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ABSTRACT
Translating and rotating planar polygonal robots are studied in the literature for decades. An integral part of
this study is the configuration space which corresponds to the work space. In the context of motion planning
problems, the boundary between the free and forbidden parts of the configuration space plays a major role. In this
paper we find an explicit parameterization of the boundary of the forbidden space. Using this parameterization
we detail several geometrical properties of the various elements which constitute this boundary. In addition, this
parameterization enables us to visualize these elements.

Keywords
Robotics, Motion planning, Configuration Space, Parameterizations

1 INTRODUCTION
The piano movers problem is about four decades old
[SS83, IKP73] and studied intensively ever since. A
fundamental part of this study is the configuration space
which is associated to the work space at hand. A
work space which consists of a planar polygonal con-
vex robot, which is free to rotate and translate and
polygonal obstacles give rise to a configuration space.
Each point in the configuration space corresponds to
a unique placement or pose of the robot in its work
space, and vice versa, that is, every pose of the robot
in the work space corresponds to a unique configura-
tion point. The presence of obstacles in the work space
translates to the partition of the configuration space into
two parts, namely the free and forbidden spaces. Con-
figuration points in the forbidden part correspond to
poses in which the interior of the robot intersects the
interior of one or more obstacles.

Most studies set the solution of the motion planning
problem as the primary goal and thus focus mainly on
algorithmical aspects. Thus, the related configuration
space was hardly studied from a geometrical point of
view. In this paper we focus on the geometrical prop-
erties of the configuration space which is associated to
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the piano movers problem. To that end, we derive in
Section 3 an explicit parameterization of the boundary
of the forbidden space. Better understanding of this
boundary can contribute, for example, to the general
study of the motion planning problem. In turn, using
this parameterization we study in Section 4 the geomet-
rical properties of this boundary.

In terms of visualization, most of the illustrations of
the configuration space that can be found in the lit-
erature are rather simple. It is well known that for a
robot which can only translate, the boundary of the for-
bidden space is polygonal and can be computed using
Minkowski sums. Thus, most of the visualizations slice
the configuration space with horizontal planes. Each
slice corresponds to a fixed rotation of the robot and
the boundary can be computed using Minkowski sums.
Finally, stacking these slices yields a discrete visualiza-
tion of the obstacles as they appear in the configuration
space [Lat93]. Using our parameterization it is easy to
visualize the boundary of the forbidden space, as can be
seen in Figure 9 and in [AR12].

Previous Work.

The work of Lozano-Pérez and Wesley [LPW79] put
the so-called configuration space under the spotlight.
Surveys like [WB00, HA92] provide a broad overview
at least on the early study of this fundamental concept.
As we already pointed out, the literature aims mainly
at the motion planning problem and hardly considers
the boundary of the forbidden space per se, let alone
parameterizing it.
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Figure 1: An example of a work space with a robot A(0)
in its rest position (dark green) and in a configuration
resulting from a translation by a vector ~r and rotation
in angle θ (light green), that is A(q) where q = (~r,θ).
Local frame is in solid blue and one obstacle O1 is in
red.

Two interesting examples are [BA88, MST13]. Both
attempt to solve the motion planning problem itself,
although they provide, as a byproduct, some idea on
the geometrical nature of the boundary of the forbidden
space. Yet, neither of them provides an explicit, simple
and concise representation of the various elements of
the boundary.

1.1 Definitions and Notations
In this section we describe all the notations and no-
tions that will be used throughout the paper. Fur-
ther details can be found in standard textbooks like
[LaV06, Lat93, CLH+05, Lau98]. In addition refer to
Figure 1 for illustrations of the various definitions.

The Robot.

A robot A is a convex planar polygon with n vertices
denoted by {ai}n

i=1; we assume that they are given in
counterclockwise order. The robot can translate and ro-
tate in a work space scattered with polygonal (convex)
obstacles. The work space is denoted by W and we
take it to be W = R2. The reference point of the robot
is denoted by R0, and we assume that in the rest posi-
tion it is at the origin. Furthermore, we assume that the
local frame of the robot aligns with the coordinates of
the work space when in the rest position.

