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ABSTRACT
Camera calibration is a necessary step in order to develop applications that need to establish a relationship between
image pixels and real world points. The goal of camera calibration is to estimate the extrinsic and intrinsic camera
parameters. Usually, for non-zooming cameras, the calibration is carried out by using a grid pattern of known
dimensions (e.g., a chessboard). However, for cameras with zoom functions, the use of a grid pattern only is not
sufficient, because the calibration has to be effective at multiple zoom levels and some features (e.g., corners) could
not be detectable. In this paper, a calibration method based on two novel calibration patterns, specifically designed
for zooming cameras, is presented. The first pattern, called in-lab pattern, is designed for intrinsic parameter
recovery, while the second one, called on-field pattern, is conceived for extrinsic parameter estimation. As an
application example, on-line virtual advertising in sport events, where the objective is to insert virtual advertising
images into live or pre-recorded television shows, is considered. A quantitative experimental evaluation shows
an increase of performance with respect to the use of standard calibration routines considering both re-projection
accuracy and calibration time.
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1 INTRODUCTION
Having an accurate calibration is crucial in many com-
puter vision applications, ranging from automatic video
surveillance to augmented reality. In order to calibrate a
non-zooming camera, a grid pattern with known dimen-
sions can be used. Usually a chessboard with black and
white squares is chosen, allowing to obtain a good cor-
respondence between image and world points [Har04a].

However, when the camera has the capability of zoom-
ing, the use of a chessboard only is not sufficient. In-
deed, since the calibration has to be carried out at differ-
ent zoom levels, the accuracy of the correspondence be-
tween scene and image points can decrease, especially
at high zoom levels.

In particular, when shooting sport events a lot of
changes in the zoom levels are required to capture
objects that can be at different distances from the
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camera. Using standard multi-level calibration tech-
niques (e.g., [AlA06a, May97a, Stu97a]) can introduce
re-projecting errors. Indeed, since the calibration is
repeated at different zoom levels, each calibration is
influenced by the error introduced at the previous zoom
level, thus inevitably increasing the final re-projecting
error.

In this paper a calibration method based on two novel
calibration patterns, specifically designed for variable-
zoom cameras, is presented. The two patterns allow
to calculate a set of calibration parameters that do not
depend on the camera zoom level. The first pattern is
designed for computing an accurate calculation of the
camera intrinsic parameters even at high zoom levels,
while the second one is conceived for reducing the time
needed to calculate the extrinsic parameters of the cam-
era and for making easier and faster the on-field cali-
bration process.

The method has been applied to a real system for adding
virtual advertisement in live sport events that is cur-
rently used by Duel TV S.p.A.1, a company that pro-
vides real time virtual advertisement services for sport
events. In order to quantitatively evaluate the perfor-
mance of our calibration approach, it is compared with

1 www.dueltv.com



the previous one used by the company, taking into ac-
count both the precision in placing the virtual billboards
and the calibration time.

The remainder of the paper is organized as follows. Af-
ter the analysis of related work in Section 2, Section 3
describes the two novel patterns and the calibration rou-
tines to estimate the camera parameters. A real-world
application scenario is described in Section 4, while
Section 5 shows experimental results. Conclusions are
drawn in Section 6.

2 RELATED WORK
Several solutions have been proposed in literature to
find methods that aim at achieving an accurate camera
calibration (see [Sal02a] for a detailed survey). The use
of zooming cameras adds a further level of complexity,
since a high accuracy may be maintained over different
levels of zoom. A set of calibration methods for zoom-
ing cameras are discussed in the following.

Al-Ajlouni and Fraser in [AlA06a] propose a zoom-
dependent calibration process, whereby the traditional
image coordinate correction model for camera interior
orientation and lens distortion is expressed as a function
of the nominal zoom focal length written into the EXIF
header of the image file. This removes the requirement
of using fixed zoom/focus settings for the images form-
ing the photogrammetric network. However, the au-
thors assume that the computation of the empirically
determined Z-D calibration parameters is unlikely to be
required too frequently, that is a too strong assumption
for real-world settings (e.g., sport events).

