
LightCluster - Clustering Lights to Accelerate Shadow
Computation

Daniel Wiesenhütter Andreas Klein Alfred Nischwitz
Munich University of Applied Sciences

Lothstrasse 64

80335 Munich, Germany
daniel@wiesenhuetter.me, andreas.klein@hm.edu, nischwitz@cs.hm.edu

ABSTRACT
In this paper, we propose a method to reduce the amount of shadow maps required for rendering shadows in scenes
with many lights. Our idea is to use the spatial relationship of lights to find clusters and replace the lights of a
cluster with a single area light. We use a soft shadow algorithm for area lights to approximate the shadows for the
clusters. By carefully placing the cluster centers, we can minimize the errors in the shadows. While the clustering
only adds a small overhead in the worst case, it can efficiently reduce the number of shadow maps. Thus, in many
cases the resulting error in shadows is acceptable compared to the increase in rendering performance.

Keywords
Light Clustering, Shadow Mapping, Soft Shadows, Shadows for Many Lights.

1 INTRODUCTION
Shadows are an important part of a visualization and
give the viewer supplemental details about the appear-
ance of objects. In real-time rendering, shadow map-
ping [Wil78a] is a popular approach to compute shad-
ows. However, a shadow map must be computed for
each light and thus, the memory and the computation
time increases with the number of lights.

In this paper, we present an approach, called LightClus-
ter, to automatically select representative light sources
and accelerate the computation of direct shadows for
scenes with many lights. We carefully select light
sources as cluster centers and cluster the remaining
lights using a minimum distance metric [Wol57a]. We
represent each cluster by an area light source and use a
soft shadow algorithm to render shadows for each clus-
ter, such as Percentage Closer Filtering [Ree87a] and
Percentage Closer Soft Shadows [Fer05a].

In our implementation, we use omnidirectional point
lights. However, the approach can be adapted for other
light types, such as directional or spot lights. Figure 1
shows an example of our approach.

The main contributions of our paper are:

• A clustering strategy applied to point lights that se-
lects a variable number of existing light sources as
cluster centers.

• A minimum distance metric in order to minimize the
amount of shadow maps and to trade off between
quality and performance.

• An approximation of point light shadows by using
an area light source where the area depends on the
minimum distance between the clusters.

Figure 1: Comparison between a reference solution
and our solution for the Dabrovic Sponza scene at
1920x1080 resolution. The top left image shows the
reference solution where 80 point light shadows are ren-
dered in 97.8 ms. The top right image demonstrates our
solution with 26 cluster shadows using PCSS in 43.1
ms. The bottom image shows the difference between
both above images. Note that a dark blue color indi-
cates a low error and red color a high error.



Figure 2: Overview for LightCluster. For a given distribution of point light sources, clusters are selected with the
min-distance-cluster algorithm. For each cluster, a cube shadow map is rendered, soft shadows are computed and
stored in a visibility texture. This textures are then used during shading to determine the visibility.

2 RELATED WORK

2.1 Real-Time Soft Shadows
The rendering of soft shadows is an active field of re-
search. Therefore, we focus our review on publications
closely related to our work. For an exhaustive survey
on other methods see [Eis11a].

Shadow Mapping [Wil78a] is a popular method to com-
pute shadows in real-time rendering. The idea is to as-
sume point light sources and to replace the visibility
test by comparing depth values from the light’s point of
view and the observer’s point of view. In order to com-
pute shadows for omnidirectional lights, a cube shadow
map can be rendered [Ger04a].

Percentage Closer Filtering (PCF) [Ree87a] computes
filtered hard shadows by making multiple shadow com-
parisons within a filter window. This idea is further ex-
tended by Fernando [Fer05a] with Percentage Closer
Soft Shadows (PCSS) to realize shadows with variable
sized penumbras. Instead of using a fixed filter per
pixel, the filter window is scaled according to a penum-
bra size. The penumbra size can be estimated by calcu-
lating an average blocker depth and using similar trian-
gles.

2.2 Many-Light Methods
Instant Radiosity [Kel97a] approximates global illumi-
nation by distributing virtual point lights (VPLs) and
calculating a local illumination model for each VPL.
Indirect shadows are realized by rendering a shadow
map for each VPL. In order to distribute VPLs by tex-
tures, Reflective Shadow Maps (RSMs) [Dac05a] are
rendered from the position of light.

