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ABSTRACT
A novel idea on how to make RANSAC repeatable is presented, which will find the optimal set in nearly every run for certain
types of applications. The proposed algorithm can be used for such transformations that can be constructed by more than
the minimal points required. We give examples on matching of aerial images using the Direct Linear Transformation, which
requires at least four points. Moreover, we give examples on how the algorithm can be used for finding a plane in 3D using
three points or more. Due to its random nature, standard RANSAC is not always able to find the optimal set even for moderately
contaminated sets and it usually performs badly when the number of inliers is less than 50%. However, our algorithm is capable
of finding the optimal set for heavily contaminated sets, even for an inlier ratio under 5%. The proposed algorithm is based on
several known methods, which we modify in a unique way and together they produce a result that is quite different from what
each method can produce on its own.
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1 INTRODUCTION
In aerial image stitching based on feature matching it
is necessary to find corresponding points between two
or more images. Hence, it must be determined which
points are matching, so called inliers, and which points
are false matches, so called outliers. RANSAC [FB81]
is one of the far most used algorithms for this pur-
pose and many variants have been proposed in liter-
ature. The main disadvantage with standard RANSAC
is that it is not repeatable [Zul09] since it is based on
random sampling, as the name itself suggests: RAN-
dom SAmple Consensus. Therefore, it is difficult us-
ing RANSAC while trying to run tests of other param-
eters involved in the application, as the set of inliers
for the same pair of images may vary in each run. For
medical applications such as the one described later it
is important that the result does not differ if the ap-
plication is run more than once. Furthermore, stan-
dard RANSAC does not try to find the optimal set of
inliers, instead it stops when the probability of find-
ing more inliers reaches its predefined threshold. The
consequence is that it does not perform well for highly
contaminated sets, i.e. when the set of outliers is large,
since consensus might not be reached within reason-
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able time. Even worse is that the stopping criterion,
which is based on a statistical hypothesis might indi-
cate that consensus is not yet reached, while most of
the inliers are already found.

Generally the set of inliers is used to construct the
geometric transformation or homography [VL01] be-
tween the pair of images and because of the random-
ness in RANSAC it will be a bit different each time.
Clearly, if some important inliers are missed, the ho-
mography will be different from the best one. Espe-
cially if the set is close to degenerate it might not even
be useful for image stitching etc as the transformed
images will be distorted.

Contributions and Delimitations
In this paper several known methods (LO-RANSAC
[CMK03] [CMO04] [LMC12]) are modified and put
together in a unique way giving an algorithm that is re-
peatable. This means that it will yield the same result
in each run, i.e. the optimal set, which are all inliers
below a certain threshold defined by the tolerance ε .
When testing different settings of parameters in an ap-
plication that uses RANSAC it is important that it be-
haves in a predictable way and will not add unwanted
bias to the tests. Furthermore the new algorithm is able
to handle sets with a very low inlier ratio, even under
5%, which is important since many implementations
of RANSAC do not perform well when the number of
inliers is less than 50% [Low04]. The proposed algo-
rithm will generally be faster for such sets but slower
for high inlier ratio sets.

The algorithm only works for transformations that
can be constructed from more than the minimal points



required, such as the 4 point Direct Linear Transfor-
mation (DLT) [HZ03].

It will be shown that the algorithm performs well for
aerial images but might find a local maxima, i.e a sub
optimal set for photos taken on the ground for stitching
panographs. Moreover, examples of finding a plane in
3D will be given from a medical application, where
the transformation is given by the plane equation.

Nonetheless, we have not yet tested the algorithm
for finding clusters of points or lines in a point set. As
long as there is a way to find a best fit to many points
by for instance computing the minimal squared dis-
tance or doing Principal Component Analysis (PCA)
it should work for such cases, as long as there are not
many suboptimal sets present. For Homography trans-
formations between a pair of images we compute the
minimal squared distance and for finding the best fit-
ting plane in 3D we use PCA as it turns out to be much
faster than computing the minimal squared distance .

