
Frequency-based Progressive Rendering

of Continuous Scatterplots

Vladimir Molchanov

v.molchanov@jacobs-
university.de

Alexey Fofonov

a.fofonov@jacobs-niversity.de

Lars Linsen

l.linsen@jacobs-university.de

Jacobs University, Campus Ring 1, 28759 Bremen, Germany

 a) b) c) d) e)

Figure 1: Hybrid approach for continuous scatterplot computation (―Bucky Ball‖ dataset): Small splats are

rendered directly (a), large splats are computed via their spectral representation (b), and both textures are added

to produce the final result (c). Result is compared to direct rendering of all splats (d). Color scheme is shown (e).

ABSTRACT

Continuous scatterplots are a consistent tool for the visual representation and exploration of continuous

multivariate data defined on a continuous domain. Due to the complexity of the construction algorithm,

application of continuous scatterplots is limited in terms of data size and screen resolution when interactive

frame rates are desired. Progressive rendering is a paradigm of displaying an approximative visual outcome early

on, which iteratively and incrementally gets improved until convergence to the final result is reached. This

approach maintains the interactivity of the system and allows the user to make decisions immediately, i.e., much

earlier than the end of the computation process. We propose a method for progressive rendering of continuous

scatterplots based on a Fourier representation. By iteratively advancing from low to high frequencies and

inverting the spectrum representation after each iteration, a series of scatterplots converging to the final result is

generated and rendered. We demonstrate that this convergence is monotonic and that the proposed approach is

more efficient than state-of-the-art methods, i.e., we can faster produce high-quality approximations. We propose

to embed this idea into a hybrid approach which allows balancing the trade-off between quality of the image

appearing first and its computation time. The proposed algorithms were implemented on the GPU.

Keywords

Scatterplot, Fourier transform, progressive rendering, unstructured volumetric data

1. INTRODUCTION

Most volumetric scalar fields, no matter whether they

have been measured or simulated, are assumed to be

continuous or, at least, piecewise continuous.

Examples include fields of temperature, density,

pressure, salinity, etc. Seldom, these scalar fields can

be described analytically. In most cases, data values

are acquired by sampling the scalar field at discrete

locations in space. In order to reproduce their

continuous nature, an interpolation method is

involved.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

 Statistical properties of scalar fields can be

explored via histograms. Pair wise relations of two

such properties are usually represented in form of

scatterplots. Multiple scatterplots can be investigated

inform of a scatterplot matrix. All these techniques

are well known and have been used for decades by

operating on the values at the discrete sample

locations. However, such an important property as

continuity is being lost at this step.

 Recently, new methods appeared which address

the problem above by creating continuous

representations of attribute spaces. They propose

continuous histograms [CBB06, SSD∗08], continuous

parallel coordinates [HW09, HBW11] and

continuous scatterplots [BW08, BW09]. The idea

behind these approaches is to perform a mapping of

parts of the volume rather than just discrete samples

when projecting to the visual domain. The

distribution of attributes in the volume parts is

reconstructed by means of interpolation.

 Obviously, much more computational efforts are

required to produce a continuous scatterplot when

compared to its discrete analog. Therefore, there is a

clear need for efficient algorithms showing high

performance when applied to large datasets and high-

resolution outputs. One approach to design an

interactive tool is to exploit the idea of progressive

rendering. This idea is based on an iterative

generation of visualizations with increasing quality

which converge to the final result. The gain is to

provide the user with preliminary but still

informative outcomes at interactive rates. Based on

the preliminary result, the user can decide whether it

is worth to wait for the final result or whether the

interactive query shall be modified.

 The essential properties of progressive rendering

algorithm which we target in our research can be

summarized as follows:

1. The key features of the result shall appear first.

2. The change of intermediate results when stepping

from iteration to iteration shall vanish. In other

words, the new contributions to the final image

decrease in each iteration.

3. The result obtained at the previous step shall be

effectively used when performing the next iteration,

i.e., computations already made shall not be repeated.

 Our work was inspired by the continuous

scatterplots technique proposed by Heinrich et al.

[HBW11]. In this algorithm, the physical volumetric

domain is represented as a collection of Gaussian

kernels centered at data samples. When mapping to

the attribute domain (i.e., the domain spanned by the

two dimensions of the scatterplot), each kernel

appears as an elliptical splat called a footprint. The

geometry of a footprint is entirely defined by the

parameters of a locally linearized mapping, which

allows for the pre-computation of footprints in form

of splat textures. To handle large datasets, Heinrich

et al. propose to split the data into chunks, produce

an individual plot for each portion of the data, and

then iteratively combine the plots over several frames

using alpha blending. The result is a progressively

updated image which is based on the amount of data

already processed. So, the work by Heinrich et al.

uses the general idea of a progressive rendering.

