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Figure 1. I/O bound point in N-polygons inclusion queries - “Valid” points in hues of blue/green (colour 

coding the sea floor depth) are inside the project polygon limit area AND outside the offset coastal inner 

polygon AND inside the offset costal outer polygon. “Invalid” points in red are inside the project polygon, 

outside the offset coastal inner polygon BUT outside the offset coastal outer polygon. Left: result of 1.757 

billion bathymetric point queries (Solent[B]1h36m DuoCore2.5Ghz, details in Section4) Center: 61 million 

queries (Kirkwall[A]~ 3.36min). Right: project polygon limits in dark blue and quadtree root in light blue. 
 

ABSTRACT 
“Trixel Buffers is a new spatial data-structure for fast point in multiple polygon inclusion queries. The algorithm 

utilizes a pre-processing step in which the inside/outside status of a quadtree´s leaf triangles without polygon 

geometry is pre-computed automatically; at run-time point queries lying within these triangles simply inherit 

their inclusion status. If a point query lies in a leaf triangle enclosing polygon vertices or crossing edges, a ray is 

fired from the point towards the triangle center whose polygon inclusion properties has also been pre-computed: 

rules are then applied to the intersection count and center-point properties to infer the polygon inclusion status. 

Our main contribution is that rays need not be followed until the polygon limits, and consequently the algorithm 

is I/O bound with shallow trees. It took 1h36m rather than days of using a standard ray test to determine the 

multiple polygon (~270,000 line segments) inclusion of 1.75 billion points on a 2.5GHz DuoCore computer. 
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1. INTRODUCTION 
The seemingly simple task of determining whether a 

point is inside or outside a given polygon, or indeed a 

set of several polygons at the same time is an integral 

task within many diverse applications, such as a 

geometric editing/polygon selection, climate 

simulation, and interactive computer graphics. A 

popular solution used for example in ArcGIS is 

simply to render polygons and lookup the rendered 

pixel attributes (polygon IDs) at our mouse click 

position. This approach works well by relying on the 

user and user interface to zoom interactively to a high 

level of detail in a local region of interest if they wish 

more accuracy in their polygon selection. 

Unfortunately, this strategy would not work well in 

the context of determining the point-in polygon status 

of large volumes of data/query points from a file such 

as bathymetric survey data from the sea floor as the 

user cannot afford to set the zoom level/center the 

view location for each point to obtain accurate 

enough results from rendering. Furthermore, high 

detail polygons can rapidly make such a rendering 



approach for point polygon inclusion cumbersome; in 

addition files containing the point queries can be 

streamed from different users over a network and be 

of arbitrarily locations, making the position and 

zoom levels of such renderings difficult to optimize.  

Several algorithms model polygon geometry directly 

offering resolution independence and higher accuracy 

results. A ray test [Tay94a, Prep85a] handles convex 

and concave polygon but without a hierarchical 

spatial tree will be comparatively slow as is the 

winding number method that still needs to test/reject 

several polygon segments. Quadtrees [Sam90a] can 

be used to solve the point-location problem rapidly 

[Sar86a], [Edel86a, Kir83a, Pat06a], and depending 

on the application scenario one could use rectangular 

quadtrees [Pov04a], or triangular quadtrees [Fek90a] 

if mapping the whole globe. To avoid distortions at 

the poles, each of the 20 equilateral triangles of an 

unrolled icosahedron is a root quadtree (Figure 2). 

 
Figure 2. Icosahedron, 20 equilateral root 

triangles. Courtesy [Ham12a].  

The idea of solving point-in polygon queries by using 

quadtree leaf cells to buffer and cache pre-computed 

polygon-inclusion results is not new [Pov04a], 

Trixels [Fek90a]. However several problems arise 

when addressing point-in polygon queries of massive 

bathymetric data using complex high detail polygons. 

The first problem is memory consumption, which 

scales badly with increasing the vertex spacing 

resolution of the polygons. I/O bound performance of 

reported strategies for finding the polygon inclusion 

status of point queries near polygon geometry require 

that the tree was subdivided until the size of leaf cells 

matches the resolution of the polygons. If 

considering applications running on mobile devices 

with even more limited memory this problem is even 

greater. Secondly, existing methods require the 

manual setting of a known interior polygon position 

to propagate results during the pre-processing stage. 