Maybank and Faugeras in [May97a] estimated the in-
trinsic parameters of the camera considering that some
constraints based on the epipolar geometry of two views
are related to the rigidity of camera movements. To
compute the parameters of the epipolar equation, they
select some points in the current scene and track them
in the image while moving the camera with a random
motion. The main drawback of this method is the loss
of accuracy generated by the manual selection of the
points.

Strum in [Stu97a] proposes to set unknown parameters
in order to solve the problems in [May97a]. An interde-
pendence model of intrinsic parameters is computed in
a pre-calibration phase. In such a way, the calibration
is reduced to the estimation of only one parameter from
which all the others depend. However, it is not clear if
this method is effective for imaging systems where the
interdependence of parameters follows a more compli-
cated model with respect to the one described by the
author.

Hyunwoo and Ki Sang in [Kim00a] propose a method
for simplifying the computation of the camera intrinsic

parameters. The authors are able to overcome the de-
generate configurations and to get a closed form solu-
tion. They introduce also a non-linear algorithm that
adjusts both camera parameters and inter-image ho-
mography, thus a more accurate image registration be-
comes possible. However, even if such a method is use-
ful for moderate camera rotations and zooming varia-
tions, there is an increase of failures for wider camera
movements.

Oh et al. in [Oh09a] present a method to calibrate
pan-tilt-zoom-focus cameras using both a pattern- and
a rotation-based calibration approach. The method is
composed by two separate procedures for calibrating
zoom and focus respectively. The zoom calibration is
based on the detection of a set of known patterns (chess-
boards) and it is carried out at different zoom levels.
The focus calibration is obtained considering first the
lowest focus value of the camera, and then, for the re-
maining focus values, by applying an automatic pro-
cedure, that takes into account the previous calculated
zoom calibrations. This approach has good results for
real cameras with translation offsets, but it generates
incorrect results at high-zoom levels. Moreover, it uses
10 calibration patterns and the calibration must be re-
peated for all zoom levels.

Sinha et al. in [Sin06a] deal with the problem of esti-
mating the parameters of the calibration model for ac-
tive pan-tilt-zoom cameras. The camera intrinsic pa-
rameters are estimated over its full range of pan, tilt,
and zoom by computing homographies between im-
ages acquired by a rotating and zooming camera. The
calibration algorithm also computes accurate calibrated
panoramas at multiple levels of detail. The main weak-
ness of this method is the need of re-estimating the cal-
ibration parameters every time the camera moves.

Sarkis et al. in [Sarkis07a] propose a least-square ap-
proach to model the variation of internal parameters as
a function of focus and zoom. This approach is able to
increase the accuracy in modelling the intrinsic param-
eters of a zoom lens camera system and to decrease the
pixel re-projection error. However, the method is sensi-
tive only to large variations of focus and zoom values.

Finally, Agapito et al. in [Aga01a] use an homogra-
phy to compute intrinsic parameters, assuming that the
aspect-ratio and the principal point are fixed in time,
while the focal length changes as the camera moves.
They assume also that the principal point is the best of
the aspect ratio and it can be considered as the image
center. Given the principal point, it becomes simpler to
auto-calibrate the camera. The main drawback of this
method is the need to find the principal point, that is a
non-trivial task.

All of the above discussed methods have limitations
that make them not robust to zoom variations and/or
not easy to set up. In the next sections we will describe



Figure 1: The proposed approach. With respect to common calibration methods (in this figure the one previously
used by the company is reported), in the novel method two different calibration patterns are used for in-lab and
on-field calibration, respectively.

our approach that aims at providing an easier calibra-
tion procedure that is robust to zoom variations.

