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ABSTRACT
A new technique to automatically segment the L-shaped carbon nanocone structures from Transmission Electronic
Microscopy (TEM) images is described. The technique enables robust segmentation of the structures by exploiting
a simplified Generalized Hough Transform (HT)-based processing. Exploitation of parallelism on commodity
hardware is also explored for efficient processing. Effectiveness of the technique is evaluated through experiments
on synthetic, simulated, and real images of carbon nanocone structures.
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1 INTRODUCTION
Automated feature segmentation has been utilized in
many research and application domains (e.g., [Pie03,
WCH04, YLL05, CNG09, Saf12, KlB12]) as it plays
a key role in localizing objects of interest efficiently
and effectively. Often, localization of objects leads to
discovery of information which can help understanding
of the underlying characteristics of the objects. For ex-
ample, independent component analysis-based segmen-
tation [WCH04] has been applied in medical imaging
to characterize blood supply patterns which are criti-
cal for the profound analysis of cerebral hemodynam-
ics. An automated method for localizing auroral ovals
in satellite images was also introduced [CNG09]. Such
a method can help scientists study the Earth’s mag-
netic field. A fast on-line video motion segmentation
method [KlB12] has also been recently presented in a
multimedia application. In this paper, we introduce a
new, robust automated technique for segmentation of L-
shaped carbon nanocone structures from Transmission
Electronic Microscopy (TEM) images.

Carbon nanocone structures represent a class of novel
materials that are of high interest to investigations
of carbon’s role in fossil fuel, hydrogen storage, and
nanotechnologies. These structures appear as two
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Figure 1: A sample of carbon nanocone TEM image

linear structures joined at a common point in TEM im-
ages. Moreover, the linear structures form an angle of
approximately 110◦ or 140◦ for the faceted nanocones
and 113◦ or 150◦ for relaxed nanocones [Man08].
(Faceted and relaxed nanocones are types of carbon
nano-structures that are studied by many scientists.) A
robust localization of such carbon nanocone structures
is a key precursor to effective use of the TEM images in
many fields, such as biosensors or nanocomputing. A
sample TEM image of the carbon nanocone structures
is shown in Figure 1. In the figure, two sample carbon
nanocone structures (i.e., dark linear features) are
marked by two sets of colored arrows for readers.
As shown in the figure, other non-nanocone features
are also present, the carbon nanocone structures
are oriented in various ways and have varying side
lengths and varying contrasts along the structure,
making automated segmentation of the structures very
challenging.



The new automated segmentation of carbon nanocone
structures is based on a variant of the Hough Trans-
form (HT) [Hou62]. The new technique enables robust
segmentation of the structures by utilizing a simplified
binning process in the Generalized Hough Transform
(GHT) [Bal81]. (GHT will be discussed in the next sec-
tion.) We also exploited data parallelism on commodity
hardware for efficient processing.

The paper is organized as follows. In Section 2, the
related work is discussed. The new segmentation tech-
nique is introduced in Section 3. In Section 4, the ex-
perimental results and analysis are presented. Section 5
concludes this paper.

2 RELATED WORK
The related work, including the work our technique is
based on, is discussed next.

2.1 Hough Transform and Its Variants
The Hough Transform (HT) [Hou62] is a well-known
pattern detection method that enables recovery of
global patterns in the image space via local pattern
processing in the transformed parameter space. In a
typical HT processing, the edge points (which present
the object boundaries) in the image space are mapped
to a binned parameter space in which dimensions
of the space represent the pattern parameters. This
parameter space is defined as the accumulator. After
the binning process, the target pattern parameters are
recovered by taking the parameters of the bins which
contain the highest parameter vote counts. (While most
of the HT-based methods considered the edge points
in the image, direct application of HT processing on
gray-scale images has also been reported [Sha96].)

The standard HT-based methods have been utilized suc-
cessfully in many shape-based processing applications.
However, the high memory and computational require-
ments of the standard HT make it difficult to apply for
recovery of complex shapes. In addition, the standard
HT aims to detect only analytic patterns; thus, it is dif-
ficult to apply it directly to arbitrary shapes (e.g., L-
shaped carbon nanocone structures).

