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         a)         b)         c)          d)                   e) 

Figure 1: Hybrid approach for continuous scatterplot computation (―Bucky Ball‖ dataset): Small splats are 

rendered directly (a), large splats are computed via their spectral representation (b), and both textures are added 

to produce the final result (c). Result is compared to direct rendering of all splats (d). Color scheme is shown (e). 

ABSTRACT 

Continuous scatterplots are a consistent tool for the visual representation and exploration of continuous 

multivariate data defined on a continuous domain. Due to the complexity of the construction algorithm, 

application of continuous scatterplots is limited in terms of data size and screen resolution when interactive 

frame rates are desired. Progressive rendering is a paradigm of displaying an approximative visual outcome early 

on, which iteratively and incrementally gets improved until convergence to the final result is reached. This 

approach maintains the interactivity of the system and allows the user to make decisions immediately, i.e., much 

earlier than the end of the computation process. We propose a method for progressive rendering of continuous 

scatterplots based on a Fourier representation. By iteratively advancing from low to high frequencies and 

inverting the spectrum representation after each iteration, a series of scatterplots converging to the final result is 

generated and rendered. We demonstrate that this convergence is monotonic and that the proposed approach is 

more efficient than state-of-the-art methods, i.e., we can faster produce high-quality approximations. We propose 

to embed this idea into a hybrid approach which allows balancing the trade-off between quality of the image 

appearing first and its computation time. The proposed algorithms were implemented on the GPU. 
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1. INTRODUCTION 

Most volumetric scalar fields, no matter whether they 

have been measured or simulated, are assumed to be 

continuous or, at least, piecewise continuous. 

Examples include fields of temperature, density, 

pressure, salinity, etc. Seldom, these scalar fields can 

be described analytically. In most cases, data values 

are acquired by sampling the scalar field at discrete 

locations in space. In order to reproduce their 

continuous nature, an interpolation method is 

involved. 
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    Statistical properties of scalar fields can be 

explored via histograms. Pair wise relations of two 

such properties are usually represented in form of 

scatterplots. Multiple scatterplots can be investigated 

inform of a scatterplot matrix. All these techniques 

are well known and have been used for decades by 

operating on the values at the discrete sample 

locations. However, such an important property as 

continuity is being lost at this step. 

    Recently, new methods appeared which address 

the problem above by creating continuous 

representations of attribute spaces. They propose 

continuous histograms [CBB06, SSD∗08], continuous 

parallel coordinates [HW09, HBW11] and 

continuous scatterplots [BW08, BW09]. The idea 

behind these approaches is to perform a mapping of 

parts of the volume rather than just discrete samples 

when projecting to the visual domain. The 

distribution of attributes in the volume parts is 

reconstructed by means of interpolation. 

    Obviously, much more computational efforts are 

required to produce a continuous scatterplot when 

compared to its discrete analog. Therefore, there is a 

clear need for efficient algorithms showing high 

performance when applied to large datasets and high-

resolution outputs. One approach to design an 

interactive tool is to exploit the idea of progressive 

rendering. This idea is based on an iterative 

generation of visualizations with increasing quality 

which converge to the final result. The gain is to 

provide the user with preliminary but still 

informative outcomes at interactive rates. Based on 

the preliminary result, the user can decide whether it 

is worth to wait for the final result or whether the 

interactive query shall be modified. 

    The essential properties of progressive rendering 

algorithm which we target in our research can be 

summarized as follows: 

1. The key features of the result shall appear first. 

2. The change of intermediate results when stepping 

from iteration to iteration shall vanish. In other 

words, the new contributions to the final image 

decrease in each iteration. 

3. The result obtained at the previous step shall be 

effectively used when performing the next iteration, 

i.e., computations already made shall not be repeated. 

    Our work was inspired by the continuous 

scatterplots technique proposed by Heinrich et al. 