When dealing with thousands of offset polygons in 

the context of our application this becomes 

cumbersome or impractical to ask the user, as the 

size of many polygons derived automatically from 

real data can be very small (Fig 1, center).  Thirdly 

our application must be robust to deal with convex 

and concave polygons with arbitrary vertex ordering 

resulting from merging/importing of several polygon 

shape files from different tools.  

In this article we present a hierarchical spatial 

database (Trixel Buffers) solution to these problems, 

where leaf triangles void of geometry are termed 

trixel buffers; point queries lying in a trixel buffer 

simply inherit the polygon-inclusion status of that 

triangle (for example triangle T(in) and T(out) in 

Fig.3. In contrast a point query (Q) lying in a leaf 

triangle that has polygon vertices or crossing edges 

T(test) requires an additional ray test with the known 

polygon inclusion point buffer P(out). Trixel Buffers 

were designed as part of the Vertical Offshore 

Reference Frame (VORF) project [Ili06a], which 

modeled the datum surfaces used for spatial data on 

land and at sea around the UK and Ireland. The work 

carried out enables transformations between datums 

used by satellite positioning systems, marine datums 

used for bathymetric data, and land datums used for 

topographic data. With 17 different land datums and 

multiple complex polygons defining navigable rivers 

and harbors, robust and efficient position tests need 

to be performed on each point in very large datasets.  

 
Figure 3. Trixel buffer logic. 

The main concept of our algorithm is in the case of a 

query point that lies in a leaf triangle with polygon 

geometry, to cast a ray from the query point to its 

triangle center and apply trixel buffer logic to the 

center point´s pre-computed polygon inclusion status 

and the number of intersections of the ray with any 

polygon geometry in the leaf triangle to infer the 

inside/outside status of the query point, rather than 

continue to trace a ray until it exits the polygon or 

quadtree. 

Contributions: 

We present a new point in N-polygon algorithm that: 

- Extends the Gauss-Jordan theorem to work 

efficiently with hierarchical spatial trees. 

- Is I/O bound with massive data sets, requiring 

relatively shallow trees. 

- Extracts interior/exterior of polygons automatically. 



 

Figure 4. Inner product with convex polygons (left & center) and with concave polygons (right). left: BOTH 

inner products with n1 and n2 are positive, P is inside; center: ONE OF the inner products with n2 is 

negative,P is outside. right:ONE OF the inner products (n4) is negative and P is incorrectly labeled as out. 

- Handles convex and concave polygons with 

arbitrary ordering. 

- Is extendable to other dimensions. 

- Can be used to extend existing quadtree methods by 

calculating the polygon inclusion status of point 

buffers (which are infinitely small trixel buffers) 

and applying our presented rules. 

 

We briefly review related work in Section 2. We note 

that we use the words ‘trixel buffer’ and ‘triangle 

nodes’ interchangeably throughout the paper, and the 

words ‘coastal line’ in reference to ‘polygon lines 

that represent real coast lines’. In section 3, we show 

how the quadtree is used to create trixel buffers 

automatically, and how our new short ray-strategy is 

used in conjunction with trixel buffers to determine 

which polygons a point lies within. In section 4 we 

present results; specifically we use a brute-force ray 

algorithm [Tay94a] to inspect and validate our 

polygon inclusion results; we also show that our 

method does not require the resolution of leaf 

triangles to match the resolution of the input 

polygons to achieve I/O bound performance. In 

section 5 we present a discussion, and conclude in 

section 6. 

2. PREVIOUS WORK 
A vast body of literature exists in computational 

geometry for the detection of whether a point is 

inside a convex hull, or inside a generic planar 

polygon [Berg97a, Prep85a, Hai94a, Edgel86a]. 