However, using their approach, it is not easy to fulfill

the first two requirements formulated above. The

result may be highly affected by the way, how the

data are split into chunks. Sophisticated methods may

help to make a wise decision, but they may also

break the interactivity of the application.

 Our main contribution is a novel approach for

progressive rendering of continuous scatterplots

based on their frequency representation (spectrum).

This kind of representation is obtained by applying a

Discrete Fourier Transform (DFT) to the scatterplot's

density distribution. The key idea is as follows:

Small-sized footprints have bad (slowly decaying)

spectra but can be efficiently plotted directly into the

attribute space density plot (continuous scatterplot).

Large-sized footprints slow down the computations

when blended in the attribute space, but they have

nice frequency representations. Hence, we propose to

split the physical space kernels into two classes:

Those having small footprints (few pixels support)

and those whose footprints have good Fourier

representations. The former are plotted directly while

the latter are processed iteratively, progressing from

the lowest most meaningful modes to the highest

frequencies with vanishing contributions.

 Besides that, we extend the existing method to

unstructured volumetric data and explore the

performance and error dependence on most key

parameters. We implemented the method by Heinrich

et al. [HBW11] and our own algorithm entirely on

the GPU (using CUDA) for better evaluation of their

applicability and efficiency.

2. RALATED WORK

The idea of progressive image generation has been

known for decades [BFGS86]. Progressive methods

find their application in many visualization and

computer graphics problems, e.g., ray tracing [PS89],

global illumination [FP04], or volume rendering

[CBPS06]. One of the most prominent examples is

surface renderings where progressive meshes

[Hop96] can be used in case of irregular meshes and

subdivision surfaces in case of regular patches or

semi-regular meshes. Also, isosurface extraction

from progressively refined tetrahedral or pyramidal

meshes (e.g., [LPD∗04]) and isosurface smoothing

[PB00] are common examples in volume

visualization.

 Spectral analysis is used to improve sampling of

the rendering integral in volume rendering

[BMW*06]. A wide range of progressive spectral

methods [SDS96], especially based on the Fast

Fourier Transform (FFT), are very common in image

processing, e.g., for image registration [RC96] or for

characterization of brain fibers' shape [PEPM12].

 Scatterplots are a well-known tool for

multidimensional data visualization and analysis

[EDF08]. Recently, an idea of continuous scatterplots

was developed in a series of works by Bachthaler,

Heinrich, and Weiskopf. Initially applied for

mapping tetrahedra by using a linear interpolation of

attributes within them [BW08], the approach was

generalized to regular rectangular grids with an

arbitrary interpolation method [BW09], where

recursive subdivision of cells was exploited. Later,

isotropic density functions were used to decompose

the whole volume into a system of overlapping

spheres [HBW11]. Splatting is performed for the

generation of progressively sampled intermediate

images which are then combined to produce the final

continuous scatterplot. The progressive rendering

component of the algorithm is based on partitioning

the volumetric data into small chunks which are fast

to operate. Intermediate images are produced for

down-sampled or even freely re-sampled data. A

generalization to continuous representations of

projected spaces was recently proposed in [MFL13].

 The idea of image space footprint computation of

volumes has been developed by Westover [Wes90].

Feng et al. [FKLT10] use Gaussian footprints to

visualize data samples uncertainty. Lehmann and

Theisel [LT10] developed a method to find and

highlight discontinuities in continuous scatterplots.

3. BACKGROUND

Before we describe our approach in detail, we would

like to provide the respective background. For the

construction of the continuous projections, we look

into the settings of the involved spaces (a volumetric

physical domain and a 2D attribute domain which is

visualized). We discuss some technical aspects of the

method by Heinrich et al. [HBW11] and, in

particular, provide useful generalization by allowing

the lengths of spatial kernels to vary from sample to

sample.

3.1 Basic Terms and Notations

Let () x be a multivariate multidimensional function

with m variables defined over n dimensions, i.e.,

: n m . It is sampled at position

{ } n

i X x mapping them to the set

Figure 2: Physical volume X is mapped by to the

attribute domainQ . A spatial density is is defined in

a spherical neighborhood of sample ix , which has an

elliptical footprint inQ . Scalar function i denotes

density on the footprint.