[HBW11]. In this algorithm, the physical volumetric 

domain is represented as a collection of Gaussian 

kernels centered at data samples. When mapping to 

the attribute domain (i.e., the domain spanned by the 

two dimensions of the scatterplot), each kernel 

appears as an elliptical splat called a footprint. The 

geometry of a footprint is entirely defined by the 

parameters of a locally linearized mapping, which 

allows for the pre-computation of footprints in form 

of splat textures. To handle large datasets, Heinrich 

et al. propose to split the data into chunks, produce 

an individual plot for each portion of the data, and 

then iteratively combine the plots over several frames 

using alpha blending. The result is a progressively 

updated image which is based on the amount of data 

already processed. So, the work by Heinrich et al. 

uses the general idea of a progressive rendering. 

However, using their approach, it is not easy to fulfill 

the first two requirements formulated above. The 

result may be highly affected by the way, how the 

data are split into chunks. Sophisticated methods may 

help to make a wise decision, but they may also 

break the interactivity of the application. 

    Our main contribution is a novel approach for 

progressive rendering of continuous scatterplots 

based on their frequency representation (spectrum). 

This kind of representation is obtained by applying a 

Discrete Fourier Transform (DFT) to the scatterplot's 

density distribution. The key idea is as follows: 

Small-sized footprints have bad (slowly decaying) 

spectra but can be efficiently plotted directly into the 

attribute space density plot (continuous scatterplot). 

Large-sized footprints slow down the computations 

when blended in the attribute space, but they have 

nice frequency representations. Hence, we propose to 

split the physical space kernels into two classes: 

Those having small footprints (few pixels support) 

and those whose footprints have good Fourier 

representations. The former are plotted directly while 

the latter are processed iteratively, progressing from 

the lowest most meaningful modes to the highest 

frequencies with vanishing contributions. 

    Besides that, we extend the existing method to 

unstructured volumetric data and explore the 

performance and error dependence on most key 

parameters. We implemented the method by Heinrich 

et al. [HBW11] and our own algorithm entirely on 

the GPU (using CUDA) for better evaluation of their 

applicability and efficiency. 

2. RALATED WORK 

The idea of progressive image generation has been 

known for decades [BFGS86]. Progressive methods 

find their application in many visualization and 

computer graphics problems, e.g., ray tracing [PS89], 

global illumination [FP04], or volume rendering 

[CBPS06]. One of the most prominent examples is 

surface renderings where progressive meshes 

[Hop96] can be used in case of irregular meshes and 

subdivision surfaces in case of regular patches or 

semi-regular meshes. Also, isosurface extraction 

from progressively refined tetrahedral or pyramidal 

meshes (e.g., [LPD∗04]) and isosurface smoothing 



 

[PB00] are common examples in volume 

visualization.  

    Spectral analysis is used to improve sampling of 

the rendering integral in volume rendering 

[BMW*06]. A wide range of progressive spectral 

methods [SDS96], especially based on the Fast 

Fourier Transform (FFT), are very common in image 

processing, e.g., for image registration [RC96] or for 

characterization of brain fibers' shape [PEPM12].  

    Scatterplots are a well-known tool for 

multidimensional data visualization and analysis 

[EDF08]. Recently, an idea of continuous scatterplots 

was developed in a series of works by Bachthaler, 

Heinrich, and Weiskopf. Initially applied for 

mapping tetrahedra by using a linear interpolation of 

attributes within them [BW08], the approach was 

generalized to regular rectangular grids with an 

arbitrary interpolation method [BW09], where 

recursive subdivision of cells was exploited. Later, 

isotropic density functions were used to decompose 

the whole volume into a system of overlapping 

spheres [HBW11]. Splatting is performed for the 

generation of progressively sampled intermediate 

images which are then combined to produce the final 

continuous scatterplot. The progressive rendering 

component of the algorithm is based on partitioning 

the volumetric data into small chunks which are fast 

to operate. Intermediate images are produced for 

down-sampled or even freely re-sampled data. A 

generalization to continuous representations of 

projected spaces was recently proposed in [MFL13]. 

