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Abstract
The separation of direct and global illumination components is interesting for many applications in Computer
Graphics and Computer Vision, such as BRDF estimation or material classification. However, for full-resolution
images, a large number of coded images have to be acquired. For many interactive applications, such as the ac-
quisition of dynamic scenes or video capturing, this is not feasible. In this paper, a new constrained up-scaling
technique for separated direct and global illumination images is proposed which requires two to three coded input
images, only. Our approach imposes the boundary condition that the sum of the direct and global components
equals the fully illuminated image. We work in a predictive-corrective manner where we first use a single-image
up-scaling method in order to predict the higher resolution images. Afterwards, the missing higher frequencies are
determined using a fully illuminated image. As the distribution of the higher frequencies differs among the various
frequency bands, we apply our approach in an iterative way for small up-scaling steps distributing the missing
information by minimizing the overall frequencies. We evaluate the up-scaling scheme and demonstrate the im-
provement compared to single-image approached. As our method aims at minimizing the structured light patterns
needed for acquisition, we additionally discuss the performance of existing pattern sets in terms of applicability
for dynamic scenes.
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1 INTRODUCTION
The separation of direct and indirect illumination in a
scene is an interesting task for both, Computer Graph-
ics and Computer Vision domains. The direct compo-
nent helps obtaining the distribution of reflected light
in a scene. This can be used to derive a model for the
bidirectional reflection distribution function (BRDF)
[GKGN11]. Also, 3D reconstruction methods are more
robust when working only on the direct component
[GKGN11, NG12]. The global component gives insight
into the scattering behaviour between one or more ob-
jects in a scene. This is useful to achieve more photo-
realistic renderings of a scene by observing the com-
plex light flow [MYR10]. Also, object recognition ben-
efits from such approaches as the scattering of an object
highly depends on the material [GL12]. In 2006, Nayar
et al. [NKGR06] presented an approach for separating
the direct and global illumination using a structured-
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light approach. However, for a high resolution sep-
aration, a large number of structured-light patterns is
needed. Thus, this approach is not feasible for dynamic
scenes, such as capturing biometric information of hu-
man faces or mobile navigation, or for video captur-
ing. In their work, an alternative method was proposed
where only one structured light pattern is sufficient.
The disadvantage of this method is that the image reso-
lution decreases dramatically. As a consequence, small
scale details of fine textured regions are lost.

In this paper, we propose a new constrained image up-
scaling technique for direct and global component im-
ages. We employ an iterative prediction-correction ap-
proach which uses a single-image up-scaling method
in order to predict the higher resolution representation
for each component. These up-scaled images are then
corrected according to a high resolution fully illumi-
nated image which has been additionally acquired. Fine
structures in images, such as textiles or fur, can be re-
covered although they are not apparent in the low reso-
lution input image. Our contributions are the following:

• A general constrained up-scaling scheme for the
transfer of high frequency information.

• The application of the proposed scheme for direct
and global component images.



• An evaluation of various low-resolution separation
approaches which shows that the resulting image
quality is not sufficient for the proposed up-scaling
scheme.

To the best of our knowledge, we are the first proposing
a constrained up-scaling approach for direct and global
component images.

The rest of the paper is structured in the following
way: Sec. 2 gives an overview of existing single-image
and multi-modal up-scaling techniques. In Sec. 3, the
principles of the separation approach of [NKGR06]
is reviewed and the impact of the different structured
light patterns is discussed. Our constrained up-scaling
method is described in Sec. 4. In Sec. 5, the results
are discussed. Furthermore, the improvement of our
approach compared to the single-image prediction is
shown. Finally, Sec. 6 concludes the paper.

2 RELATED WORK
In the past, the problem of image up-scaling has been
addressed many times during the past 20 years. Here,
a brief overview of the major approaches is given
whereas we distinguish between the single-image and
multi-modal approaches.

Single-image methods. The single-image up-scaling
methods can be divided in to four groups: region-
based interpolation, edge-directed interpolation, edge-
directed reconstruction and example-based reconstruc-
tion.

