field.

2 http://bulletphysics.com/

Figure 7: An example of our fix for visual dents near
objects. Left: unfixed heighfield curves down already
outside the object. Right: fixed border.

In addition, our method enables building dams out of
dynamic rigid bodies. None of these come naturally
with the previous methods that allow water to enter the
bodies.

For comparison, we have implemented the rigid
body coupling method suggested in Thüreyet
al. [TMFSG07]. Their method is best suited for
floating objects, but also supports submerged bodies
and is the state of the art in heightfield water physics
coupling as far as we know. The accompanying video
contains a scene where a wave reaches a large and
heavy dynamic object, either passing through it almost
unaffected (Thüreyet al.) or actually going around it
(our method). The video also demonstrates how our
method creates a correct velocity field, which flows
around the body instead of into it.

Our simulation takes approximately 18 ms on a grid of
1024× 1024 on our test laptop with NVIDIA Quadro
1000M. Since our time step is 25 ms, about 1.4M cells
can be simulated in real-time. More relevant results for
applications are 4.7 ms on a 512×512 grid (5.3 times
real-time) and 1.6 ms on a 256× 256 grid (16 times
real-time). Performance is currently limited by texture
bandwidth, because several of the phases need a lot of
information about their neighbors.

In a recent study, Kellomäki [Kel12] compares the per-
formance of some methods. Although these perfor-
mance comparisons are very rough, we can conclude
that our generalized pipe method is a few times slower
than the original pipe method, but still roughly an order
of magnitude faster than the other methods surveyed.

The performance of our implementation greatly suffers
from the fact that we have currently implemented only a
single version of the simulation shaders, which are rel-
atively complex. An obvious optimization would be to
first simulate the whole scene using the simple and fast
basic method, and then recalculate the comparatively
small areas that are covered by the bounding boxes of
rigid bodies, using the complex shaders. This would
probably reduce the time used tremendously at the cost
of a few extra draw calls and pipeline state changes. On
the other hand, our current implementation is not much
slowed by additional bodies.

One of the largest problems in our current implemen-
tation is caused by the fact that the water surface does



Figure 8: A box is dropped into a calm lake.

not just pass through the objects anymore. This causes
visual problems like dents around the bodies and flick-
ering, some of which we have already addressed, but
some of which still remain. The visual problems are
apparent in the accompanying video, especially when
compared to the clean borders achieved by the tradi-
tional method. However, we believe further work can
solve these problems.

Traditional methods for calculating water-to-body cou-
pling cannot be used with our solution. For example,
buoyancy is traditionally proportional to the difference
of water level and the lower limit of the body. In our
method that information is not available, because wa-
ter is pushed down by the object. Further work is
needed here, e.g., to enable combining the physically
based approach of O’Brien and Hodgins [OH95] with
our method.

We also made some restrictive assumptions and some-
times resorted to ad hoc solutions to keep performance
and stability good. Mainly, the bodies overlapping each
cell need to be contiguous. Violating the assumptions
becomes a problem less often than one might imagine,
since most practical situations only have a single body
per cell, and many objects are convex in the vertical di-
rection. The assumptions need not be fully obeyed to
achieve visually acceptable results.

One of the relevant problematic cases is a small hole in
a dam. This could conceivably be overcome by treat-
ing bodies that are touching the terrain in each cell as
temporary parts of the terrain itself. This should be con-
trasted to the previous methods, which only work cor-
rectly for objects with no volume and where no dams
could be built at all (except from the terrain itself). An-
other limitation is that no air pockets are allowed under
submerged bodies, but those would typically not be vis-
ible to the user anyway.

One of the possible next steps is to learn from the more
sophisticated methods used in the 3D water simulation
literature. Those methods need to be adapted to work
in the heightfield context and also severely simplified,
since they are still much too slow for application in ac-
tual real-time virtual environments. Another possibility
is using the layered model of Mould and Yang [MY97]
to separate the water above and below the objects.

Several other improvements are certainly possible.
Most obviously, many additional visual techniques
could be added to mask the simple simulation model
used. We are currently not using any particle system
to create splashes and other phenomena that cannot be
represented by heightfields. We are also investigating
the possibility of seamlessly converting all water to
particles near the bodies and using full 3D simulation
in those areas.

6 CONCLUSION
This work has described a novel method for handling
object-to-water coupling in the context of heightfield
water simulation. Although we elected to use the pipe
method, the often-used shallow water simulations could
also benefit from an approach where no flow is allowed
through bodies.

We have built a prototype implementation that allows
completely new kind of interaction in heightfield water
simulation, such as dynamically building and breaking
dams using rigid bodies. The result is very fast and,
despite several assumptions, works acceptably in many
practical situations.

We think that even an ad hoc method is better than the
current situation, where there is simply no coupling so-
lution at all available for large objects in large-scale
heightfield water simulations. Furthermore, there is no
fundamental reason why further work could not extend
our flow blocking based method to also handle water-
to-object coupling. On the other hand, all other exist-
ing water-to-object coupling methods are inherently not
physically based because of their approach where water
is allowed inside the bodies.

The problem field is becoming important since many,
if not most, virtual environments rely heavily on rigid
body physics for interaction and dynamics. Water that
passes right through large dynamic objects is simply not
believable enough in this context.

Furthermore, hardware has finally improved far enough
to make the fastest water simulation methods viable in
actual use cases, instead of being limited to mere re-
search prototypes. We are on our way to having inter-
active water as just another easily added component in
video games and other virtual environments.
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