    The idea of image space footprint computation of 

volumes has been developed by Westover [Wes90]. 

Feng et al. [FKLT10] use Gaussian footprints to 

visualize data samples uncertainty. Lehmann and 

Theisel [LT10] developed a method to find and 

highlight discontinuities in continuous scatterplots. 

3. BACKGROUND 

Before we describe our approach in detail, we would 

like to provide the respective background. For the 

construction of the continuous projections, we look 

into the settings of the involved spaces (a volumetric 

physical domain and a 2D attribute domain which is 

visualized). We discuss some technical aspects of the 

method by Heinrich et al. [HBW11] and, in 

particular, provide useful generalization by allowing 

the lengths of spatial kernels to vary from sample to 

sample. 

3.1 Basic Terms and Notations 

Let ( ) x  be a multivariate multidimensional function 

with m  variables defined over n  dimensions, i.e., 

: n m   . It is sampled at position

{ } n

i X x      mapping    them    to    the    set  

 

Figure 2: Physical volume X  is mapped by   to the 

attribute domainQ . A spatial density is  is defined in 

a spherical neighborhood of sample ix , which has an 

elliptical footprint inQ . Scalar function i  denotes 

density on the footprint. 

{ } m

i Q q  , 1, ,i N  . Figure 2 illustrates our 

notations. There exists a scalar non-negative function 

overall ( )s x  defined on X  which is called the spatial 

density function. It represents the importance of data 

in the volume and is usually set to be constant. For 

later consideration it is useful to approximate the 

density function by a weighted sum 
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a compactly supported shape function ( )s x  by 
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where ih  defines a scaling radius of ( )is x . In our 

work we focus on isotropic kernels such that 

( |) ||)|( rs sx x . Our goal is to find proper weights 

iw  to achieve overall ( ) consts x . Since this condition 

simply means that all parts of domain X  are equally 

important, the exact value of the constant does not 

matter. Then, if one integrates the relation (1) over 

the volume, one deduces 
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with constants C1 and C2. This means that 
n

i iw h  

stand for volume fractions associated with samples. 

Therefore, one takes 1iw   for all i  to get 

overall ( ) consts x . 

    In the following, we study the case 3n   and 

2m   as the most practically important one, since it 

is common practice to investigate pairs of attributes 

defined over a volume by means of scatterplots. 



 

    Let iX  be the support of the function ( )is x . The 

construction of a continuous scatterplot is based on 

additive mapping of all iX  weighted by ( )i iw s x by 

means of ( ) x  to the attribute domain Q . Recall that 

discrete scatterplots map the data sample by sample 

resulting in the set { }iq . A continuous scatterplot is 

composed by a collection of images of iX . It is 

shown in [HBW11] that spherical kernels ( )is x  

result in elliptical footprints. Each footprint is 

equipped with a density distribution ( )i q , which 

represents a counterpart of the spatial density ( )is x , 

see Figure 2. Hence, a continuous scatterplot 

overall ( ) q  is the direct sum of densities ( )i q . 

    The key relation between the two density functions 

is given by 

0 0

overall overall( )d ( )d ,n m

X Q

s  x x q q  (2) 

for any 0X X
 

and 0 0( )Q X . This condition 

uniquely defines overall ( ) q . Equation (2) with 

0X X  and 0Q Q  is called total mass 

conservation. 

3.2 Direct Approach for Generation of 

Continuous Scatterplots 

Following the method proposed in [HBW11], a 

spherical neighborhood of sample ix  of radius ikh  is 

mapped as an elliptical splat centered at  

1 2( ( ), ( ))i i iq qq x x  using a linear approximation of 

the mapping   in a neighborhood of sample ix . The 

density ( )i q  is non-zero within this footprint. 