Perhaps the simplest way to determine whether a 

point is inside or outside of a polygon is to fire a ray 

horizontally from the point in question to + or - 

infinity and apply the Jordan curve theorem on the 

number of intersections of the ray with the edges of 

the polygon. If the number of intersection is odd, the 

point is deemed inside, if the number is even the 

point is deemed outside. Special care [Prep85a] is 

taken for rays that pass through the vertices of a 

polygon, horizontal edges are ignored, and if the ray 

intersects a vertex, and the vertex has the largest 

ordinate of the edge the intersection is counted, 

otherwise it is ignored. Even though many polygon 

edges can be trivially rejected from any intersection 

by checking if both ordinates of the edge vertices are 

both greater or both smaller than the ray’s ordinate, 

this algorithm has a query complexity of O(N) as it 

checks every edge of a polygon before determining 

to test it for intersection or not. Fast solutions exist 

for the planar point location problem: given a planar 

subdivision of space, the task to establish which cell 

or polygon contains our query can be achieved in 

O(log(N) using persistence search trees [Sar86a], 

fractional cascading [Edel86a], and triangulation 

refinement [Kir83a]. Recently sub-logarithmic 

complexity for queries has been achieved with 

support for dynamic planar subdivisions [Pat06a]. In 

particular Kirkpatrick [Kir83a] shows O(N log(N)) 

preprocessing time with O(n) storage using 

hierarchical triangle subdivisions. Similarly we use a 

triangular quadtree in this paper for the point location 

problem, and modify it to support a ray strategy for 

solving the point-in polygon problem. Poveda et al. 

[Pov04a] use a square quadtree to buffer the polygon 

inclusion status in cell nodes void of geometry, and 

report I/O bound results with quadtree leaf buffers 

whose length matches the vertex spacing resolution 

of a convex polygon set. For query points in a cell 

with geometry, they use an inner product test (Fig.4- 

left&centre), but to our understanding unfortunately 

this test will not work in the case of concave 

polygons (Fig.4-right). 

This method also requires the manual seeding of a 

known interior point. As mentioned earlier Fekete 

[Fek90a] uses 20 equilateral triangles of an 

icosahedron as root nodes of triangular quadtrees 

instead of rectangular quadtrees to avoid distortions 

at poles [Ran02a, Oli06a]. Fekete stressed the need to 

combine a spherical visualization representation with 

the actual data coordinates for global simulation of 

the atmosphere [Ran02a]. Hence the length of the 

position vectors, defined by the triangle edge 

midpoints are adjusted during subdivision to a set 

radius or property, thus creating a spherical quadtree.    



 
Figure 5. Overview of the construction of the Trixel Buffer spatial database. 

Fekete does not address directly point-in polygon 

tests in his data structure, but uses a technique called 

connected component labeling that uses connectivity 

information stored in a tree node to access and 

propagate the inside or outside results of cells to 

adjacent nodes. A seed cell is manually chosen inside 

a landmass, and the result is propagated to the limits 

of the landmass.  

 [Tay94a] [Fek90a] [Pov04a] Trixel 

Buffers 

Manual (m) 

/ automatic 

(a) interior 

extraction 

a m m a 

Convex 

Polygons 

y n/a y y 

Concave 

Polygons 

y n/a n y 

Tree depth 

for I/O 

Performance 

w/ polygon 

data of Fig.1 

n/a n/a 16 12 

Table 1. Comparison of properties of existing 

methods for point in polygon tests of massive 

bathymetric data.  

One can envisage that points inside cells void of 

geometry simply inherit the extracted landmass IDs. 

Point queries inside cells with geometry could use 

the point buffers presented in this paper to determine 

landmass inclusion. Table 1 compares the properties 

of existing methods for massive bathymetric tests. 

3. TRIXEL BUFFER CREATION 
Our system is built with five main steps (Fig.5, 

middle). The first step creates a hierarchical spatial 

database through quadtree triangular subdivision. 

This step solves the point location problem. The 

second step termed polygon line extraction adds 

further triangles in areas of passing edges to ensure 

that all polygon segments can be readily referenced. 

Further refinement of the tree in step 3 maximizes the 

area void of geometry. In step 4 the polygon 

inclusion status of triangles void of geometry is 

computed automatically through the interior/exterior 

extraction algorithm. Finally in step 5 the center 

point inside each leaf triangle with geometry has its 

interior/exterior status calculated. 