RANSAC and some of its Variants
Some of the many variants of RANSAC used for find-
ing true matches between pairs of images are briefly
discussed in this section and we will start by explain-
ing the main idea of the standard RANSAC. As men-
tioned in the introduction RANSAC is used to de-
termine a set of inliers and first starts by selecting
the minimal number of points required to determine
the model parameters, i.e. finding the homography
[HZ03] [BL07], which is the projective transforma-
tion between the images. Then the set is rescored us-
ing this transformation, in the way that the number of
inliers that falls below a certain predefined tolerance
ε , are counted. This means that when transformed,
these points are being close enough to its correspond-
ing match and are hence regarded as true inliers.

If the number of inliers is large enough or more com-
monly when the probability of finding a better model
becomes lower than some threshold, then the algo-
rithm terminates, otherwise it starts all over. Gener-
ally, N iterations are needed in order to find an out-
lier free set with the probability p (often set to 99% or
more) as:

N =
log(1− p)

log(1− γ s)
, (1)

where γ is the inlier ratio, i.e. number of inliers di-
vided by number of points in the cluster and s is the
number of samples drawn each time. If N is larger
than the number of iterations of the main loop the al-
gorithm starts all over and samples the set once again.
Alternatively one can also run the algorithm several
times and then choose the solution giving the largest
set of inliers. The main idea however is to generate a
hypothesis from random samples (estimating a model)
and then verifying it using all the data (scoring). Usu-

ally a final reestimation is performed where the trans-
formation is computed using all inliers [HZ03].

RANSAC generally treats all correspondences
equally and draws random samples uniformly from
the full set while MLESAC [TZ00] performs non-
uniform, i.e. guided sampling of correspondences and
PROSAC [CM05] draw samples from progressively
larger sets of top-ranked correspondences. GOOD-
SAC [MvHK∗06] on the other hand does not use
random sampling, but instead an assessment driven
selection of good samples. SCRAMSAC [SLK09]
tries to reduce the number of outliers using a spatial
consistency check in order to find inliers more rapidly.
They all aim at reducing those outliers that somehow
can be recognized as true mismatches and not as being
close to a true match.

A randomized model verification strategy for
RANSAC, R-RANSAC [CM08], was proposed for
the situation when the contamination of outliers
is known. The LO-RANSAC [CMK03] [CMO04]
utilizes a local optimization step and when applied to
selected models the algorithm has near perfect agree-
ment with the theoretically optimal performance.
Another approach [RFP09], known as Cov-RANSAC
incorporates the inherent uncertainty of the estima-
tion procedure in order to achieve a more efficient
algorithm.

KALMANSAC [VJFS05] was designed for real-
time tracking and the estimation of structure from
motion. It is derived from pseudo-Bayesian filtering
algorithms in a sampling framework and can handle
sequences containing large number of outliers. Other
examples from robotics are Preemptive RANSAC
[Nis03] and Iterative RANSAC [KK06]. One thing
they have in common is that the order of the scoring
of the pairs of matches is planned in order to avoid
scoring useless pairs, i.e. outliers.

MultiRANSAC [MZM05] is a parallel extension of
the sequential RANSAC that allows to deal simultane-
ously with multiple models, which have the advantage
of being able to cope with a high percentage of out-
liers. GASAC [RH06] is another parallel algorithm
using a genetic algorithm approach. RANSAC has a
low probability to find the correct solution when the
data is quasi degenerate and QDEGSAC [FP05] was
proposed for use in such cases. NAPSAC[MTN∗02]
takes advantage of the fact that if an inlier is found
then any point close to that point will have a high prob-
ability to be an inlier.

Very little work has focused on maximizing the set
of inliers guaranteeing the result to be repeatable, as
noted by Li [Li09]. Instead many algorithms focus
on the goodness of the fit, such as R-RANSAC, Lo-
RANSAC, MLESAC and preemptive RANSAC, just
to mention a few. Li proposes a different approach
reformulating the problem as a mixed integer pro-



gram, which is solved using a tailored branch-and-
bound method. Others [OEK08] have chose to use
standard RANSAC with convex programming and a
post-validation scheme. The idea is to verify whether
the solution is the optimal or if there exists no solu-
tion with more than 50% inliers. Yet another approach
[EK08], which does not use RANSAC but still finds an
optimal solution is tailored for the problem of estimat-
ing the position and orientation of a calibrated camera
from an image of a known scene.