3 OVERALL APPROACH
In order to achieve the two goals of camera calibration
(namely, intrinsic parameter recovery and extrinsic pa-
rameter estimation) [Har04a], we propose the use of
two novel calibration patterns. With respect to com-
mon calibration methods, the proposed patterns allow
to obtain a more accurate intrinsic parameter calcula-
tion and an automatic extrinsic parameter estimation,
with the possibility of regularizing camera parameters
in function of the zoom levels (see Fig. 1).
The first pattern, called in-lab pattern, is used to re-
cover the intrinsic camera parameters. The Find Matrix
module is responsible for detecting the features in the
pattern that are sent as input to the Intrinsic Parameter
Recovery module. Such a module uses standard rou-
tines [Sir04a] to calculate the intrinsic parameters of
the camera. A second pattern, called on-field pattern,
allows to estimate the extrinsic parameters in a fully
automatic way thanks to the Automatic Feature Detec-
tion module. The introduction of the on-field pattern re-
places the graphical user interface (GUI) that was used
in the previous calibration method to associate image
points in the captured frame to known world coordi-
nates (e.g., soccer field line). A novelty is also rep-
resented by the Parameter Regularization module, that
aims at refining the calibration parameters at different
zoom levels.

3.1 In-lab Pattern
To achieve an accurate calibration even in presence of
high zoom levels, we focussed our analysis on the cal-
ibration pattern. First, we analysed the results obtained

Figure 2: Traditional calibration using a chessboard
pattern. a) The OpenCV routines can detect all the
chessboard corners. b) The corners cannot be associ-
ated to the corresponding points on the chessboard if
the pattern is not completely captured.

using a traditional chessboard (with black and white
squares) at different zoom levels. To compute the re-
sults, we used the methods provided by the OpenCV
library (version 2.4.4) [Ope13a].

We observed that if the chessboard is entirely captured,
then the calibration accuracy is good (Fig. 2a). How-
ever, for high zoom levels, it can happen that not all the
corners are captured and, as a consequence, it is impos-
sible to carry out the calibration, because the found cor-
ners cannot be associated with the corresponding ones
on the chessboard pattern (Fig. 2b). Therefore, a pat-
tern allowing for a non-ambiguous association even if
it is not completely captured should be used.

It is worth noting that, in order to calibrate a zooming
camera, the focus parameter has to be maintained sta-
ble and, for this reason, increasing the zoom level can
generate blurred images. Since the squares are effective
features to be detected at medium and low zoom levels,
an additional geometric figure to be used in combina-
tion with squares must be individuated. Such geometric



figure has to be detectable even in presence of blurred
images.

Taking into account the above considerations, we de-
veloped a novel calibration pattern that is shown in Fig.
3a. It is a 11×11 chessboard containing 454 circles in-
side. Since the pattern is made of two different types of
features (i.e., squares and circles), it is possible to con-
sider such features together or separately, depending on
the zoom level, to calibrate the camera.

Figure 3: a) The novel calibration pattern. b) The 14
reference points highlighted in red.

The pattern has a coloured (green) border that is useful
for individuating it in the scene when low zoom lev-
els are used. There are also 14 reference circles that
can help in understanding which region of the pattern
is currently viewed by the camera, in case the pattern is
only partially captured (Fig. 3b).

3.2 Find Matrix
The Find Matrix module is responsible to detect
the squares and the circles in the image and to find
the correspondences between the found features and
the model pattern (shown in Fig. 3a). The circle
centres are individuated using an algorithm (see Alg.
1) based on the following OpenCV [Ope13a] func-
tions: threshold, f indContours, approxPolyDP, and
minEnclosingCircle.