Subdivision 
Although we use a triangular quadtree rather than 

squares, the process of subdivision is similar. In the 

context of our project, one of the twenty base 

equilateral triangles of the icosahedron sufficed to 

enclose our survey data. The construction of the 

quadtree starts with a simple O(N) pass on every 

polygon vertex in order to establish the maximum 

and minimum coordinates of the set. An equilateral 

triangle which encloses all the data can then be 

computed. A subsequent subdivision process, using 

the three middle points of each of the triangle’s 

edges, creates four smaller equilateral triangles. In 

our implementation, for precision purposes the width 

and the height of the root triangle are stored once 

separately. The width and height of a quadnode of 

any level can be calculated by a single division made 

to the original width/height of the root triangle by 

powers of two representing the subdivision level.   

This process of subdivision is repeated until the set 

maximum depth level is reached. In order to 

maximize the number of query points not requiring 

geometric tests at run-time, we first compute the 

average vertex spacing distance of the polygon set, 

the limit of the subdivision depth can then be set by 

the length of the triangle edge being subdivided. If 

the length is smaller than the average spacing we stop 

the subdivision. Standard recursive spatial data 

structures such as the quadtree set recursion limits 

such as the maximum number of input points allowed 

in the deepest triangles and/or the maximum tree 

depth allowed. Unfortunately this strategy can yield 

leaf node triangles that are very large. We record the 

width and height of the smallest quadnode found, and 

in a second pass, we further refine leaf nodes that 

have geometry if their size is larger than the smallest 

triangle found. 

Polygon line extraction and refinement 
Whilst the subdivision step is centered on the 

polygon vertices, a water tight front of leaf nodes 

covering the complete geometry, including crossing 

edges is required before rays from any position in the 

tree can reliably test the polygons for inclusion, 

independently of the spacing of the vertices of the 

polygon. To detect crossing edges, and minimize the 

size of these areas, we insert leaf nodes in the tree in 



areas covering long edges; in addition these 

nodes/triangles also store the ID of one of the 

vertices of the long edge, this ID can then be used 

later to build the edges for ray intersection tests. To 

build this connected front a procedure with a result 

similar to that of Bresenham´s line drawing algorithm 

is performed, starting by looking up the leaf nodes 

containing each endpoint of each polygon edge. We 

refer to the leaf node containing the first vertex of an 

edge as the starting leaf node, and the leaf node 

containing the endpoint vertex as the target leaf node. 

If the two vertices are contained in the same leaf 

node, no leaf nodes need be inserted, otherwise we 

systematically insert leaf nodes adjacent to the node 

containing the starting vertex of the edge, until the 

inserted leaf node is adjacent to the leaf node 

containing the end vertex of the edge. Here adjacency 

requires that the leaf nodes share two vertices.  

Since we do not store adjacency/connectivity 

information, we retrieve adjacent triangles covering 

the polygon edge, using a three step process.  

 
Figure 6. Minimum sum distance between leaf 

triangle edges. The starting leaf triangle 

containing the first vertex V2 of the edge V2-V3 

has minimum sum distance 

(distC+distD(a)>distA+distB(b)) between the 

triangle edge e3 of the start triangle and the edge 

e3 of the target triangle. 

The first part establishes which edge from the 

starting leaf node has the smallest summed vertex 

distance to any edge of the target leaf node (Fig.6-

a&b)). However, if one were to insert an empty 

node/triangle adjacent to the edge simply determined 

to be of shortest distance to the target triangle, no 

guarantee could be given that the polygon edge was 

completely contained by the inserted leaf nodes 

(Fig.7-left). This distance calculation is however 

useful to determine the stopping condition of zero 

distance between adjacent and target triangles.  

The second part of the algorithm finds which edge(s) 

of the starting triangle are candidates for inserting the 

adjacent empty leaf node. The third part determines 

which of the potential two candidates is chosen to 

insert the adjacent node. A polygon edge can at most 

intersect a triangle in two of its three edges. For 

example Fig.6-a) shows that the edge v2-v3 

intersects the starting triangle in one edge (e3), and 

intersects an adjacent triangle in two edges. 

 
Figure 7. Polygon line extraction. - Dark grey 

triangles contain vertices of the polygon. Light 

grey triangles on the left image denote incorrectly 

inserted empty triangles along the edge using the 

minimum sum distance to the target triangle, light 

grey triangles on the right image were inserted 

using the polygon edge geometry (Fig.8) instead.  

