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ABSTRACT
Data transfers scheduling is an important part of almost all distributed virtual walkthrough (DVW) applications. Its
main purpose is to preserve data transfer efficiency and render quality during scene exploration. The most limiting
factors here are network restrictions such as low bandwidth and high latency. Current scheduling algorithms
use multi-resolution data representation, priority determination and data prefetching algorithms to minimize these
restrictions. Advanced priority determination and data prefetching methods for DVW applications use mathematic
description of motion to predict next position of each individual user. These methods depend on the recent motion
of a user so that they can accurately predict only near locations. In the case of sudden but regular changes in user
motion direction (road networks) or fast moving user, these algorithms are not sufficient to predict future position
with required accuracy and at required distances. In this paper we propose a systematic solution to scheduling of
data transfer for DVW applications which uses next location prediction methods to compute download priority or
additionally prefetch rendered data in advance. Experiments show that compared to motion functions the proposed
scheduling scheme can increase data transfer efficiency and rendered image quality during scene exploration.

Keywords
distributed virtual walkthrough, next location prediction, motion function, Markov chain, prefetching, virtual en-
vironments

1 INTRODUCTION

The initial purpose of DVW applications was to real-
ize a virtual tourism task which allows users to visit
places of interests without physically entering them
(like Google Street View).

Advances in graphic and computing performance of
mobile devices, sharp growth in their market and var-
ious digital media data archives created commercially
or community contributed, further increase potential
and usage of DVW applications. Compared to classi-
cal desktop computers, content explored within mobile
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devices can be associated with richer context, like loca-
tion, weather, traffic, etc.
Applications with high potential in this field are aug-
mented reality tourist guide called LifeClipper, mobile
augmented reality application Nokia City Lens, or in-
telligent navigations such as AIDA. Instead of focus-
ing solely on determining routes to a specified target,
the AIDA system utilizes analysis of driver behavior to
identify a set of goals the driver would like to achieve
(e.g. business or shopping districts, tourist areas, or
real-time event information related to traffic).
AIDA visualizes all the data in a 3D scene which can
help the driver understand better and interpret the de-
livered information. Based on the driver’s motion, both
the visualized information and 3D data for rendering
3D scene are downloaded on demand from a remote
server via wireless connection.
The main bottleneck of DVW applications is network
connection with restrictions, for example low band-
width or higher latency, especially on wireless net-
works, so that transfered data can not be received by



clients in time. Scheduling algorithms can reduce the
impact of these restrictions with the help of multi-
resolution data representation, priority determination
and data prefetching algorithms so that they can in-
crease quality of rendered scene and data transfer ef-
ficiency.

Current scheduling algorithms for DVW applications
widely use mathematic description of motion (motion
functions) to predict next motion of each individual
user. The predicted position can be used to compute
download priority or to prefetch scene parts in ad-
vance. Unfortunately, these methods are accurate only
for prediction of near future positions, and their accu-
racy decreases also in the case of sudden changes in
user motion direction. For networks with higher la-
tency, low bandwidth or just for fast moving user a pre-
diction method with higher accuracy enabling to pre-
dict farther-positions is needed to keep data transfer ef-
ficiency and scene quality as high as possible. From
another point of view, for some applications the scene
quality can be a much more important parameter than
the data transfer efficiency.

In this paper, we propose a systematic solution to
scheduling of data transfer for DVW applications
which uses next location prediction (NLP) methods
which increases both data transfer efficiency and qual-
ity of rendered scene. Our solution is based on two key
insights. First, NLP methods have much higher predic-
tion accuracy compared to motion functions. Second,
NLP methods can be adaptively constructed according
to the multi-resolution data representation. This feature
allows the scheduling algorithm to prefetch missing
data at specified resolution as is required by a rendering
algorithm.

2 RELATED WORK
This section briefly introduces state-of-the-art schedul-
ing mechanisms for DVW applications.

2.1 Visibility determination
Scheduling methods for DVW applications widely
use area of interest (AOI) determination algo-
rithms [sch96], [hes98], [chi98], [li04]. Instead of
downloading complete scene, it is suficient to trans-
fer only data in spherical area around an observer.
Objects inside this area can be regarded as objects
from potentially visible set (PVS) with high download
priority. Wang et al.[wan09] additionally divide AOI
to sections with different download priority taking into
account view frustum and distance from the observer.
The AOI based scheduling methods are not suitable
for more complex scenes such as terrains. Marvie
et al. [mar11] use PVS to schedule data transfers for
complex virtual scene divided to cells by a regular
grid. Download priority of PVS of adjacent cells is

determined by simple ray-casting method based on last
two viewpoints. The visibility determination is also
used to eliminate transferring scene parts not visible to
an observer.