One way to reduce the HT’s computational cost is to
partition the high dimensional parameter space into
lower-dimensional subspaces and then find the shape
parameters in the series of lower dimensional subspaces
(e.g., [HoC96]).

The Randomized Hough Transform (RHT) [XOK90]
is a class of HT which can also reduce the standard
HT’s computational cost. While the standard HT con-
siders all edge points, the RHT processes many sets
of randomly selected edge points where each set maps
to a single bin in the parameter space, allowing fewer
computations during the binning process. An RHT-
based method for ellipse detection was proposed by
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Table 1: R-table in GHT

McLaughlin [McL98]. The method benefits from the
RHT’s random processing and the lower dimensional
sub-parameter spaces. Cao et al. [CNG09] have ex-
tended McLaughlin’s RHT to employ a linear least
squares fitting for a more accurate and efficient binning
process.

The Generalized Hough Transform (GHT) [Bal81] is
another class of HT that allows detection of both an-
alytic and non-analytic shapes in images. Instead of
binning the votes via an analytically-defined mapping
scheme, the GHT utilizes a model of the object that
consists of the boundary gradient direction and the dis-
tance from a reference point of the object to each point
on the object boundary in a lookup table, called the R-
table. (A reference point of the object can be any im-
age point which can be used as an "anchor" for the ob-
ject.) Specifically, the R-table defines a multi-valued
mapping among the table indices corresponding to the
gradient directions ϕ(p⃗i), at the boundary points p⃗i, and
the vectors r⃗ from the boundary point to the reference
point c⃗ of the object. The R-table is constructed by it-
erating over the object boundary points, calculating the
set of r⃗i for each index ϕ(p⃗i), where i indexes a set of
boundary points with the same gradient direction and
r⃗i is the vector from p⃗i to c⃗. A sample format of the
R-table is shown in Table 1. As shown in the table,
there are multiple values r⃗i, j for each index. For each
edge pixel p⃗i with R-table index ϕ(p⃗i), the potential
reference points c⃗i of the object is determined as c⃗i =
p⃗i + r⃗i. Then the binning process is performed for the
corresponding values of c⃗i. The GHT allows rotation-

(a) (b)
Figure 2: Illustration of the Generalized Hough Trans-
form (GHT): (a) p⃗i, ϕ(p⃗i), and r⃗, (b) rotation invariant
for θ by re-indexing R-table



Figure 3: Overview of new GHT-based technique

invariant and scale-invariant object detection by modi-
fying the R-table according to the rotation and scaling
parameters; for scale invariant and rotation invariant de-
tection, the R-table values are multiplied by the scaling
vector or re-indexed, respectively. Figure 2 illustrates
the key components of the GHT. In Figure 2 (a), the
boundary point, p⃗i, the gradient direction, ϕ(p⃗i), and
the vector r⃗ are shown. Figure 2 (b) illustrates that
the vector r⃗ needs to be rotated by θ and ϕ needs to
be replaced by ϕ − θ . This can be done by simple re-
indexing of the R-table contents.

2.2 GPU-based Hough Transform
Computation using programmable graphics processing
units (GPUs) has been utilized in traditional graphics
as well as in an increasing number of more general-
purpose applications, including simulation, data min-
ing, analytics, databases, etc. GPU computation has
also been employed in HT-based work. Here, we briefly
discuss some of the key GPU-based HT work.

One early GPU-based HT was introduced by Strzodka
et al. [SIM03]. In their method, programmable GPU
shaders were utilized to speed up the binning process
using the GPU textures as the lookup table for the
shape parameter mapping. Ujaldon et al. [URG07] have
presented a circle HT which uses a specific graphics
pipeline (i.e., the rasterizer) for voting the circle can-
didates from a set of seeds computed by GPU vertex
shaders. Other GPU-based HT methods include detec-
tion of more complex shapes (e.g., [ZhL05, LWN08,
Deg10]). One efficient GPU HT for ellipse detection
has been employed in real-time face detection [ZhL05].
Lee et al. [LWN08] presented a GPU-based HT for ef-
ficient ellipse detection in satellite imaging. Their HT
uses a small set of CPU-generated random seeds in ef-
ficient GPU-based RHT processing for localization of
the aurora oval.