We note that once the leaf nodes of the polygon edge 

vertices are found (recursive look-up of the tree), the 

line connecting the polygon edge vertices is 

guaranteed to intersect both the starting and target 

leaf node triangles if the vertices are in different leaf 

triangles (if adjacent no triangles are inserted, if 

separated by an area void of leaf nodes, new empty 

leaf triangles are inserted in the path of the edge, if a 

leaf node is already present in the path, the ID of the 

passing edge is stored in the node instead) or can 

have its two vertices in the same leaf triangle (start 

and target triangle are the same, no adjacent triangle 

needs to be inserted for this vertex pair as any 

passing ray will retrieve both edges connected to 

each vertex). In order to narrow down the candidate 

edges to two, we determine which triangle edges the 

polygon edge might intersect. Specifically we 

compute the signed distance of each vertex of the 

triangle to the polygon edge, the triangle edges 

whose vertex distances have different signs indicates 

that the triangle edge is intersected by the line going 

through the polygon edge. Fig.8-a) shows that the 

triangle edge P1-P3 and the triangle edge P2-P3 have 

different point distance signs, although only the edge 

P1-P3 is intersected by the polygon edge V2-V3. The 

final step of the coastal line extraction algorithm is to 

determine which of the two candidate edges, is the 

edge in which the system is going to insert an 

adjacent empty node. For this effect we use an 

efficient ray rejection technique [Xu03a], where the 

endpoints of this polygon edge are tested against the 

candidate edges. The triangle edge that yields 

different signs in the edge endpoint distance test is 

selected. For example, the triangle edge P1-P3 of 

Fig.8-b) is the only edge with different distance 

signs. 



 
Figure 8. Polygon line extraction using the 

polygon edge geometry.  

Finally we add the ID of the first endpoint of the 

polygon edge to the adjacent empty node (this 

enables for point queries in the adjacent triangle to 

retrieve and build the edge that crosses it), if there 

was an adjacent node already with geometry the 

vertex ID is added to it nevertheless. The adjacent 

triangle then becomes the starting triangle. The 

polygon edge is used as before with the new triangle, 

however the starting vertex (v2) used for the step 

(Fig.6-a) and b)) becomes the offset point (N3 of 

Fig.8-b)). This process is repeated until the starting 

triangle is the same as the target triangle or is 

adjacent to the target triangle (Fig.7-right)). To make 

sure any point query location has a non-overlapping 

leaf node, a refinement procedure is done, 

specifically, every node from the root is checked to 

see if a subnode exists with adjacent null node 

pointers, new empty triangle nodes representing 

smaller areas void of geometry then replace the null 

pointers. 

Automatic interior/exterior extraction 
Most point in polygon methods require manual 

seeding of a node known to be interior to the 

polygon. Our algorithm calculates automatically the 

polygon inclusion status of nodes void of geometry 

using the following rule: 

Rule 1 – Any point within a node void of geometry 

has the same polygon inclusion status as any other 

point within the node. If one fired a ray from any 

point of the node towards infinity in any direction, 

and the node was indeed completely interior to a 

polygon, then the Gauss Jordan rule will give the 

same result for that polygon, independent of the 

number of intersections. Special care is taken for rays 

that pass through the vertices of a polygon, horizontal 

edges are ignored, and if the ray intersects a vertex, 

and the vertex has the largest ordinate of the edge the 

intersection is counted, otherwise it is ignored. 

Connected adjacent leaf nodes void of geometry are 

grouped and the inside/outside status of one of the 

cells in the group is calculated with rule 1, the result 

is then copied to all the other elements in the group 

using following rule: 

Rule 2 – Rule 1 can be generalized to the outline of 

triangle strips void of geometry or more arbitrary 

connected contour shapes, as long as the single ray 

being fired does indeed traverse to infinity or beyond 

the known pre-calculated bounds of the polygons 

being tested. 

