
Using Layout Stitching to create deterministic Local Graph
Layouts

Martin Steiger
Fraunhofer IGD
Fraunhoferstr. 5

64283 Darmstadt
Germany

martin.steiger@
igd.fraunhofer.de

Hendrik
Lücke-Tieke

Fraunhofer IGD
Fraunhoferstr. 5

64283 Darmstadt
Germany
hatieke@

igd.fraunhofer.de

Thorsten May
Fraunhofer IGD
Fraunhoferstr. 5

64283 Darmstadt
Germany

thorsten.may@
igd.fraunhofer.de

Arjan Kuijper
Fraunhofer IGD
Fraunhoferstr. 5

64283 Darmstadt
Germany

arjan.kuijper@
igd.fraunhofer.de

Jörn
Kohlhammer

Fraunhofer IGD
Fraunhoferstr. 5

64283 Darmstadt
Germany

joern.kohlhammer@
igd.fraunhofer.de

ABSTRACT
Dynamic graph layouts are often used to position nodes in local views of large graphs. These layouts can be
optimized to minimize changes when navigating to other parts of the graph. Dynamic graph layout techniques
do not, however, guarantee that a local layout is recognizable when the user visits the same area twice. In this
paper we present a method to create stable and deterministic layouts of dynamic views of large graphs. It is based
on a well-known panorama-stitching algorithm from the image processing domain. Given a set of overlapping
photographs it creates a larger panorama that combines the original images. In analogy to that our algorithm
stitches pre-computed layouts of subgraphs to form a larger, single layout. This deterministic approach makes
structures and node locations persistent which creates identical visual representations of the graph. This enables
the user to recognize previously encountered parts and to decide whether a certain part of a dataset has already
been explored before or not.

Keywords
dynamic graph, explorative analysis, mental map, graph layout stitching

1 INTRODUCTION
Showing the structure emerging from the network con-
nections is one goal of graph visualization. However,
human’s visual intelligence can be used only if ade-
quate data displays are provided. Using node-link di-
agrams is a popular visualization technique that works
particularly well for small to medium-sized graphs. The
goal of our technique is to ease the exploration of local

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

structures of large static graphs based on a node-link
diagram.

A typical user task is the exploration of the neighbor-
hood around a focal area of the graph. We consider such
an exploration as success if the user is able to mentally
chart the visible parts of the graph. Thus, it increases
the area the user is familiar with. To be precise, “fa-
miliarity” reflects two abilities to us: Firstly, the user is
able to recall a visible area upon revisiting. Secondly,
the user is able to mentally extend this area beyond the
visible part enabling the user to plan and predict nav-
igation. Revisitation has been identified by Lee et al.
[LPP+06] as one of the tasks to be supported by graph
visualization.

The tasks we support with our technique are character-
ized by the following two assumptions: The first one is

that the information on the local level is more important
than the global structure of the graph. The second as-
sumption is that movement along the edges is required
to gather required information. An example for such
tasks are investigations in citation networks or social
networks. We derive two conflicting requirements from

Figure 1: Identical network parts have been highlighted
in a global layout (left) and a local, independent lay-
out (right). The former display makes the impression
that the clusters were linearly connected. In particular,
it seems as if the shortest path from red to blue leaded
through green and yellow. However, the local view re-
veals that this is not the case.

these goals and task characteristics. In the following,
we will describe these requirements, show why they are
conflicting and propose a solution to resolve this con-
flict as the core contribution of this paper:

The first requirement is to show only the part of the
graph the user is interested in and to adapt the layout
to this visible subgraph. To give an example, Figure 1
shows a global layout with five clusters in a linear ar-
rangement. Instead, a local layout of the clusters ex-
poses the actual topology of these clusters. This re-
quirement is dealt with in a number of existing dynamic
layout approaches. Dynamic layout covers techniques
for the selection of interesting or important areas of the
graph, for the definition of incremental layouts and the
smooth transition between consecutive layouts of these
visible subgraphs during exploration. We will call these
visible subsets of the graph frames from now on. The
rationale for smooth transition is to minimize the users’
effort to keep track of the evolving layout. However,
this applies to consecutive frames only. Revisiting a
known area of the graph after extensive exploration usu-
ally results in very different layouts.

This fact leads to our second requirement. Whenever a
user revisits an area of the graph for a second time the
difference between the two layouts should be as small
as possible. We state that this requirement applies re-
gardless of the length or direction of the user’s explo-
ration path between any two visits of the same area. For
static graphs we argue that the visible layout is deter-
mined by the currently visible subgraph only. A simple
solution exists if only the second requirement were to
be considered: Compute a static layout of the complete
graph and toggle the visibility of nodes and edges as
needed. However, a static layout conflicts with the first

requirement, because it naturally does not adapt to local
features.

Our solution is a resolution of this conflict fulfilling
both requirements. We propose a dynamic layout that
adapts to the currently visible subgraph, but which is
independent of the exploration path. The main chal-
lenge is to keep the layouts “stable” during exploration.
We use a two-level-layout strategy to solve this prob-
lem. The first-level layout is done before interactive ex-
ploration: We compute a set of overlapping subgraphs
which covers the entire graph. The overlapping cover
guarantees that most of the nodes will appear in at least
two subgraphs. For every subgraph a layout is com-
puted independently to produce the first-level layout.
These layouts serve as “building-blocks” for the second
level layout that is used during exploration.