The above list is by far complete but serves as an
overview of some of the more important variants as
well as underlining the fact that RANSAC have been
investigated and enhanced in many ways for different
applications. A performance evaluation of some of
the more important variants of RANSAC is done by
Choi et al. [CKY09] and a comparative analysis of
RANSAC is given by Raguram et al. [RFP08]. Lowe
[Low04] proposed to use the Hough transform [DH72]
for clustering data, and some hybrids exists [HH07].
Nonetheless, RANSAC remains, with all its variants,
the predominant method for finding inliers.

2 THE PROPOSED METHOD
The proposed method is based on several observations
regarding the set obtained after sampling, estimation
of the model and scoring. Algorithm 1: Optimal-
Ransac shows the main part, which randomly sam-
ples the minimal points required in the set of cor-
responding pairs P, using Algorithm 2: randsample.
Moreover, a model M is estimated using the algorithm
model and the number of tentative inliers are counted
(scored) using the algorithm score. These latter al-
gorithms are not specified here but are the main part
of any RANSAC algorithm. In our case we used the
Matlab R© algorithms provided by Peter Kovesi on his
homepage [Kov]. The main sampling is performed in
Algorithm 2: resample, whenever the number of ten-
tative inliers η ′ is larger than 5 for reasons explained
in the Discussion.

The Stopping Criterion
A reliable stopping criterion is needed, since in most
cases there is no a priori information at hand about
how many inliers there are in the set. For tracking
applications there is usually some useful guess as the
number of tracked points are almost the same for ev-
ery image. However for a set of two images no such
information is available.

For standard RANSAC it is possible to compute the
probability of finding more inliers. However, this does
not work well for highly contaminated sets as this cri-
terion indicates that more inliers should be found even
if all are already found and therefore a better criterion
is necessary. Experimentally, it was found that the pro-
posed algorithm will very rarely come to the same con-
sensus twice unless it is the optimal set. This might not

input : P : Set of all points, ε ′ : Tolerance for
general sampling, ε : Tolerance for the
final set of inliers;

output: M : Model for the tentative inliers, T :
Tentative inliers in M, η: Number of
tentative inliers;

σ ← 0;
η ← 0;
while σ < 1 do

τ = randsample(η ,4);
M← model(P(τ)) ;
T ′← score(M,P,ε ′);
η ′ = |T ′|;
if η ′ > 5 then

[M,T ′,η ] = resample(P,M,ε,T ′,η ′);
if ε ′ < ε then

[M,τ] = pruneset(M,P(T ′),ε ′);
T ′←T ′(τ);
η ′ = |T ′|;

end
end
if η > 5 and η = η ′ then

if |T |= |T ′| then
σ ← σ +1;

else
nes← 0;
T ←T ′;

end
else if η ′ > η then

σ ← 0;
η ← η ′;
T ←T ′;

else if η ′ = η−1 then
σ ← 0;
η ← η ′;
T ←T ′;

end
end

Algorithm 1: OptimalRansac. Find tentative inliers
by the resample algorithm. Prune the set to the final
tolerance. Stop when the set is equal to the previous
set. Also handle the rare cases when one more inliers
is found.

be true for all flavors of RANSAC, but the proposed al-
gorithm finds the optimal set very effectively and will
therefore usually not come to the same consensus un-
less it is the optimal set. This works surprisingly well
for most sets, however when the set of tentative inliers
is very small. i.e. less than 30, the probability of find-
ing a non optimal set twice increases dramatically. A
simple solution to this problem is to require more than
two equal sets in order to assure that the final set is the
optimal one for such cases.



Figure 1: Left: Two points (blue) within the set of
inliers are chosen to construct a new line (black).
The tentative inliers (right) now fits the set bet-
ter and includes also some new points (yellow) and
some others are excluded (red).

One problem that can arise in some rare circum-
stances is that two different optimal sets are found
where Sa contains one inlier more than set Sb. If each
of these sets are rescored using their transformation
model, the very same sets are obtained once again. We
found that by pruning the set to a lower tolerance ε ′

forced the algorithm to find the same set Sb in almost
every case. Nonetheless, it was necessary to add the
last else if in Algorithm 1 OptimalRansac to handle
such rare cases.

Resampling
Chum et al. [CMK03] [CMO04] proposed to resam-
ple the set of tentative inliers already found as the set
might contain several inliers but also some outliers that
must be removed. This is one of the key parts of their
LO-RANSAC algorithm and they perform the itera-
tion 10 times on up to half the current set. We used 8
iterations on a quarter of the set as we got better results
using a smaller part of the set and 8 times was enough.