We use a flood-fill algorithm to group connected 

adjacent triangles (Fig.9-left)) as follows: we build 

an array of pointers to all the leaf nodes void of 

geometry in the tree, and we zero a group counter 

and the group attribute of each leaf. We sort the array 

in increasing triangle size (a small triangle will 

always have only one adjacent neighbor on one side, 

rather than two or more if starting with a larger 

triangle first), and visit each element of the array that 

has no group assigned, we increment the group 

counter each time we find a triangle that has not had 

a group ID assigned and assign the current group 

number to the triangle, we then retrieve the three 

adjacent triangle neighbors (left, right and vertical) of 

the triangle. If one of the neighbors has no geometry 

and has not been assigned a group, we assign the 

current group counter value to it and push it on to a 

stack. While the stack is not zero we keep removing 

the last element of the stack before proceeding with 

the next element of the sorted array. Once all leaf 

triangles of the array have been visited, we sort the 

array again this time on group ID, the first leaf node 

of a group found in the array is then ray tested as 

described below and the result is copied to all the 

array element of the same group. As mentioned 

earlier, each connected group has one leaf node void 

of geometry ray tested, a horizontal ray from the 

middle of a triangle is fired towards a point outside 

the tree. If the ray passes a triangle that has polygon 

vertices or flagged geometry, tests for intersection 

are carried out on polygon edges. Specifically each 

vertex contained or flagged in a triangle is looked up, 

and two edges are built by retrieving the two other 

connected vertices. These connected vertices can lie 

arbitrarily far from the ray path, and the ray might 

only intersect the edges within adjacent triangles. In 

order to not test an edge more than once during the 

course of the ray path and to keep track of whether an 

edge has already been counted as a hit, each vertex of 

our polygon set has two flags reflecting the 

intersection status of the two edges that connect to it. 

These flags can have a mark of 0, 1 or 2, depending 

on whether the edge has not been tested (0), tested 

and hence not requiring further tests (1), or tested and 

with a hit that has been counted (2). If a ray crosses a 

triangle with no geometry, that triangle is skipped, 

and the next adjacent triangle in the ray path is 

retrieved, until the ray exited the tree. All the nodes 

that were visited have the flags of their vertices  



 

 
Figure 9. Left: Flood fill grouping of triangles void of geometry, numbers represent each connected group. 

Center: Interior/exterior extraction results. Right: Pre-computation for point buffer creation, numbers 

represent the smallest number of triangles that need to be traversed to find an adjacent triangle void of 

geometry, this will be used to establish the shortest route for a ray when determining the point buffer 

interior/exterior status.

zeroed, before proceeding with any more 

triangle/polygon inclusion tests. During ray tests a 

separate intersection count is kept for each polygon 

ID the ray crosses. If the final intersection count for 

a particular polygon ID is odd, the starting selected 

triangle is deemed to be inside that polygon, and the 

ID of that polygon is registered in the triangle. If 

the count is even, the triangle is outside of that 

polygon, and the polygon ID for that count is not 

stored. Note that it is possible for a triangle to be 

inside more than one polygon, or to be outside a 

tested polygon but inside another polygon. Fig.1-c) 

and Fig.9-centre) shows extracted landmasses in 

brown that are all within a sea polygon in dark blue. 

It is interesting to note, that since we always 

retrieve the two edges that are connected to a vertex 

our ray intersection is not adversely affected in the 

presence of clockwise and counter clockwise 

polygons. Any duplicate polygon would have 

different polygon IDs, and hence does not 

inadvertently affect the inside/outside counting 

test.Table 3 shows spatial and memory statistics of 

Trixel Buffers. We note that the average vertex 

spacing of our 270,000 polygon edge data set is 136 

meters and that this spacing is almost the same 

everywhere. A strategy whose run-time 

performance relies exclusively on minimizing the 

number of geometric primitives to test on cells with 

geometry would require a tree of depth 16 with leaf 

edges of 100 meters to have only one vertex to test 

at run-time. We show that by computing point 

buffers inside leaf nodes of depth 12 and applying 

our rules described below, our algorithm is already 

I/O bound. 

Point buffer creation and point in N-

polygon inclusion query 
At run-time, when testing the polygon inclusion 

status for point queries lying inside a node with 

geometry, it is not optimal to carry the same 

procedure of determining the polygon inclusion of a 

group, following a ray to the outside of the quadtree 

each time. One could stop counting intersections 

when the ray reached the bounding box limits of the 

polygon of interest, however this can involve 

traversing several triangles with and without 

geometry. A faster strategy is to stop the ray when 

the ray enters a stable node (void of geometry) and 

apply the following additional rules (3,4,5,6,7) to 

infer the polygon inclusion status (please refer to 

Fig. 10 bottom): 

Rule 3 – Given an even or zero number of 

intersections for a polygon ID and the stable node 

entered is classified as being outside that polygon, 

the point query is deemed to be outside that 

polygon (rays starting from red points in node B, 

reach the outside stable node C). 