{ } m

i Q q , 1, ,i N . Figure 2 illustrates our

notations. There exists a scalar non-negative function

overall ()s x defined on X which is called the spatial

density function. It represents the importance of data

in the volume and is usually set to be constant. For

later consideration it is useful to approximate the

density function by a weighted sum

overall

1

() (),
N

i i

i

s w s

x x (1)

where every individual kernel ()is x is obtained from

a compactly supported shape function ()s x by

() ,i
i

i

s s
h

x x
x

where ih defines a scaling radius of ()is x . In our

work we focus on isotropic kernels such that

(|) ||)|(rs sx x . Our goal is to find proper weights

iw to achieve overall () consts x . Since this condition

simply means that all parts of domain X are equally

important, the exact value of the constant does not

matter. Then, if one integrates the relation (1) over

the volume, one deduces

1 2

1 1

·Volume() () .d
n

N N
n

i i i i

i i

C X w s C w h

 x x

with constants C1 and C2. This means that
n

i iw h

stand for volume fractions associated with samples.

Therefore, one takes 1iw for all i to get

overall () consts x .

 In the following, we study the case 3n and

2m as the most practically important one, since it

is common practice to investigate pairs of attributes

defined over a volume by means of scatterplots.

 Let iX be the support of the function ()is x . The

construction of a continuous scatterplot is based on

additive mapping of all iX weighted by ()i iw s x by

means of () x to the attribute domain Q . Recall that

discrete scatterplots map the data sample by sample

resulting in the set { }iq . A continuous scatterplot is

composed by a collection of images of iX . It is

shown in [HBW11] that spherical kernels ()is x

result in elliptical footprints. Each footprint is

equipped with a density distribution ()i q , which

represents a counterpart of the spatial density ()is x ,

see Figure 2. Hence, a continuous scatterplot

overall () q is the direct sum of densities ()i q .

 The key relation between the two density functions

is given by

0 0

overall overall()d ()d ,n m

X Q

s x x q q (2)

for any 0X X

and 0 0()Q X . This condition

uniquely defines overall () q . Equation (2) with

0X X and 0Q Q is called total mass

conservation.

3.2 Direct Approach for Generation of

Continuous Scatterplots

Following the method proposed in [HBW11], a

spherical neighborhood of sample ix of radius ikh is

mapped as an elliptical splat centered at

1 2((), ())i i iq qq x x using a linear approximation of

the mapping in a neighborhood of sample ix . The

density ()i q is non-zero within this footprint.

Besides its center, a footprint is uniquely defined by

its extents ,i xS and ,i yS (semi-axes of the screen-

space ellipse) and its rotation angle i . These

parameters are defined as follows (cf. [Wes90,

HBW11]):

 , 1 , 2, ,i x i i y iS kh S kh (3)

2 2

1

cos ,
()

i

b

b a

 (4)

where k is a global smoothing parameter discussed

below, ih is a local support size which may vary

from sample to sample and reflect the samples'

density in the neighborhood of the i -th instance,

1 1 1 2()· (), ()· (),i i i ia q q b q q x x x x

 2 2()· (),i ic q q x x

where · stands for the scalar product. Note that the

computation of cos i can be numerically instable for

small b when applying Equation (4) naively. If

| |b for some threshold 0 , the splat is not

rotated, i.e., 0i . Thus, one can explicitly set

cos 1i .

 The user is allowed to change the value of

parameter k which simultaneously scales the extents

,i xS and ,i yS of all footprints. Thus, the global

smoothness of the continuous scatterplot can be

controlled: For small values of k the result is almost

a discrete plot, while large values of k make the

resulting image blurred. This scaling is equivalent to

the respective change of support sizes of spatial

kernels ()is x . Here, their supports shrink to samples

ix as k vanishes and unboundedly grow when

k . Note that for larger values of k , the number

of locally overlapping spatial kernels increases.

 All elliptical footprints are added as textures to the

final image. In the following we refer to this

procedure as a direct (splatting) approach in contrast

to the progressive method proposed in this paper.

After a normalization step which makes the range of

the accumulated density overall () q equal to [0,1] , a

transfer function can be applied. The main bottleneck

of the method is related to the rendering of large

splats (relative to the screen resolution), since their

contributions to many pixels have to be computed.

This situation occurs in particular when producing

high-resolution images, when zooming into a smaller

region of the plot, or when choosing high values of

the global smoothing parameter k .