It is easier to understand how RANSAC works for
finding lines rather than finding transformations be-
tween images. Therefore, an example of line fit-
ting will be used to prove the importance of resam-
pling. Figure 1 (left) shows how two points within
the set of tentative inliers are chosen (blue) to con-
struct a new line (black). The new line and tentative
inliers are shown to the right. The line fits the set
better than before. However, Chum et al. use this
in their LO-RANSAC approach only when standard
RANSAC scores its best result. Hence, their method
tries to optimize this best result, while in Algorithm 2:
resample it is done whenever more than 5 inliers are
found.

Rescoring
Chum et al. [CMK03] [CMO04] and Lebeda et al.
[LMC12] also use rescoring to increase performance
and reliability. Nevertheless, they do it in a different
way as they propose to rescore the set a fixed num-
ber of times while decreasing the tolerance ε in each
step. This will prune the set but also give more inliers.
However, by keeping the same tolerance and iterate

input : P : Set of all points, M : Current model,
ε : Tolerance, T : Tentative inliers in P,
η: Number of tentative inliers;

output: M : New model, T : Tentative inliers in
P, η: Number of tentative inliers;

P′ = P(T );
i← 0;
while i<8 do

i← i+1;
τ = randsample(η ,max(4,η/4));
M′← model(P′(τ)) ;
T ′← score(M′,P′,ε) ;
if |T ′|> 5 then

[M′,T ′,η ′]← rescore(S′,ε,T ′);
if η ′ > η then

P′← P(T ′);
M←M′;
η ← η ′;
T ←T ′;
i← 0;

end
end

end
Algorithm 2: Resample. Resamples the set of points
using up to a quarter of the tentative inliers. If the
number of inliers in the whole set using that model is
higher than before, then the resulting set is iteratively
rescored and if a larger set is obtained the algorithm
starts all over.

until the set does not change anymore as in Algorithm
3: rescore , the set will soon converge to the optimal
set.

We noted that if the set S0 obtained after scoring is
used to compute the transformation again (reestimat-
ing) and then rescoring the set, the resulting set S1
might contain more points than the set S0. This pro-
cedure can be repeated as long as the set changes. It
can nonetheless happen that the set starts to wobble so
that set Sa becomes Sb after reestimation and rescoring
and this set once again becomes Sa after another rees-
timation and rescore. As it cannot be assured that this
is the only case that can occur and that the wobbling
might include more sets, it is necessary to set an up-
per limit for how many iterations should maximally be
performed in order to avoid to get stuck and we chose
20 in our tests. Note that it is not possible to assure that
the obtained set is free of outliers. Hence resampling is
necessary in order to remove these so that the optimal
set can be found, which is free of outliers. However,
it can contain points that are a bit off and therefore
pruning is necessary as discussed in section 2.

Figure 2 (left) shows how two points in the set are
chosen to compute the transformation, which in this
case is a line (blue). All points (blue and green)



input : P : Set of all points, ε : Tolerance, T :
Tentative inliers in P, η: Number of
tentative inliers;

output: M : New model, T ′ : Tentative inliers in
P, η ′: Number of tentative inliers;

j← 0;
η ′← |T |;
T ′←T ;
while j < 20 do

j← j+1;
M← model(P(T );
T ← score(M,P,ε);
η ← |T |;
if η > 5 then

if η 6= η ′ then
η ′← η;
T ′←T ;

else if T ′ = T then
j← 20;

else
η ′← η;
T ′←T ;

end
else

j← 20;
end

end
Algorithm 3: Rescore. Repeatedly reestimates the
model and rescores the set until the set does not
change anymore. Prevent getting stuck in an eternal
loop by not doing more than 20 iterations.

within the tolerance (dotted lines) are tentative inliers.
All these points are used to compute the average line
passing through them (rescoring), giving the new line
(right), which obviously fits the set better. Some points
previously considered inliers are now considered out-
liers (red) and vice versa (yellow). The conclusion is
that repeated reestimation and rescoring can be used
to fit the set better. Of course, not every set will ben-
efit from reestimation and rescoring but in section 3 it
will be shown in a number of tests that the number of
iterations needed is generally substantially reduced.