2.2 Motion function
Scheduling algorithms based on motion functions use
vector representation of object motion, position and di-
rection. Motion functions can be classified into linear
and nonlinear [tao04], which are more accurate than
the linear methods. Chim [chi98] proposes exponential
weighted moving average (EWMA) motion prediction
scheme which assigns different weights to past motion
vectors where more recent vectors have higher weights.
CyberWalk [chi03] use the EWMA scheme to achieve
at least a minimum resolution of the scene. Schedul-
ing algorithm proposed in [tel01] selects objects to be
sent to client device based on integral of a benefit mea-
sure along predicted path. The prediction is made at
server and is based on the assumption that once a par-
ticular type of motion is started, it will continue in the
near future. This approach does not consider any pre-
vious positions. A motion-aware approach which uses
state-of-the-art recursive motion function [tao04] for ef-
ficient evaluation of continuous queries on 3D object
databases is described in [ali10]. The predicted posi-
tions here are used to determine download priorities of
progressively recorded objects inside a virtual scene so
that only exact portion of each object will be down-
loaded based on the computed priorities. In [sch06]
an algorithm for speculative prefetching of terrain tiles
is presented. It predicts viewpoint motion by fitting a
spline through a list of last positions so the tiles that are
predicted to become visible in the near future can be
prefetched in advance.

2.3 Next location prediction
Next location prediction (NLP) methods make the
assumption that there is a certain regularity in
the movement patterns so they are not completely
random [gon08]. Only in [lau08] are mentioned
advantages of NLP method for virtual environments.
Here, a hybrid method, where a combination of a
mouse motion prediction and NLP based on statistical
approach is used to reduce latency. As the statistics
are collected from zone to zone within a scene divided
by regular grid, the information about continuous
movement is lost.
In [bat02] a simple Markov model is used to estimate
transition probabilities between adjacent cells based on
movement history database. In [gam12] is used Markov
chain of order m, which further increases prediction ac-
curacy. Work [ash09] and [gam12] cluster GPS data
into frequently visited locations (POI) [zho04]. Clus-
tering to POIs is not suitable for DVW aplications, be-
cause granularity of requested prediction for common



rendering algorithms is much higher. Mixed Markov-
chain model [asa11] has been proposed to model be-
havior of individual pedestrians as well as a group of
pedestrians with similar behavior. It uses combination
of Markov chain and Hidden markov model (HMM)
to construct the universal predictor. This approach has
higher quantity compared to stand-alone Markov chain
based methods, but the HMM method has high training
complexity.

3 ENVIRONMENT DESCRIPTION
As each data transfer scheduling algorithm is closely
related to used rendering algorithm and scene data rep-
resentation, we will first briefly introduce our experi-
mental framework.

3.1 Multi-resolution data representation
Multi-resolution data representation allows streaming
and rendering of scene parts at coarser resolutions in
the case of slow network connection, fast moving user
or limited rendering capabilities of target devices. In
our framework, the multi-resolution data is represented
by three data layers including terrain geometry layer,
terrain textures layer and cartographic layer (see Fig-
ure 1).

Figure 1: AIDA - 3D visualization and navigation
system with augmented reality [aid13] (left), and our
streaming and rendering system (right).

3.1.1 Terrain geometry and texture layer
The terrain layer contains height-map tiles (obtained
from ASTER global digital elevation model [ast13])
which are further organized into an elevation data pyra-
mid (see Figure 2).

Figure 2: Each tile from coarser level (left) can be cov-
ered by its four children (center), continuing recursively
(right) to the bottom of the pyramid. Each child tile
covers one quarter of the area covered by its parent tile.

Each tile through all levels of the elevation data pyra-
mid has resolution of 128×128 height points. The top

level of the pyramid contains single tile which covers
the whole terrain at a much coarser resolution. The four
child tiles cover the same area as their parent tile thus
resulting in double resolution. Tiles at the bottom of
the elevation data pyramid cover whole terrain at high-
est possible resolution.