The vertices of the robot are either given with Cartesian
coordinates, or with polar coordinates. For the vertex
ai we use the following notation ai = ri (cosαi,sinαi)
where ri = ‖ai‖ and αi denotes the angle with respect
to the local frame of the robot. We assume that the ver-
tices are in an increasing angular order, that is 0≤ α1 ≤
. . . ≤ αn < 2π . Finally, for the sake of simplicity and
consistency, we assume that the reference point lies in

the interior or on the boundary of the robot. We de-
note by EA

i the edge aiai+1 which connects ai with ai+1.
Lastly, we denote by ρi the internal angle correspond-
ing to the i-th vertex.

Obstacle(s).

Let {Ok}m
k=1 be m obstacles in the work space. The

vertices of Ok for some k are given in counterclockwise
order, and are denoted by {bk

j}. Analogously to the no-

tations we use for the robot, EOk
j will denote the edge

which connects bk
j and bk

j+1. Finally, the interior angle
at the j-th vertex will be denoted by ωk

j . If the context
introduces no confusion then we shall omit the index k.

Configuration Space and Poses.

We let C denote the configuration space of the robot A
in the work space W which is scattered with the obsta-
cles {Ok}. The free and forbidden part of C are denoted
by Cfree and Cforb respectively. An element q ∈ C is
called a configuration point, or configuration for short.
Given a configuration q∈C we denote by A(q) the por-
tion of the work space which is covered by A when it as-
sumes the configuration q and it is called either place-
ment, or pose, or simply configuration, when there is
no risk of confusion. Similarly R0(q),ai(q) and EA

i (q)
denote respectively the position, in the work space, of
the reference point, i-th vertex or i-th edge of the robot.
In particular, for a configuration point q = (~r,θ) with
translation component~r and rotation component θ , we
have

R0(q) =~r+R0,

EA
i (q) = ai+1(q)ai(q).

In order to express ai(q) for an arbitrary configura-
tion q, we have to choose a model of the configuration
space. To that end, we consider two possible models

C geom =
{
(x,y,θ) | (x,y) ∈ R2,θ ∈ [0,2π)

}
(1)

C rat =
{
(x,y,τ) | (x,y) ∈ R2,τ ∈ R ∪∞

}
(2)

which we call the geometrical and rational models re-
spectively. Note that

C geom = R2×S1 and C rat = R2×RP1.

These models are related by τ = tan θ

2 . In particular, for
q = (~r,θ) ∈ C geom we have

ai(q) =~r+Rθ ai (3)

with Rθ denoting the standard rotation matrix and
where ai is the i-th vertex of A in the rest position.

Similarly, for q′ = (~r,τ) ∈ C rat we have

ai(q′) =~r+Mτ ai



with the so-called rational rotation matrix

Mτ =
1

1+ τ2

(
1− τ2 −2τ

2τ 1− τ2

)
.

Note that since limτ→∞ Mτ = limτ→−∞ Mτ = Rπ we can
safely set M∞ = Rπ .

When using the rational model of the configuration
space and taking rational coordinates for the translation
vector~r and letting τ ∈Q, it is possible to establish ex-
act computations of placements. On the other hand, the
geometrical representation is of more use when one is
trying to visualize elements of the configuration space.

Remark 1. The configuration space in our case, namely
the one corresponding to a planar robot that is free to
rotate and translate (this kind of robot is also called
holonomic), is homeomorphic to the special Euclidean
group SE(2). Indeed, the following homeomorphisms
hold

SE(2)∼= R2×S1 ∼= R2×RP1.

See [LaV06, §4.2] for further details.

1.2 Contacts and the Boundary of the
Forbidden Space

We say that A(q) touches or is in contact with an obsta-
cle O for a configuration q if

∂A(q)∩∂O 6= /0 ∧ int(A(q))∩ intO = /0.

If only
∂A(q)∩∂O 6= /0,

then we say that A(q) pseudo touches or is in pseudo
contact with the obstacle O. For a configuration q, such
that A pseudo touches or just touches an obstacle O, one
or more of the following contact types can hold:

Name Notation Definition
Vertex-Edge (vi-e j) ai(q)∩ intEO

j 6= /0
Edge-Vertex (ei-v j) intEA

i (q)∩b j 6= /0
Vertex-Vertex (vi-v j) ai(q) = b j

Edge-Edge (ei-e j) |intEA
j (q)∩ intEO

j |> 1

Note that the contact type alone does not imply whether
the interiors of the robot and of the obstacle intersect or
not. Note, in addition, that a robot can maintain various
pseudo contacts and contacts with the same obstacle si-
multaneously (cf. O3 in Figure 2). In the presence of
more than one obstacle in W the robot can maintain
multiple contacts as well. The following definitions re-
fer to portions of Cforb which maintain a fixed contact
type.