Besides its center, a footprint is uniquely defined by 

its extents ,i xS  and ,i yS  (semi-axes of the screen-

space ellipse) and its rotation angle i . These 

parameters are defined as follows (cf. [Wes90, 

HBW11]): 

 , 1 , 2, ,i x i i y iS kh S kh    (3) 
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where k  is a global smoothing parameter discussed 

below, ih  is a local support size which may vary 

from sample to sample and reflect the samples' 

density in the neighborhood of the i -th instance, 
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where ·  stands for the scalar product. Note that the 

computation of cos i  can be numerically instable for 

small b  when applying Equation (4) naively. If 

| |b    for some threshold 0 , the splat is not 

rotated, i.e., 0i  . Thus, one can explicitly set 

cos 1i  . 

    The user is allowed to change the value of 

parameter k  which simultaneously scales the extents 

,i xS  and ,i yS  of all footprints. Thus, the global 

smoothness of the continuous scatterplot can be 

controlled: For small values of k  the result is almost 

a discrete plot, while large values of  k  make the 

resulting image blurred. This scaling is equivalent to 

the respective change of support sizes of spatial 

kernels ( )is x . Here, their supports shrink to samples 

ix  as k  vanishes and unboundedly grow when 

k . Note that for larger values of k , the number 

of locally overlapping spatial kernels increases. 

    All elliptical footprints are added as textures to the 

final image. In the following we refer to this 

procedure as a direct (splatting) approach in contrast 

to the progressive method proposed in this paper. 

After a normalization step which makes the range of 

the accumulated density overall ( ) q  equal to [0,1] , a 

transfer function can be applied. The main bottleneck 

of the method is related to the rendering of large 

splats (relative to the screen resolution), since their 

contributions to many pixels have to be computed. 

This situation occurs in particular when producing 

high-resolution images, when zooming into a smaller 

region of the plot, or when choosing high values of 

the global smoothing parameter k . 

3.3 Progressive Approach 

To overcome the issue of insufficient efficiency of 

the method for interactive visual analyses, a 

progressive splatting approach was proposed in 

[HBW11]. When splitting the input data into small 

portions and operating on them separately, the 

number of operations per chunk is reduced. It makes 

it possible to generate images for each chunk faster.  

    Gradual accumulation of the generated images 

results in a progressively changing continuous 

scatterplot. However, every intermediate result 

intrinsically depends on which part of the data is 

already processed and which not. In other words, it 

depends on the order in which the chunks are 

accumulated. To illustrate this effect we generated a 

"Tornado" dataset, courtesy of [CM93], sampled at 
340  regularly distributed nodes. Velocity magnitude 

and the z -component of the velocity field are taken  

2 2

1 2, , ( ) 4
2 2
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Figure 3: Dependence of intermediate images in 

progressive splatting on the fraction of processed 

data ("Tornado'' dataset with 
340  gridded nodes). 

as dimensions of the scatteplot. Intermediate results 

after operating 25%, 40% and 50% of samples as 

well as the final result are shown in Figure 3. All four 

images are qualitatively very different, so that there 

is no monotonic behavior of the results along 

iterations. Hence, this unpredictability of the 

intermediate results will make the user wait until all 

computations are done, which destroys the essence of 

progressive rendering (see Requirements 1 and 2 

formulated in the Introduction). Of course, the 

intermediate images depend on how the chunks of 

data have been generated and a different choice may 

have produced qualitatively better approximations 

early on, but the issue of not knowing whether the 

intermediate results reflect the final result well is 

apparent. 

    We also note that the normalization of the density, 

which is necessary before a transfer function can be 

applied, is very sensitive to the skipping of data 

portions. In fact, skipping a few samples contributing 

to the pixel with the highest density obviously 

changes the normalization factor, which affects the 

appearance of the whole picture, although the 

transfer function remains the same. 

    The situation becomes even worse when dealing 

with unstructured spatial datasets, which are 

discussed in the next section. The reason is that there 

is no standard way of ordering data in memory and 

splitting data into chunks can be absolutely arbitrary. 