Region-based interpolation methods apply different in-
terpolation algorithms depending on the region in the
image. Thurnhofer and Mitra [TM96] proposed an im-
age interpolation approach which classifies image pix-
els into three different regions (constant, irregular and
oriented). Other methods distinguish only between two
regions (oriented, homogeneous) for different interpo-
lation scheme application [ABA01, CHL05]. Zi et al.
[ZDLL12] proposed a perceptual motivated segmen-
tation of regions. For the general and transition re-
gions, different kinds of interpolation algorithms are
used. The attention region is computed according to
an energy formulation optimizing curvature continuity,
curvature enhancement and isolevel curve smoothing.

Edge-directed interpolation schemes adjust the inter-
polation according to the edges present in the image.
Li and Orchard [LO01] use the local covariance for
an edge-directed interpolation. Alternatively, sharp lu-
minance variations and discontinuities are considered
[BGS02]. Su and Willis [SW04] proposed a pixel tri-
angulation scheme in order to use only pixels for in-
terpolation not separated by an edge. Other methods
propose the use of the second order derivative in order
to determine the interpolation direction [GA08, GA11]
and iterative refinement.

Edge-directed reconstruction algorithms try to estimate
a high-resolution edge image which is then used to re-
construct the up-scaled image. Tai et al. [TTT06] pro-
posed to use tensor voting for high resolution edge re-
construction. In alternative approaches, edge statistics
are learned in order to predict enhanced edge images
[Fat07, SXS08, YXYC12]. Another kind of approach
[YXXY12, WXM+13] computes sharp high resolution
gradients directly from the low resolution images.

Example-based approaches try to build up a dictionary
which relate low resolution image patches to missing
higher frequencies [YWL+12]. Freeman et al. pro-
pose a nearest neighbour search in the training set to
find the high frequencies for image patches [FJP02].
Kim and Kwon [KK08] formulated the relationship be-
tween low and high frequencies as a linear regression
model in order to derive a suitable image patch. Alter-
natively, a single-hidden-layer feed-forward neural net-
work is used for learning the relation between low and
high images frequencies [AB12]. A variety of methods
are based on self similarity [GADTH97, EV07, SSU08,
GBI09, FF11]. Here, the assumption is that an image
contains similar structures at different scale levels.

Multi-modal methods. In [LLK08] and [STDT08],
methods are proposed for the combination of low res-
olution time-of-flight depths images with high reso-
lution RGB images. However, instead of using the
RGB information for a constrained up-scaling, both ap-
proaches first do a single-image up-scaling of the depth
image before fusing with RGB data. Langmann et al.
[LHL11, LHL12] describe a fusion approach of time-
of-flight and RGB data where several cross bilateral fil-
tering strategies are compared. Additionally, a frame-
work for joint segmentation and super-resolution is pro-
posed. They assume the smooth change of the depth
field in homogeneous regions. Fine structures, such as
in fur or textiles, can therefore not be recovered.

Direct-Global Separation methods. In 2006, Nayar
et al. [NKGR06] proposed a method for separat-
ing the direct and global image components using
high-frequency structured-light patterns. Gu et al.
[GKGN11] extended this approach in order to use
multiple light sources. In 2012, two approaches
were presented which estimate the light transport in
a scene [ORK12, RRC12]. Both are also capable
of direct-global separation. However, O’Toole et al.
use a complicated setup and long acquisition times.
The method of Reddy et al. needs a high number of
structured-light patterns. As we focus on the acquisi-
tion of dynamic scenes, the latter approaches are not
suitable.

The aim of our approach is the reconstruction of small
detail which get lost during single-coded-image sepa-
ration process. As the above mentioned single-image
up-scaling methods can handle singularities, such as



Figure 1: Light can reach the camera in different ways.
Light being directly reflected to the camera is called di-
rect illumination. Global illumination denotes light that
is scattered in the scene and travels an indirect path to
the camera.

edges or joints, quite well, fine homogeneous struc-
tures, such as fur or threads in textiles, cannot be recon-
structed. Due to the smoothness assumption of depth
data, the multi-modal super-resolution methods for fu-
sion of time-of-flight data also cannot cover these kind
of fine details. In contrast, our proposed method uses
a single-image up-scaling prediction for the direct and
global component images and enforces the sum of these
two to be equal to a fully illuminated image.