Pruning
Once a good set of tentative inliers is obtained, where
all fall under a certain tolerance ε , it is possible to
prune the set further by using a tolerance ε ′, so that
ε ′ < ε and doing rescoring using the already estimated
model M. However, the model M is estimated using
all tentative inliers, also the ones that should be re-
moved. In other words, the model used is not the best
one. Hence, when the threshold ε ′ is rather low some
true inliers might be removed along with the ones that
are a few pixels wrong. A better idea is to remove

Figure 2: Left: A line is constructed from two
points (blue). All tentative inliers (green and blue)
are used to construct a new line (black). The ten-
tative inliers now fits the set better (right) and also
includes some new points (yellow) and some others
are excluded (red).

just the most extreme inlier, then reestimate the model
Mi, using the remaining inliers in the set Si. The in-
dex i denotes the iteration number. This process is re-
peated until all tentative inliers lie within the tolerance
ε ′. This assures that the best fitting model Mi is used
every time an extreme inlier outside the threshold is re-
moved. Algorithm 4: Pruneset performs the necessary
pruning.

input : P′ : Set of points to prune, M : Current
model for P′, ε : Tolerance;

output: M : New model, T ′ : Tentative inliers in
P′;

η ← |P′|;
ρ ← 1;
T ′←{1 : η};
while η > 5 and ρ = 1 do

[T ,δ ]← score(M,P′(T ′),ε);
[ε ′,τ]← max(δ );
if ε ′ > ε then

T ′(τ)←{};
M← model(P′(T ′));

else
ρ ← 0;

end
end

Algorithm 4: Pruneset. Prunes the set by remov-
ing the most extreme tentative inlier. Recompute the
transformation and start all over again. Note that the
output T from score is not used, instead max(δ ), i.e.
the max distance, is used to prune T ′.

3 RESULTS
The proposed RANSAC algorithm was executed on
several sets of aerial images with a spatial overlap.
Furthermore, it was tested on a problem arising in a
medical application where the problem is to find the
central axis of a bone structure in a volume set. We
also tested it on images of houses for panograph stitch-
ing, where there are several sub optimal sets due to the



perspective. It will sometimes fail to find the optimal
set even if it always finds a set with many inliers, i.e a
sub optimal set.

The Harris corner detector [HS88] was chosen in-
stead of the more accurate SIFT detector [Low04].
The reason is simply because the proposed method is
aimed at working also for highly contaminated sets.
Since the matching of Harris points being used is less
accurate than SIFT it produces more easily such sets.
Nonetheless, there is nothing that prevents the use of
the proposed method using SIFT feature point sets,
or any other feature detector for that matter. An ad
hoc setting of the tolerance was used for all images
im, with ε ′ = 1/(2 min(size(im))) and ε = 8ε ′, which
gives a high precision of the accuracy for the final in-
liers after pruning, while still allowing the transforma-
tion to find many inliers in the resampling and rescor-
ing. Generally, a low ε will make the algorithm run
longer, but setting ε too high will make it fail as out-
liers will be regarded as inliers.

In order to make a fair comparison to standard
RANSAC the iterations reported are computed in the
following way. The number of iterations Φ in the
main loop as well as the time Ω is computed for the
standard RANSAC operations: sampling, estimating
the model and scoring the number of inliers. Then the
time Ψ to compute the proposed Algorithm 2, 3 and
4: resample, rescore and prune as well as handling
special cases and the stopping criterion, is computed.
The total iterations ϒ is expressed in terms of standard
RANSAC iterations. Hence ϒ = Φ+(Φ/Ω)Ψ

Table 1 show the results of running the algorithm on
four pairs of aerial photos. The measured number of
iterations ϒ can be compared to the theoretical number
of iterations N and the speedup (rounded) is computed
as Π = N/ϒ. The inlier ratio γ is computed (as indi-
cated in the table) as the number of inliers divided by
the size of the set. The number of deviant sets, i.e. a
set with other inliers than the majority, are indicated
by ξ .