Definition 1 (Contact Surface). The set of all config-
uration points that correspond to a pseudo contact be-
tween a fixed vertex (or an edge) of the robot and a
fixed vertex (or an edge) of an obstacle is called a con-
tact surface.
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Figure 2: In this example, the configuration q cor-
responds to a (v2-e3) contact with O1 and a (e4-v3)
pseudo contact with O2. Finally, A(q) maintains two
(v-v) contacts and one (e-e) contact with O3 simulta-
neously. This means that q belongs to four different
contact patches and to one contact surface.

Note that a contact surface is a subset of Cforb, since a
configuration which realizes a pseudo contact may re-
alize at the same time an intersection of the interiors
of the robot and an obstacle. The following definition
focuses on the configurations which realize contacts.

Definition 2 (Contact Patch). The set of all configura-
tion points that correspond to a contact between a fixed
vertex (or an edge) of the robot and a fixed vertex (or
an edge) of an obstacle is called a contact patch.

Every contact between a robot and an obstacle is also a
pseudo contact, thus each contact patch is a subset of a
contact surface. Furthermore, it is a subset of ∂Cforb. In
addition, the union of all contact patches is the bound-
ary of the forbidden space. Finally, a contact surface
which maintains either a (v-e) or (e-v) contact type is of
dimension two, whereas a contact surface which main-
tains either a (v-v) or (e-e) contact type is of dimension
one. This means that the boundary ∂Cforb is a union of
contact patches of dimension two which are “glued” to-
gether with contact patches of dimension one. Figure 2
illustrates the notions discussed in this section.
In this paper we will formulate an explicit parameter-
ization of the contact surfaces depending on the prop-
erties of the robot and the obstacles. Furthermore, we
will find a subset of the parameter domain, of each con-
tact surface, which corresponds to the respective con-
tact patch. Thus, we will be able to parameterize the
whole boundary of the forbidden space.

2 ROTATING THE ROBOT
Since the robot A that we consider is holonomic, every
point P ∈W can be a center of rotation of the robot. In
particular, given a configuration point q ∈ C , the robot
can rotate about every boundary point ∂A(q)∈W . This
kind of motion is the corner stone of the parameteriza-
tion that we formalize in this paper.
Let us set a point P ∈ W and mark a point a ∈ ∂A(0)
on the boundary of the robot. According to the nota-
tions that we use, a(0),a(q) denote the position of the



marked point when the robot is in either the rest posi-
tion or in some pose corresponding to a configuration q.
We will parameterize the set of configuration points in
which the marked point a is fixed to the point P. More
precisely, we want to parameterize the following set

Pa = {q ∈ C : a(q) = P} .

Lemma 1. Given a point P ∈ W and a point a ∈ ∂A
the set Pa is parameterized by

qa(φ) =

(
~ra(φ)
θa(φ)

)
=

(
P−Rφ a

φ

)
(4)

for φ ∈ [0,2π). That is, q ∈ Pa if and only if q = qa(φ)
for some φ ∈ [0,2π).

Proof. Since a ∈ EA
i for some index i, we can write a =

(1− t)ai + tai+1 for some t ∈ [0,1). First we show that
if q = qa(φ) for some φ then q ∈ Pa , that is a(q) = P.
For every φ , using Equation (3), we have

ai(qa(φ)) = P−Rφ a +Rφ ai

ai+1(qa(φ)) = P−Rφ a +Rφ ai+1

}
.

It is easy to show that

a(qa(φ)) = (1− t)ai(qa(φ))+ tai+1(qa(φ)) = P.

That is, for every φ , the point a(qa(φ)) is fixed to P.

Conversely, given q = (~r,θ) ∈ Pa we have

P = a(q) =~r+Rθ a.

Thus, ~r = P− Rθ a. Finally, for φ = θ we have that
q = qa(φ).

