
Joining Meshes with a Local Approximation
and a Wavelet Transform

Anh-Cang PHAN
Aix-Marseille University
CNRS, LSIS UMR 7296
13009, Marseille, France

Anh-cang.Phan@univ-amu.fr

Romain RAFFIN
Aix-Marseille University
CNRS, LSIS UMR 7296
13009, Marseille, France

Romain.Raffin@univ-amu.fr

Marc DANIEL
Aix-Marseille University
CNRS, LSIS UMR 7296
13009, Marseille, France
Marc.Daniel@univ-amu.fr

ABSTRACT
Constructing a smooth surface of a 3D object is an important problem in many graphics applications. Subdivision
methods permit to pass easily from a discrete mesh to a continuous surface. A generic problem arising from
subdividing two meshes initially connected along a common boundary is the occurrence of cracks or holes between
them. Therefore, we propose a new method for joining two meshes with different resolutions using a tangent plane
local approximation and a Lifted B-spline wavelet transform. This method generates a connecting mesh where
continuity is controlled from one boundary to the other. This guarantees that the discrete continuity between these
mesh areas is preserved and the connecting mesh can change gradually in resolution between coarse and fine areas.
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1 INTRODUCTION

3D object models with complex shapes are generated
by a set of assembled patches or separate mesh areas
which may be at different resolution levels, even with
different subdivision schemes. Cracks, gaps or holes
may appear on their surfaces because of having a dif-
ference in subdivision schemes or a difference in reso-
lution levels between adjacent faces.

In order to overcome these drawbacks and particu-
larly cracks, this paper presents a new technique cre-
ating a smooth connecting surface linking two meshes
with different resolutions and with different subdivision
schemes. We aim at constructing a high quality con-
necting mesh between two selected areas of a model
so that we can preserve the “continuity” between these
selected mesh areas to generate a smooth surface. It
means that the curvatures must be “continuous” on the
boundaries, which must be studied in terms of discrete
curvatures, the latter being not presented here. The dis-
crete boundary curves of the connecting mesh are cre-
ated by a linear interpolation, a tangent plane local ap-
proximation, and a Lifted B-spline wavelet transform.
They respect the local curvatures and change their point
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densities gradually from coarse to fine and conversely.
Our contributions are as follows: 1) Provide a mesh
joining solution by constructing a high quality connect-
ing mesh (CM) between two meshes defined with sub-
division surfaces, each mesh being at a different subdi-
vision level; 2) Detect and remove cracks on the surface
caused by a difference in resolution between neighbor-
ing faces; 3) Apply a local tangent plane reconstruction
and a wavelet transform to position newly inserted ver-
tices on the expected surface. This enables us to re-
construct smooth connecting surfaces from boundary
vertices of the two meshes. Therefore, the continuity
between the meshes will be preserved; 4) Allow filling
holes, pasting meshes, and joining 3D objects to gener-
ate a smooth discrete surface with a natural shape and
visually fair connectivity.

The remaining of the paper is organized as follows:
Section 2 and 3 detail the previous and related works
for mesh connection. Our algorithm is described in sec-
tion 4 and details are given in section 5. We show and
compare results of our algorithm in section 6. Finally,
we draw the conclusion in section 7.

2 PREVIOUS WORKS
Subdivision surfaces have been used widely in fields of
geometric modeling, computer graphics for shape de-
sign, animation, multi-resolution modeling or even as
movie production, game engines and many other engi-
neering applications. Today one can find a variety of
subdivision schemes for geometric design and graphi-
cal applications such as Catmull-Clark [Cat98], Doo-
Sabin [Doo78], Butterfly [Dyn90], Loop [Loo87], etc.