Given the captured frame, a binary image BImg is ob-
tained applying a thresholding process, then the above
listed functions are used to find the contours in BImg,
the approximation of the contours to the best fitting

Input:
binary image BImg;

Output:
set o f pairs (center,radius) < ctrs,r >;

Data Structures:
set o f contours cont;
set o f closed coutours contPol;

Initialize:
∀i ctrs[i] = 0,cont[i] = 0,contPol[i] = 0,r[i] = 0;
< cont >← f indContours(BImg);

for cont [i] do
contPol← approxPolyDP(cont,ε,closed);
< ctrs,r >← minEnclosingCircle(contPol);

< ctrs,r >← Re f ineCenters(< ctrs,r >);

Algorithm 1: Find Circle Centers

polygons, and the approximation of those polygons to
circles. Notice that the pattern does not need to be per-
fectly aligned or rectified in the image, since corner and
circle detection are robust enough to variations of ori-
entation of the pattern.

In order to eliminate the false positive detections, the
list of centres is refined by eliminating the polygons
that are too large or too small according to a parametric
threshold T , computed as:

T =
∑

n
i=1 radiusi

n
(1)

where radiusi is the i-th radius belonging to the set S of
detected circles and n is the cardinality of S.

We observed that when the zoom level is low, i.e., the
captured image of the pattern is small with respect to
the camera frame, many false positives arises in detect-
ing the circles due to the difficulty of extracting well
defined shapes. However, for high zoom levels, even
if the image of the pattern can result blurred, our algo-
rithm is able to find all the circles in the visible portion
of the pattern as well as all the circle centres (Fig. 4).

Figure 4: The Find Circle Centres algorithm is robust
even in presence of a blurred image as input.

For doing this, the Find Matrix Algorithm (Alg. 2)
takes as input the dimensions w and h of the circle
grid in the model pattern, a point p (namely, the point
that has the smaller abscissa among all the found points
in the pattern), four threshold values T, o f f set, δ , ε



Input: < ctrs,r >, T, o f f set, p
Output: M
Local Variables:
thresholds δ , ε

Data Structures:
set o f current row points rpnts
binary matrix M
average o f current set o f radii av
Inizialize:
∀i, j M(i, j) = 0,∀k rpnts[k] = 0

for each ctrs [i] do
< rpnts >← f indRow(ctrs, i)
av← computeAverage(rpnts)
for each rpnts [ j] do

δ ← av+ p+( j ∗T )−o f f set
ε ← av+ p+( j ∗T )+o f f set
if rpnts [ j]< ε,rpnts [ j]> δ then

M(l,m) = 1;
else

M(l,m) = 0
deleteCenters(rpnts,< ctrs,r >)

M←CropMatrix(M)

Algorithm 2: Find Matrix

that are related to the dimensions of the pattern and can
be experimentally found, and a set of pairs < ctrs,r >
(i.e., the list of the found centres together with their rel-
ative radii).

The procedure starts by initialising with zeros the w×h
matrix M. Then, the algorithm takes the first element in
the list ctrs and searches for points that have the ordi-
nate value included in a range defined by the thresholds
δ and ε . All the points that satisfy such constrains form
a circle row. The obtained row is sorted according to
the abscissa values of its points and it is compared to
the corresponding row model of the known pattern. A
vector rpnts is filled with values “1” if the point is in-
cluded in the row model, “0” otherwise. By iterating the
above steps, a matrix M composed by “1” and “0” is ob-
tained. Finally, if M is smaller than the model pattern, a
cropping procedure is applied to reduce its dimensions.

Once M has been computed, a graph matching between
M and a matrix C, that represents the model pattern, can
be applied. It is worth noting that each image used for
the calibration procedure may contain at least a refer-
ence point in it. This is a reasonable assumption, since
the reference points are distributed along the whole pat-
tern (see Fig. 3b). Thus, we assume that the captured
portion of the pattern is composed by a set of circles and
by at least one group of reference points. Since the pat-
terns of the reference points are all different each other,
the observation of a single one is sufficient to determine
the portion of the calibration pattern that is captured.

Figure 5: Recognition example for a partially captured
pattern. a) The image in input. b) The detected centers.
c) The graph matching procedure correctly assigns the
observed centres to the corresponding ones in the model
pattern.