We observe that for φ = 0 the parameterization given in
Equation (4) is merely a translation. That is, the local
frame which is assigned to the robot for qa(0) is aligned
with the global frame of the work space. At this point it
is important to point out that qa(φ) is meaningful only
when interpreted as a point in C geom. Finally, Equa-
tion (4) is a parameterization of a helix in the configura-
tion space. We conclude this section with the following
remark.

Remark 2 (Covering C -Space with Helices). Instead of
taking a ∈ ∂A, we can generalize the idea and consider
an arbitrary linear combination of the vertices of the
robot, a = ∑

n
i=1 λiai, and some point P ∈ W . The set

of configurations which correspond to a rotation of the
robot such that a is fixed to P is again a helix. As a mat-
ter of fact, every configuration point q ∈ C is contained
in infinitely many helices of this form.

3 PARAMETERIZING CONTACT
SURFACES

In this section we consider the robot A and one convex
obstacle O. Later, an arbitrary obstacle can be decom-
posed into convex subsets and each sub-obstacle can be
treated in a similar way. Given a contact type of A and
O we will derive an explicit parameterization of the cor-
responding contact surface and patch.

3.1 Vertex-Edge Contact
A (vi-e j) vertex-edge pseudo contact occurs when a ver-
tex ai of the robot lies in the interior of an edge EO

j of
the obstacle (see O1 and A(q) in Figure 2 for an ex-
ample). In this section, we utilize the parameterization
obtained in Section 2, and provide an explicit parame-
terization of the contact surface and the contact patch in
the configuration space corresponding to the prescribed
(vi-e j) pseudo contact and contact respectively.

Let P(t) = (1− t)b j + tb j+1 be an arbitrary point in the
interior of EO

j . The configurations that correspond to
the (vi-e j) contact can be derived from Equation (4) by
replacing P with P(t) and a with ai and is given by

S(t,φ) =
(

P(t)−Rφ ai
φ

)
=c(φ)+ t~r(φ),

(5)

for t ∈ (0,1) and φ ∈ [0,2π). As φ varies in the in-
terval [0,2π), the configuration points on S represent
both contacts and pseudo contacts. Clearly, this sur-
face is a ruled surface with directrix c(φ) and~r(φ) 6= 0
as the vector field. Note that d

dφ
~r(φ) = 0 which implies

that S is a cylindrical ruled surface and thus developable
[dC76]. It is easy to verify that S(t,φ) is a collection of
congruent helices. Note that for t ∈ {0,1} the param-
eterization reduces to two helices which correspond to
the two pseudo contacts (vi-v j) and (vi-v j+1) respec-
tively (cf. Section 3.3). In Figure 7, such a surface is
illustrated with helical arcs in black and rulings in yel-
low.

Remark 3. If we fix a vertex ai of the robot and gen-
erate all possible vertex-edge contact surfaces with all
edges of the obstacle, then helices contained in each
of these contact surfaces are congruent copies of each
other. Note that if the obstacles are regular polygons
then for a fixed vertex of the robot the contact surfaces
are just congruent copies of each other. If, in addition,
the robot is a regular polygon then all the vertex-edge
contact surfaces are congruent copies of each other.

Our next goal is to find a sub-domain Φ⊂ [0,2π) such
that S(t,φ)|φ∈Φ will be the contact patch which is con-
tained in S. In Section 3.1.1 we analyze the domain
[0,2π) of φ and find this sub-domain Φ.
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3.1.1 Vertex-Edge Angle Range Analysis
By now, given a vertex ai of the robot and an edge EO

j of
an obstacle O, we have an explicit parameterization of
the contact surface S in the configuration space which
corresponds to the (vi-e j) pseudo contact. Our goal is to
find a contact patch S′ ⊂ S ∈ C , such that for all q ∈ S′

we will have that ai(q) touches the edge of the obstacle.

Since we assume that both the robot and the obstacle are
convex, the sub-domain Φ is independent of t, namely
independent of the point of contact along EO

j . This can
be seen in Figures 2 and 3. For some fixed t0 ∈ (0,1)
let qi(φ) = S(t0,φ) be a helix in S which corresponds to
the pseudo contact between ai and P = P(t0). The sub-
domain Φ can be determined by finding two values:

• φmin: The minimal angle for which ai+1(qi(φmin))

lies on the line containing the edge EO
j and simulta-

neously ai−1(qi(φmin)) lies to the right of this edge.