3 SEPARATION OF DIRECT AND
GLOBAL ILLUMINATION

The illumination in a scene can be decomposed into
two parts. The first part is the so called direct illumi-
nation. This covers all the light which is emitted by a
light source and is reflected directly to the scene ob-
server (usually a camera or the human eye). The sec-
ond part addresses all the light which is first scattered
or otherwise redirected and reaches the observer in an
indirect path. This is considered as global illumination
(cf. Fig. 1).

3.1 Separation Scheme
In 2006, Nayar et. al [NKGR06] proposed a method to
separate the direct and global illumination in a scene us-
ing structured light. Here, the underlying assumption is
that the scattering of light, which is responsible for the
global illumination effects, acts as a kind of low-pass
filter, i.e. there are no high frequencies present in the
global component. Thus, by projecting different high
frequency patterns onto the scene, the following rela-
tions can be formulated depending on whether a part of
the scene is hit by a light or dark source element:

L+(i) = Ld(i)+αLg(i)+b(1−α)Lg(i), (1)

L−(i) = bLd(i)+(1−α)Lg(i)+αbLg(i). (2)

Here L+(i) refers to the intensity value of a scene el-
ement at position i = (x,y)T which is directly illumi-
nated, whereas L−(i) represent the intensity when the
element is not directly illuminated. Ld and Lg refer
to the direct and global part of the illumination and
α is the fraction of projector source elements which
are lit. Since digital projectors cannot be tuned com-
pletely dark, b accounts for the fraction of a white
source element emitted by a "black" projected pixel
with 0 ≤ b ≤ 1. For a more detailed description of the
separation method, the reader is referred to the paper of
Nayar et al. [NKGR06].

3.2 Structured-Light Patterns
Nayar et al. [NKGR06] proposed several high-
frequency structured-light patterns in order to acquire
L+(i) and L−(i) for a scene.

Checker-board. The scene is illuminated by a se-
quence of shifted checker-board patterns. For each
pixel in a scene the brightest and the darkest intensity
value among all the acquisitions is chosen. With this
kind of patterns, one can compute the direct and global
component directly at the camera’s resolution. How-
ever, due to the acquisition of multiple source images,
this method is not feasible for the fast acquisition of
scenes.

Phase shifted sinusoidal. Each pixel of the pattern
can be expressed as p0 = 0.5(1+ sinφ) for φ ∈ [0,2π].
Analogue to the first pattern, two more are generated
where φ is phase shifted by 2π

3 and 4π

3 . In general, the
pixels of the first pattern can be chosen arbitrarily, but
in order to ensure high frequency, a sinusoidal func-
tion which varies in both, x- and y-direction, should be
chosen. Using these patterns, only three acquisitions
are necessary. However, Gu et al. [GKGN11]stated
that this method suffers from serious image artefacts.
Therefore, it is not suitable if the capturing of fine de-
tails is required.

Stripes. By using a horizontal or vertical stripe pattern,
only one acquisition is necessary. Here, the brightest
and darkest pixels are determined in small rectangular
patches which are aligned perpendicular to the stripes.
These extrema are interpolated and averaged in order
to generate the minimum L+(i) and maximum L−(i).
Then, the direct and global components are computed.
As only one pattern needs to be acquired, this method
is suitable for capturing dynamic scenes. However, due
to the averaging process, the resolution of the resulting
images is decreased by a fraction of four [NKGR06].

4 A CONSTRAINED UP-SCALING
METHOD

The aim of our approach is the constrained up-scaling
of direct and local component images according to one



Figure 2: Overview of the complete system. The left side (green) shows the separation of global and direct
components according to [NKGR06]. The right side (blue) describes our constrained up-scaling technique.

high-resolution fully illuminated image whereas we fo-
cus on the reconstruction on fine structures in homo-
geneous regions. Before the details are discussed in
the following two sections, a rough system overview
is given.