3.3 Progressive Approach

To overcome the issue of insufficient efficiency of

the method for interactive visual analyses, a

progressive splatting approach was proposed in

[HBW11]. When splitting the input data into small

portions and operating on them separately, the

number of operations per chunk is reduced. It makes

it possible to generate images for each chunk faster.

 Gradual accumulation of the generated images

results in a progressively changing continuous

scatterplot. However, every intermediate result

intrinsically depends on which part of the data is

already processed and which not. In other words, it

depends on the order in which the chunks are

accumulated. To illustrate this effect we generated a

"Tornado" dataset, courtesy of [CM93], sampled at
340 regularly distributed nodes. Velocity magnitude

and the z -component of the velocity field are taken

2 2

1 2, , () 4
2 2

a c e a c e
e a c b

Figure 3: Dependence of intermediate images in

progressive splatting on the fraction of processed

data ("Tornado'' dataset with
340 gridded nodes).

as dimensions of the scatteplot. Intermediate results

after operating 25%, 40% and 50% of samples as

well as the final result are shown in Figure 3. All four

images are qualitatively very different, so that there

is no monotonic behavior of the results along

iterations. Hence, this unpredictability of the

intermediate results will make the user wait until all

computations are done, which destroys the essence of

progressive rendering (see Requirements 1 and 2

formulated in the Introduction). Of course, the

intermediate images depend on how the chunks of

data have been generated and a different choice may

have produced qualitatively better approximations

early on, but the issue of not knowing whether the

intermediate results reflect the final result well is

apparent.

 We also note that the normalization of the density,

which is necessary before a transfer function can be

applied, is very sensitive to the skipping of data

portions. In fact, skipping a few samples contributing

to the pixel with the highest density obviously

changes the normalization factor, which affects the

appearance of the whole picture, although the

transfer function remains the same.

 The situation becomes even worse when dealing

with unstructured spatial datasets, which are

discussed in the next section. The reason is that there

is no standard way of ordering data in memory and

splitting data into chunks can be absolutely arbitrary.

Note that even if the data are regularly sampled, after

a zooming operation, the data to be displayed

generally do not belong to any spatially regular

structure. These considerations motivated us to

Figure 4: Dependence of intermediate images in

progressive splatting on the fraction of processed

data ("two White Dwarfs'' dataset with 24k

unstructured samples).

design an approach, where all samples are handled

uniformly and simultaneously and where no

particular spatial arrangement of the samples is

assumed.

 Our solution to the issue above relies on the

spectral representation of continuous scatterplots.

Instead of splitting the data, the progressive part of

our approach is based on a consecutive computation

of the Fourier frequencies advancing from the lowest

most contributing modes to the highest less important

ones. In the following section we show that large

splats have a nice (rapidly decaying) representation

in the frequency domain that makes it possible to

significantly speed up the construction of continuous

scatterplots.

 We note that spatially unorganized data can be

stored in a file in arbitrary order. Thus, when

applying the progressive splatting idea from

[HBW11], the distribution of samples among chunks

of data is very accidental. This fact leads to the effect

shown in Figure 4. Shown is a dataset representing

an astrophysical simulation of a binary system

consisting of two White Dwarfs. The dimensions of

scatterplot are the internal energy values and

temperature at samples' positions. Images for 33.3%

and 50% of the samples provide a poor

approximation to the final result shown in

Figure 5 (e).

3.4 Spatially Unstructured Data

We generalize the approach of Heinrich et al.

[HBW11] by allowing the local scales to vary from

sample to sample. It makes it possible to apply the

direct approach to irregularly sampled data. In order

to define an individual scale ih , we estimate the

local density of samples: In the regions, where

samples are dense, ih is small, while sparsely

distributed ix yield large ih . Only the relative

variation of scales is important, since the absolute

magnitude can be changed by adapting parameter k .

For regular data, the samples' density is constant

everywhere, hence, all ih are equal.

 The ability to handle irregular data is very valuable

for practical applications. For instance, various

scientific measurement techniques and particle-based

numerical methods may produce large multivariate

unstructured spatial datasets which are to be

visualized and analyzed. Of course, it is always

possible to re-sample unstructured data regularly, but

this comes at the cost of introducing interpolation

errors and losing spatial adaptivity which may affect

the result. Therefore, it is advantageous to operate on

the original data.