The proposed algorithm was also applied on medi-
cal datasets in the form of three 3D computed tomog-
raphy (CT) images of fractured wrists. The results are
shown in Table 2. The underlying task here was to
identify the central long axis of the radius bone in the
wrist, which can be achieved by (1) segmenting the
radius bone and converting it to a surface mesh, (2)
selecting a part of the radius shaft located beneath the
fracture (top row: a), (3) computing per-vertex nor-
mals for the selected surface, (4) mapping the surface
normals to points on a unit-sphere (top row: b), and
(5) using RANSAC to robustly fit a plane to the dense
band formed on the point cloud (top row: c). The nor-
mal of that plane will correspond to the direction of the
long axis. See [NCM∗12, CG01] for more details. Ob-
taining precise (sub-degree) measurements of this axis

is of great interest to orthopedic surgeons who need
to assess the displacement of wrist fractures in clinical
practice or scientific studies.

4 DISCUSSION
Lebeda et al. [LMC12] propose an improvement of
the LO-RANSAC algorithm that is similar but differ-
ent from our algorithm in a couple of distinctive ways.
The similarity is that resampling of the set (Lebeda et
al refers to it as the inner RANSAC or the LO step)
is done a number of times and each time the set is be-
ing rescored using the estimated model obtained from
those samples. The differences are the following: they
decrease the tolerance for each estimation and scor-
ing, while the algorithm proposed in this paper iter-
ates using the same tolerance until the set does not
change anymore, which either means a local maxima
is found or that an optimal set is obtained. By decreas-
ing the tolerance, the set is pruned, which is desirable.
Nonetheless, it is better to prune once the optimal set
is found, since pruning in the rescoring diminishes the
possibility to find more inliers as the “search area”
marked by the dotted lines in Figure 2 is shrinking.
Moreover, if the tolerance is decreased too much there
is a chance that inliers that fall under the final toler-
ance are removed as the transformation is computed
using also some inliers above that tolerance.

Another very important difference is that if a larger
set is found in Algorithm 2: resample, then the pro-
cess of resampling starts all over using that set instead,
since it is larger and will more probably lead to the op-
timal set. Hence it will make the algorithm come to
consensus faster as it will work on a growing set.

Moreover, Chum et al. propose to do the LO step
only if a highest number of inliers is found from ordi-
nary sampling while we propose to perform it when-
ever more than 5 inliers are found. They have per-
formed their tests on sets with rather high inlier ratios
(most of them around 70% or more) and the probabil-
ity to find a set with many inliers is therefore rather
high. Hence, the iterative reestimation and rescoring
with pruning is bound to come to the same consensus
in each run. However, for low inlier ratios the proba-
bility to find a large tentative set is low and if the LO-
step happen to find a local maxima it will take many
iterations before the standard sampling, estimation and
scoring scheme finds a larger set to be optimized in the
LO-step.

One fact that makes it important to perform the op-
timization even on small sets is that even a small con-
taminated set can lead to consensus. In fact, even if
there is only one true inlier in the original samples
(4 for the image pairs and 3 for the medical appli-
cation), the resulting set after estimation and scoring
might have more than the number of inliers required
to compute the transformation. It seems like nobody



Images Results

Pisa, Central
ϒ 791.35 183.23 222.77 439.1
N 2969098.7 14471.8 52374.4 294930.8
Π 3752 79.0 235 672
γ 72/1800 = 0.04 33/218 = 0.15 45/410 = 0.11 57/800 = 0.071
ξ 0 0 0 0

Pisa, East
ϒ 828.72 212.47 235.55 922.23
N 843.3 49.6 934.6 45.2
Π 1.02 0.23 3.97 0.049
γ 554/1800 = 0.31 218/355 = 0.6 240/800 = 0.3 505/805 = 0.63
ξ 0 0 0 0

Pisa, West
ϒ 527.35 141.2 194.26 387.49
N 233234.3 2852.8 4978.3 103820.3
Π 442 20.2 25.6 268
γ 136/1800 = 0.08 67/295 = 0.23 117/592 = 0.2 74/800 = 0.09
ξ 0 0 0 0

Pisa West/Arno
ϒ 1346.5 476.55 372.62 2033.71
N 2269820.7 33555.9 47556.2 1493102.5
Π 1686 70.4 128 734
γ 77/1800 = 0.043 33/269 = 0.12 66/587 = 0.11 38/800 = 0.048
ξ 0 1 3 0

Table 1: c©MiBAC-ICCD, Aerofototeca Nazionale, fondo RAF. The number of iterations (theoretical) and
the mean and standard deviation for number of iterations and inliers for different matchings and images.