In addition, the theory of wavelets has been applied suc-
cessfully in the areas of computer graphics as surface
reconstruction, subdivision, multi-resolution analysis,
etc. Many subdivision methods applying wavelet-based
multiresolution analysis of an arbitrary surface were in-
troduced in [Sto96, Lou97, Mal98, Zor00], etc. More-
over, subdivision wavelets with the lifting scheme have
been developed in [Swe98, Ber04a]. This latter could
be an interesting approach for CAD applications, like
surface reconstruction.
Commonly, a subdivision of the entire input mesh is
not necessary nor desired while one only needs to sub-
divide some areas of the mesh to add details on the
object or obtain a smoother surface. This is impor-
tant to reduce the number of faces of the mesh as well
as the unnecessary subdivision levels, and save the re-
finement time or the storage space. Some research
[Hus10, Hus11, Pak07] are related to the incremental
subdivision method with Butterfly, Loop and Catmull-
Clark schemes. The main goal of these methods is to
generate a smooth surface by refining only some se-
lected areas of a mesh and remove cracks by simple
triangulation. However, this simple triangulation has
some undesired side-effects. It changes the connectiv-
ity, the valence of odd vertices, and produces high va-
lence vertices leading to long faces. This not only al-
ters the limit subdivision surface, but also reduces its
smoothness. It creates ripple effects on the subdivision
surface. Moreover, these methods recommend adap-
tively refining the areas of interest using the same sub-
division scheme. A surrounding part of the area out-
side the adaptively subdivided area is also refined in
the most common case in order to reduce brutal nor-
mal deviation. The error is computed at each step and
the subdivision is stopped once this error reaches a user
specified threshold. Users need to compute and control
over a number of subdivision steps.
On the other hand, such models of 3D objects are
formed by assembled patches or meshes. Thus,
available methods to join these meshes along boundary
curves between them are of immediate practical
interest. The main challenge in designing a mesh
connection algorithm is to guarantee that the continuity
between the meshes is preserved, while the resolution
between them is changed gradually. In addition, the
algorithm would be simple, and efficient. This problem
has been studied extensively and there are several
considerable research works relevant to connecting
or joining meshes in [Bar95, Fu04]. These methods
consist in connecting the meshes of a surface at the
same resolution level which adopt various criteria to
compute the planar shape from a 3D surface patch by
minimizing their differences. They are computationally
expensive and memory consuming. Recently, Di Jiang
and F. Stewart [Jia07] introduced the joining algorithms
based on the use (as a supplement to absolute error

criteria) of normal-vector error criteria for the dis-
crepancy between the surface patch and the associated
mesh patch. They join given meshes together while
maintaining a proxy for the normal-vector error, as well
as the absolute error. However, these algorithms adjust
the vertices of the input meshes in a way that constrains
them to lie in a transfinite interpolation defined by
Whitney extension. Therefore, they can produce large
changes in the normal direction of triangles near the
mesh boundary, even turn the triangles upside down by
the joining process. Moreover, the algorithms do not
mention the continuity and the progressive change in
resolution between meshes after joining them together.

In [Phan12], a mesh connection method based on a RBF
local interpolation and a wavelet transform has been
introduced. In this paper we propose a more reliable
method for mesh connection which allows us to con-
struct a high quality connecting mesh and a continuous
surface. The goal is to gain in both time of compu-
tation and surface quality. This new method is based
on a tangent plane local approximation and a wavelet
transform without solving any linear system, handling
cracks, modifying the original boundaries of mesh areas
of a model and the closest faces around the boundaries
during the connecting process. We will compare both
methods in section 6.

3 BACKGROUND
3.1 Wavelet-based Multiresolution repre-

sentation of curves and surfaces
Wavelet is receiving a lot of attention due to the prac-
tical interest of 3D modeling in a large range of appli-
cations, such as Computer Graphics and CAD [Mal98,
Ols08]. Wavelet tool can be used to derive a hier-
archical multi-resolution representation of curves and
surfaces [Lou97]; a smooth curve at different resolu-
tion levels [Ols08]; an overall shape edition of a curve
while preserving its details [Suc09]; and a curve ap-
proximation [Kho00]. Wavelet analysis provides a set
of tools to represent functions hierarchically [Sto96].
The coarse scaling function represents coarse curves or
surfaces and encodes an approximation of the function,
while the wavelet function represents the difference be-
tween coarse and fine curves or surfaces, and encodes
the missing details. Many subdivision wavelets have
been proposed in [Ber02, Ber04a, Sam04]. They allow
a decomposition of curves and surfaces at different res-
olutions while maintaining geometric details. In addi-
tion, the combination of B-splines and wavelets leads
to the idea of B-spline wavelets [Ber04a]. B-spline
wavelets form a hierarchical basis for the space of B-
spline curves and surfaces in which every object has a
unique representation. Taking advantage of the lifting
scheme [Swe96b], the Lifted B-spline wavelet [Ber02]
is a fast computational tool for multiresolution analysis



of a given B-spline curve with a computational com-
plexity linear in the number of control points. They al-
low representing B-spline curves at multiple resolution
levels, editing curves, etc.