2.3 Carbon Nanocone Segmentation
Although many methods to automatically-segment ob-
jects of interest in other types of imagery have been re-
ported in the literature (e.g., [PRN04, LWN08]), the re-
cently presented work by Ngatuni et al. [NLW12] is the

only automated method for carbon nanocone segmen-
tation. Their HT-based shape detection method intro-
duced a new parameter space for the carbon nanocone
structures. Their parameter space is defined by the
pre-computed distances and the orientations of a set of
points on the structure. However, while the method
produced accurate detection results, the binning pro-
cess was applied for all combinations of the edge point
pairs; thus, the method was slow. In addition, since the
method weighs the pairs of the edge points that have
the same distance from the point joining the two sides
of the structure, the method fails to detect the struc-
tures that have different side lengths. (In Section 4, we
briefly compare the method with our new technique.)
The new automated segmentation technique introduced
in this paper aims to overcome these weaknesses. The
new technique is based on a new type of Generalized
Hough Transform (GHT) which simplifies the original
GHT’s binning process.

3 NEW SEGMENTATION TECH-
NIQUE FOR CARBON NANOCONE
STRUCTURES

In this section, the new technique for the automatic seg-
mentation of the carbon nanocone structures from TEM
intensity images is detailed. The key component of the
technique is a simplification of GHT that enables ex-
traction of credible L-shaped carbon nanocone struc-
tures. Exploitation of parallelism on commodity hard-
ware is also discussed.

3.1 Overview
Figure 3 presents an overview of the technique. The
technique includes preprocessing steps that “clean” the
image, determine the potential carbon nanocone pix-
els, and compute a lookup table, the simplified GHT-
based bin voting step that exploits the characteristics of
L-shaped object, and post-processing steps that merge
segmented structures that are very close to each other
and determine the structure side lengths. (In the figure,
the dotted oval for the lookup table construction step
indicates that it is computed only one-time.)



3.2 Preprocessing

In the new carbon nanocone structure segmentation, a
set of image processing steps are applied (1) to high-
light carbon nanocone structure, (2) to remove the non-
nanocone structures, and (3) to generate the edge point
image for HT’s binning process.

First, median filtering is applied to the intensity-
inversed image to remove high spike noise and smooth
out the structures. We empirically determined that 7×7
median filtering could eliminate much of the high spike
noise and fill the gaps within the structures. Second, an
intensity cumulating scheme is applied to the median
filtered image to highlight the carbon nanocone struc-
tures. This intensity cumulating is done by replacing
each pixel intensity with the maximum of the pixel
intensity sums in narrowed rectangular-shaped (e.g.,
15×5) image regions centered at the pixel. Since the
carbon nanocone structures are linear features, this
intensity cumulating step highlights (i.e., increases the
contrast of) the structures and fills in the gaps within
the same structures.

Third, a modified version of the Strous linear feature
pixel labeling algorithm [Str00] is applied to the image
“cleaned” in the first two steps. The Strous algorithm
allows determination of local bright pixels by consider-
ing 3×3 local image region. We have modified the al-
gorithm to consider 5×5 local image region with a less
restricted constraint to label a pixel as a potential point
on the carbon nanocone structures. This modification
allows more points on the structures to be labeled as the
potential nanocone pixels. However, this modification
results in “thick” potential carbon nanocone structures.
To select the points along the centerline of the struc-
tures, the morph-thinning [Dou92] is applied to the re-
sult of the modified Strous algorithm. (Morph-thinning
is one of the widely-used thinning operators which em-
ploys a morphological erosion-based hit-or-miss oper-
ator to the original image with a pair of structuring el-
ements, and then subtracts the result from the original
image.)