In Lightcuts [Wal05a] a binary tree for light sources is
built. In each frame the light tree is traversed and a
cut is calculated. This light cut determines the relevant
lights or representatives with the help of visual criteria,
such as geometric properties or material.

Recent approaches try to accelerate the computation of
Instant Radiosity by reusing shadow maps for VPLs
[Lai07a] or by rendering low resolution shadow maps
for a coarse representation of the scene [Rit08a].

Hašan et al. [Haš07a] interpreted the relationship be-
tween m surfaces and n lights as a m ·n matrix and sam-
ples only a small number of rows and columns. In or-
der to minimize flickering in many-light animations, the
matrix can be extended to a tensor [Haš08a].

Clustered Visibility [Don09a] accelerates the computa-
tion of indirect shadows with RSMs. The method uses
k-means clustering on the RSMs to build clusters of
VPLs. They interpret each cluster as an area light in
order to accelerate the visibility test.

The idea of [Don09a] is closely related to our work.
In contrast to Clustered Visibility we focus our work
on high frequency shadows for direct lighting. As the
lights are not distributed by RSMs, a k-means clustering
may lead to errors. A central cluster position can result
in a representative light source that is occluded by ge-
ometry, i.e. located within walls. Our approach uses an
existing light source as a cluster center and clusters the
remaining lights with a minimum distance metric.

3 LIGHTCLUSTER
LightCluster reduces the total amount of shadow maps
in order to minimize the computation of direct shadows
for point lights. To describe our approach in more de-
tail, we separate it into two steps. First, the point lights
are clustered and cluster centers are selected. Second,
for each cluster a shadow maps is rendered, soft shad-
ows are computed and the result is stored in a set of
visibility textures. During shading, we select the repre-
sentative visibility texture for each point light and use
it to determine the visibility factor. Figure 2 illustrates
the approach.

3.1 Clustering
In order to reduce the error in shadows, we perform a
two pass clustering with different metrics in each pass.
Our clustering proceeds as follows. We first select point
lights as cluster centers by using the light range and a
minimum-distance metric, which is scaled by the cam-
era distance. This allows us to generate smaller clus-
ters and thus, more shadow maps, near the camera posi-
tion. In the second clustering pass, the remaining point
lights are assigned to the nearest cluster centers. There-
fore, the error in shadows due to the reduced amount of



1 2

3

4

5

7

8

9

10

11
12

13

14

15

16

6

1 2

3

4

5

7

8

9

10

11
12

13

14

15

16

6

Figure 3: Minimum-distance-cluster algorithm in a 2D
example scene. The size of the point lights describes its
attenuation. Top left: Light distribution in the scene.
Top right: The point lights are culled against the view
frustum and sorted by the attenuation factor. Bottom
left: Finding cluster centers. Note how the minimum
distance dmin increases based on the distance to the
camera. Due to the sorting, the lights with the highest
range are first tested as cluster centers. Bottom right:
Assigning the remaining point lights to the closest clus-
ter centers. Without this step, lights would assigned to
the first cluster within dmin.

shadow maps can be reduced. Figure 3 illustrates the
clustering for a 2D example scene.

3.1.1 Minimum-Distance-Cluster Algorithm
The minimum-distance-cluster algorithm [Wol57a] is a
hierarchical clustering algorithm and clusters all objects
within a user defined minimum distance. The algorithm
can be realized in a top-down strategy and proceeds as
follows. First, it is assumed that all objects are within
a single cluster. The algorithm iterates over all objects
of a cluster and splits them into new clusters, if their
distance exceeds the defined minimum distance. This
step is repeated until no more clusters can be split.

In contrast to a centroid-based clustering, such as k-
means [McQ67a], the number of clusters need not be
known in advance. Furthermore, the cluster center is an
actual light source and no computed centroid position.
Thereby, the position for one point light in a cluster is
correct for the shadow computation with PCF or PCSS.
The error in the shadows for the remaining lights can be
adjusted by the minimum distance parameter.

3.1.2 Selecting Cluster Centers
In order to find potential cluster centers, we first search
for point light sources that will potentially cast a

shadow in the view frustum. As we assume point light
sources, we create a bounding sphere for each point
light where the radius equals the attenuation range.
We then cull the bounding spheres against the view
frustum and remove all lights that are classified as
outside. In the next step, we sort the visible lights
by the attenuation range. As a result, our clustering
algorithm will first test the lights with the highest
range as cluster centers. This heuristic could be further
improved by determining how much of the light source
is visible in the view frustum, for example by utilizing
occlusion culling or a hierarchical z-buffer [Gre93a].