As an example, if the current image of the pattern is the
one shown in Fig. 5a, the matrix M will be:

M =


0 1 0 0 0 0 0
1 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1


Given the matrix C that represents the model pattern:

C =



0 1 0 · · · 0 0 · · · 0 1 0
1 1 1 · · · 1 1 · · · 1 1 1
0 1 1 · · · 1 1 · · · 1 1 0
0 1 1 · · · 1 1 · · · 1 1 0
...

...
... · · ·

...
... · · ·

...
...

...
0 1 1 · · · 1 1 · · · 1 1 0
0 1 0 · · · 1 0 · · · 0 1 0
0 1 0 · · · 0 1 · · · 0 1 0
0 1 1 · · · 1 1 · · · 1 1 0
...

...
... · · ·

...
... · · ·

...
...

...
0 1 1 · · · 1 1 · · · 1 1 0
0 1 1 · · · 1 1 · · · 1 1 0
1 1 1 · · · 1 1 · · · 1 1 1
0 1 0 · · · 0 0 · · · 0 1 0


it is possible to find the portion of C corresponding to
M (see Fig. 5c).
Fig. 6 shows the in-lab pattern that we used. It is
the combination of two above discussed model patterns
(one with red and one with green borders). The dimen-
sions for each one of the two parts of the in-lab pattern
are 2 m × 1 m with 18 rows and 34 columns of circles,
each circle having a radius of 1.5 cm and being at a dis-
tance of 5 cm (center-center) from the others. The two
parts of the in-lab pattern are positioned with an angle
of 90 degrees in order to have non-coplanar points. The
two different border colours facilitate the detection of
the in-lab pattern in the scene.



Figure 6: In-lab pattern.

3.3 Intrinsic Parameter Recovery
A series of images containing the in-lab pattern at dif-
ferent zoom levels are collected to determine the intrin-
sic parameters. Once the key points are obtained using
the Find Matrix module, a common technique [Sir04a]
is applied to calculate five intrinsic parameters: f : focal
length; (sx,sy): pixel size in x, y; (u,v): principal point.
Usually, it is possible to assume square pixels and so
sx = sy = s. The intrinsic matrix K can be defined as
follows:

K =

 fx s u0
1 fy v0
0 0 1


where s is the skew parameter that represents the angle
between the x and y pixel axes, fx = f/sx, fy = f/sy are
the focal lengths.

The quantitative evaluation for the in-lab calibration
will be given in Section 5.

3.4 On-field Pattern
The on-field step of the proposed method requires the
use of a second calibration pattern (Fig. 7a), made of
three coloured rectangles as background, 19 black cir-
cles, and a white “+” sign drawn in the central black
circle (Fig. 7b). We realized an on-field pattern of 2 m
width and 1 m height.

Figure 7: a) On-field pattern. b) A detail of the “+” sign
in the center of the pattern.

In order to perform the extrinsic parameter estimation
of the camera, two short videos have to be collected on
the field:

1. The pattern is captured from five different angles of
views with a fixed zoom level (Fig. 8);

2. The center of the pattern is captured starting from
the maximum zoom level until reaching the mini-
mum level (Fig. 9).

Figure 8: The on-field pattern is captured from 5 differ-
ent angles of view.

Figure 9: The “+” sign in the center of the on-field pat-
tern is captured at different levels of zoom.

Each video is about 2 minutes long. The aim of the first
video is to obtain a set of image points positioned in the
center and in the four corners of the image. The second
video is used to track the “+” sign over different levels
of zoom. The extrinsic parameter calculation using the
two videos is detailed in the following.

3.5 Extrinsic Parameter Estimation
Extrinsic parameters play a crucial role in the camera
calibration process, since those parameters define the
location and orientation of the camera with respect to
the world reference frame.

To obtain such parameters the algorithm proposed by
Tsai in [Tsa86a] and the calibration method by Davis
and Chen [Dav03a] are used.