• φrange: The range of rotation that maintains the con-
tact of ai with P. In practice this means that we want
ai−1((qi(φmin +φrange)) to lie on the line containing
EO

j such that ai+1(qi(φmin + φrange)) will lie to its
right. See Figure 3 for an illustration.

If we let φmax = φmin +φrange, then

Φ =

{
[φmin,φmax] if φmax < 2π

[φmin,2π)∪ [0,φmax−2π] if φmax ≥ 2π
(6)

is the sub-domain we want to find.

We now compute the values of φmin and φrange. The
latter is straightforward to find, and depends on the in-
terior angle at the vertex ai of A, namely

φrange = π−ρi.

Computing φmin.

We want to find φ such that for qi(φ)∈C the following
will hold:

P−‖EA
i ‖

EO
j

‖EO
j ‖

= ai+1(qi(φ)),

x0 y0 φmin ∈
≥ 0 ≥ 0 [0, π

2 ]
< 0 ≥ 0 [π

2 ,π]

< 0 < 0 [π, 3π

2 ]

≥ 0 < 0 [ 3π

2 ,2π]

Table 1: Interval of φmin depending on signs of x0 and
y0 for the vertex-edge and edge-vertex contact types.

where EO
j is consider as the vector from b j to b j+1 and

‖·‖ denotes the length of an edge. Solving this equation
for φ is equivalent to solving

−‖EA
i ‖

EO
j

‖EO
j ‖

= M · (x,y)T ,

where x = cosφ , y = sinφ and

M =
(

EA
i ,R

π
2 ·EA

i

)T
. (7)

Since detM = ‖EA
i ‖2 6= 0, this system has a unique so-

lution, denoted by (x0,y0)
T . We define {φi}4

i=1 as fol-
lows

{φ1,φ2}=arccos(x0)∩ [0,2π)

{φ3,φ4}=arcsin(y0)∩ [0,2π)

Note that since (x0,y0) is a unit vector, we have that
{φ1,φ2} ∩ {φ3,φ4} contains exactly one element. As
φmin should lie in [0,2π), it satisfies

φmin = {φ1,φ2}∩{φ3,φ4}.
For any combination of signs of x0 and y0 Table 1 sug-
gests in which interval φmin is, and using the definition
of the φi’s it can be easily found.
Finally, in Figure 9 we plot an example of all possible
contact patches which correspond to a triangular robot
and obstacle. The red patches are the vertex-edge con-
tact patches. Let us conclude this section with one re-
mark.
Remark 4 (On the exactness of computations). The
steps that we described so far, in general, cannot yield
the exact value of φmin since one has to compute the in-
verse functions of both sine and cosine. Furthermore,
the matrix M in Equation (7) involves the trigonometric
functions as well, and thus cannot be represented in an
exact manner. In turn, this means that x0 and y0 above
cannot be computed exactly in the first place. If the
vertices of the robot are assumed to lie on a circle of
some fixed radius, then it is possible to find Φ without
trigonometric functions; further details can be found in
[AR13].

3.2 Edge-Vertex Contact
Recall that Equation (4) parameterizes a rotation of the
robot about a point P such that a boundary point a ∈ ∂A
is fixed to P. For any t ∈ (0,1) we denote

ai,t = (1− t)ai + tai+1
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Figure 4: Geometrical components of the (ei-v j) con-
tact.

to be the point on the edge EA
i of the robot which will

be in pseudo contact with the vertex b j of the obstacle.
Next, in Equation (4), we replace P with b j and a with
ai,t and obtain

S(t,φ) =
(

b j−Rφ ai,t

φ

)
=c(φ)+ t~r(φ)

(8)

for t ∈ (0,1) and φ ∈ [0,2π). S(t,φ) is the contact
surface corresponding to the (ei-v j) pseudo contact.
Again, like the parameterization in Equation (5) we ob-
tain a ruled surface, obviously with different directrix
and vector field. This surface is swept by a horizon-
tal line segment which translates and rotates in C . In
Figure 8 an example of a typical edge-vertex contact
surface is plotted with helices in black and rulings in
yellow.
Remark 5. In contrast to the case of (v-e) contact sur-
faces, here in the edge-vertex case, each contact surface
is a collection of helices which are not congruent since
their radii depend on the varying ai,t . This suggests that
(e-v) contact surfaces are not developable. We estab-
lish this fact and study the geometry of these surfaces
in Section 4.