Lastly, global and adaptive thresholdings are applied to
the “cleaned” image to remove non-nanocone features.
Specifically, the binary result of thresholdings is used
as a mask on the morph-thinned image. For the global
thresholding, its threshold is the median intensity T of
the filtered image; all pixels whose intensities are less
than T are considered to be non-nanocone pixels. For
the adaptive thresholding [GoW02], the filtered image
is sub-divided with overlapping and thresholding is ap-
plied in each sub-region. We have found empirically
that sub-dividing the image into 64×64 pixel tiles with
50% overlap (e.g., the top-half of a sub-region overlaps
the bottom-half of the regions that is above sub-region)
produces the best results for the TEM images.

3.3 New HT for carbon nanocone segmen-
tation

The carbon nanocone segmentation technique pre-
sented here exploits a simplified lookup table-based
GHT binning scheme to recover the L-shape structure
parameters.

In the technique, the coordinates of the reference point
and the orientation of the L-shape are used as the shape
parameters for the carbon nanocone structure. Figure 4
shows a L-shaped structure and its parameters. The ref-
erence point O is defined as the point joining the two
structure edges and the orientation γ is defined as the
angle between the x-axis and the vector halving the two
edges. (In the figure, the side edges of the structure are
denoted as the counter-clockwise and clockwise edges.)

The new segmentation technique utilizes a simplified
lookup table that is designed to recover the L-shape
parameters through a GHT binning process. We will
call this lookup table the L-table in this paper. Unlike
the standard GHT’s lookup table, the L-table does not
include many entries for different gradient directions
since the gradient directions are the same for all the
points on the same edge of the structure; thus, the L-
table includes entries for only two gradient directions,
one for each edge of the linear structure. In addition, the
L-table is indexed by the distance between the reference
point to the points on the on the edges. This indexing
strategy yields a very simple scalar-valued lookup table
mapping from the distance to the orientation. In addi-
tion, unlike the standard GHT, the new HT binning pro-

Figure 4: Illustration of a L-shape structure (represent-
ing a 110◦ faceted nanocone): O and γ represent the ref-
erence point and the structure orientation, respectively.

CCW edge CW edge
Distance Orientation Distance Orientation

1 55◦ 1 −55◦

2 55◦ 2 −55◦

3 55◦ 3 −55◦
...

...
...

...

Table 2: A diagrammatic representation of the L-table
for 110◦ faceted nanocones



cess does not include a scaling of values in the L-table.
Instead, a simple post-processing step to determine the
edge lengths of the structure is included to reduce the
computational cost. (This post-processing step is dis-
cussed in the next subsection.)

In our HT binning process, each bin of the accumulator
contains two vote values; one vote counts for each edge.
This two-value bin enables segmentation of L-shapes
with imbalanced side lengths—even if the vote counts
from one short edge is low, the vote counts from the
other longer edge is high; thus, the structure parameters
can be recovered.

3.4 Post-processing
It is possible for the new HT binning process to produce
structures that are very close to each other. In addition,
the binning process determines only the coordinates of
the reference point and the orientation of the structure
(but not the edge lengths). To merge structures that are
close to each other into one structure and to determine
the edge lengths, we post-process the output of the bin-
ning process.

To merge the structures that are very close to each other,
we find the peaks in the parameter space (i.e., 3D accu-
mulator) via a N ×N ×N local search. Specifically, the
merging is done by averaging the structure parameters
for the local maxima above a threshold value within the
local search space. We have used a threshold value that
is dependent of the total number of the edge points to
allow varying threshold value for different noise lev-
els. (We empirically determined that about 3% of the
total number of edge points is a good threshold value
and 16×16×16-accumulator-bin is a reasonable local
search space for the carbon nanocone segmentation.)

The lengths of the structure edges are determined via
a simple edge extension scheme that extends the edge
from the reference point along the edge directions.
Each side edge is extended if there exists “enough” evi-
dence of potential nanocone pixels within a rectangular
(e.g., 7×3) region along the edge direction.