4. SPECTRAL REPRESENTATION OF

CONTINUOUS SCATTERPLOTS

For our purposes, it is important that density ()i q in

the footprint domain can be computed from some

template kernel function () q via an affine

transformation composed by scaling, rotation, and

translation, i.e.,

() (()),i i i iL q q q

1

,

1

,

cos sin0
· .
sin cos0

i ii x

i

i ii y

S
L

S

In other words, to compute ()i q at some location,

one has to perform translation by iq , rotation by

angle i , scaling by , ,(,)i x i yS S , and then evaluate

the shape-function at the obtained location. This is

just an analytical expression of the splatting, where a

pre-computed texture containing values of () q is

placed at the right position in the frame with right

scaling and right orientation resulting in the footprint

()i q . The coefficient 3 1 1

, ,· ·i i i i x i ywh S S serves to

conserve the mass associated with the i -th sample:

2 2

2 3 3 3

()d (())d

()d ()d ()d .
| |

i i i i

Q Q

i
i i i i

i Q X X

L

w h s w s
L

q q q q q

p p y y x x

Here we assumed that the 1L -norms of template

functions s and are equal and used 1 1

, ,| | ·i i x i yL S S .

Summation over i provides the total conservation of

mass (2).

 The final density distribution is given as a

composition of individual contributions of all

samples, i.e.,

1 2 1 2

1

(,) (,).
N

i

i

I q q q q

Here and further we use overallI for short. Now we

examine the density function in the frequency

domain. By the linearity property, the Fourier

transform of 1 2(,)I q q reads

1

[](,) [](,).
N

i

i

I u v u v

It is known that scaling, rotation, and translation

operators become scaling, rotation and modulation

after the Fourier transform, correspondingly. In

particular,
1 1[()]() | |· [()]()f A A f A x q x q . Thus,

1 2(() ())
[](,) e | |· []((,)),i ii uq vq T T

i i i iu v L L u v
x x

where -T denotes inversion and transposition, with

,

,

0 cos sin
· .

0 sin cos

i x i iT

i

i y i i

S
L

S

Finally,

1 2(() ())3

1

[](,) e []((,)).i i

N
i uq vq T

i i i

i

I u v wh L u v

 x x (5)

When the spectral representation []I is computed,

one can apply the inverse Fourier transform to obtain

the continuous scatterplot. Practically, we use the

discrete Fourier transform rather than the Fourier

transform itself. This approximation introduces errors

which vanish if the resolution of textures (number of

frequencies taken into account) grows. We also need

to comment on the periodicity of the discrete Fourier

transform: Footprints located close to the boundary

of the computed region may have their parts

appearing at the opposite part of the boundary instead

of being cut. To overcome this effect, the region

should be extended to reserve additional space for

such footprints.

5. PROGRESSIVE ALGORITHM

Our complete computation of spectral representation

[]I is much slower than the standard splatting-

based technique for continuous scatterplot

generation. Obviously, every footprint has usually

non-zero contributions to all frequencies (,)u v ,

whereas the splat may have very small size. Thus, if

the resolution of the screen is u vR R , complexity of

[]I computation is u vN R R . Recall that this

representation has to be transformed by the inverse

FFT and not the full resolution can be shown, since

some border region of the texture is reserved to

eliminate the periodicity effect of DFT. However,

there is a strong side of []I .

 It is well-known that the decay of Fourier

coefficients depends on the smoothness of a function:

The smoother the kernel () q , the faster the decay

of | [](,) |u v . In fact, for many footprints, high

frequencies do not significantly affect the result and

therefore may be neglected. Based on this

observation, we propose the following progressive

algorithm for continuous scatterplot construction:

Evaluate [](,)I u v for some low frequencies,

perform the inverse FFT and render the result as the

first approximation to the final picture. In subsequent

iterations higher frequencies are added to the Fourier

representation of the scatterplot and the rendered

picture is updated after performing the inverse FFT.

Since high frequencies of []I computed at later

iterations are composed by vanishing contributions

from individual splats, later iterations have generally

less impact on the final result for smooth kernels.

Thus, Requirements 1-3 in the Introduction are

fulfilled. The number of frequencies computed in

each iteration depends on the hardware performance

and the data size. It can be fixed or vary from one

step to another.

6. HYBRID ALGORITHM

Large footprints have fast decaying Fourier spectra

and therefore can be very efficiently and with high

precision represented by a few lowest frequencies.

Small footprints can be fast rendered directly to the

scatterplot. Here "small" means that at least one of

the extents ,i xS and ,i yS is less than a prescribed

threshold. To profit from the best of both worlds, we

divide all footprints into two groups according to

their size and operate accordingly. The grouping is

based only on values ,i xS and ,i yS , i.e., no additional

computations are needed. Moreover, the critical size

of a splat below which it is labeled as small, depends

only on the screen resolution. Since parameter k

scales all splats, its value affects the grouping.