In order to find the contact patch which is contained in
S, as before, we have to find a sub-domain Φ ⊂ [0,2π)
for which S(t,φ)|φ∈Φ is a collection of configuration
points which correspond to contacts and not to pseudo
contacts. Again, as can be seen in Figure 4, the sub-
domain Φ does not depend on t.

3.2.1 Edge-Vertex Angle Range Analysis
In this section, similarly to the procedure discussed
in Section 3.1.1, we find φmin, φrange and φmax, where
φmax = φmin+φrange, such that for Φ as defined in Equa-
tion (6) the sub-surface S(t,φ)|φ∈Φ is a contact patch.
As φmin and φrange depend only on the indices i and j
we shall fix some t0 ∈ (0,1) and let qi(φ) = S(t0,φ).
In this case, ai+1(qi(φmin)) has to lie on the line con-
taining EO

j−1, such that the interiors of the robot and the
obstacle do not intersect. Similarly, ai(qi(φmax)) has to
lie on the line segment containing EO

j (cf. Figure 4).
Clearly, we have that

φrange = π−ω j.

It is left to find the value of φmin.

Computing φmin.

In the case of (e-v) contact, the minimal angle of rota-
tion φmin is the one for which the following will hold

ai+1(qi(φ))−b j ‖ b j−b j−1. (9)

The condition in (9) together with the restriction that
ai,t0 has to coincide with b j can be formulated as fol-
lows:

b j− (1− t0)‖EA
i ‖

EO
j−1

‖EO
j−1‖

= ai+1(qi(φ)),

with φ as the unknown. Computations similar to those
we described in Section 3.1.1 can be applied in this case
as well. This last equation can be rewritten as follows

(t0−1)‖EA
i ‖

EO
j−1

‖EO
j−1‖

= M · (x,y)T

with x = cosφ , y = sinφ and

M =
(

ai+1−ai,t0 ,R
π
2 · (ai+1−ai,t0)

)T
.

As before, this system has a unique solution denoted by
(x0,y0)

T . Based on the cases given in Table 1 we can
find a unique solution φmin.

We conclude the section by referring to the green
patches in Figure 9 which correspond to (e-v) contacts.

3.3 Vertex-Vertex and Edge-Edge Con-
tacts

In the previous sections we found explicit parameteri-
zations of the contact surfaces and contact patches of
dimension two, namely those that correspond to either
vertex-edge or edge-vertex pseudo contacts and con-
tacts. In order to complete the picture we have to con-
sider the configurations that correspond to vertex-vertex
and edge-edge pseudo contacts and contacts. To that
end, we recall that the boundaries of the two dimen-
sional contact surfaces that we have derived are exactly
the one dimensional contact surfaces.

In the example plotted in Figure 9 blue helical arcs
correspond to vertex-vertex contacts and the yellow
(straight) lines correspond to edge-edge contacts.

3.3.1 Vertex-Vertex Contact
For two indices i and j, the contact surface which cor-
responds to the (vi-v j) pseudo contact is parameterized
by

C(φ) = S(0,φ),

for φ ∈ [0,2π) and S(·, ·) as given in Equation (5). In
order to find the sub-domain Φ, which corresponds to
the (vi-v j) contacts alone, we have to compute φmin
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Figure 5: Illustration of a vertex-vertex contact with
C(·) and φmin as defined in Section 3.3.1.
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Figure 6: Setting of an edge-edge contact where C(·)
is given in Section 3.3.2.

that corresponds to the (vi-e j−1) contact. For the pose
which corresponds to C(φmin) we have that ai coin-
cides with b j, ai+1 lies on the line containing EO

j−1
and ai−1 lies to the right of this edge. See Figure 5
for an illustration. Letting φ vary in the sub-domain
Φ = [φmin,φmin + 2π −ω j−ρi) yields the helical sub-
arc of C(φ) which maintain a (vi-v j) contact. As be-
fore, if φmin + 2π −ω j−ρi ≥ 2π then the sub-domain
Φ is the union [φmin,2π)∪ [0,φmin−ω j−ρi).