Rule 4 – Given an odd number of intersections for 

a polygon ID and the stable node entered is 

classified as being outside that polygon, the point 

query is deemed to be inside that polygon (rays 

starting from blue points in node B, reach the 

outside stable node C). 

Rule 5 – Given an even or zero number of 

intersections for a polygon ID and the stable node 

entered is classified as being inside that polygon, 

the point query is deemed to be inside that polygon 

(for illustration purposes, rays fired towards the left 

and starting from blue points in node B, test 

geometry in B and traverse 3 subnodes of the same 

size with geometry to reach a large inside stable 

node to the left of node E). 

Rule 6 – Given an odd number of intersections for 

a polygon ID and the stable node entered is 

classified as being in that polygon, the point query 

is deemed to be outside that polygon (rays starting 

from red points in node B, reach a large inside 

stable node to the left of node E). 



We have so far considered polylines whose vertex 

spacing is similar to the resolution of the tree. 

During the landmass extraction process, our 

horizontal rays were guaranteed to traverse the 

quadtree to a point outside it, therefore intersecting 

any polygons in its path. For shorter rays in our 

point queries, we need to cater for polylines with a 

vertex spacing that is greater than the edge length 

of the leaf nodes of the tree (Fig.10-top).  

 

 

Figure 10. Top: Rule 7. Bottom: Rules 3-7. 

Specifically the ray test retrieves the edge 

information of a node flagged with geometry or 

containing a vertex, and tests the edge for 

intersection. Since the ray is no longer guaranteed 

to traverse to the outside of the tree, the intersection 

point with the edge is tested to see if it is inside the 

triangle with the ray segment being tested. If the 

intersection is outside, it is not counted, and is 

instead only counted in the triangle where the ray 

intersects the edge. This then allows one to use the 

following rule to determine the polygon inclusion 

set of the query: 

Rule 7 – the polygon inclusion set of a pre-

calculated node whose ray traversed to the outside 

of the quadtree, can be re-used in the counting of 

any horizontal ray test that shares its original ray 

path. 

Still, it is not optimal to cast a ray from a point 

query towards a node void of geometry, as adjacent 

triangles still need to be retrieved along the ray 

path. Instead we pre-compute the multiple polygon 

inclusion of the center position (point buffer) of 

every leaf triangle with geometry. At run-time point 

queries inside leaf nodes with geometry simply cast 

a ray from their position towards their triangle 

center position and rules 3-7 are applied to infer the 

polygon inclusion status. When pre-computing the 

inclusion status of a point buffer we apply rule 8 to 

allow the ray to follow the shortest path (Fig.9-

right) to a stable node with known inclusion status 

and apply rule 9. We note that the presented rules 

for rays have similarities with the process of finding 

the topological genus of an object in that they 

require the object to be bended in space to test for 

equivalence. 

Rule 8 – the polygon inclusion set of a pre-

calculated node (buffer status) void of geometry 

whose ray traversed to the outside of the quadtree, 

can be re-used in the counting of any ray from any 

direction, in other words ray segments can change 

direction, and the counting of local intersections 

enclosed in each traversed triangle that the buffer 

status can still be used in the end to infer inclusion 

for the ray test as a whole. 

Rule 9 – In the limit of the subdivision, nodes void 

of geometry are point buffers with surrounding 

triangles void of geometry. 