As input images, we take the two low resolution global
and direct component images retrieved by the stripe
pattern separation approach proposed by Nayar et al.
[NKGR06]. Additionally we use a high resolution im-
age which is acquired with full illumination. The pro-
posed up-scaling scheme consists of two steps which
are applied iteratively until we reach the target resolu-
tion (cf. Fig. 2):

1. In the prediction step, we estimate the higher res-
olution image using a single-image up-scaling tech-
nique. The first iteration takes the low-resolution di-
rect and global component images as input. For all
following iterations, the corrected images from the
previous iteration are used.

2. The correction step corrects the predicted images
according to the main condition that the sum of di-
rect and global images results in the fully illumi-
nated image. In order to decrease the noise level
in the up-scaled image, the error to the full image is
distributed in such a way that the overall intensity of
higher frequencies is minimized.

4.1 Prediction
In general, there are no limitations regarding the predic-
tion step in our up-scaling scheme. As the correction
works on the predicted image directly, every single-
image up-scaling method could be used. In our exper-
iments, we used the so-called Local Self-Examples ap-
proach proposed by Freedman and Fattal [FF11]. This
method has two advantages. On the one hand, it can
predict the object boundaries quite well. This improves
the performance of the correction step, as there are
lower intensity errors. On the other hand, the approach

increases the resolution of the input images iteratively
by nondyadic scales (eg. 5:4 or 3:2). Therefore, in each
iteration only a small higher frequency band is added to
the image, leading to a more robust correction in terms
of frequency distribution.

4.2 Correction
After the prediction step, the image is corrected accord-
ing to the constraint

L f (i) = Lp
d(i)+Lp

g(i) (3)

where L f (i) is the pixel at position i under full illumina-
tion. Lp

d(i) and Lp
g(i) correspond to the (unconstrained)

predicted direct and global pixels respectively. Taking
the difference of the sum of the direct and global images
and the fully illuminated image

D(i) = L f (i)− (Lp
d(i)+Lp

g(i)), (4)

we get the error introduced by the prediction step.
Please note that, similar to the Difference of Gaussians,
D(i) only contains the missing higher frequencies
which could not be recovered by the single-image
up-scaling approach. In order to correct the predicted
images, we distribute the error via two functions
fd(i,L

p
d ,D), fg(i,Lp

g ,D) so that

Di = ( fd(i,L
p
d ,D)+Lp

d(i))+( fg(i,Lp
g ,D)+Lp

g(i))
(5)

holds. These functions should be designed in such a
way that they select these higher frequencies which are
missing in the corresponding predicted image. If we
now assume fd and fg to be linear with respect to D, we
express our corrected images as follows

Lc
d(i) = Lp

d(i)+αd(i) ·D(i), (6)
Lc

g(i) = Lp
g(i)+αg(i) ·D(i) (7)

where Lc
d and Lc

g are the corrected direct and global
component images, respectively. Here, αd , αg repre-
sent the weights of distributing the prediction error D



Scene 1 Scene 2 Scene 3 Scene 4 Scene 5
corr. uncorr. corr. uncorr. corr. uncorr. corr. uncorr. corr. uncorr.

RMSE (d) 0.0067 0.0078 0.0061 0.0113 0.0088 0.0194 0.0057 0.0101 0.0090 0.0158
RMSE (g) 0.0063 0.0073 0.0057 0.0081 0.0085 0.0115 0.0058 0.0084 0.0088 0.0114
`1-Norm (d) 11370 14504 12167 20909 16738 36631 9788 16989 16639 30017
`1-Norm (g) 9503 12133 11334 15698 15399 20194 9633 13476 15084 18611
`2-Norm (d) 12.79 15.03 11.23 20.77 16.18 35.63 10.49 18.54 16.49 28.95
`2-Norm (g) 12.02 14.08 10.51 14.89 15.70 21.11 10.66 15.35 16.16 20.99

Table 1: Comparison of five test scenes with different error metrics (root mean square error (RMSE), `1- and `2-
norm): Low resolution images with separated direct(d) and global(g) illumination were scaled up by a factor of 2
with the approach of [FF11]. The values of the corrected image can be compared with the uncorrected image for
each scene.