 The idea of the hybrid approach is illustrated in

Figure 1. We used the "Bucky Ball'' dataset (courtesy

AVS, USA) with
332 gridded samples. Small and

large splats rendered by means of the direct method

and their spectral representation, respectively, see

Figure 1 (a) and (b). Both plots are combined to

produce the final result (c) which is very close to the

scatterplot computed by direct splatting (d).

7. RESULTS

All numerical tests were performed on a PC with

graphic card NVIDIA GTX 680 and implemented in

CUDA. We used the same color scheme to render all

continuous representations of projections, see

Figure 1 (e). The texture size used for computation is
21024 pixels. We reserved 10% for the border, such

that the size of the rendered texture is
2921 pixels.

Computation of the whole spectral representation

requires
21024 / 4096 256 iterations, where

parameter 4096 is chosen to achieve a high

occupancy of the GPU. If other is not specified,

overall () consts x is used. Other information about

parameters and datasets is shown in Table 1.

dataset k threshold Total number

of points

Number of

large splats

Bucky Ball 2.0 0.02* uR 32768 13986

White Dwarfs 1.6 0.008* uR 24149 21676

Tornado 0.6 0.01* uR 262144 82856

Table 1: Parameters and thresholds for all

experiments. Shown are values of the global

smoothing parameter k , the threshold that defines

which splats are labeled as small, the size of dataset,

and the number of splats computed by the spectral

method for the given threshold.

 First, we demonstrate the convergence of the pure

spectral approach. The dataset represents an

astrophysical simulation of two merging White

Figure 5: Continuous scatterplots of merging White Dwarfs dataset. When all footprints are progressively

computed using spectral method, small splats cause noise, which is visible at first iterations and disappears

later. After all iterations are completed, the result is identical to one obtained by the direct approach, i.e., when

all elliptical footprints are blended as textures.

Figure 6: Hybrid approach applied to the merging

White Dwarfs dataset.

Dwarfs. The simulation was executed by means of

the Smoothed Particle Hydrodynamics method

[Luc77, GM77]. The data includes unstructured

nodes' positions ix , lengths ih , several scalar

attributes and their gradients. Dimensions of the

scatterplot are internal energy and temperature fields

in horizontal and vertical directions, correspondingly.

Results for overall ()s x to be equal to the density field

are shown in Figure 5. Small splats have poor

spectral representation and, thus, serve as a source of

noise. This noise is eliminated during progressive

computation of Fourier magnitudes. After all

iterations are completed, the result is identical to one

obtained by the direct method. When the hybrid

approach is applied to the same dataset, the initial

level of noise is much lower, see Figure 6.

 Next, we used the "Tornado'' dataset, courtesy of

[CM93]. It is given as an analytical function

describing a velocity profile in a volume. We

sampled the velocity field at
364 random uniformly

distributed locations. Results obtained by the hybrid

approach are presented in Figure 7. Velocity

components in x and y directions serve as the two

axes of the scatterplots. We intentionally chose a

relatively small k to demonstrate the effect of

detailization during progressive rendering. Small

global smoothness makes the sizes of footprints

small, thus, even some individual splats remain

distinguishable in the continuous scatterplot. The first

iteration of the hybrid approach results in a slightly

smeared image with more and more details appearing

at later steps.

Figure 7: Hybrid approach applied to the "Tornado''

dataset.

 Computational times are listed in Table 2. Both the

spectral and the hybrid approaches deliver

preliminary results much earlier than the direct

splatting method. Though, the first iteration of the

hybrid method takes a longer time than one iteration

of the spectral method, its later iterations are faster

and the quality of the result is higher. The

accompanying video shows a comparison of the

quality of the results obtained with spectral and

hybrid approach. Note that the first iterations of the

video are played in slow-motion to have enough time

to observe the intermediate images.

 To measure the error of the proposed methods at j

-th iteration, we computed the root-mean-square error

1/2

2

direct

1 1

1
(,) (,) ,

·

u v

x y

R R

j x y x y

p pu v

L p p p p
R R

where xp and yp stands for pixel indices, direct is

the density computed by the direct approach, can

be computed either by the spectral or by the hybrid

method, and the bars denote that the densities are

normalized (individually). Results are shown in

Figure 8. It is evident that the error is gradually

improved along the progressive computations. The

error of the hybrid method after first iteration is

significantly less than the analogous error of the

spectral one. Moreover, only a few first iterations of

the hybrid method suffice to closely approach a

stable state.