Figure 3: Left: Two points (blue) within the set
are chosen to construct a line (black). Right: The
best fitting line contains the same green points and
additional yellow points, but the original sampling
points (blue) are now considered being outliers and
are depicted in red.

has exploited this fact before, not at least for image
pair homographys. This finding is very important as it
will speed up RANSAC for highly contaminated sets.
From the example in Figure 3, one can see that it is
possible to find inliers from one estimation and scoring
even if the initial samples are all outliers. The tables
clearly show that a notable speedup can be gained for
highly contaminated sets. The largest speedup (3752)
was obtained for the first pair of images in Table 1 One
can also note that when the inlier ratio goes up, close

to 50% the speedup decreases to under 1 and the al-
gorithm becomes slower than the theoretical number
of iterations. In our case we chose 99.95% number
of inliers as we aimed at making the algorithm have
less than 5 deviating sets in the 10 000 runs that was
performed on each set of images. Different settings
for each pair of images was used to produce the ta-
bles and this was achieved by changing the number
of points obtained from the Harris corner detector and
also by changing the lowest response required to b e
considered a good match in the matching procedure.

The probability to sample one inlier in a set is pro-
portional to the inlier ratio: ρ = η/ |P|, where η is
number of inliers in the set P. Hence the probability to
sample four inliers is ρ4, while the probability to sam-
ple one inlier is just ρ . Assume that the inliers ratio is
ρ = 0.9, then finding one inlier takes 1/ρ = 1.11 iter-
ations while 1/ρ4 = 1.52 iterations are needed to find
four inliers. This can be compared to the case when
the inliers ratio is just ρ = 0.1 then finding one inlier
takes 1/ρ = 10 iterations while 1/ρ4 = 10 000 itera-
tions are needed to find four inliers! Nevertheless, it
must be kept in mind that not every configuration con-
taining just one inlier will lead to consensus. There-
fore, to prove that the reasoning still holds a simple



a b c

ϒ 8351,86
N 16.37
Π 0.0020 * 100=0.20
γ 36879/51306 = 0.72
ξ 0

ϒ 6223,49
N 15.45
Π 0.0025 * 100=0.25
γ 28848/39534 = 0.73
ξ 1

ϒ 5187,57
N 5.92
Π 0.0011 * 100=0.11
γ 38016/42351 = 0.90
ξ 0

Table 2: Top row from left to right: A section of the bone is selected manually; The surface normals are
mapped to points on a sphere; The central axis is found by the Proposed RANSAC method. Bottom row
shows results from three different cases, whereof the first one is the case in the top row.

Images Results

Bologna

ϒ 531.76 281.27 344.05
N 190810.5 10083.6 18246.0
Π 359 35.9 53.0
γ 143/1800 = 0.079 56/338 = 0.166 115/805 = 0.143
ξ 0 0 0

Venice
ϒ 774.85 286.72 454.08
N 901293.9 59207.4 240222.3
Π 1163 206 529
γ 97/1800 = 0.054 38/357 = 0.106 60/800 = 0.075
ξ 5062 0 1

Florence, Ponte Vecchio

ϒ 398.77 165.88 205.12
N 3144.4 146.7 1128.3
Π 7.89 0.88 5.5
γ 399/1800 = 0.222 210/443 = 0.474 229/800 = 0.286
ξ 0 0 0

Table 3: c©Anders Hast. The number of iterations (theoretical) and the mean and standard deviation for
number of iterations and inliers for different matchings and images.



test was conducted on the first pair of images in Table 1
and it was recorded how many inliers below the higher
threshold ε was actually in the set before resampling
whenever an optimal set eventually was found after
resampling. On average 2.18 of the four initial sam-
ples were inliers and this number varied from 1 to 4.
Clearly, consensus can be reached with less than four
inlier samples. After scoring 9.06 were considered in-
liers but only 7.11 actually were inliers, meaning that
almost two of these were in fact outliers. On average
it took Φ = 47.85 iterations of the outer loop before an
optimal set was found, which can be compared to the
theoretical N = 2969098.7 as shown in the table.

There is a limitation in the stopping criterion that
must be mentioned. When the inliers are less than
about 30 it can happen that the same set is found twice
even if it is not the optimal set. Therefore we suggest
to increase the parameter σ in Algorithm 1: Optimal-
Ransac and hence require more than two sets to be
equal before the algorithm terminates when less than
30 inliers are found in two equal sets.