3.3.2 Edge-Edge Contact
Parameterizing the configurations, which correspond to
an (ei-e j) contact, can be again obtained using the pa-
rameterization of a corresponding (vi-e j) contact. Let
us set

C(t) = S(t,φmin),

where S(·, ·) is given in Equation (5) and φmin is the one
defined in Section 3.1.1. In this case C(0) corresponds
to a (vi-v j) contact and C(1) corresponds to a (vi-v j+1)
contact. In both cases ai+1 lies on the line containing
EO

j . See Figure 6 for reference where it is shown that
for t ∈ [0,1) we do not obtain the whole (ei-e j) contact.
In order to complete the case, we have to let

t ∈
[

0,1+
‖EA

i ‖
‖EO

j ‖

)
.

3.4 Summary of the Parameterization
In this section we derived, based on the fundamental
motion described in Section 2, the parameterization of
all the elements of the boundary of the forbidden space
which correspond to a single obstacle. If the work space
contains more obstacles, each one of them contributes
another pillar-like element similar to the one depicted in
Figure 9. Given an obstacle O, the portion of C which
is bounded “inside” the corresponding pillar-like object
is the forbidden space related to O.

4 DIFFERENTIAL GEOMETRY OF
CONTACT SURFACES

Using the parameterization that we developed, we study
in this section the geometrical properties of the contact

surfaces. As we already pointed out, the contact sur-
faces which correspond to vertex-edge contacts are de-
velopable and thus rather simple. We, therefore, focus
in this section on the case of edge-vertex contact sur-
faces.

For the sake of simplicity, in Equation (8), we assume
that b j is at the origin. Thus we consider the contact
surface S(t,φ) = c(φ)+ t~r(φ) with

c(φ) =
(
−Rφ ai

φ

)
, ~r(φ) =

(
Rφ (ai−ai+1)

0

)
.

Note that~r(φ), d
dφ
~r(φ) 6= 0; this means that the (ei-v j)

contact surface is a non-cylindrical ruled surface
[dC76].

We start our study of the geometrical properties of the
contact surface by computing its first (denoted E,F,G)
and second (denoted e, f ,g) fundamental forms:

E = ‖ai−ai+1‖2 e = 0

F = det(ai,ai+1) f =−‖ai−ai+1‖2

ν

G = 1+‖ai,t‖2 g =−det(ai,ai+1)

ν

where
ν = ν(t) =

√
EG−F2.

It is easy to verify that ν 6= 0 for all t ∈ R, and thus, all
expressions are well defined. Using standard formulas
we can find the curvatures of the surface.

Lemma 2. The Gaussian curvature K(t,φ) and the
mean curvature H(t,φ) of an (e-v) contact surface are
given by:

K(t,φ) =−E2

ν4 , H(t,φ) =
EF
2ν3 .

Note that both the Gaussian and the mean curvature do
not depend on φ but only on t as ν depends on t. This
comes as no surprise, as the surface is ruled. In other
words, these curvatures depend on the point of pseudo
contact along EA

i . Lemma 2 also proves that the (e-v)



Figure 7: (v-e) contact sur-
face.

Figure 8: (e-v) contact sur-
face.

Figure 9: An example of all possible con-
tact patches for a given robot and one ob-
stacle in C .

contact surface is not developable since K(t) < 0. The
next lemma establishes the cases when the edge-vertex
contact surface is a minimal surface, and in turn also a
helicoid.

Lemma 3. If the line through EA
i (0) contains the refer-

ence point R0(0), then the corresponding (ei-v j) contact
surface is a minimal surface.

Proof. Recall that we assume that R0(0) is at the origin.
Thus, if the line through EA

i (0) contains R0(0), then ai
and ai+1, as vectors, are linearly dependent. Therefore
F = 0, and in turn H(t) = 0.

It is easy to verify that dK
dt (t?) =

dH
dt (t?) = 0 for

t? =
〈ai,ai−ai+1〉

E
.