In the next step, we select the cluster centers. We as-
sume that all lights are within a single cluster and the
light with the highest range is the first cluster center.
For every point light, we compute the distance to the
cluster center and compare it against the minimum dis-
tance dmin. In order to generate smaller clusters near
the camera position, we scale the minimum distance
linearly based on the distance to the camera. The mini-
mum distance can be calculated as follows:

dmin = dinit ·

(
1−

∣∣Cpos
∣∣

z f ar

)

where dinit is the initial distance between clusters, Cpos
the position of the cluster center and z f ar the maximum
view distance.

If the distance to the cluster is greater than the calcu-
lated dmin, the light is promoted to a new cluster center.
The lights that are within dmin, are not automatically as-
signed to the cluster, but marked as unclustered for the
next step.

3.1.3 Assigning the remaining Lights
After all cluster centers are selected, we assign the
lights to the clusters. We iterate over all lights that are
marked as unclustered and calculate the distance to all
cluster centers. The light is assigned to the cluster with
the shortest distance. In addition, the maximum atten-
uation range Catt of the cluster center is adapted as fol-
lows:

Catt = max(Catt ,dC +Latt)

where dC is the distance to the cluster and Latt is the
attenuation of the light source. We use the maximum
attenuation range Catt to accelerate the computation of
the shadows for a cluster.

3.2 Computing Shadows
Instead of rendering shadows for each point light in a
scene, we calculate the shadows only for a smaller set
of cluster centers. In order to reduce the error in the
resulting shadows, we interpret each cluster center as
an area light source and calculate the visibility factor
using a soft shadow algorithm.



3.2.1 Direct Lighting Equation with Light Clus-
ters

Following the notation of [Eis11a], the direct-lighting
equation for n point lights can be expressed as:

Lo(p,ω) =
n

∑
i=0

Ld(p,ω, li) ·Lci ·V (p, li)

with

Ld(p,ω, li) = fr(p,ω, p→ li)G(p, li)

where p is a point on a surface, ω a direction, fr
is a Bidirectional Reflectance Distribution Function
(BRDF), V the visibility function, Lci the color of the
i-th light and li the position of the i-th point light. The
notation p → q is defined as q−p

‖q−p‖ . The geometric
term G is defined as

G(p,q) =
cos(np, p→ q)cos(nq,q→ p)

‖p−q‖2

with the normal n.

With the clustering, we replace the binary visibility of
point lights with the visibility of an area light source A
for a cluster c, which yields the following equation:

Lo(p,ω)≈
n

∑
i=0

Ld(p,ω, li) ·Lci ·
1
Ac

∫
Ac

V (p, l)dl

3.2.2 Rendering Shadows
We render a cube shadow map for each cluster and in-
terpret the cluster as a disc-shaped area light source.
The radius of the area light source is given by the min-
imum distance dmin of the cluster. We use this radius
to scale the filter window of PCSS [Fer05a] and PCF
[Ree87a]. Due to the maximum attenuation range Catt
of a cluster, we discard a pixel if the distance from the
pixel to the cluster center exceeds the attenuation range.
The visibility factor is then stored in a texture for each
cluster and is accessed during shading. This allows us
to calculate the shadows iteratively and reduces the tex-
ture memory from a cube shadow map to a screen sized
texture per cluster. In this way, we sample the cube
shadow maps only once for each cluster and avoid ad-
ditional PCF or PCSS sampling for each light source
during shading.

After all cluster shadows have been computed, we use
the set of visibility textures for shading. We shade the
scene with each point light source and modulate the re-
sulting color with the visibility value stored in the tex-
ture for the point light’s cluster.

4 IMPLEMENTATION
We implemented our algorithm using Direct3D 11 and
Tiled Deferred Shading [Lau10a]. However, LightClus-
ter can also be implemented with any other method for

shading many point lights, such as Tiled Forward Shad-
ing [Ols11a]. In each frame, we cluster the point lights,
render the G-Buffer, compute the shadows for the clus-
ters and perform the shading.
Our minimum-distance-cluster algorithm is entirely im-
plemented on CPU, as it adds only a small overhead
(see section 5 for details). The cluster position, attenu-
ation range and a cluster index per light source is stored
in an unordered access view on the GPU and can be
accessed in the shaders.
In order to render a cube shadow map in a single render
pass, we use a geometry shader to replicate the geom-
etry for each face direction. We store the world-space
distance in each face and reconstruct the world-space
position from the depth stored in the G-Buffer during
the shadow test. The set of visibility textures is realized
with a texture array.