The texture layer contains high resolution orthographic
texture tiles which are mapped onto the terrain tiles.
Each tile has resolution of 256×256 pixels and is also
included inside a texture data pyramid (see Figure 3)
similarly to the terrain tiles.

Figure 3: Part of the textures data pyramid which is
created similarly like the elevation data pyramid.

As the elevation and textures data is obtained from real
datasets, it is defined, that each elevation tile is covered
by an array of 4× 4 texture tiles. Consequently, each
128× 128 terrain tile is covered by a texture data with
resolution of 1024×1024 pixels.

3.1.2 Cartographic layer
The cartographic layer is created from Open Street Map
(OSM) cartographic database, which contains defini-
tion of streets (geographic location, names, types, etc.),
buildings (outlines, nested outlines, roof types, height,
floor levels etc.) and other information. Each carto-
graphic tile covers a single terrain tile at its finest res-
olution. No level of detail for the cartographic data is
used. Download priority defined between the three lay-
ers is application dependent and is not the main point
of interest of this paper.

3.2 Rendering algorithm
The scene is rendered using a set of concentric square
rings around the user. Each ring is composed of a con-
stant size grid of small patches. As the user moves,
the patches which fall outside a render ring are asyn-
chronously updated with new data from the three data
layers at appropriate resolution (see Figure 4). To pre-
pare and render each patch, only small parts of one or
more terrain, texture and cartographic tiles are needed.

In our experimental evaluation we set that each ring is
composed of a 12×12 grid of patches. Each patch cov-
ers an array of 13×13 elevation points. Consequently,
each ring (whole square) needs at most 4 terrain tiles,
36 texture tiles and 4 cartographic tiles to prepare all
its patches for rendering. As the user continuously



Figure 4: Example of ring patches update for three con-
centric rings. The red arrow symbol represent a moving
user. The red patches have to be updated with the data
covered by the green patches at particular resolutions.

moves, only subset of data tiles which cover the up-
dated patches is needed.

Patches outside view frustum are not rendered but data
tiles needed by these not visible patches are scheduled
to be downloaded with low priority. This behavior is
application dependent.

4 MOVEMENT DESCRIPTION

The movement of each user is defined as a continuous
sequence of geographic coordinates (gps trajectory).
Instead of working directly with gps trajectories, the
NLP methods use mainly sequences of places of inter-
est (places with high density of visiting users or places
where the users stay for a long time etc.). These places
can be discovered from input trajectories using various
clustering mechanisms [ash03].

Once the clustering is finished, the input trajectories
are encoded into sequences of visited places of interest
(e.g. home→ work→ shop→ home). Unfortunately,
this approach is not very suitable for streaming of 3D
virtual environments, because granularity of prediction
based on the visited places of interests is usually too
high to fit requirements of common streaming and ren-
dering algorithms.

4.1 Trajectories projection

Instead of finding individual places of interest, we vir-
tually divide the whole environment into a regular grid
of square cells and project all the input GPS trajectories
according to it so that each trajectory can be described
as a continuous sequence of adjacent cells. The projec-
tion is repeated several times with a different resolution
of the grid (see Figure 5).

The idea of the multiple resolutions of the grid is that
particular render rings can be associated with selected
resolution of the grid. It allows the NLP to be per-
formed at particular resolution, thus allowing to com-
pute priority or prefetch data tiles at appropriate resolu-
tion (see section 6).

Figure 5: Subset of input trajectories projected to the
regular square grid at various resolutions (increased by
power of two from left to right).

4.2 Trajectories encoding
Once the projection is finished, each trajectory is en-
coded as a continuous sequence of adjacent cells (green
cells in Figure 6) at selected resolution.

Figure 6: Example trajectory (red) projected at finest
resolution (top) and one level coarser resolution (bot-
tom).

Each projected trajectory is further encoded by chain
code of eight directions [fre61] (see Figure 7) to effi-
cient storage, and fast evaluation of prediction queries.
For example, the red trajectory starting from left in
Figure 6, will be encoded as a sequence of directions
2→ 0→ 0→ 2→ 2→ 2→ 2→ 2→ 2→ 4→ 2→
2 → 4 → 4 at the finer resolution and as a sequence
0→ 2→ 2→ 2→ 2→ 4 at the coarser resolution.