The Lifted B-spline wavelet transform includes the for-
ward and the backward B-spline wavelet transform.
From a fine curve at the resolution level J, CJ , the for-
ward B-spline wavelet transform decomposes CJ into
a coarser approximation of the curve, CJ−1, and detail
(error) vectors. The detail vectors are a set of wavelet
cœfficients containing the geometric differences with
respect to the finer levels. The backward B-spline
wavelet transform can be used to reconstruct fine curves
from a coarse curve and detail vectors. Given a coarse
curve at the resolution level J− 1, CJ−1, the backward
B-spline wavelet transform synthesizes CJ−1 and the
detail vectors into a finer curve, CJ .

In our approach, we apply the Lifted B-spline wavelet
transform for multiresolution analysis of discrete
boundary curves of a connecting mesh.

3.2 Tangent Plane Local Approximation
for implicit surface reconstruction

Reconstruction of 3D surfaces from point samples is a
well-studied problem in computer graphics. It allows
fitting of scanned data, filling of surface holes, connect-
ing and remeshing of 3D complex models. Implicit
surface methods can directly reconstruct approximat-
ing surfaces from 3D scattered data set, such as mov-
ing least squares (MLS) [Lev03], implicit surface meth-
ods [Car01, Cas05], etc. We can classify the meth-
ods as either global or local approaches. Global fit-
ting methods use the whole input data to compute im-
plicit functions. Their disadvantage is that the computa-
tional complexity rapidly increases consequently to the
data set size. Moreover, they present the well-known
feats to discard local details (which can be an advan-
tage or also a disadvantage). Therefore, it is difficult to
use these methods directly to reconstruct implicit sur-
faces from large point sets consisting of more than sev-
eral thousands of input points. Practical solutions on
large point sets involve the local fitting methods to re-
construct the surfaces such as RBF local interpolations
[Bra06, Cas05], adaptive RBF reduction and fast RBF
methods [Car01]. Both methods require the construc-
tion of linear constraints on the control points for each
interpolation point and thus the definition of a system of
linear equations. The surface reconstruction can be ob-
tained by solving this system. However, without adding
off-surface constraints, the linear system may become
trivial and we cannot solve it to specify implicit func-
tion values.

In order to extrapolate local frames (tangents, curva-
tures) between two meshes, we need a local approx-
imation method on the points that will be projected

[Hop92, Ale04, Lev03]. We choose a tangent plane
based local method to approximate the expected surface
using a set of local tangent planes computed at each
sample point (see in Fig. 1b) because this method does
not require such information as methods depending on
off-surface constraints. This method enables us to re-
construct smooth implicit surfaces from a set of control
points.

Figure 1: Nearest neighbors for tangent plane estima-
tion.

It first considers subsets of nearest neighboring points
to estimate local tangent planes as shown in Fig. 1a,
and then defines an implicit function as a signed dis-
tance to the tangent plane for the data points. For ex-
ample, Hoppe’s method [Hop92] reconstructs a surface
from a set of all unorganized points scattered on or near
the surface using a contouring algorithm and the param-
eters k,ρ,δ defined by the user, where k is the num-
ber of nearest neighbors, ρ and δ are the thresholds of
the density and noise. Thus, the considered data set is
large and can contain noise. Our approach is inspired
from this method. However, since our model is already
a mesh model and not a set of sparse data points, we
can completely determine nearest neighbors based on
the connecting edges without using the parameters k,ρ,
and δ . Additionally, the connecting mesh is constructed
from boundary vertices of meshes and their neighbors.
Thus, the cardinality of the data set is reduced. We are
also able to compute the approximation error (RMS er-
ror).
Given a set of data points P = {pi} ∈ R3 of a surface
CM, we would like to find a signed distance function
f (p) from an arbitrary point p ∈ R3 to the surface CM.
However, because CM is an unknown surface, the au-
thors approximate the surface using a set of tangent
planes computed at each data point as shown in Fig.
1b. The tangent plane and the signed distance function
are computed as described in the following section.

Figure 2: Estimation of a tangent plane and the projec-
tion of an arbitrary point onto it.

3.2.1 Estimation of a tangent plane
Let T p(pi) be the tangent plane corresponding to point
pi and passing through a centroid point oi. An arbitrary



point p is projected onto tangent plane T p(pi) which
has point oi closest to point p. A point pnew is an or-
thogonal projection of point p onto T p(pi) as illustrated
in Fig. 2.