5 RESULTS
The following results are rendered on an Intel Xeon
E5620 CPU with 2.4 GHz, 8 GB RAM and a NVIDIA
GeForce GTX 680 graphics card with 2048 MB mem-
ory. The screen resolution for all images is 1920x1080
and the resolution of one face in a cube shadow map
is set to 1024x1024. We use a Poisson disk with eight
samples for PCF and PCSS.

5.1 Scenes
We present images and measurements for three differ-
ent scenes. In the Dabrovic Sponza scene 80 lights are
placed in circles of eight lights sidewards in the arcade
to the right and left (Figure 7a). Within the Cornell Box
scene 32 light sources are randomly distributed in the
room (Figure 8a). The last scene is a part of a restau-
rant with two tables and a chandelier. Fourteen lights
overall are placed, at the candle stands on the table, at
lamps at the wall and at the chandelier (Figure 9a).

5.2 Reference solution
As a reference solution to our approach, we compute
shadows with cube shadow mapping for every light
source. Since shadows are computed for point light
sources, a binary visibility test determines if the pixel is
in shadow or not. Consequently, 80 cube shadow maps
for Dabrovic Sponza (Figure 7b), 32 cube shadow maps
for Cornell Box (Figure 8b) and fourteen cube shadow
maps are rendered for the Restaurant scene (Figure 9b).

5.3 Memory
Compared to the reference solution, LightCluster uses
additional memory. During the shadow computation,
the cluster visibility values are stored in a texture array.
Therefore, the additional memory size is cluster count
multiplied by the screen resolution. For example, in the
Dabrovic Sponza scene with 26 clusters the additional
memory size is 205 MB. In contrast, the memory size
for 26 cube shadow maps is 624 MB.



Sponza Time (ms) Cornell Box Time (ms) Restaurant Time (ms)
dinit Clusters PCF PCSS dinit Clusters PCF PCSS dinit Clusters PCF PCSS
0.1 80 100.1 115.3 0.3 13 12.9 18.0 0.2 12 36.0 40.1
0.3 44 57.0 67.3 0.4 6 9.8 12.9 0.3 9 28.9 32.9
0.5 26 36.4 43.1 0.5 5 9.1 12.1 0.4 8 26.8 30.5
1.6 10 18.7 20.7 0.6 4 8.6 11.1 0.5 7 24.9 27.8
Ref. with 80 lights 97.8 Ref. with 32 lights 20.0 Ref. with 14 lights 39.3

Table 1: Duration of LightCluster for the scenes with different dinit factors. The higher the factor, the coarser the
clustering and lesser the amount of clusters. Thus, the chosen dinit factor determines the performance.

5.4 Performance
We compare our performance results against the refer-
ence solution. In all our test scenes we use a maximum
view distance z f ar of 30 and vary only the initial dis-
tance dinit between clusters for the clustering.
As can be seen from Table 1, LightCluster is faster
than the reference solution, depending on the chosen
dinit and the resulting amount of clusters. The higher
the dinit factor, the coarser the clustering and a lesser
amount of cube shadow maps is required. Thus, the
chosen dinit factor determines the performance of our
approach. The worst case scenario for our approach oc-
curs when no lights can be clustered. This can occur
when the parameter dinit is chosen too small for a given
scene. Table 1 shows this case for the Dabrovic Sponza
scene with 80 clusters. The performance in this worst
case is slightly slower than for the reference solution,
because an additional clustering as well as a PCF or
PCSS sampling is performed. However, the worst case
can be avoided by comparing the amount of lights with
the cluster count and choosing the reference solution
render path.

Sponza Time (ms) Percentage
Step PCF PCSS PCF PCSS
Clustering 0.05 0.05 <0.1% <0.1%
GBuffer 0.53 0.53 0.9% 0.8%
Shadows 49.20 59.42 86.3% 88.4%
Lighting 7.05 7.05 12.3% 10.4%
Compositing 0.20 0.20 0.4% 0.3 %
Total 57.03 67.25 100% 100%

Table 2: Duration of the algorithm steps using the
Dabrovic Sponza dataset with 44 clusters.