4.1 Panographs
Note that in Table 3 on row 2 there is one setting that
gives 5062 deviant sets. The reason is that the algo-
rithm finds two different suboptimal sets of inliers and
none of them is the optimal set containing all true in-
liers. The image is quite challenging for matching and
is constituted by several planes or surfaces. One is
found on the water in the canal and the others on the
walls etc. The DLT can simply not cover the complex
transformation in the image when the tolerance is set
very low. The result is that the two suboptimal sets
will contain a majority of inliers that are in common,
but some points that are unique for each set. It is pos-
sible to find a set containing all inliers by increasing
the tolerance but then there is a risk that the set will
contain correspondences that are one or more pixels
wrong and should be considered outliers. This is a
common problem for RANSAC and can be solved by
removing the inliers from the set when consensus is
reached and repeat the whole process with the remain-
ing set. However, determining which set of inliers are
on the water and which one is on the walls etc is out
of scope for this paper. Hence, it cannot be assured
that the algorithm finds the optimal set or whether a
sub optimal set was found for such pictures as shown
in Table 3. Obviously this is a drawback with the al-
gorithm and in fact is a drawback for most flavors of
RANSAC. Nevertheless, for the images in Table 1 the
ground is far from the viewer and can be considered
being all in the same plane.

4.2 Medical datasets
In contrast to the aerial images, the inlier ratio in these
datasets is significantly higher, usually 50% or more.
However, since the selected part of the bone is slightly

flattened and conical rather than cylindrical, standard
RANSAC tends to get stuck in (and wobble between)
local minima in each run and produce axes that are
not equally well-aligned to all sides of the bone. The
method described in [NCM∗12] addressed this issue
by first running RANSAC multiple times to generate
a set of candidate axes, and then selecting the mean
of these axes as the true axis. Although that method
turned out be precise enough for the intended applica-
tion, the proposed method will find the optimal axis
directly. In Table 2, the speedup is multiplied with
100 as ordinary RANSAC needed to be run 100 times
in order to give a reliable result. Hence, our proposed
method is 5 to 10 times slower but the result is more
reliable as the very same set is obtained in each run.

Table 2 show the results of running our algorithm
1000 times each on the three medical datasets. The
parameter settings for this experiment were ε = 0.275
and ε ′ = 0.25.

5 CONCLUSION
We have proposed an algorithm that is similar to LO-
RANSAC as it resamples the set of tentative inliers
a number of times and then performs iterative estima-
tion of the model and scores the number of inliers. It is
important to notice that the proposed algorithm is dif-
ferent from the LO-RANSAC in the following ways:

• The optimization is performed whenever a set with
more than five tentative inliers is found. This is
important for sets with a low inlier ratio.

• Whenever a larger set is found in the resampling
step, the resampling starts all over with that set so
it will work on a growing set until the largest set
is found with the help of iterative reestimation and
rescoring.

• The iterative reestimation and rescoring uses the
same tolerance so that the set will grow as much
as possible. The iteration does not stop until the set
stops changing, which means that there is a high
probability that an optimal set is found.

• Pruning is done afterwards with a lower tolerance
so that only the very best inliers are kept. The
transformation is recomputed using the remaining
inliers in each step.

The main drawback with the algorithm is that when
the image contains more than one plane, such as the
images in Table 3 then it cannot be assured that the
optimal set is found as there can be several sub op-
timal sets that fulfill the transformation with a given
tolerance. Nevertheless, this is a problem for most ver-
sions of RANSAC and we did not try to solve it in this
paper. In any case, the algorithm will find a subopti-
mal set efficiently, especially for low inlier ratios, but



there is unfortunately no guarantee that the algorithm
will find the same suboptimal set in every run.

The proposed improvements for RANSAC gener-
ally yield an optimal set in more than 99.95% of the
cases for aerial images. LO-RANSAC will perform
close to the theoretical number of iterations in equa-
tion 1 and thus be faster for high inlier ratio sets. The
proposed algorithm will on the other hand have the ad-
vantage of a substantial speedup for highly contami-
nated sets and will handle sets with even just 4% of in-
liers. Another advantage is that it will find the optimal
set in each run for both arial images and for finding
planes in the medical application it was tested on.
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