3.5 Efficient Processing
To efficiently process the new technique’s binning pro-
cess, we have also explored the data parallelism on
commodity hardware. While other types of paralleliza-
tion are possible, we focused on multithreading in a
shared memory environment. (We have also reported
our preliminary results on GPU-based processing in
Section 5.) Both OpenMP and Pthreads have been used
in our parallel implementation. In the multithreading, a
set of edge points are assigned to each thread and pro-
cessed independently. The updates to the accumulator
in the shared memory is done via atomic addition.

To increase the performance of the parallel imple-
mentation, we manually set the processor affinity

of each OpenMP thread using the Pthreads library.
Each OpenMP thread’s processor affinity was set to
a particular CPU core corresponding to its thread

(a) 0% (b) 0%

(c) 0.5% (d) 0.5%

(e) 1.0% (f) 1.0%

(g) 2.0% (h) 2.0%

(i) 5.0% (j) 5.0%

Figure 5: Results on synthetic images with perturbing
noise of σ = 1.5 and five different background noise
levels (0%, 0.5%, 1.0%, 2.0%, and 5.0%)



for r from 1 to 360◦ do
for d from 1 to Maxd do

for bx from 1 to Width do
for by from 1 to Height do

for p from 1 to NumPatterns do
ox,oy = L(bx,by,r, p,d)
increment A[p][ox][oy][r]

Algorithm 1: An example of a naive implementation of
the binning process

for p from 1 to NumPatterns do
for bx from 1 to Width do

for by from 1 to Height do
for d from 1 to Maxd do

for r from 1 to 360◦ do
ox,oy = L(bx,by,r, p,d)
increment A[p][ox][oy][r]

Algorithm 2: A better implementation of the binning
process with increased spatial locality of reference

ID using a pthread_setaffinity_np() call. We also
increased locality of reference by re-ordering the
algorithm. Setting processor affinity allowed for
significant performance improvements for the parts of
the algorithm with increased locality of reference. This
can be attributed to the increased effectiveness of each
of the CPU caches under these conditions.

One simple example that illustrates the consideration
of locality of reference is shown in Algorithms 1 and
2. Algorithm 1 typifies an implementation of HT bin-
ning process that does not exploit the locality of refer-
ence well. Due to the row-major-order access pattern
of the multidimensional accumulator, the memory ac-
cess for each iteration of the nested loop results in very
high number of cache misses. Algorithm 2 optimizes
the naive algorithm by considering more spatial local-
ity of reference.

4 EXPERIMENTAL RESULTS
The effectiveness of the new carbon nanocone struc-
ture segmentation technique has been benchmarked us-
ing over 1,000 synthetic images and 20 simulated and
real carbon nanocone TEM images. (All of the images
tested were of size 512 × 512.) The benchmarking
included measuring the effectiveness of the technique
by considering four different errors–errors in reference
point position, structure orientation and side lengths–,
the false positive rate, and the match rate, and measur-
ing the efficiency of our parallelized implementation.

We have used the Oakley cluster system of the Ohio Su-
percomputing Center in our experiments. The system
supports 12 cores (Intel Xeon x5650 2.66 GHz CPUs)
and 48 GB memory per node (up to thousands of cores
in total) and 128 Nvidia Tesla M2070 GPUs in total.

Here, we note that while the cluster system provides the
state-of-art computing power and our parallelized im-
plementation is scalable to use all the system resources,
our experiments were limited to amount of resources
that are available on a typical PC configuration (e.g.,
a hyper-threaded, 6-core CPU and one programmable
GPU). This limited resource usage allows to show the
technique’s performance for typical PC users.