The duration of the single steps in our algorithm is
shown in Table 2 for the Dabrovic Sponza scene with
44 clusters. It can be observed, that the bottleneck
in our algorithm is the computation of shadows. The
clustering step requires less than 0.1% of the total per-
formance. Thus, a clustering of the light sources can
be performed for every frame in order to reduce the
amount of cube shadow maps.
Figure 4 shows the performance of the clustering step
when using a different amount of lights. The clustering
time increases nearly linear with the number of lights.

0 500 1,000 1,500 2,000

0

0.2

0.4

0.6

0.8

1

Number of Lights

Ti
m

e
(m

s)

Figure 4: Timings for the min-distance-clustering for a
different number of lights.

With 2048 lights, the clustering can be still performed
within 1 ms of time.

5.5 Error
In order to compare the error of our approach to the
reference solution, we use difference images. The dark
blue color of a difference image indicates a low error
and a red color indicates a high error.

Figure 5: Comparison between the shadows of PCF and
PCSS.

Figure 5 shows a difference image between PCSS and
PCF shadows. It can be observed, that the PCSS solu-
tion generates a contact hardening shadow at the bot-
tom of the columns. Therefore, PCSS provides a more



realistic solution. Nevertheless, PCF can be used to ac-
celerate the computation of shadows further (see Table
1). For the following comparisons we use LightCluster
with PCSS.

Figure 7 shows our algorithm with two different clus-
ter settings for the Dabrovic Sponza scene. Figure 7a
and 7b shows the light distribution and the reference
solution. In the first case, we use an initial distance
dinit = 0.5 which results in 26 clusters. The cluster loca-
tions are illustrated in Figure 7c. As can be seen in the
difference image, there is a small error at the shadow
boundaries and slightly larger errors near the far wall,
where the number of clusters is reduced due to the dis-
tance scaling. For the second case, we use an initial
distance dinit = 1.6. The clustering step produces ten
clusters (Figure 7d). In this case the shadows are ren-
dered for only one out of eight light sources and errors
can be clearly seen in the resulting image (Figure 7f) as
well as the difference image (Figure 7g). Nevertheless,
the general impression of the shadows in the scene is
preserved and the rendering performance is increased
by a factor of 4.8.

The results in the Cornell Box scene with randomly dis-
tributed point lights are presented in Figure 8. The light
distribution is shown in Figure 8a and the reference so-
lution in Figure 8b. On the left side, Figure 8c displays
the clusters locations with dinit = 0.5, which results in
five clusters. Due to the reduction from 32 point lights
to five clusters, the image shows errors in the shadows
cast from the left cube and below the right sphere (Fig-
ure 8e and 8g). By increasing the initial distance to
dinit = 0.6, 32 point lights are reduced to four clusters.
The results in Figure 8f and 8h shows, that the error on
the wall behind the sphere increases.

In the Restaurant scene, fourteen lights are distributed
(Figure 9a) and Figure 9b shows the reference solution.
Due to the large distance between the light sources in
this scene, only the lights of the chandelier and the can-
dles are suited for clustering. In Figure 9c the lights of
the chandelier are represented by three clusters, which
is accomplished by dinit = 0.3. Figure 9e presents our
approximation. The resulting difference image in Fig-
ure 9g shows small errors in the shadows cast by the
chandelier. By using a initial distance of dinit = 0.4,
the light sources of the chandelier can be represented
by two clusters (Figure 9d). The results in Figure 9f
and 9h show, that the error in the shadows at the floor is
increased.

Figure 6 shows the root mean square error (RMSE)
for our approach using different initial cluster distances
and PCSS in our test scenes. The error increases when
the number of cluster centers and thus the number of
shadow maps is adapted, e.g. in the Restaurant scene
with a distance of 0.4 and 0.5. On the other hand, the
error is nearly constant when the lights are assigned to

different clusters according to the second step in the
clustering, e.g. in the Cornell scene with a cluster dis-
tance between 0.4 and 0.7.

0 0.2 0.4 0.6 0.8 1 1.2

0

2

4

6

·10−2

Cluster Distance

R
oo

tM
ea

n
Sq

ua
re

E
rr

or

Sponza
Cornell

Restaurant

Figure 6: RMSE for different initial cluster distances.