Figure 7: Codes for eight possible movement directions
from current (center) cell.

4.3 Trajectories storage
Trajectories encoded in the form of 8 directions are
stored in a form which will be suitable for further de-
scribed NLP methods. Assume that a whole trajectory
is composed of a sequence of adjacent cells at selected
resolution. We take successively each cell of the trajec-
tory starting from the first one and determine specified



number of next successive movement directions from
that cell along the trajectory. Next 9 successive direc-
tions from each cell are used (see section 7). Let’s as-
sume that each direction can be encoded using 3 bits.
Then a sequence of 9 directions can be stored using 27
bits plus 4 bits to encode its length, because sequences
of last 9 cells can be shorter. Therefore, each sequence
of directions can be stored using single 32 bit integer
value. This value forms a local movement pattern de-
fined for each cell of a trajectory. These local move-
ment patterns are computed for each cell for all input
trajectories projected at all resolution levels. The local
movement patterns form a knowledge database which
is used as an input for the following NLP methods.

5 NEXT LOCATION PREDICTION
NLP methods suitable for our case have to satisfy sev-
eral requirements: efficient learning, fast adaptation to
new behavior of each individual user, high prediction
accuracy and quantity, and fast evaluation of prediction
queries. The most important requirement is prediction
accuracy, because each wrong prediction decreases data
transfer efficiency and rendered scene quality.

Learning NLP methods can be considered efficient, if
the knowledge database can be modified by adding or
removing trajectories so the prediction methods are not
forced to be completely relearned. Considering funda-
mental characteristics of NLP methods [pet06], this re-
quirement is met by both the Markov chain based pre-
dictor [ash03], [pet06], [gam12] and also by the K-state
predictor [pet03].

5.1 Markov chain based predictor
The Markov chain (MCH) based predictor is based on
the definition of Markov chain of order j . A Markov
chain of order j selects its next state depending upon
j past states. In our case, its state space is defined by
the eight movement directions. Each Markov chain op-
erates with transition frequency value which counts an
overall number of applications of corresponding move-
ment direction after a sequence of j past movement di-
rections (see Figure 8).

Figure 8: Local movement pattern with length of nine
directions related to the left green cell.

The local movement pattern shown in Figure 8 moves
the user from the green cell to current cell marked as
"?" by application of 8 right transitions (2 →). The

9th transition from the pattern moves the user to one of
the red cells. The red cells contain transition frequency
counters incremented by trajectories with the same lo-
cal movement pattern related to the leftmost green cell.

The cell with highest value of the frequency counter
can be selected as a prediction result. Confidence of
such prediction is computed as the ratio between the
value of selected frequency counter and the sum of all
frequency values adjacent to cell "?". If confidence of
the prediction is less than 90%, it will be marked as
not confident. The lower the confidence threshold, the
lower the accuracy. If the confidence computation is
skipped, the prediction accuracy is decreased by 5-8%
depending on prediction resolution level. We decided to
set the confidence threshold to 90% because the predic-
tion accuracy is the most important parameter for us. If
the confidence is for example 50%, i.e. two directions
should be considered as a prediction result, then it is not
reasonable to apply the prediction result.

MCH based predictor has a property that is cannot fast
adapt to changes in habits [pet06] neither temporary be-
havior changes (street closures because of road works
etc.) of individual users. Consequently, this charac-
teristic can lead to a confident but a wrong prediction
for quite long time until the frequency counters reflect
some change.

5.2 K-state predictor
The concept of k-state predictor (KSP) as a NLP
method inside a smart office building has been in-
troduced in [pet03]. It can be also succesfully used
with the trajectories encoded by chain code of eight
directions.

The KSP is constructed as a simple finite automaton
with k-states. Currently, we use only a 2-state predictor
(2SP) with eight contexts where each context represents
one direction. The two states are a weak and a strong
state (see Figure 9).
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Figure 9: The 2SP with eight strong (red) and eight
week states. Each context of the predictor represent one
direction from the used chain code of eight directions.