to both images on a per-pixel level. Now, we need a
condition how to set the α-values. As the wrong dis-
tribution tends to increase the noise level, a reasonable
condition is to choose the weights in such a way that the
present high frequencies are minimized. Thus, we can
formulate a minimization problem where the sum of the
squared Laplacian (∆) of both images is minimized on
a per-pixel level:

(αd(i),αd(i)) = arg min
αd ,αg
{(∆Ld)

2 +(∆Lg)
2}. (8)

Furthermore, we satisfy the constrains 0 ≤ αd ,αg ≤ 1
and αd + αg = 1 in order to eliminate the prediction
error D. Solving for ∂F

∂αd
= 0 and ∂F

∂αg
= 0 with F =

(∆Ld)
2 +(∆Lg)

2 yields

αd(i) =
∆Lp

d(i)
∆D(i)

,αg(i) =
∆Lp

g(i)
∆D(i)

. (9)

The constraints can easily be satisfied by normalizing
each αd , αg with the sum αd +αg. Thus, the resulting
correction terms for direct and global component im-
ages can be expressed as

Lc
d(i) =

∆Lp
d(i)

∆Lp
d(i)+∆Lp

g(i)
·D(i)+Lp

d(i), (10)

Lc
d(i) =

∆Lp
g(i)

∆Lp
d(i)+∆Lp

g(i)
·D(i)+Lp

g(i). (11)

The direct and global component images Lc
d , Lc

g are then
given as input for the prediction step of the next itera-
tion until the target resolution is reached.

5 RESULTS
In order to evaluate our up-scaling scheme and the low-
resolution separation methods, a measurement setup
consisting of a projector (Panasonic PT-LC76E) and

a single-lens reflex camera (Nikon D300) was used.
Structured-Light patterns are projected into the scene
that is imaged by the camera. The direct and global
illumination for the given scene are separated by the
approach of Nayar et al. [NKGR06]. In order to get a
reliable ground truth, 25 shifted checker-board patterns
were used.

In Sec. 5.1, we evaluate our up-scaling scheme. There-
fore, we sampled down the ground truth and used these
low-resolution images as input. Five test scenes were
created for evaluating the influences of different scene
properties, the impact of our correction for several
predictors and the influence of the up-scaling factor.
Sec. 5.2 shows how our up-scaling scheme performs
on low-resolution direct and global component images
produced directly using different structured-light
patterns. We focussed on patterns which require up to
three acquisitions, only.

5.1 Evaluation of the Up-Scaling Scheme
Tab. 1 shows different error values for the test scenes
and the separated illumination. The error of the cor-
rected image can be compared with the error of the un-
corrected image for each test case. The error values in
scene 1 look similar while the error values in scene 3
are reduced by half. Depending on the properties of the
scene, the error varies. It is observable that a more de-
tailed scene can be corrected better than a scene with
large homogeneous areas.

Influence of the Scene Properties

In the Figs. 3, 4 and 5, we show the influence of differ-
ent kinds of cluttered regions on our up-scaling scheme.
We used the approach of Freedman and Fattal [FF11]
as the predictor and compare the predicted image with



(a) Ground Truth (b) Prediction (c) Correction

(d) Zoom out (e) RMSE (f) RMSE

Figure 3: Direct component of a stuffed toy in front of
a homogeneous background. The high frequencies of
the fur are corrected more than the low frequencies of
the background.

the results of the proposed correction scheme. Fig. 3
shows a close-up of a stuffed toy in front of a homo-
geneous background. As can be seen, our scheme re-
produces the fine fur structure more detailed while in
the predicted image this region looks smeared out. The
homogeneous background is reproduced well with both
methods. In Fig. 4, two pieces of chalk wrapped in pa-
per in front of a printed box are shown. Here, in contrast
to the stuffed toy, the fine details are not due to fine 3-
dimensional structures. The letters on the box and the
printed patterns of the paper wrapping the chalk are re-
constructed in more detail with our correction. Fig. 5
shows small wooden figures with small scale painting
and thin ornamentations. The edges can be reproduced
more precisely with the correction scheme compared to
the prediction.