Tangent plane T p(pi) is determined by passing through
point oi with unit surface normal ni as follows:

• Find local neighbors of each data point: For each
point pi ∈ R3, we find a set of nearest neighbors of
pi denoted Neighbors(pi).

• Compute a centroid point on a tangent plane: For
each point pi ∈R3, we compute the centroid point oi
based on all nearest neighbors of pi:

oi =
∑p j∈Neighbors(pi) p j

N
(1)

Where N is the number of the neighbors of pi.

• Estimate a normal vector of a tangent plane: The
principal component analysis (PCA) method is used
to estimate normal ni of T p(pi). The point covari-
ance matrix CVi ∈ R3×3 from the neighbors of pi is
first computed:

CVi = ∑
p j∈Neighbors(pi)

(p j−oi)
T (p j−oi) (2)

We then compute eigenvalues λi,1 ≥ λi,2 ≥ λi,3 of CVi
associated with unit eigenvectors vi,1,vi,2,vi,3. Since
normal ni is the eigenvector corresponding to the small-
est eigenvalue, we choose to be either vi,3 or −vi,3.
The choice determines the tangent plane orientation
[Hop92].

3.2.2 Construction of a signed distance function

Our goal is to find a signed distance function f (p) from
an arbitrary p∈R3 to CM. The function f (p) is the dis-
tance between p and the closest point pnew ∈ CM. Since
CM is the unknown surface, we find a tangent plane
T p(pi) which is a local linear approximation of CM and
passes through the centroid oi closest to p. Therefore,
the signed distance f (p) to CM is represented as the
signed distance dist(p, pnew) between p and its projec-
tion pnew onto T p(pi) (see in Fig. 2). The function f (p)
satisfies the local approximation constraint defined by:

f (p) = dist(p, pnew) = (p−oi).ni (3)

and pnew by:

pnew = p− ( f (p).ni) (4)

3.2.3 Evaluation of the error of the tangent plane
based local approximation

The local constraint (3) is too strict. Thus, if the data
are noisy, the accuracy of the surface reconstruction is
evaluated by the error of the approximation defined by
equation (3). Since the approximation is based on fit-
ting a plane to a set of local neighboring points, the min-
imize least squares (MLS) error [Ale03, Dor97, Lev03]
is commonly used to evaluate the local approximation
error. The MLS error evaluated at pi ∈P is calculated as
the sum of the squared distances from the local neigh-
bors of point pi to T p(pi):

EMLS(pi) = ∑
p j∈Neighbors(pi)

((p j−oi).ni)
2 (5)

Additionally, we can use the root mean square (RMS)
error [Sar11] to evaluate the local approximation error.
The RMS error evaluated at pi is:

ERMS(pi) =

√
∑p j∈Neighbors(pi)((p j−oi).ni)2

Nk
(6)

4 METHOD OVERVIEW
4.1 Notation
In order to lighten notations, we decided not to use vec-
torial notations for all the notations or equations having
vectorial relations. Moreover, we denote the position
vector

−→
Op of a vertex p by p, where O is the frame ori-

gin. Each multiplication of a scalar value and a vector
is understood as the vector components multiplied by
the scalar value.

Let M1 and M2 be two meshes subdivided at different
resolution levels, and pi, qk their vertices. An edge con-
necting pi to qk is denoted ei or piqk. An edge is usually
shared by two faces. If it is shared by only one, it cor-
responds to a boundary edge and its end vertices are
called boundary vertices. We need to construct a con-
necting mesh CM between meshes M1 and M2 so that
the continuity between them can be preserved as illus-
trated in Fig. 3. First we will introduce the notations
relevant to the algorithm:

Figure 3: Topology representation of the algorithm.



• s: number of intermediate discrete curves (also
called the number of newly created boundary
curves) of CM created between M1 and M2 (see Fig.
4). It is a user parameter computed based on the
distance between two original boundaries of M1 and
M2 and it controls the resolution of CM.

• j: order number of the decomposition step to create
intermediate discrete curves, also called the level.
Since two boundary curves between M1 and M2 will
be created at each level j, j is in [1, s

2 ].

• C j
1 and C j

2: two boundary curves of CM at level j.
C0

1 and C0
2 are the two original boundary curves of

meshes M1 and M2.

• N(C j
1): number of vertices of boundary curve C j

1 at
level j. It corresponds to the density of vertices of
boundary curve C j

1.