Let (u,v) be the ideal (distortion-free) pixel image coor-
dinates, and (ũ, ṽ) the corresponding real observed im-
age coordinates. The ideal points are the projection of
the model points according to the pinhole model. Sim-
ilarly, (x,y) and (x̃, ỹ) are the ideal (distortion-free) and
real (distorted) normalized image coordinates. As re-
ported in [Zhang00a] we have:



x̃ = x+ x[k1(x2 + y2)+ k2(x2 + y2)2]
ỹ = y+ y[k1(x2 + y2)+ k2(x2 + y2)2]

where k1 and k2 are the coefficients of the radial distor-
tion.

The function for the radial distortion is here approxi-
mated through the first two terms of the development of
the series f (r) = 1+ k1r2 + k2r4 + k3r6 + ..., in such a
way that only the parameters k1 and k2 are considered.

3.6 Parameter Regularization
In order to regularize the intrinsic and extrinsic parame-
ter functions (depending on zoom levels), several meth-
ods can be applied. Since no information about the
physics of the optical phenomena have been used, a
"black box" approach is suitable. We compared poly-
nomial fitting versus Artificial Neural Network (ANN)
[Fan13a] and chose the latter because it provides better
results.

The second video collected during the on-field calibra-
tion phase, that contains the “+” sign captured at dif-
ferent zoom levels, is used to refine the calibration pa-
rameters, in particular, the principal point (u,v) and the
focal lengths fx and fy, and the radial distortion coeffi-
cients k1 and k2 are considered.

Two different ANNs have been implemented, the for-
mer for managing the lower zoom levels, the latter for
the higher ones. Indeed, from Fig. 10 it is noticeable
that the trends for fy (Fig. 10a) and for the first coeffi-
cient of radial distortion k1 (Fig. 10b) are quasi-linear
for low zoom levels, while they become non-linear for
higher zoom levels.

Figure 10: Variation of camera parameters in function
of zoom. a) Focal length along y axis. b) First coeffi-
cient of radial distortion.

The neural network for the lower zoom levels includes
a hidden layer made of two units, while the neural net-
work for the higher levels has a hidden layer composed
by six units. This choice has been taken for allowing
the ANN that manages the non-linear zone to have a
greater number of degrees of freedom, while inserting
more units in the hidden layer of the ANN that manages
the quasi-linear zone would have generated overfitting
problems. Two results of the regularization process are
shown in Fig. 11.

Figure 11: Real observations (OBS) are reported as
green dots, while the functions find by the two ANNs
are reported as blue lines. a) Focal length along y axis.
b) First coefficient of radial distortion.

In order to allow a smooth transition between the two
regularization functions calculated by the ANNs, a third
(overlapping) zone, where a regularization function is
computed as a linear combination of the other two func-
tions, is considered (see Fig. 12). Let f1 be the return
value of the first neural network computed on a value x
and f2 be the function generated by the second neural
network for the same value x. Let I0 and I1 be the two
extremities of the central green stripe in Fig. 12, we
have:

λ =
x− I0

I1− I0
;

and f3(x) will be:

f3(x) = (1−λ ) f1(x)+λ f2(x)

Figure 12: Overlapping zone where a regularization
function is computed as a linear combination of the two
functions computed by the ANNs.

4 APPLICATION SCENARIO
Virtual advertising concerns the use of computer vision
techniques to insert virtual advertising images into live
or pre-recorded television shows (e.g., sport events).
The aim is to put virtual advertising billboards2 on the
play field (Fig. 13).

2 The trade marks shown in Figs. 13 and 14 have been ran-
domly chosen for demonstrating the output of the system and
are not involved in the work described in this paper.



Figure 13: Virtual advertising example. Virtual bill-
boards (highlighted by the red ellipses) are positioned
in the scene using a chroma-keying technique.

This particular application scenario is a challenging
one, since a lot of changes in the zoom levels are re-
quired for adequately capturing sport events. Thus, an
accurate camera calibration is needed for the replacing
process, since the projection of the billboard to be re-
placed onto the image plane must be known. Moreover,
the calibration model must be robust to camera zoom
variations, since the replacement must be dynamic to
adapt to the varying zooming parameters (Fig. 14).