In case the 2SP is in the strong state then the appro-
priate movement direction is returned as prediction re-



sult, otherwise no prediction is returned. Instead of in-
crement frequency counters, the 2SP switches between
its contexts and states. Each 2SP starts with undefined
context. After applying e.g. eight right directions from
the local movement pattern shown in Figure 8 followed
by single up direction, it will switch to up context at
the weak state. If the same pattern is repeated followed
by the up direction again, the up context will switch to
the strong state and the up direction will be returned
as a prediction result. This functionality can be easily
extended by other dimensions like time, day of a week
etc.

5.3 Proposed prediction scheme
Input of the prediction scheme is a current movement
pattern. It is described by a reference cell and sequence
of 8 movement directions. Current cell of the user can
be determined by applying these 8 directions from the
reference cell. All local movement patterns (stored at
client) related to the input reference cell are loaded and
only the patterns which match the current movement
pattern are selected. As the current input movement
pattern has a length of 8 directions and the stored move-
ment patterns have a length of 9 directions, the 9th di-
rection can be used to construct the 2SP.

If the 2SP does not return any prediction, the MCH
based predictor will be used. As the MCH based pre-
dictor needs the knowledge database of all users in the
system, it will be performed and evaluated at server.
The 9th direction from all the matching local movement
patterns (stored at server) related to the input reference
cell are used to increment the frequency counters.

Prediction quantity of both predictors is low because of
lack of movement data for new users, users with new
behavior or low confidence of the predicted directions.
The standard solution to this problem is prediction
by partial matching (PPM). We further extend it with
application of recursive motion function.

Prediction by partial matching:
Prediction by partial matching (PPM) is based on
shortening length j of the local movement patterns so
that it successively moves the reference cell toward
the current cell until a prediction succeeds or other
conditions are reached. The disadvantage of this
approach is that the shorter the local movement pattern
is, the less prediction accuracy there is. We determine
minimum acceptable local movement pattern length so
the next location predictors have increased quantity,
but still high prediction accuracy. If a predicted cell
is based on a local movement pattern shorter than the
observed minimal length, we mark such prediction
as not confident. Even if such a prediction is not
confident, it is still more accurate than motion function
based predictors (see section 7). Therefore, such a not

confident prediction is used only to compute priori-
ties of missing scene parts, but not for prefetching them.

Recursive motion function:
In case both the Markov chain and 2-state prediction
methods did not respond to a prediction query, the pro-
posed prediction scheme predicts next movement using
a state-of-the-art recursive motion function (RMF). The
input of the RMF method is a sequence of past GPS
coordinates so that it can predict next position based
on motion function determined from these past posi-
tions. The predicted position is clustered using the grid-
clustering method only at the finest resolution. In case
the cell determined from the predicted position does
not differ from the current cell, the RMF predictor is
applied again to predict more steps ahead until a dif-
ference between the current cell and the predicted cell
appears. The RMF method has lower accuracy but high
quantity compared to the NLP methods. Therefore, we
use the RMF method result only to compute priorities
of missing scene parts, but not for data prefetching.

6 DATA TRANSFER SCHEDULING
The main goal of scheduling of data transfer for our
DVW application is to achieve effective data transfer
with maximum rendering quality during scene explo-
ration. We use a hybrid client-server communication
approach, where both client and server can prefetch or
request missing scene parts.

6.1 Rendering requirements
Rendering algorithm described in section 3.2 exactly
determines data tiles which are needed to render the
current view. As the user continuously moves through
the scene, the rendering algorithm generates requests to
download tiles which are not available in cache mem-
ory. The scheduling algorithm first requests tiles for
coarser resolution rings, continuing to the finer resolu-
tions. Therefore, the correspondence between the ren-
dered rings and the necessary tiles for the three data
layers are determined by outer boundary of each ring.

6.2 Application of the prediction scheme
The scheduling algorithm returns predicted cell which
can be used to compute download priority of miss-
ing data tiles needed for rendering the current view or
to prefetch data tiles needed for rendering the future
views.

6.3 Download priority determination
For a fast moving user or slow network connection it
is not possible to transfer all requested tiles on time.
Even worse, some tiles required for rendering the cur-
rent view will be downloaded late, so they are no longer
needed for rendering the current view.