 The hybrid approach has better error behavior

though the first step takes more computation time.

dataset direct Spectral,

per iter.

Hybrid,

1st iter.

Hybrid, from

2nd iter.

Bucky Ball 3942 ms 119 ms 435 ms 48 ms

White Dwarfs 895 ms 95 ms 269 ms 76 ms

Tornado 1254 ms 591 ms 282 ms 203 ms

Table 2: Computation times for construction of

continuous scatterplots using direct approach, pure

spectral representation and the hybrid algorithm (all

methods are implemented on GPU).

Figure 8: Error behavior along the iterative

construction of continuous scatterplots. The plots

present the root-mean-square errors of the spectral

algorithm and the hybrid method. Results for the

"Bucky Ball" (red), two White Dwarfs (blue) and the

"Tornado" (magenta) datasets are shown. The error

of the hybrid approach applied to the "Bucky Ball"

dataset (red line in (b)) is multiplied by a factor of
310 to be visible.

Figure 9: Plots of calculation times of appearence of

the first meaningful image against output resolution

(pixels) computed for "Bucky Ball" dataset. Results

for the direct splatting (red), the hybrid method (blue)

and the spectral approach (green) are shown.

As follows from the data in Table 2, almost 7

iterations of the spectral method can be finished

before the first iteration of the hybrid method is

completed. However, the initial error of the hybrid

approach is lower than the error of the spectral

algorithm after 7 iterations and decreases faster in the

consequent steps. This holds for all datasets. By the

time, when the first result of the hybrid approach is

delivered only 11% ("Bucky Ball"), 30% ("two

White Dwarfs") and 22% ("Tornado") of samples can

be processed by the direct method, which is

insufficient for performing a reliable analysis.

 The benefit of our approach becomes extremely

significant when producing high-resolution outputs.

Figure 9 demonstrates the dependence of calculation

times for the first meaningful picture on the output

resolution. In particular, the speed-up of 500 times is

achieved for 3686uR pixels. Note that the values

of time (vertical axis) are scaled logarithmically.

Non-monotonic behavior of the green line is related

to higher efficiency of FFT when R is a power of 2.

8. CONCLUSION

We have seen that when producing high-resolution

continuous scatterplots, when dealing with highly

adaptive sampling in physical space, when zooming

into a region of interest on a scatterplot, or when

increasing the global smoothness of the result, sizes

of some footprints become large up to the range of

the screen size. In such situation, a direct accumula-

tion of the splats in the final image gets extremely

slow and significantly affects the overall perfor-

mance, which hinders interactivity. Our method

allows overcoming this drawback by the effective use

of the spectral representation of large footprints.

 The proposed progressive rendering approach

fulfills all three requirements formulated in the

Introduction section. First, small splats are directly

aggregated into the density texture at the very first

step of the algorithm. These splats usually have

highest density values and thus affect the overall

picture most, since they mostly determine the range

of the transfer function being applied. Second, due to

decay of the Fourier coefficients of a smooth

function, each next iteration in the Fourier domain

will have less impact than the previous step. Thus,

changes in the displayed picture lessen over the

iteration steps and stabilize to the final state quite

rapidly, which was shown in a number of tests.

Finally, only missing modes of spectral

representation are added in each subsequent step, so

that no re-computation of any part of earlier obtained

results is needed.

 We have been able to significantly speed up the

appearance of the first result of the hybrid method

when compared to the full-resolution direct splatting

approach. In our tests, the speed-up varied from 3.3

times to two orders of magnitude depending on the

resolution of the output. This allows for computation

times suitable for interactive analysis, e.g., in

scatterplot matrices.

9. ACKNOWLEDGMENTS

The authors wish to thank Marius Dan and Stephan

Rosswog for sharing datasets. This work was

supported in part by a DFG grant LI 1530/6-2.

10. REFERENCES

[BFGS86] Bergman L., Fuchs H., Grant E., Spach S.:

Image rendering by adaptive refinement. SIGGRAPH

Comput. Graph. 20, 4 (1986), 29–37.

[BMW*06] Bergner S., Möller T., Weiskopf D.,

Muraki D.: A spectral analysis of function

composition and its implications for sampling in

direct volume visualization. IEEE Transactions on

Visualization and Computer Graphics 12, 5 (2006),

1353–1360.

[BW08] Bachthaler S., Weiskopf D.: Continuous

scatterplots. IEEE Transactions on Visualization and

Computer Graphics (Proceedings Visualization /

Information Visualization) 14, 6 (2008), 1428–1435.