For the synthetic images, we modeled the carbon
nanocone structures using two straight lines joined
at an angle of 110◦ or 140◦. Modeled structures also
had different random side lengths. In addition, two
different types of image noise were considered; random
background noise and random noise that perturb the
positions of the edge points. We have considered
0%, 0.5%, 1.0%, 2.0%, and 5.0% background noise.
Gaussian random noise with zero mean and σ ’s of
0.0, 1.5, and 3.0 was used to perturb the edge point
positions.

Figure 5 shows the five samples of the synthetic im-
ages on the left column and the segmentation results as
red (and orange) overlays for the same images on the
right column. These synthetic images contain five dif-
ferent levels of the background noise with the perturb-
ing noise of σ = 1.5. As shown in the images, the new
technique well-segmented all the structures (even for
the image with the high background noise). Here, we
note that the technique also produced some false posi-
tives. While some of the false positives were caused by
image noise, many of them were caused by randomly
oriented, nearby structures in which the edges from dif-
ferent structures made up a L-shape similar to a car-
bon nanocone. Such false positives are shown as or-

(a) (b)

(c) (d)

Figure 6: Results on simulated nanocone TEM images



Noise Level 0.0 0.005 0.01 0.02 0.05
(# of Edge Pt.) (704) (2811) (3308) (5885) (18845)

Ref. Pt. Position 0.51 0.41 0.51 0.47 0.67
Orientation 0.31 0.33 0.39 0.58 0.99
Side Length 1.43 1.69 2.11 3.81 16.95
Match Rate 0.99 0.99 1.00 1.00 1.00

(a) With perturbing noise of σ = 0.0

Noise Level 0.0 0.005 0.01 0.02 0.05
(# of Edge Pt.) (610) (2683) (3209) (5787) (18714)

Ref. Pt. Position 0.71 0.72 0.70 0.73 0.93
Orientation 0.52 0.55 0.63 0.83 1.19
Side Length 1.63 2.38 2.91 4.78 16.83
Match Rate 1.00 0.99 1.00 1.00 0.95

(b) With perturbing noise of σ = 1.5

Noise Level 0.0 0.005 0.01 0.02 0.05
(# of Edge Pt.) (616) (2686) (3220) (5793) (18723)

Ref. Pt. Position 1.42 1.35 1.43 1.57 1.52
Orientation 0.79 0.80 0.91 1.11 1.43
Side Length 2.98 3.37 3.45 6.02 14.95
Match Rate 0.92 0.914 0.88 0.78 0.16

(c) With perturbing noise of σ = 3.0

Table 3: Average errors on synthetic image tests: ref-
erence point position error (in pixels), orientation error
(in degrees), side length error (in pixels) and average
match rate

Rate Max. Mean Min. Std. Dev.
False Pos. Rate 0.22 0.14 0.00 0.05

Table 4: False positive rate on synthetic images

ange overlaps in Figure 5. For instance, all four false
positives in Figure 5 (b) were from the edges of two
different structures that made up a L-shape.

Tables 3 and 4 summarize the segmentation results for
all the synthetic image tests. The average errors in the
reference point position, orientation, and side lengths of
structures, and the match rate are shown in Table 3 and
four metrics (i.e., maximum, mean, minimum, and stan-
dard deviation) of the false positive errors are shown in
Table 4. Table 3 also includes the number of edge points
considered for different noise levels. As shown in Ta-
ble 3, the new technique produced very low errors with
high match rates for most of the cases. For example,
synthetic image tests with a perturbing noise of σ=1.5
and background noise of 0.01% had the average errors
of 0.70 in pixels, 0.63 in degrees, 2.91 in pixels for the
reference point position, orientation, and side length,
respectively, and had a 100% match rate. For most of
the synthetic image tests, the new segmentation tech-
nique had a match rate of higher than 90%. While the
average match rate for the image with the highest noise
level (i.e., 5% background noise and perturbing noise of
σ=3.0) was only 16%, a typical “cleaned” TEM images
of carbon nanocone does not contain similar noise lev-
els. As shown in Table 4, the technique produced about
14% false positive errors on average. However, many
of the false positives were caused by the randomly ori-
ented, nearby structures that were explained previously.