Priority of all missing data tiles within the given render
ring is computed based on a cell C. The cell C is com-
puted as C =Cc + k ∗ (Cp−Cc), where Cc is the center
cell of given render ring, Cp is predicted cell and k is
a constant which translates the cell C outside the given
render ring boundaries. The priority of all missing data
tiles is computed as a distance between each missing
data tile from the cell C. The less the distance is, the
higher the priority.

6.4 Data prefetching
Let’s assume that current location of a user is deter-
mined by the center cell Cc at selected resolution. The
predicted cell Cp is always adjacent to the cell Cc. Every
time, the proposed prediction scheme returns confident
prediction, the predicted cell Cp is used to identify ren-
der rings borders for that cell Cp. These borders specify
all the required data tiles if the user will follow the pre-
dicted cell Cp. Actually we map one cell from the pro-
jection grid to one texture tile from the texture layer at
appropriate resolution (see Figure 10). The same prin-
ciple is applied to the terrain and cartographic layers.

Figure 10: Example one-by-one mapping between tiles
from the texture layer and cells of the projection grid.
The red arrows sign the predicted direction and the
green cells are prefetched data tiles. The black squares
are the render rings for the current cell Cc.

Tiles determined by the prefetching algorithm can be
scheduled to be downloaded only if no tiles are missing
by the current render rings. We select this strategy as
we need to achieve both scene quality and data transfer
efficiency.

7 EXPERIMENTAL EVALUATION
A proof-of-concept client-server framework which runs
on iPad, renders the described virtual environment and
exploits the proposed scheduling algorithm was imple-
mented. Prediction accuracy and quantity of the used
prediction methods are evaluated as well as render qual-
ity and data transfer efficiency during walkthrough the
environment.

7.1 Input trajectories dataset
All the experiments were done with trajectories
obtained from Open Street Map gpx database from
rectangle area specified by two [latitude, longitude]

corners as min = [49.9812545,14.230042] and
max = [50.182172,14.617306] which covers a large
city. The dataset contains 2,648 gpx trajectories
recorded by various users as continuous sequences of
[latitude, longitude] coordinates. The input trajectories
are projected to a regular grid at resolution starting
from [0.000278,0.000278] degrees per cell and further
increased by the power of two, finishing with five
resolution levels.

Accuracy and quantity of the NLP methods are evalu-
ated using 20-fold cross validation (each trajectory set
contains 132 trajectories). The validation is performed
so that 19 sets are used for learning both the MCH based
predictor and also the 2SP. The remaining set is always
used to evaluate prediction accuracy and quantity. We
repeat this process 20 times for different testing sets and
compute the resulting accuracy and quantity by averag-
ing the particular results.

As the trajectories can be obtained only as anonymous
records, we cannot assign them to individual users. In-
stead, we assign all the input trajectories to a single user
and evaluate both the MCH based predictor and the 2SP
with this assumption. Practically, the quantity of the
2SP will be less than the quantity of MCH based pre-
diction, especially for new users.

7.2 Prediction accuracy and quantity
We decided to store 9 successive directions for each lo-
cal movement pattern. Then 8 directions can be used to
match the current movement pattern with the stored lo-
cal movement patterns. Experiments with the input tra-
jectories show that 9 directions are sufficient, because
the change of accuracy, when the length of the matched
sequence of directions is longer than 6 is small (see Fig-
ure 11).

Figure 11: Comparison of accuracy and quantity of
MCH predictor for different length of matched se-
quence of directions and all 5 resolutions of the pro-
jection grid.

The prediction quantity is highest for matched se-
quences of directions with length from two to three
direction over all resolution levels as is shown in
Figure 11. The quantity is lower for shorter lengths



because the predictions are often marked as not con-
fident (confidence threshold is selected at 90%) and
also for longer length, because less matched patterns
were found. As a compromise between accuracy and
quantity we set length of the matched sequence of
directions to 6 directions. The accuracy of both the
2SP and MCH based predictor is higher than 90% for
all resolutions of the projection grid (see Figure 12).

Figure 12: Comparison of prediction accuracy between
2-state (2SP) and Markov chain (MCH) based predic-
tion.

The proposed prediction scheme uses also prediction by
partial matching for both MCH based and 2-state pre-
dictors. Figure 13 shows effect of PPM to accuracy and
quantity of the MCH based predictor for all PPM or-
ders at all resolutions of the projection grid. The PPM
order is the maximum allowed length of shortening a
sequence of matched directions from the local move-
ment patterns.