These three examples show that the quality of the cor-
rection is independent of the scene objects. Only the
frequencies in the resulting image of the scene objects
are responsible for the impact of the improvement. Fine
structures, i.e. high frequencies, in the image lead to a
large improvement in quality while areas with low fre-
quencies cannot be corrected much more.

Improvement of the Correction

The up-scaling of the five exemplary scenes was done
with three different methods to evaluate the influence
of the prediction to the correction. Nearest neigh-
bour interpolation, bicubic interpolation and local self-
examples from [FF11] were used as predictors for the
up-scaling scheme. Fig. 6 shows a comparison between
the RMSE for the different prediction methods and the
afterwards corrected images. It can be seen that the cor-
rection always improves the predicted image, but de-
pending on the quality of the prediction the correction

(a) Ground Truth (b) Prediction (c) Correction

(d) Zoom out (e) RMSE (f) RMSE

Figure 4: Global component of two pieces of chalk
wrapped in paper in front of a printed box. Indepen-
dent of the 3D object structure, the high frequencies are
corrected much better.

(a) Ground Truth (b) Prediction (c) Correction

(d) Zoom out (e) RMSE (f) RMSE

Figure 5: Direct component of small wooden figures in
front of a printed box. The correction between different
objects is corrected very good. High frequencies are
corrected independently of the objects.

cannot compensate the larger error. For example, the
correction of the nearest neighbour interpolation, which
has the largest error in all scenes, improves the error
but still has a larger absolute error than a better predic-
tion without a correction for the global illumination in
scene 3 and 5. An additional conclusion is that our pro-
posed correction improves prospective predictions that
will have less errors.

Please note that the local self-examples approach pro-
duces a higher prediction error than bicubic interpola-
tion for scenes 2 to 5. In contrast to scene 1, these
scenes contain cluttered regions. As stated by Freed-
man and Fattal, their approach is not able of handling
these kind of image region and the algorithm spuriously
reconstructs edges there [FF11]. This behaviour causes
larger error than bicubic interpolation with its smooth-
ing ability.
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Figure 6: The sorted RMSE for (a) bicubic interpolation, (b) Local Self-Examples [FF11] and (c) nearest neighbour
interpolation as predictors shows that the quality of the prediction influences the quality of the correction. The
correction improves the quality of the prediction for direct and global illumination in all five scenes.
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Figure 7: The dependency of the up-scaling factors is shown. For each scene the factors 4x, 3x, 2x are compared
(left to right bar). A higher scaling factor leads to a higher error difference between prediction and correction. The
global illumination images of the five test scenes are upscaled using [FF11].

Influence of the Up-Scaling Factor

The up-scaling factor is another parameter of influence.
Fig. 7 compares the RMSE for the scaling factors of 4x,
3x and 2x from left to right for each global illumination
image of the five scenes. The single-image up-scaling
method of [FF11] is used as predictor for this compar-
ison. The absolute error introduced by the prediction
is higher for larger scaling. But, it can be seen that the
improvement of the reconstruction error by our correc-
tion scheme gets better for higher scaling factors in all
scenes. As our algorithm works in an iterative manner,
for higher up-scaling factors, more refinement steps are
done. As in each step the predicted image is corrected
we are able to better guide the up-scaling process.

5.2 Evaluation of Patterns
We used different structured-light patterns for the sepa-
ration of the illumination component in order to evalu-

ate their applicability regarding our up-scaling scheme.
As the focus is on low acquisition time, only patterns
were chosen where up to three acquisition (including
the fully illuminated image) are needed. Thus, we
tested vertical stripes, horizontal stripes, a combination
of both stripe patterns and a high-frequency checker-
board pattern where each square had the same dimen-
sions as the width of the stripes. The single-image sep-
aration approach proposed by Nayar et al. [NKGR06]
was used in order to determine the low-resolution direct
and global image components (cf. left part of Fig. 2).
As for the stripes patterns a blurring of edges within
the direction of the stripes occur, we combined the sep-
aration results of both patterns in order to compensate
for this effect. However, for this procedure an addi-
tional acquisition is required. Therefore, we introduced
the high-frequency checker-board pattern. Here, the
same separation methods were applied as for horizontal