Note that even if the data are regularly sampled, after 

a zooming operation, the data to be displayed 

generally do not belong to any spatially regular 

structure.  These    considerations   motivated   us   to  

 

Figure 4: Dependence of intermediate images in 

progressive splatting on the fraction of processed 

data ("two White Dwarfs'' dataset with 24k 

unstructured samples). 

design an approach, where all samples are handled 

uniformly and simultaneously and where no 

particular spatial arrangement of the samples is 

assumed. 

    Our solution to the issue above relies on the 

spectral representation of continuous scatterplots. 

Instead of splitting the data, the progressive part of 

our approach is based on a consecutive computation 

of the Fourier frequencies advancing from the lowest 

most contributing modes to the highest less important 

ones. In the following section we show that large 

splats have a nice (rapidly decaying) representation 

in  the  frequency  domain  that  makes  it  possible to 

significantly speed up the construction of continuous 

scatterplots. 

    We note that spatially unorganized data can be 

stored in a file in arbitrary order. Thus, when 

applying the progressive splatting idea from 

[HBW11], the distribution of samples among chunks 

of data is very accidental. This fact leads to the effect 

shown in Figure 4. Shown is a dataset representing 

an astrophysical simulation of a binary system  

consisting of two White Dwarfs. The dimensions of 

scatterplot are the internal energy values and 

temperature at samples' positions. Images for 33.3%  

and 50%  of the samples provide a poor 

approximation to the final result shown in 

Figure 5 (e). 

3.4 Spatially Unstructured Data 

We generalize the approach of Heinrich et al. 

[HBW11] by allowing the local scales to vary from 

sample to sample. It makes it possible to apply the 

direct approach to irregularly sampled data. In order 

to define an individual scale ih , we estimate the 

local density of samples: In the regions, where 

samples are dense, ih  is small, while sparsely 

distributed ix  yield large ih . Only the relative 

variation of scales is important, since the absolute 

magnitude can be changed by adapting parameter k . 



 

For regular data, the samples' density is constant 

everywhere, hence, all ih  are equal. 

    The ability to handle irregular data is very valuable 

for practical applications. For instance, various 

scientific measurement techniques and particle-based 

numerical methods may produce large multivariate 

unstructured spatial datasets which are to be 

visualized and analyzed. Of course, it is always 

possible to re-sample unstructured data regularly, but 

this comes at the cost of introducing interpolation 

errors and losing spatial adaptivity which may affect 

the result. Therefore, it is advantageous to operate on 

the original data. 

4. SPECTRAL REPRESENTATION OF 

CONTINUOUS SCATTERPLOTS 

For our purposes, it is important that density ( )i q  in 

the footprint domain can be computed from some 

template kernel function ( ) q  via an affine 

transformation composed by scaling, rotation, and 

translation, i.e., 

( ) ( ( )),i i i iL   q q q
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In other words, to compute ( )i q  at some location, 

one has to perform translation by iq , rotation by 

angle i , scaling by , ,( , )i x i yS S , and then evaluate 

the shape-function   at the obtained location. This is 

just an analytical expression of the splatting, where a 

pre-computed texture containing values of ( ) q  is 

placed at the right position in the frame with right 

scaling and right orientation resulting in the footprint 

( )i q . The coefficient 3 1 1

, ,· ·i i i i x i ywh S S    serves to 

conserve the mass associated with the i -th sample: 
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Here we assumed that the 1L -norms of template 

functions s  and   are equal and used 1 1

, ,| | ·i i x i yL S S  . 

Summation over i  provides the total conservation of 

mass (2). 

    The final density distribution is given as a 

composition of individual contributions of all 

samples, i.e., 

1 2 1 2

1

( , ) ( , ).
N

i

i

I q q q q


  

Here and further we use overallI   for short. Now we 

examine the density function in the frequency 

domain. By the linearity property, the Fourier 

transform of 1 2( , )I q q  reads 

1

[ ]( , ) [ ]( , ).
N

i

i

I u v u v


   

It is known that scaling, rotation, and translation 

operators become scaling, rotation and modulation 

after the Fourier transform, correspondingly. In 

particular, 
1 1[ ( )]( ) | |· [ ( )]( )f A A f A x q x q  . Thus, 

1 2( ( ) ( ))
[ ]( , ) e | |· [ ]( ( , )),i ii uq vq T T
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where -T denotes inversion and transposition, with 

,

,

0 cos sin
· .