For the simulated image tests, the carbon nanocones
were created using the TEM image simulation pre-

sented by Kirkland [Kir88]. (This image simulation
has been used by other scientists in the field.) Fig-
ure 6 shows the segmentation results on two samples
of simulated TEM carbon nanocones images. In the
figure, the sub-images (a) and (b) are the simulated im-
ages with different numbers of nanocones and the sub-
images (c) and (d) show the segmentation results as
red (for matched structures) and orange (for false posi-
tives) overlays. As shown in the figures, the new tech-
nique segmented all of the structures for these images.
Some false positives were also segmented for the sim-
ulated images. Many false positives were also caused
by nearby structures in which the edges from differ-
ent structures made up a L-shape similar to a carbon
nanocone. For instance, Figure 6 (d) contains two of
such false positives.

To analyze the effectiveness of the new segmentation
technique for the real carbon nanocone TEM images,
the manual segmentation results were used as the gold
standard since the actual positions of the real carbon
nanocone structures were unknown. For the manual
segmentation, the reference point positions, the struc-
ture orientations, and the side lengths were manually-
selected by a field expert. (Here, we note that the
field expert indicated that manual segmentations of the
structures are ambiguous and can often lead to mis-
segmentations.)

Figure 7 shows the segmentation results on three sam-
ples of real images. In the figure, the sub-images (a)–
(c) show the input images, the sub-images (d)–(f) show
the manual segmentation results as green overlays, and
the sub-images (g)–(i) show the automated segmenta-
tion results as red (for matched structures) and orange
(for false positives) overlays. As shown in the fig-
ures, while the new technique segmented the carbon
nanocone structures reasonably well, it also produced
relatively high number of false positives (i.e., the or-
ange overlays in the figure). Some of the false posi-
tives were from side edges from two different nearby
structures making a L-shape. Others were from hu-
man bias on the subjective manual segmentation of
the field expert; the field expert has agreed that some
of the carbon nanocone structures were missed in the
manual segmentation results after comparing the results
with the automatic segmentation results. This differ-

Errors & Rates Simulated Real
Ref. Pt. Position 1.94 2.41

Orientation 1.14 1.95
Side Length 3.33 26.04
Match Rate 0.94 0.86

False Pos. Rate 0.05 0.59

Table 5: Average errors on simulated and real image
tests: reference point position error (in pixels), orien-
tation error (in degrees), side length error (in pixels),
match rate and false positive rate



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Results on real carbon nanocone TEM images

ence suggests that the results from the new automated
segmentation technique could be the “better” segmen-
tation results than the manually-segmented results in
some cases.

The same types of errors were measured to benchmark
the new technique’s effectiveness on the simulated and
real images: the errors in the reference point position,
orientation, side lengths, and the match rate and false
positive rates. Table 5 summarizes the benchmarking.
As shown in the table, the new segmentation technique
produced very low errors with high match rate for the
simulated images; it produced average errors of about
1.94 pixels, 1.14 degrees, 3.33 pixels for the reference
point position, orientation, and side lengths, respec-
tively, with 94% match rate and 5% false positive rate
on average. The technique also produced very low av-
erage errors in the reference point position and the ori-
entation (i.e., about 2.41 pixels and about 1.95 degrees,
respectively) with a match rate of 86% for the real im-
age testings. However, it produced somewhat a high

average side length error (i.e., about 26 pixels for both
edges) and 59% false positive errors. These high side
length and false positive errors were caused by the im-
age noise on the carbon nanocone TEM images, the
low-contrasted and blurry nanocone structures, and by
the human bias on the gold standard (i.e., manually-
segmented structures) used for the comparison.