The striction curve [PW01, dC76] can now be found.
Indeed, since limt→±∞ K(t) = 0, K(t) < 0 and K′(t)
vanishes only for t?, it turns out that the Gaussian
curvature attains its global extremum along the curve
S(t?,φ), which is therefore the striction curve. Note
however, that t? may not lie in the interval [0,1], that
is, the striction curve of the (e-v) contact surface is not
necessarily contained in it.

Next, we will compute the normal curvature of the
(e-v) contact surface. Let ε(ξ ) ∈ TpS be a unit tan-
gent vector parameterized by a direction ξ . In turn, the
normal curvature in direction ξ , denoted by κN(ξ ), is
given by [Gra93]

κN(ξ ) =
E sinξ (F sinξ −2ν cosξ )

ν3 . (10)

Recall that ν does not vanish for all t ∈ R, and there-
fore Equation (10) is well defined. Note that the normal
curvature depends only on the direction in the tangent
plane, given by ξ , and the position on the ruling given
by t.

Next, we want to find the asymptotic directions and the
principal curvature directions of the contact surface. In
other words we want to find the values of ξ (parame-
terized by t) for which the normal curvature either van-
ishes or attains an extremum. Furthermore, we will find
the extremal values of the normal curvature, that is, ex-
pressions of the principal curvatures.
As the rulings on the surface are straight lines, the nor-
mal curvature in their directions should vanish, and in-
deed for ξ ∈ {0,π} the normal curvature vanishes. The
other direction where it vanishes corresponds to

ξ = arctan
2ν

F
.

It is easy to verify that d
dξ

κN(ξ ) vanishes for

ξ1 =
1
2

arctan
2ν

F
.

and the normal curvature attains an extremum in this
direction. Since the principal curvature directions are
orthogonal, the normal curvature attains its other ex-
tremum for ξ2 = ξ1 +

π

2 . Finally, the principal curva-
tures are given by

κ1 = κN(ξ1) , κ2 = κN(ξ2).

One can verify that K = κ1 · κ2. In Figure 10 a small
sub-surface of an (e-v) contact surface is plotted to-
gether with the asymptotic and principal curvature di-
rections.
Remark 6. The principal curvatures could have been
computed directly using formulas which uses the fun-
damental forms. We took a longer path as we wanted to
obtain expressions for the principal curvature directions
as well.

5 CONCLUSION
Geometrical vs. Rational Models of C .
In this paper we considered C geom, see Equation (1), as
the model of the configuration space. Using this model
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Figure 10: A sub-surface of an (e-v) contact surface.
In blue and red the asymptotic and principal curvatures
directions at some arbitrary point on the surface are re-
spectively plotted.

it is easy to visualize elements in C (cf. Figures 7
to 10). This, however, comes with a price. The parame-
terization of the contact surfaces or patches themselves,
given in Equations (5) and (8), involves the trigonomet-
ric functions and thus it could not be computed in an
exact manner. Furthermore, the computations of the
sub-domains that correspond to the contact patches in-
volve again trigonometric functions and their inverses,
thus, once more, the final result cannot have an ex-
act representation. This inexactness can, for example,
have implications when one is using the parameteriza-
tion to compute intersections between contact surfaces
or patches. However, it is easy to replace C geom with
C rat, see Equation (2); this change can yield rational
and exact representation of the contact surfaces. The
trade-off in this case is that visualizing the contact sur-
faces in C rat is not intuitive.

Applications.

Using the parameterization described in this paper we
produced a short video which visualizes the configura-
tion space of a convex polygonal robot which moves
amid convex polygonal obstacles in the plane. This
video is available online [AR12].

Future Work.

The computations of the contact patches heavily rely on
the assumption that the robot A is convex. Eliminating
this restriction can be of interest. Other interesting ex-
tensions of the parameterization would be to consider
a robot with a boundary which consists of non-linear
edges; for example circular arcs (cf. [MST13]).

Once the contact surfaces and patches can be explicitly
parameterized, it is natural to consider their discretiza-
tions. An approximated version of the configuration
space can be used to address the general problem of

motion planning. Furthermore, given either the smooth
or discrete representations of the contact surfaces or
patches, it is possible to study their mutual intersec-
tions and their intersections with other elements in the
configuration space, as done for example in [SHRH11].
This study can be of help in the investigation of the ar-
rangement of the contact surfaces in the configuration
space.
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