• p j
i , q j

i : vertices i on boundary curves C j
1 and C j

2. (p0
i

= pi and q0
i = qi)

• L j
1: list of the boundary vertex pairs (p j−1

i , q j−1
k ).

• L j
2: list of the boundary vertex pairs (q j−1

k , p j−1
i ).

4.2 CM2D-TPW algorithm
The idea is to create new boundary curves C j

1 and C j
2

between M1 and M2 based on the previously created
boundary curves C j−1

1 and C j−1
2 using the tangent plane

local approximation and the Lifted B-spline wavelet
transform. After that, we connect each new bound-
ary curve C j

1 to C j−1
1 , and C j

2 to C j−1
2 . C j

1 is created
in a direction from C j−1

1 to C j−1
2 and conversely for

C j
2. Therefore, this algorithm is called the algorithm

of connecting mesh in two directions based on the
tangent plane local approximation and the Wavelet
transform (CM2D-TPW). The algorithm consists of
the following main steps detailed in the next sections:

• Step 1. Boundary detection: read the input geom-
etry model of two meshes M1 and M2. Detect and
mark boundary vertices of the two boundaries C0

1
and C0

2 in M1 and M2.

• Step 2. Boundary vertex pairs and boundary curve
creation: for each level j, we pair the boundary ver-
tices of C j−1

1 and C j−1
2 based on the distance be-

tween them. If this distance is too narrow (smaller
than a certain threshold), we go to Step 3 to connect
the boundary curve pair (C j−1

1 , C j−1
2 ). In contrast,

we create two new boundary curves C j
1, C j

2. The
boundary curve creation first produces vertices of
two new boundary curves from the paired boundary
vertices by a linear interpolation, and then projects

them onto the expected surface CM using a tan-
gent plane local approximation. It finally refines
or coarsens these new boundary curves by applying
wavelet transforms and vertex insertion and deletion
operations.

• Step 3. Boundary curve connection: perform a
boundary triangulation for each boundary curve pair
(C j−1

1 ,C j
1) and (C j−1

2 ,C j
2).

• Step 4. Repeat steps 2 and 3 until both mesh areas
M1 and M2 have been connected or patched by all
newly created triangles.

5 MESH CONNECTION
5.1 Boundary vertex pairs
In order to create boundary curves between two meshes
M1 and M2 by interpolating previously created bound-
ary curves, we pair the boundary vertices p j−1

i ∈C j−1
1

with q j−1
k ∈C j−1

2 and vice versa based on the distances
between them. Since the densities of vertices of both
boundary curves are different, we need to create two
lists of the closest boundary vertex pairs L j

1 and L j
2.

Assume that j is the current level, for each boundary
vertex p j−1

i ∈ C j−1
1 , we search for and insert into L j

1
the corresponding paired vertex q j−1

k ∈C j−1
2 such that:(

∀q ∈C j−1
2 ,dist(p j−1

i ,q j−1
k )≤ dist(p j−1

i ,q)
)

, where

the notation dist(p j−1
i ,q j−1

k ) = ||p j−1
i − q j−1

k || is the
Euclidean distance between p j−1

i and q j−1
k . The list of

boundary vertex pairs L j
2 is created similarly.

5.2 Boundary curve creation
The basic idea is to create two new boundary curves C j

1
and C j

2 from the paired vertices at each level j. Paired
vertices are obtained by the shortest distances between
vertices of each boundary. New boundary vertices p j

i ∈
C j

1 and q j
k ∈ C j

2 are created by boundary vertex pairs
(p j−1

i , q j−1
k ) ∈ L j

1 and (q j−1
k , p j−1

i ) ∈ L j
2 respectively.

A new boundary curve C j
1 is created in a direction from

C j−1
1 to C j−1

2 and a new boundary curve C j
2 is created in

a direction from C j−1
2 to C j−1

1 as shown in Fig. 4.

Figure 4: Boundary curves created in two directions.



We assume N(C0
1) ≤ N(C0

2) and let the density of ver-
tices of the two boundary curves C j

1 and C j
2 be two func-

tions N(C j
1) and N(C j

2) defined by:

N(C j
1) = N(C0

1)+
j

s+1
[N(C0

2)−N(C0
1)]

N(C j
2) = N(C0

2)−
j

s+1
[N(C0

2)−N(C0
1)] (7)

The boundary curves are created in three phases.