5.6 Discussion
We used a minimum-distance clustering algorithm to
cluster the light sources. Compared to a k-means clus-
tering, the minimum-distance clustering has the follow-
ing advantages in this scenario. First, the number of
cluster centers must not be known in advance. This sim-
plifies the algorithm and no additional heuristics for es-
timating the number of cluster centers in advance are re-
quired. Second, we place a cluster center always on an
existing light source. Therefore, the light position for
shadow mapping is always correct for at least one light
source in the cluster. The k-means algorithm on the
other hand uses the mean of the light positions within a
cluster. As the lights are distributed in space, this could
result in cluster centers which are located within geom-
etry, e.g. in a wall. Dong et al. [Don09a] solves this for
virtual point lights by using the surface normals as an
additional cluster criterion. However, this is not possi-
ble in our approach, as the light sources can be freely
placed in space. Therefore, an additional visibility test
for the cluster centers would be required to ensure that
they are not located within geometry.

Our approach can introduce temporal artifacts, such
as flickering shadows, when the camera is moved or
the light sources are animated. These artifacts can be
reduced by disabling the view-adaptive scaling in the
clustering step and by creating cluster centers for the
animated light sources.

The results showed several insights about LightCluster
concerning the scalability, quality and overall perfor-
mance. By adjusting the clustering parameters, a well
defined ratio between quality and performance can be
chosen. Due to the approximation of the shadows from
many lights with a soft shadow from a representative



light source, errors in the shadow can be reduced. As
the clustering step is fast, it can be performed in each
frame and only adds a small overhead. If light sources
can be merged to clusters, LightCluster can be used to
increase the rendering performance while maintaining
an acceptable shadow quality in many cases.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented an approach, called Light-
Cluster, to find representative light sources for approx-
imating the shadows of many-lights. By focusing on
high frequency shadows for direct lighting, we intro-
duced a modified min-distance-cluster algorithm that
combines different metrics to find a variable number of
clusters in the view frustum. These clusters are then in-
terpreted as an area light source which is scaled accord-
ing to the cluster distance. In order to reduce the result-
ing errors in the shadows, we compute the shadows for
each cluster with a soft shadow algorithm. Due to an
adjustable initial cluster distance, the performance and
quality can be trade off. The results showed, that Light-
Cluster can be used to increase the rendering perfor-
mance while maintaining an acceptable shadow quality
in many cases.
In future work, we wish to extend our implementation
with different light types, such as spot lights. This will
result in a different clustering metric as new properties
of the light sources must be incorporated, such as the
direction vector. Furthermore, we wish to try other
shadow techniques for omnidirectional light sources,
such as Paraboloid Shadow Mapping [Bra02a] and
Tetrahedron Shadow Mapping [Hun10a].

7 ACKNOWLEDGMENTS
The Dabrovic Sponza and Cornell Box scene is down-
loaded from [McG13a]. The Restaurant scene is based
on the restaurant model from [IDS13a]. The work of A.
Klein is funded by MBDA Germany.

8 REFERENCES
[Bra02a] Brabec S., Annen T., Seidel H.-P. Shadow

Mapping for Hemispherical and Omnidirectional
Light Sources. In Proceedings Computer Graph-
ics International, Springer, 397-408, 2002.

[Dac05a] Dachsbacher C., Stamminger M. Reflective
Shadow Maps. In Conf.proc. I3D 2005, 203-231,
2005.

[Don09a] Dong Z., Grosch T., Ritschel T., Kautz J.,
Seidel H.-P. Real-time indirect illumination with
clustered visibility. In Conf.proc. VMV 2009,
187-196, 2009.

[Eis11a] Eisemann E., Schwarz M., Assarsson U.,
Wimmer M. Real-Time Shadows, Taylor & Fran-
cis, 2011.

[Fer05a] Fernando R. Percentage-Closer Soft Shad-
ows. ACM SIGGRAPH 2005 Sketches, 2005.

[Ger04a] Gerasimov P. S. Omnidirectional Shadow
Mapping, GPU Gems, Addison-Wesley, 193-203,
2004.

[Gre93a] Greene N., Kass M., Miller G. Hierarchical
Z-buffer visibility. In Conf.proc. SIGGRAPH ’93.
ACM, 231-238, 1993.