[BW09] Bachthaler S., Weiskopf D.: Efficient and

adaptive rendering of 2-d continuous scatterplots.

Comput. Graph. Forum (Proc. Eurovis 09) 28, 3

(2009), 743 – 750.

[CBB06] Carr H., Duffy B., Denby B.: On

histograms and isosurface statistics. IEEE

Transactions on Visualization and Computer

Graphics 12, 5 (2006), 1259–1266.

[CBPS06] Callahan S. P., Bavoil L., Pascucci V.,

Silva C. T.: Progressive volume rendering of large

unstructured grids. IEEE Transactions on

Visualization and Computer Graphics 12, 5 (2006),

1307–1314.

[CM93] Crawfis R., Max N.: Texture splats for 3D

vector and scalar field visualization. In Proceedings

Visualization ’93 (1993), IEEE CS Press, 261–266.

[EDF08] Elmqvist N., Dragicevic P., Fekete J.-D.:

Rolling the dice: Multidimensional visual exploration

using scatterplot matrix navigation. IEEE

Transactions on Visualization and Computer

Graphics 14 (2008), 1141–1148.

[FKLT10] Feng D., Kwock L., Lee Y., Taylor R.:

Matching visual saliency to confidence in plots of

uncertain data. IEEE Transactions on Visualization

and Computer Graphics 16, 6 (2010), 980–989.

[FP04] Farrugia J.-P., Péroche B.: A progressive

rendering algorithm using an adaptive perceptually

based image metric. In Eurographics conference

proceedings (2004).

[GM77] Gingold R. A., Monaghan J. J.: Smoothed

particle hydrodynamics — theory and application to

non-spherical stars. Mon. Not. Roy. Astron. Soc. 181

(1977), 375–389.

[HBW11] Heinrich J., Bachthaler S., Weiskopf D.:

Progressive splatting of continuous scatterplots and

parallel coordinates. Comput. Graph. Forum 30, 3

(2011), 653–662.

[Hop96] Hoppe H.: Progressive meshes. In

Proceedings of the 23rd annual conference on

Computer graphics and interactive techniques

(1996), SIGGRAPH ’96, ACM, 99–108.

[HW09] Heinrich J., Weiskopf D.: Continuous

parallel co-ordinates. IEEE Transactions on

Visualization and Computer Graphics 15, 6 (2009),

1531–1538.

[LPD∗04] Linsen L., Pascucci V., Duchaineau M. A.,

Hamann B., Joy K.: Wavelet-based multiresolution

with nth-root-of-2 subdivision. Journal on

Computing special edition (2004).

[LT10] Lehmann D. J., Theisel H.: Discontinuities in

continuous scatter plots. IEEE Transactions on

Visualization and Computer Graphics 16 (2010),

1291–1300.

[Luc77] Lucy L. B.: A numerical approach to the

testing of the fission hypothesis. The Astronomical

Journal 82 (1977), 1013–1024.

[MFL13] Molchanov V., Fofonov A., Linsen L:

Continuous Representation of Projected Attribute

Spaces of Multifields over Any Spatial Sampling.

Comput. Graph. Forum (Proc. Eurovis 13) (2013),

to appear.

 [PB00] Pascucci V., Bajaj C. L.: Time critical

isosurface refinement and smoothing. In Proceedings

of the 2000 IEEE symposium on Volume visualization

(2000), VVS ’00, ACM. 33–42.

[PEPM12] Poco J., Eler D. M., Paulovich F. V.,

Minghim R.: Employing 2d projections for fast

visual exploration of large fiber tracking data. Comp.

Graph. Forum 31, (2012), 1075–1084.

[PS89] Painter J., Sloan K.: Antialiased ray tracing

by adaptive progressive refinement. SIGGRAPH

Comput.Graph. 23, 3 (1989), 281–288.

[RC96] Reddy B. S., Chatterji B. N.: An FFT-based

technique for translation, rotation, and scale-invariant

image registration. Trans. Img. Proc. 5, 8 (1996),

1266–1271.

[SDS96] Stollnitz E. J., Derose T. D., Salesin D. H.:

Wavelets for computer graphics: theory and

applications. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1996.

[SSD∗08] Scheidegger C., Schreiner J., Duffy B.,

Carrh., Silva C.: Revisiting histograms and isosurface

statistics. Visualization and Computer Graphics,

IEEE Transactions on 14, 6 (2008), 1659 –1666.

[Wes90] Westover L.: Footprint evaluation for

volume rendering. In Computer Graphics (1990),

367–376.