(a) Global Checker Board (ground truth) (b) Global Stripes (up-scaled) (c) Global Stripes (low resolution)

Figure 8: Comparison of the separation methods using checker-board (a) and stripes structured-light patterns (b).
As can be seen, the stripes separation (c) suffers severe artefacts. Our up-scaling scheme is not capable of properly
reconstructing the high-resolution images.

vert. hor. comb. vert. hor. comb. down-sampled
stripes stripes stripes checker checker checker ground truth

RMSE (LSE) 0.2219 0.2024 0.2085 0.3083 0.3099 0.3089 0.0140
`1-Norm (LSE) 29703 26350 27768 41835 42058 41945 1236
`2-Norm (LSE) 221.88 202.41 208.52 308.26 309.85 308.91 14.01
RMSE (BC) 0.2147 0.1826 0.1948 0.3020 0.3036 0.3015 0.0233
`1-Norm (BC) 28792 24059 26160 41043 41369 41066 1810
`2-Norm (BC) 214.72 182.55 194.84 302.03 303.63 301.49 23.30

Table 2: Different kind of patterns were used for a fast separation. The resulting images were fed into our up-
scaling scheme with local self-examples (LSE) and bicubic interpolation (BC) as predictor.

and vertical stripes. In order to improve blurring arte-
facts, the separation results were combined, also. Tab. 2
shows the reconstruction error of our up-scaling scheme
for each of these separation methods compared to the
down-sample ground truth. As predictors we used bicu-
bic interpolation and local self-examples [FF11]. Our
experiments show that the reconstruction results differ
depending on whether the down-sampled ground truth
or the low-resolution images resulting from the stripes
or checker-board patterns are used. As can be seen
in Fig. 8, the stripes-pattern separation suffers severe
reconstruction artefacts. Besides the wrong color re-
production in homogeneous regions, at diagonal edges
stair-case artefacts are present. Furthermore, cluttered
regions are subjected to noise. Although our up-scaling
scheme is capable of reducing the artefacts in brighter
image regions, it cannot recover the fine details. In
general, the up-scaling error for the stripes patterns is
smaller as for the checker-board. The choice of the pre-
dictor does not influence the up-scaling result signifi-
cantly. Also, the combination of horizontal and vertical
stripes could not improve the quality of the input im-
ages. By monitoring the weights for the prediction error
distribution αd , αg, we realized that they were close to
0.5 for all pixels of the direct and global images. This
is no surprise, as the noise in both images cannot be re-
duced significantly by distributing the prediction error.

6 CONCLUSIONS

We presented a new constrained up-scaling approach
for direct an global component images. Predictions
based on single-image up-scaling techniques are cor-
rected using a high resolution fully illuminated image.
It can be seen that our method can visually improve
cluttered regions of an image such as fur or fine struc-
tured ornamentations. The experiments showed that
our algorithm scales with the quality of the prediction
as even well predicted images can be improved fur-
ther. The iterative manner of the method is also ca-
pable of improving single-image up-scaling approaches
for large up-scaling factors.

Our method is applicable when the acquisition full res-
olution images using many structured-light patterns is
not possible due to limited time-constraints. This is the
case for capturing dynamic scenes in Computer Vision
tasks, such as biometry of human faces or mobile au-
tonomous navigation. Here, only two images are re-
quired. However, by acquiring more than one image
our method is prone to motion artefacts and misalign-
ment of the two images. Thus, it might be necessary
to apply optical flow or motion compensation. Also,
our up-scaling scheme poses additional computational
complexity which might not be suitable for real-time
analysis of the acquired data.



Furthermore, when using structured-light patterns or
variations known in literature for fast acquisition, the
quality of the resulting low-resolution images is not
sufficient. Obviously, these separation methods are
strongly influenced by wrong color reproduction and
stair-case artefacts. Thus, these kind of patterns pro-
duce fundamentally different direct and global compo-
nent images than methods which work directly at the
resolution of the acquired images.

In future work, we study the impact of different light
patterns on the separation results. This will give us use-
ful insight about how to solve the above mentioned dis-
crepancies between low-resolution images and ground-
truth data.
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