0 sin cos

i x i iT

i

i y i i

S
L

S

 

 


   
    

  
 

Finally, 
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 x x   (5) 

When the spectral representation [ ]I  is computed, 

one can apply the inverse Fourier transform to obtain 

the continuous scatterplot. Practically, we use the 

discrete Fourier transform rather than the Fourier 

transform itself. This approximation introduces errors 

which vanish if the resolution of textures (number of 

frequencies taken into account) grows. We also need 

to comment on the periodicity of the discrete Fourier 

transform: Footprints located close to the boundary 

of the computed region may have their parts 

appearing at the opposite part of the boundary instead 

of being cut. To overcome this effect, the region 

should be extended to reserve additional space for 

such footprints. 

5. PROGRESSIVE ALGORITHM 

Our complete computation of spectral representation 

[ ]I  is much slower than the standard splatting-

based technique for continuous scatterplot 

generation. Obviously, every footprint has usually 

non-zero contributions to all frequencies ( , )u v , 

whereas the splat may have very small size. Thus, if 

the resolution of the screen is u vR R , complexity of 

[ ]I  computation is u vN R R  . Recall that this 

representation has to be transformed by the inverse 

FFT and not the full resolution can be shown, since 

some border region of the texture is reserved to 

eliminate the periodicity effect of DFT. However, 

there is a strong side of [ ]I . 

    It is well-known that the decay of Fourier 

coefficients depends on the smoothness of a function: 



 

The smoother the kernel ( ) q , the faster the decay 

of | [ ]( , ) |u v . In fact, for many footprints, high 

frequencies do not significantly affect the result and 

therefore may be neglected. Based on this 

observation, we propose the following progressive 

algorithm for continuous scatterplot construction: 

Evaluate [ ]( , )I u v  for some low frequencies, 

perform the inverse FFT and render the result as the 

first approximation to the final picture. In subsequent 

iterations higher frequencies are added to the Fourier 

representation of the scatterplot and the rendered 

picture is updated after performing the inverse FFT. 

Since high frequencies of [ ]I  computed at later 

iterations are composed by vanishing contributions 

from individual splats, later iterations have generally 

less impact on the final result for smooth kernels. 

Thus, Requirements 1-3 in the Introduction are 

fulfilled. The number of frequencies computed in 

each iteration depends on the hardware performance 

and the data size. It can be fixed or vary from one 

step to another.  

6. HYBRID ALGORITHM 

Large footprints have fast decaying Fourier spectra 

and therefore can be very efficiently and with high 

precision represented by a few lowest frequencies. 

Small footprints can be fast rendered directly to the 

scatterplot. Here "small" means that at least one of 

the extents ,i xS  and ,i yS  is less than a prescribed 

threshold. To profit from the best of both worlds, we 

divide all footprints into two groups according to 

their size and operate accordingly. The grouping is 

based only on values ,i xS and ,i yS , i.e., no additional 

computations are needed. Moreover, the critical size 

of a splat below which it is labeled as small, depends 

only on the screen resolution. Since parameter k  

scales all splats, its value affects the grouping. 

    The idea of the hybrid approach is illustrated in 

Figure 1. We used the "Bucky Ball'' dataset (courtesy 

AVS, USA) with 
332  gridded samples. Small and 

large splats rendered by means of the direct method 

and their spectral representation, respectively, see 

Figure 1 (a) and (b). Both plots are combined to 

produce the final result (c) which is very close to the 

scatterplot computed by direct splatting (d). 

7. RESULTS 

All numerical tests were performed on a PC with 

graphic card NVIDIA GTX 680 and implemented in 

CUDA. We used the same color scheme to render all 

continuous representations of projections, see 

Figure 1 (e). The texture size used for computation is 
21024  pixels. We reserved 10%  for the border, such 

that the size of the rendered texture is 
2921  pixels. 