5.2.1 Phase 1: Create vertices of two new
boundary curves by a linear interpolation.

• Create vertices of the discrete boundary curve C j
1 in

a direction from C j−1
1 to C j−1

2 (see Fig. 4): for each
boundary vertex pair (p j−1

i ,q j−1
k ) ∈ L j

1, we apply
the linear interpolation equation (8) to create new
boundary vertices p j

i ∈C j
1.

p j
i = p j−1

i +
j

s+1
(q j−1

k − p j−1
i ) (8)

Where i are the subscripts of boundary vertices of
C j

1, 1 ≤ i ≤ N(C j−1
1 ), and k are the subscripts of

boundary vertices of C j−1
2 , 1≤ k ≤ N(C j−1

2 ).

• In the same way, we create the new boundary ver-
tices q j

k ∈C j
2 by (9).

q j
k = q j−1

k +
j

s+1
(p j−1

i −q j−1
k ) (9)

Where k are the subscripts of boundary vertices of
C j

2, 1 ≤ k ≤ N(C j−1
2 ), and i are the subscripts of

boundary vertices of C j−1
1 , 1≤ i≤ N(C j−1

1 ).

Equations (8) and (9) have been chosen with a local
linear expansion classically used in marching methods.
We recursively compute (8) and (9) based on vertices
of curves C j−1

1 and C j−1
2 but not C0

1 and C0
2 . In addition,

since C j−1
1 and C j−1

2 are then refined or coarsened by
wavelet transforms, their resolutions are increased or
reduced respectively.

5.2.2 Phase 2: Project created boundary ver-
tices onto surface CM using a tangent
plane based local approximation.

Figure 5: The connecting mesh CM created with and
without using a local tangent plane approximation.

The goal of phase 2 is to improve the resulting surface
CM after applying phase 1. Since new boundary ver-
tices p j

i and q j
k of curves C j

1 and C j
2 are created by a

Figure 6: The vertices projected onto the surface CM.

linear interpolation in phase 1, they can lie on a flat sur-
face H producing a flat surface CM as shown in Fig. 5a.

When CM is a complex curved surface, these newly
created boundary vertices may not be on the expected
surface CM because we did not consider the curva-
ture information in phase 1. As a result, the bound-
ary curves are produced without respect of local cur-
vatures. Therefore, the generated connecting mesh
will not respect the expected continuity between the
meshes. To solve this problem, we construct the con-
necting surface CM by a tangent plane local approxi-
mation. We first apply phase 1 (linear interpolation) to
create new boundary vertices. We then project these
vertices onto tangent planes as shown in Fig. 6. Pro-
jecting the created vertices q j

k ∈C j
2 onto surface CM is

performed as follows: First, for each vertex q j
k, we find

the closest vertex q j−1
k ∈ C j−1

2 and its local neighbors
Neighbors(q j−1

k ) which have edges connected to q j−1
k

to determine the local control vertices of q j
k (see Fig. 7).

Next, we estimate the local tangent plane T p(q j−1
k ) of

surface CM. The plane Tp(q j−1
k ) passes through the

centroid vertex o j−1
k (using (1)) with the unit normal

vector n j−1
k (using (2)). We construct the local signed

Figure 7: Selection of the local neighbors to construct
a local tangent plane and a signed distance function.



distance function f (q j
k) using (3) whose value is re-

ferred to as the signed projection distance between q j
k

and T p(q j−1
k ). Then, we use (4) to project them onto

surface CM with the projection distances f (q j
k) along

surface normals (see in Fig. 6). Finally, we update ver-
tices q j

k by their projections. We perform the same op-
eration for vertices p j

i ∈C j
1.

When the two boundary curves C j−1
1 and C j−1

2 are close
together, we take the neighboring vertices from both
curves to define the set of local neighboring vertices (or
control vertices). For each vertex q j

k, we keep the two
closest vertices p j−1

i ∈C j−1
1 and q j−1

k ∈C j−1
2 with their

neighbors. It permits us to take into account the local
curvatures on both sides.