[Haš07a] Hašan M., Pellacini F., Bala K., Matrix row-
column sampling for the many-light problem. In
Conf.proc. SIGGRAPH ’07, ACM, 2007.

[Haš08a] Hašan M., Velázquez-Armendáriz E., Pel-
lacini F., Bala K., Tensor Clustering for Render-
ing Many-Light Animations. In Conf.proc. EGSR
’08, ACM, 1105-1114, 2008.

[Hun10a] Hung-Chien L., Shadow Mapping for Om-
nidirectional Light Using Tetrahedron Mapping.
GPU Pro, A K Peters, 455-475, 2010.

[IDS13a] IDST Render, accessed March 27, 2013.
http://idst-render.com/scenes.html.

[Kel97a] Keller A. Instant Radiosity. In Conf.proc. SIG-
GRAPH ’97, ACM, 49-56, 1997.

[Lai07a] Laine S., Lehtinen J., Kontkanen J. Incremental In-
stant Radiosity for real-time indirect illumination. In
Conf.proc. EGSR ’07, ACM, 277-286, 2007.

[Lau10a] Lauritzen A. Deferred Rendering for Current and
Future Rendering Pipelines. Beyond Programmable
Shading, SIGGRAPH 2010, 2010.

[McQ67a] MacQueen J. B. Some methods for classification
and analysis of multivariate observations. Proc. of the
fifth Berkeley Symposium on Mathematical Statistics
and Probability, University of California Press, 281-
297, 1967.

[McG13a] McGuire M., Computer Graph-
ics Archive, accessed March 27, 2013.
http://graphics.cs.williams.edu/data.

[Ols11a] Olsson O., Assarsson U. Tiled Shading. Journal of
Graphics, GPU, and Game Tools, 235-251, 2011.

[Ree87a] Reeves W. T., Salesin D. H., Cook R. L. Render-
ing antialiased shadows with depth maps. In Conf.proc.
SIGGRAPH ’87, ACM, 283-291, 1987.

[Rit08a] Ritschel T., Grosch T., Kim M., Seidel H.-P., Dachs-
berger C., Kautz J. Imperfect shadow maps for efficient
computation of indirect illumination, In Conf.proc.
SIGGRAPH Asia ’08, ACM, 2008.

[Wal05a] Walter B., Fernandez S., Arbee A., Bala K.,
Donikian M., Greenberg D. P. Lightcuts: a scalable
approach to illumination, In Conf.proc. SIGGRAPH
’05, ACM, 1098-1107, 2005.

[Wil78a] Williams L. Casting curved shadows on curved sur-
faces. In Conf.proc. SIGGRAPH ’78, ACM, 270-274,
1978.

[Wol57a] Wolfowitz J. The Minimum Distance Method, An-
nals of Mathematical Statistics, vol. 28, 75-88, 1957



(a) The light distribution of 80 lights with Latt = 7 each. (b) The resulting reference solution at 97.8 ms.

(c) The clustering for dinit = 0.5 with 26 clusters. (d) The clustering for dinit = 1.6 with ten clusters.

(e) The resulting shadows for the cluster distribution at 43.1 ms. (f) The resulting shadows for the cluster distribution at 20.7 ms.

(g) The error for 26 clusters compared to the reference solution. (h) The error for ten clusters compared to the reference solution.

Figure 7: Comparison for the Dabrovic Sponza scene.



(a) The light distribution of 32 lights with random Latt . (b) The resulting reference solution at 20.0 ms.

(c) The clustering for dinit = 0.5 with five clusters. (d) The clustering for dinit = 0.6 with four clusters.

(e) The resulting shadows for the cluster distribution at 12.1 ms. (f) The resulting shadows for the cluster distribution at 11.1 ms.

(g) The error for five clusters compared to the reference solution. (h) The error for four clusters compared to the reference solution.

Figure 8: Comparison for the Cornell Box scene.



(a) The light distribution of fourteen lights with Latt = 2 each. (b) The resulting reference solution at 39.3 ms.

(c) The clustering for dinit = 0.3 with nine clusters. (d) The clustering for dinit = 0.4 with eight clusters.

(e) The resulting shadows for the cluster distribution at 32.9 ms. (f) The resulting shadows for the cluster distribution at 30.5 ms.

(g) The error for nine clusters compared to the reference solution. (h) The error for eight clusters compared to the reference solution.

Figure 9: Comparison for the Restaurant scene.