Next, the efficiency of the new segmentation is bench-
marked by measuring the execution times on our
multithreading-based parallelization of the technique
using the synthetic image tests. Figure 8 summaries
the efficiency benchmarking results. In the figure, the
speedups of the multithreading using 1, 2, 4, 6, 8, 10,
and 12 threads are shown for the images with different
noise levels. For each noise level, the total number of
edge points is also noted in parentheses in the figure.
(We note again that only up to 12 threads were used in
our experiments for the reason discussed previously.
However, our parallelization is scalable to use more
threads to achieve real time processing.) As shown



Figure 8: Speedups of multithreading-based parallel
processing on synthetic images with different back-
ground noise levels with perturbing noise of σ = 1.5,
(the total # of edge points are shown in parenthesis)

in the figures, the multithreaded version performed
and scaled reasonably well. For example, when using
12 threads, we have achieved 6.59 (i.e., from 34.48
seconds to 5.23 seconds) and 9.24 (i.e., from 187.60
seconds to 20.31 seconds) speedups for noise levels of
0.0% and 0.05%, respectively over the single threaded
version. The execution times (shown in Table 6) varied
for different noise levels by about 18% to 23% since
the total number of edge points considered in the
images varied about from 819 to 18,710 edge points
on average. Here, we also note that the performance
improvements discussed in Section 3.5 contributed
about 10% performance increase.

Lastly, a brief comparison of our automated segmen-
tation and the only prior carbon nanocone segmenta-
tion method by Ngatuni et al. [NLW12] is reported.
The comparison experiments included measuring the
same types of the errors and the execution times us-
ing synthetic images with different types of L-shaped
linear structures and using one real image (shown in
Figure 7 (a)). While our technique performed well on
the synthetic image (i.e., errors, match rate, and false
positive rate similar to the ones reported in Table 3),
their method performed poorly for the synthetic im-
ages with L-shapes that have different side lengths since
their method weighs the pairs of edge points that have
the same distance from the reference point in their bin-
ning process. Their method also segmented only one
structure for the real image. In addition, their method
ran about 3–10 times slower than the serial version of
the new segmentation technique.

5 CONCLUSION
We have presented and evaluated a new technique of
segmenting L-shaped structures in high-resolution car-
bon nanocone TEM images. The new technique in-
volves use of a simple lookup table that enables efficient

Noise Level 0.0 0.005 0.01 0.02 0.05
(# of Edge Pt.) (819) (2681) (4313) (7769) (18710)

1 thread 34.48 47.56 62.23 93.67 187.60
2 threads 19.60 27.62 37.10 51.39 98.81
4 threads 11.46 15.94 19.48 26.70 50.43
6 threads 8.26 11.16 13.08 19.07 37.65
8 threads 6.69 8.63 11.08 15.24 27.94

10 threads 5.29 7.37 9.53 12.77 23.73
12 threads 5.23 6.78 8.03 10.87 20.31

Table 6: Execution times (in seconds) of
multithreading-based parallel processing on synthetic
images with different background noise levels with
perturbing noise of σ = 1.5, (the total # of edge points
are shown in parenthesis)

GHT binning process. The new automated segmenta-
tion technique produces reasonably good results for a
variety of carbon nanocone images and provides a con-
sistent solution. In addition, the multithreading-based
parallelization of the technique with the exploitation of
locality of reference performs the computationally ex-
pensive processing of the segmentation efficiently.
For the future work, other preprocessing steps to dis-
tinguish the carbon nanocone structures from other fea-
tures in the image can be explored. Improvement of
the load balancing in the multithreading may also be
possible. We plan to achieve real-time processing of
the technique by considering a fine-grained parallel
approach using programmable GPU processing (e.g.,
using CUDA) and by considering MPI-based multi-
processing. Our preliminary results on CUDA-based
GPU processing shows about 4–6 times performance
speedups. However, the limit on the GPU’s shared
memory and the inefficient atomic operation on the ac-
cumulator update make the GPU-based algorithm chal-
lenging. One challenge of the MPI-based multipro-
cessing is the overhead to gather the large accumulator.
For example, the MPI_Allreduce operation for gather-
ing the 3D accumulator took about 2.2 seconds in a 12-
node configuration. One simple solution to reduce this
overhead could be to increase the size of each bin in the
accumulator (with a cost of relatively small accuracy).
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