5.2.3 Phase 3: Refine or coarsen the new bound-
ary curves with wavelet transforms.

Since the densities of vertices of C j
1 and C j

2 are now
N(C j−1

1 ) and N(C j−1
2 ), we need to increase and reduce

their densities to be N(C j
1) and N(C j

2). Taking advan-
tage of the Lifted B-spline wavelet transform presented
in section 3.1, we apply this transform for the multires-
olution analysis of the boundary curves C j

1 and C j
2 to

refine the curve C j
1, coarsen the curve C j

2. Then, we
perform the vertex insertion or deletion operations to
control the densities of vertices of C j

1 and C j
2. Thus,

the created boundary curves C j
1, C j

2, and the associated
connecting mesh CM are changed gradually in resolu-
tion between both mesh areas.

5.3 Boundary curve connection
After creating two boundary curves C j

1 and C j
2, we con-

nect each new boundary curve to each previously cre-
ated boundary curve, C j−1

1 to C j
1 and C j−1

2 to C j
2, based

on the method of stitching the matching borders pro-
posed by G. Barequet et al. [Bar95]. The basic idea is
the implementation of the boundary triangulation based
on the distance between boundary vertices. We con-
sider the distance between three adjacent vertices of two
boundaries before connecting them together to create
a triangular face (see Fig. 8). This process terminates
when we reach the last vertices of both boundaries.

Figure 8: Figure shows a boundary curve connection.

6 RESULTS AND COMPARISONS
In this section we give some examples with experimen-
tal results to illustrate our algorithm. We also com-
pare CM2D-TPW method with CM2D-RBFW method

which is a mesh connection method based on a RBF
local interpolation and a wavelet transform. CM2D-
RBFW method is built on the work by Anh-Cang Phan
et al. [Phan12] in which the connecting mesh is con-
structed by adding triangle strips to each boundary up
to the time they are close enough to be linked. This
method needs to solve a linear system that addition-
ally requires off-surface constraints to specify implicit
function values. It creates off-surface points by project-
ing on-surface points along the surface normals with
a signed projection distance d. These points are used
to construct RBF support and are mandatory to obtain
valid solutions. Both methods have been implemented
in Matlab to make possible their comparisons. All re-
sults were obtained on a PC 2.27GHz CPU Corei5 with
3GB Ram.

In Fig. 9, CM2D-TPW algorithm produces a connect-
ing mesh of the Tiger model which consists of two
meshes defined by subdivision surfaces (Loop and But-
terfly), each mesh being at a different level of subdivi-
sion. From two original coarse meshes of this model,
we first apply a Loop subdivision at level 2 and a But-
terfly subdivision at level 1 to obtain two meshes M1
and M2 of different resolutions. We then implement our
algorithm to connect them together. To understand the
quality of the result, we plot the image of the connect-
ing mesh and its zoom. Based on a set of tests, s = 4
is an empirical good value to apply CM2D-TPW algo-
rithm for two subdivided meshes of the Tiger model as
shown in Fig. 9. From the resulting mesh, we can see
that our new method can generate a smooth connecting
mesh with the progressive change in resolution between
meshes because it is possible to constrain the surface to
have specified tangent planes at subsets of control ver-
tices to be interpolated.

To draw comparisons, we have chosen examples of a
sphere to have accurate evaluations of the error and run-
time. We have developed a test on four density-based
discretizations of the sphere, since analytical descrip-
tion permits to compute the exact surface and relative
errors. The numbers of vertices are 240, 3840, 61440,
983040 and the numbers of vertices of the removed
strips are 66, 720, 5982, 70743, respectively. In this
way, both meshes M1 and M2 have the same density of
vertices for a given discretization level, and the process
to obtain the compatible number of vertices of CM is
the same for both methods. Hence, we define the errors

Edist and Emax as follows: Edist =

√
∑pi∈CM(R−dist(c,pi))2

N ;
Emax = sup(R−di), 1 ≤ i ≤ N; where: di = dist(c, pi)
is the Euclidean distance between c and vertices pi of
CM; R,c are the radius and center of the sphere, respec-
tively (in our tests, c = (0,0,0) and R = 10). N is the
number of vertices of CM.

Figs. 10-11 and Table 1 summarize the results. First,
we apply CM2D-TPW algorithm for the discretiza-



Figure 9: The Tiger model with CM2D-TPW algorithm: a) The connecting mesh CM produced with s = 4; b)
Zoom of CM; c) Zoom of one of the interesting parts of CM.

Figure 10: Model of Sphere 2: a) CM is produced by
CM2D-RBFW method with s = 2 and d = 0.004; b)
CM is produced by CM2D-TPW method with s = 2.

Figure 11: Model of Sphere 3: a) CM is produced by
CM2D-RBFW method with s = 2 and d = 0.004; b)
CM is produced by CM2D-TPW method with s = 2.