Figure 14: The proposed approach is robust to zoom
variations. This figure shows three different screen
shots resulting from three different zoom values.

5 EXPERIMENTAL RESULTS
A quantitative evaluation has been carried to demon-
strate the effectiveness of the approach. For measuring
the accuracy of the in-lab calibration, a set of views of
the in-lab pattern captured with a professional HD cam-
era (1920× 1080 resolution) has been collected. The
accuracy of the intrinsic parameters has been calculated
at different zoom levels and with different angles of
view.

The results generated by using our novel calibration
pattern are compared with those obtained by using a tra-
ditional pattern. The comparison has been performed
by manually determining a ground truth that has been
compared with the re-projection values generated by
the two methods. The quantitative results of the eval-
uation are reported in Table 1 and the error is measured
in terms of pixels. For each considered zoom level 20
different images have been examined.

The error values are also plotted in Fig. 15 to high-
light that the proposed method generates a constant er-
ror (about 0.5 pixel), while the traditional procedure in-
troduces an higher error with a more variable trend.

Zoom Trad. Calib. Error Prop. Calib. Error
Level Avg. Std. Dev. Avg. Std. Dev.
1000 0.68 0.32 0.56 0.26
1500 0.70 0.34 0.52 0.25
1800 0.75 0.36 0.53 0.25
2000 0.70 0.33 0.51 0.24
2400 0.72 0.35 0.53 0.26

Table 1: Quantitative comparison of the re-projection
error obtained by using a traditional pattern based cali-
bration and by adopting the proposed method.

Figure 15: The data plotted represent the re-projection
error made by using a traditional pattern (red line) and
by adopting the proposed novel calibration pattern (blue
line). The standard deviation is reported as error bars.

We evaluated also the time required for both the novel
and the previous (used by the company) calibration pro-
cedures (see Fig. 1). The results described in Table 2
report the time difference of the calibration procedures
in the soccer environment shown in the figures of this
paper. Calibration time has been measured considering
a within-subject design factor (the same human oper-
ator performed both the calibration approaches in the
same operative scenario). The test has been carried out
by an expert employee of the company, familiar with
the previous method and properly instructed to use the
novel one.

Multiple calibration runs have not been performed, be-
cause they would have required a different scenario,
since making calibration with the same data multiple
times would not provide relevant statistical evidence.
Nonetheless, the difference in time is significant and
the expert employee confirmed that other previous cali-
brations were in the same order of magnitude of the one
reported in this table.

6 CONCLUSIONS
In this paper a novel approach for calibrating zooming
cameras is presented. The method uses two novel cal-
ibration patterns, the former composed by squares and
circles and designed for recovering the intrinsic param-
eters of the camera even for high zoom levels, the lat-
ter conceived for calculating the extrinsic parameters of



Time Previous Novel
Method Method

In-lab calib. 2880 min. 30 min.
On-field calib. 90 min. 10 min.

Billboard
10 min./bill. 0.5 min./bill.

Identification
Table 2: Calibration time using the previous calibration
procedure and the novel one. The test has been carried
out by an expert user.

the camera and for making the calibration process eas-
ier and faster.

A quantitative evaluation demonstrates: 1) The increase
of accuracy of the proposed method for the intrinsic pa-
rameter estimation with respect to a traditional calibra-
tion pattern; 2) The decrease of the calibration time for
the on-field calculation of the extrinsic parameters of
the camera.

A practical application of the method for creating a vir-
tual advertisement system has been described. The sys-
tem is currently used by a company providing real time
virtual advertisement services for sport events. The
chosen application scenario is a challenging one, since
a lot of changes in the zoom levels are required for ad-
equately capturing sport events.

As future work we intend to analyse the problem of au-
tomatically individuating possible occlusion in front of
the billboards that will be replaced.
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