Figure 13: Effect of PPM optimization to accuracy and
quantity of MCH based prediction. Initial length of
matching sequence is 8 directions.

The results show that the higher the allowed shortening
is, the less the accuracy is, but with increased quantity.
Based on the PPM results, we have decided to allow
the shortening at most by two directions, otherwise the
prediction is marked as not confident and is rather used
to compute only priorities of current missing data tiles.

Even though prediction accuracy of the highest PPM
order at the first resolution level is relatively low, it is
still higher than prediction accuracy of the state of the
art recursive motion function used as the next location
predictor. The prediction accuracy of the recursive mo-

tion function is 55% and quantity is 97%. We use 6 past
GPS locations to create the RMF predictor and we use
it only for prediction at the finest resolution of the pro-
jection grid. The accuracy of simple linear predictor is
39% and its quantity is 99%.

7.3 Scheduling scheme evaluation
The goal of the proposed scheduling scheme is to keep
both scene quality and data transfer efficiency as high
as possible. We measure the scene quality as the ratio
between the time a data tile is available for rendering
and time the data tile is needed for rendering. The re-
sult is computed as weighted average over all tiles for
particular levels. Data transfer efficiency is defined as
the ratio between amount of downloaded tiles and how
these tiles contribute to rendered scene quality.

We changed speed of the user, network latency and
connection bandwidth and measured scene quality and
data transfer efficiency with the proposed prediction
scheme. The experiments are performed on local area
network with network latency and bandwidth emulated
at linux server using "tc" commands with "netem" ker-
nel component. We use the first set of input trajectories
to perform three experiments.

Average data transmission speed on current 3G net-
works vary from approx. 1000kbps to 3000kbps and
latency from approx. 50ms to 100ms [tmc11], but it de-
pends on many conditions. Therefore, in the first exper-
iment (see Figure 14) we set motion speed to 60km/h,
bandwidth to 2000kbps and latency to 100ms.

Figure 14: Comparison of quality and data transfer ef-
ficiency of the scheduling scheme and RMF (used for
the first finest resolution) and no prediction (NOP) for
the other resolutions.

The results of the first experiment show that for
high bandwidth and relatively high latency for this
kind of application the proposed prediction scheme
outperforms the RMF used for the finest resolution
level and no prediction used for the coarser resolutions.
Except the rendering quality at the finest resolution,
the results are similar, because the network bandwidth
is high so all tiles at all resolutions are downloaded
during rendering.



In the second experiment we change speed to 130km/h.
The results show (see Figure 15) both increased qual-
ity and also significantly increased data transfer effi-
ciency with the proposed prediction scheme at second
and third resolution level. It means the downloaded tiles
are needed for rendering for longer time compared to
the RMF and no prediction approaches. The finest res-
olution of data tiles was not downloaded at all because
the speed is too high for the selected bandwidth and la-
tency.

Figure 15: Comparison of scene quality and data trans-
fer efficiency between proposed scheduling scheme and
RMF (used for the first finest resolution) and no predic-
tion (NOP) for the other resolutions.

In the last experiment, we set high speed, low band-
width at 200kbps and zero latency just to show the ef-
fect of prediction at low bandwidth networks for fast
moving user (see Figure 16).

Figure 16: Comparison of scene quality and data trans-
fer efficiency between proposed scheduling scheme and
RMF (used for the first finest resolution) and no predic-
tion (NOP) for the other resolutions.

The results show that the proposed scheduling scheme
significantly increases data transfer efficiency and scene
quality at the second resolution level.

8 CONCLUSION
The proposed scheduling scheme outperforms the RMF
at the finest resolution level in both the scene quality
and data transfer efficiency. At coarser levels the mo-
tion functions cannot be used because of their low ac-
curacy. The effect of the proposed prediction scheme is
less significant at the coarser levels, because the amount

of time for which the coarser tiles are used for rendering
is longer compared to the higher resolution tiles.

For applications, where the transfer efficiency is suf-
ficiently high, it will be possible to predict more than
one next location ahead. It will increase scene quality
for slow moving users or at high speed networks. With
more steps ahead, the possibility that the downloaded
tiles will not be used for rendering grows up especially
in the case of wrong prediction.
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