Figure 12: The surface continuity of Sphere preserved after applying CM2D-TPW method: a)-b) CM produced by
linear interpolation; c)-d) CM produced by CM2D-TPW method.

tion models of the sphere with s = 2 as illustrated in
Figs. 10b and 11b. Obviously, our method keeps the
continuity between the meshes of the sphere model
without destroying the Gaussian curvature and altering

the original meshes because the newly inserted vertices
are on the expected surface by a local approximation
with tangent plane fitting (phase 2). As a result, it
gives the high quality connecting meshes and smooth



Model CM Edist Emax Runtime (secs)
V F RBFW TPW RBFW TPW RBFW TPW

Sphere 1 38 40 0.9265 0.7581 2.3663 2.0479 0.4061 0.3159
Sphere 2 159 240 0.2022 0.0646 0.4861 0.2216 0.4592 0.3762
Sphere 3 639 960 0.034 0.0153 0.0578 0.0293 1.3859 0.917
Sphere 4 2641 3963 0.0634 0.0329 0.1453 0.0764 14.4955 9.0221

Table 1: Comparison of errors and runtimes of CM2D-RBFW and CM2D-TPW algorithms for spheres with center
c = (0,0,0), and radius R = 10; the numbers of vertices and faces of CM are in columns V and F.

surfaces. Then, we also use CM2D-RBFW method on
these models (see Fig. 10a and Fig. 11a).

Figs. 12a-b show the connecting mesh and surface CM
produced with linear interpolation by applying phase 1
and 3 of CM2D-TPW algorithm without phase 2. As
a result, CM is hyperbolic and the surface continuity is
not guaranteed. While Figs.12c-d present CM after ap-
plying all phases of the algorithm. Obviously, CM2D-
TPW method generates a smooth surface with natural
shape where continuity between meshes is preserved.

According to these experimental results, we can see that
CM2D-TPW method gives better results compared to
CM2D-RBFW method since errors to the real surface
are smaller and Gaussian curvatures are much better re-
spected. In addition, a well-known drawback of RBF
based reconstruction methods is the difficulty to pro-
vide abrupt changes in a small distance (see [Luo08]).
It requires much more estimation which includes esti-
mating the linear constraints on the control vertices as
well as the off-surface constraints to construct and solve
a linear system for each interpolated vertex. Therefore,
the time of computation will be inevitably longer or
the memory requirements may exceed the capacity of
the computer. As a consequence, the runtime of this
algorithm is rapidly increasing when the vertex num-
bers of the models increase as illustrated in Table 1.
We have applied the algorithm to various 3D objects
with complex shapes. The runtime increases quadrati-
cally. Moreover, the most critical disadvantage is that
it is very important for the user to make a decision on
the choice of the basis functions and the user parameter
values, i.e d-the signed distance and h-the shape param-
eter. This leads to the fact that the user chooses them
by a rather costly trial and performs their numerical ex-
periments over and over again until they end up with a
satisfactory result consisting of the well-chosen values
and an interpolated surface with a natural shape. In or-
der to overcome these disadvantages, we have proposed
a more reliable method to join two meshes. It pro-
duces surfaces of good approximation, computationally
more efficient and occupied less memory compared to
the C2MD-RBFW method. The memory storage will
not become a problem when the numbers of vertices
of the given meshes are large in practical applications.
The computing time of this algorithm is smaller than
CM2D-RBFW algorithm as shown in Table 1 while we

have not taken into account the execution time of ex-
periments for values d, h in CM2D-RBFW method.

7 CONCLUSION
We have introduced a new simple and efficient mesh
connection method which produces a high quality con-
necting mesh and finally a smooth surface. The mesh
is changed gradually in resolution from one area to the
other one. CM2D-TPW method joins two meshes with
different resolutions while maintaining the surface con-
tinuity and not destroying local curvatures. It keeps the
original boundaries of the meshes and the closest faces
around these boundaries while connecting them. The
advantages of this method are: 1) It is simple, efficient,
and local; 2) It generates smooth connecting surfaces;
3) There is no need to solve a system of linear equa-
tions. As a consequence, our algorithm is then numeri-
cally stable. These features make CM2D-TPW method
become feasible and suitable for designing, joining and
modeling 3D objects with complex shapes. Thus, it can
be extended to applications related to pasting meshes,
and filling holes.
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