Figure 9-right shows the smallest number of 

triangles that need to be traversed from that triangle 

to find an adjacent triangle void of geometry. These 

numbers are computed as follows, we create an 

array only with pointers to leaf nodes with 

geometry, and access each node (A) in the array 

and retrieve the triangle´s three adjacent neighbors, 

if one of them is void of geometry (B) then we 

mark A with the distance 1, and we record in A 

which of its three edges leads to B (this is the ID 

from 1-3 that is used for retrieving the adjacent 

triangle that is the shortest ray path later in the 

point-buffer status calculation), if all neighbors had 

geometry we leave A untouched, we do the same 

with the remaining nodes in the array. We then 

increment the distance to 2 and look in the array to 

find any unmarked node (A) that has an adjacent 

neighbor (B) with a marked distance of 1, if there is 

we mark A with a distance of 2, hence working 

backwards and inwards. The process ends when 

there was no change made when iterating through 

the array. 

4. RESULTS 
Timings for the construction of the various phases 

of Trixel Buffers are given in Table 2. Memory 

statistics are given in Table 3. We tested Trixel 

Buffers with 3 different bathymetric datasets of 

different sizes (Table4). All the results in our article 

were carried out on a 2.5Ghz Duocore machine 

with 2GBytes of RAM, except if indicated 

otherwise. Figure 1, shows the Point in N-polygons  



 
Table 2. Trixel Buffers construction timings. 

inclusion queries results using a combined polygon 

set of 270 000 vertices (convex and concave with 

av. spacing of 136 meters). left: result of 1 757 

billion bathymetric point queries (Solent) in an area 

of 9.7x6.8 km, the point in N polygons inclusion 

test took 1h 36 min (I/O bound) with a new spatial 

tree depth 12 (leaf node size 1600 meters) rather 

than depth 16 (100 meters) for equivalent 

performance of competing methods and assuming 

only convex polygons in the later; center: 61 

million bathymetric points (Kirkwall) in an area of 

 
Table 3. Trixel Buffers memory consumption. 

 

Figure 12. MT(read&queries)performance using 

a fixed 120MB read buffer and different depth 

tree. 

19x16 km, the point in N polygons inclusion test 

took ~3.36 mins with the same tree; right: the root 

of the quadtree in light blue project is one of 

 
Table 4. Trixel Buffer query performance. 



potentially 20 icosahedron triangles covering the 

Earth, the darker blue polygon/the project limit 

polygon spans 1595x962km, the centre image [A] 

and the image on the left [B] cover areas smaller 

than the displayed characters A and B.  

In an earlier version of our system, before we 

introduced the “shortest triangle path information” 

or “point buffers at run-time”, we casted a 

horizontal ray from the point query to a stable node 

void of geometry to infer the polygon status. This 

algorithm proved to be twice as fast as strategies 

that trace a horizontal ray out of the spatial tree 

using a tree of depth 16, and still significantly faster 

than a ray strategy that stops a ray at the polygon 

limits of the polygons in question. The automatic 

interior/exterior extraction of a tree of depth 17 

used to take 49 minutes to compute with a 3GHz 

processor rather than 5 minutes (Table 2) because 

the adjacent triangles were grouped into several 

individual horizontal triangle strips of the same 

height, rather than just 1 test made and copied for 

the whole group. Point validity results were 

inspected visually and matched the visual results of 

the [Tay94a] algorithm that does not use spatial 

databases, this algorithm which uses a standard ray 

test took over 4 days to process the Kirkwall data 

set on the 3GHz machine. Our algorithm later 

became I/O bound using point buffers, with 

multithreading/MT (tree of level 12) and also with a 

single thread/ST (tree of level 15). Timings for just 

reading point queries from disk are given in the row 

labeled read in Table 4. For the multithreaded 

version we read blocks of 1000 points and inserted 

them into the back of a queue, blocks in the front of 

the queue were removed for processing while 

reading, if the queue reached its full capacity (5000 

blocks, 120Mb) reading was stopped until all 

blocks in the queue were processed, this did not 

happen in the I/O bound cases (Fig.12). 

5. DISCUSSION 
Although the performance of our Point-in N 

polygon inclusion tests is I/O bound, it takes over a 

minute to render a binary visualization file of 

results (Figure 1, center), it would be nice to 

organize the file spatially during the queries so as to 

enable frustum culling&sampling according to 

zoom level for interactive rendering. 

6. CONCLUSIONS 
We developed Trixel Buffers and nine rules that 

extend the Gauss-Jordan theorem to be used 

efficiently with hierarchical spatial databases. The 

concept can be used for determining the inclusion 

in 3D/octrees, and extend other quadtree methods. 
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