Computation of the whole spectral representation 

requires 
21024 / 4096 256  iterations, where 

parameter 4096 is chosen to achieve a high 

occupancy of the GPU. If other is not specified, 

overall ( ) consts x  is used. Other information about 

parameters and datasets is shown in Table 1. 

dataset k threshold Total number 

of points 

Number of 

large splats 

Bucky Ball 2.0 0.02* uR  32768 13986 

White Dwarfs 1.6 0.008* uR  24149 21676 

Tornado 0.6 0.01* uR  262144 82856 

Table 1: Parameters and thresholds for all 

experiments. Shown are values of the global 

smoothing parameter k , the threshold that defines 

which splats are labeled as small, the size of dataset, 

and the number of splats computed by the spectral 

method for the given threshold. 

    First, we demonstrate the convergence of the pure 

spectral approach. The dataset represents an 

astrophysical   simulation   of   two  merging   White 

Figure 5: Continuous scatterplots of merging White Dwarfs dataset. When all footprints are progressively 

computed using spectral method, small splats cause noise, which is visible at first iterations and disappears 

later. After all iterations are completed, the result is identical to one obtained by the direct approach, i.e., when 

all elliptical footprints are blended as textures. 



 

 

Figure 6: Hybrid approach applied to the merging 

White Dwarfs dataset. 

Dwarfs. The simulation was executed by means of 

the Smoothed Particle Hydrodynamics method 

[Luc77, GM77].   The  data    includes    unstructured 

nodes'   positions  ix ,  lengths   ih ,   several scalar 

attributes and their gradients. Dimensions of the 

scatterplot are internal energy and temperature fields 

in horizontal and vertical directions, correspondingly. 

Results for overall ( )s x  to be equal to the density field 

are shown in Figure 5. Small splats have poor 

spectral representation and, thus, serve as a source of 

noise. This noise is eliminated during progressive 

computation of Fourier magnitudes. After all 

iterations are completed, the result is identical to one 

obtained by the direct method. When the hybrid 

approach is applied to the same dataset, the initial 

level of noise is much lower, see Figure 6. 

    Next, we used the "Tornado'' dataset, courtesy of 

[CM93]. It is given as an analytical function 

describing a velocity profile in a volume. We 

sampled the velocity field at 
364  random uniformly 

distributed locations. Results obtained by the hybrid 

approach are presented in Figure 7. Velocity 

components in x  and y  directions serve as the two 

axes of the scatterplots. We intentionally chose a 

relatively small k  to demonstrate the effect of 

detailization during progressive rendering. Small 

global smoothness makes the sizes of footprints 

small, thus, even some individual splats remain 

distinguishable in the continuous scatterplot. The first 

iteration of the hybrid approach results in a slightly 

smeared image with more and more details appearing 

at later steps. 

 

Figure 7: Hybrid approach applied to the "Tornado'' 

dataset. 

    Computational times are listed in Table 2. Both the 

spectral and the hybrid approaches deliver 

preliminary results much earlier than the direct 

splatting method. Though, the first iteration of the 

hybrid method takes a longer time than one iteration 

of the spectral method, its later iterations are faster 

and the quality of the result is higher. The 

accompanying video shows a comparison of the 

quality of the results obtained with spectral and 

hybrid approach. Note that the first iterations of the 

video are played in slow-motion to have enough time 

to observe the intermediate images.  

   To measure the error of the proposed methods at j

-th iteration, we computed the root-mean-square error 
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where xp  and yp  stands for pixel indices, direct  is 

the density computed by the direct approach,   can 

be computed either by the spectral or by the hybrid 

method, and the bars denote that the densities are 

normalized (individually). Results are shown in 

Figure 8. It is evident that the error is gradually 

improved along the progressive computations. The 

error of the hybrid method after first iteration is 

significantly less than the analogous error of the 

spectral one. Moreover, only a few first iterations of 

the hybrid method suffice to closely approach a 

stable state. 

    The hybrid approach has better error behavior 

though the first  step  takes  more  computation  time. 



 

dataset direct Spectral, 

per iter. 

Hybrid, 

1st iter. 

Hybrid, from 

2nd iter. 

Bucky Ball 3942 ms 119 ms 435 ms 48 ms 

White Dwarfs 895 ms 95 ms 269 ms 76 ms 

Tornado 1254 ms 591 ms 282 ms 203 ms 

Table 2: Computation times for construction of 

continuous scatterplots using direct approach, pure 

spectral representation and the hybrid algorithm (all 

methods are implemented on GPU). 

 

Figure 8: Error behavior along the iterative 

construction of continuous scatterplots. The plots 

present the root-mean-square errors of the spectral 

algorithm and the hybrid method. Results for the 

"Bucky Ball" (red), two White Dwarfs (blue) and the 

"Tornado" (magenta) datasets are shown. The error 

of the hybrid approach applied to the "Bucky Ball" 

dataset (red line in (b)) is multiplied by a factor of 
310  to be visible. 

 

Figure 9: Plots of calculation times of appearence of 

the first meaningful image against output resolution 

(pixels) computed for "Bucky Ball" dataset. Results 

for the direct splatting (red), the hybrid method (blue) 

and the spectral approach (green) are shown. 

As follows from the data in Table 2, almost 7 

iterations of the spectral method can be finished 

before the first iteration of the hybrid method is 

completed. However, the initial error of the hybrid 

approach is lower than the error of the spectral 

algorithm after 7 iterations and decreases faster in the 

consequent steps. This holds for all datasets. By the 

time, when the first result of the hybrid approach is 

delivered only 11% ("Bucky Ball"), 30% ("two 

White Dwarfs") and 22% ("Tornado") of samples can 

be processed by the direct method, which is 

insufficient for performing a reliable analysis.  

    The benefit of our approach becomes extremely 

significant when producing high-resolution outputs. 

Figure 9 demonstrates the dependence of calculation 

times for the first meaningful picture on the output 

resolution. In particular, the speed-up of 500 times is 

achieved for 3686uR   pixels. Note that the values 

of time (vertical axis) are scaled logarithmically. 

Non-monotonic behavior of the green line is related 

to higher efficiency of FFT when R is a power of 2. 

8. CONCLUSION 

We have seen that when producing high-resolution 

continuous scatterplots, when dealing with highly 

adaptive sampling in physical space, when zooming 

into a region of interest on a scatterplot, or when 

increasing the global smoothness of the result, sizes 

of some footprints become large up to the range of 

the screen size. In such situation, a direct accumula-

tion of the splats in the final image gets extremely 

slow and significantly affects the overall perfor-

mance, which hinders interactivity. Our method 

allows overcoming this drawback by the effective use 

of the spectral representation of large footprints. 

    The proposed progressive rendering approach 

fulfills all three requirements formulated in the 

Introduction section. First, small splats are directly 

aggregated into the density texture at the very first 

step of the algorithm. These splats usually have 

highest density values and thus affect the overall 

picture most, since they mostly determine the range 

of the transfer function being applied. Second, due to 

decay of the Fourier coefficients of a smooth 

function, each next iteration in the Fourier domain 

will have less impact than the previous step. Thus, 

changes in the displayed picture lessen over the 

iteration steps and stabilize to the final state quite 

rapidly, which was shown in a number of tests. 

Finally, only missing modes of spectral 

representation are added in each subsequent step, so 

that no re-computation of any part of earlier obtained 

results is needed. 

    We have been able to significantly speed up the 

appearance of the first result of the hybrid method 

when compared to the full-resolution direct splatting 

approach. In our tests, the speed-up varied from 3.3 

times to two orders of magnitude depending on the 

resolution of the output. This allows for computation 

times suitable for interactive analysis, e.g., in 

scatterplot matrices. 
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