The challenge of the second-level layout is to combine
these layouts depending on a given visible area of the
graph. The node coordinates from different subgraph
layouts need to be merged in a deterministic fashion. To
achieve this goal we choose a technique that originally
comes from the field of image processing: Panorama
stitching is used to merge a set of overlapping pho-
tographs into a single, seamless image. We transfer this
technique to graphs. Depending only on the currently
visible frame, individual subgraph layouts are selected,
weighted and merged to produce the final, visible lay-
out.

To the best of our knowledge, these conflicting require-
ments have not been solved with a single technique be-
fore. Our contribution is a technical solution serving as
a proof-of-concept which fulfills both requirements. It
extends the notion of layout stability from “frame-to-
frame-coherence” to “frame consistency”. This means
that the layout of any subgraph looks the same or at
least similar for every visit. As a concept, it makes
use of existing approaches to create subgraphs and their
layouts, but it is not bound to specific approaches. In
fact, we believe that this concept offers a design space,
which is worth to be explored further in future.

The rest of the paper is organized as follows: Section 2
discusses related work in the area, before the concept
of our method is described in Section 3. In Section 4
we present test results for artificial and real datasets be-
fore we conclude with discussion and future work in
Section 5.

2 RELATED WORK
In this section we first describe fundamental work on
the preservation of the mental map for the navigation in
network visualization, especially with respect to design
considerations and criteria. After that, we present tech-
niques which have been developed to tackle this prob-
lem by improving layouts and/or interaction.

The preservation of the mental map of graph visualiza-
tion has become an important goal ever since its intro-
duction by Eades et al. [ELMS91]. In the literature,
dynamic layout techniques have been proposed to solve
two different problems: The first problem is the layout
computation of dynamic graphs, which has been for-
malized by North [Nor96]. The second problem is the
layout of a dynamic view of a graph, which has been
described by Huang at al. [HEW98]. A dynamic view
is basically a visible subgraph, which can be “moved”
interactively for browsing. This problem has been ap-
plied to static graphs, for example, by Huang et al.
[HEL05] and van Ham and Perer [vHP09]. Accord-
ing to North layout stability is achieved by minimizing
layout changes between consecutive frames. Interest-
ingly, the two problems are similar from the perspective
of this criterion alone. In fact, many existing techniques
could be used to solve both problems. Our definition for
layout stability, however, does not apply to consecutive
frames alone. In addition we require that the layout of
any given subgraph will be the same upon revisitation.
Hence we can only claim to solve the second problem
here; the dynamic view of a static graph.
We consider the layout stability as a means to augment
recall on recently visited regions of the graph. The re-
sults of Marriott et al. [MPWG12] suggest that lay-
out features have different cognitive impact, e.g. fa-
voring symmetry or orthogonality. In an earlier study,
Purchase and Samra [SP08] note that minimal node
movement may not be the most relevant criterion for
mental map preservation. Archambault et al. [APP11]
compare animation approaches to small-multiple ap-
proaches, but their effect on mental map preservation
are inconclusive. We have to note that especially recall
experiments are naturally limited to small graphs - and
schemes to transfer results to real world graphs have yet
to be devised.
Many dynamic layout techniques are modifications of
static layout techniques which impose specific con-
straints or quality objectives on the transition between
two consecutive layouts. Brandes and Mader [BM12]
compare different measures, especially with respect to
the trade-off between individual layout quality and sta-
bility between frames. They note that even slightly low-
ered requirements in quality often offer a significant
boost in stability. Virtually all elements of a graph vi-
sualization have been covered by previous approaches
to stabilize the mental model upon dynamic changes.
For example, Frishman and Tal [FT08] and Erten et
al. [EHK+04] propose approaches where quality ob-
jectives apply to the node movement. Frishman and
Tals approach fine-tunes the inertia of nodes between
consecutive frames. Erten et al. propose a natural ex-
tension to force-feedback techniques by using a (2+1)-
dimension layout using virtual edges connecting differ-
ent time-frames. Other approaches, like that of Dwyer

et al. [DMS+08] and Frishman and Tal’s [FT04] fo-
cus on the preservation of node clusters in the dynamic
layout. Additionally, Dwyer’s approach optimized the
arrangement of polyline-edges. Aside from spring-
embedding layouts, dynamic layout methods have also
been used in conjunction with other techniques. For ex-
ample, Görg et al. [GBPD05] use Sugiyama-style lay-
out techniques.

Among these approaches, our technique relates most
to cluster-preserving dynamic layouts. However, the
“clusters” in our approach are subgraphs, which are lay-
outed independently in a preprocessing step and merged
together depending on the current area of interest of the
user. Archambault et al. [AMA07] present a similar
strategy with the static multi-level technique Topolay-
out. Topolayout creates hierarchical partition layouts
with the most suited technique and merges them to min-
imize edge lengths and crossings. In contrast, our tech-
nique creates overlapping subgraphs which are dynam-
ically merged along the overlapping nodes.

Aside from techniques which aim to preserve the men-
tal map on a purely structural level, the role of interac-
tion and navigation cues must be considered as well. In
fact, Marriott et al. note in their study [MPWG12] that
node labels are more powerful cues for mental map-
ping. However, we think that layout stability supports
the effective use of local navigation cues like labels, be-
cause they need to be located in the view to be use-
ful. Moscovich et al. [MCH+09], van Ham and Perer
[vHP12] and May et al. [MSDK12] propose techniques
to ease navigation across larger distances. Their com-
mon idea is to provide visual cues pointing to otherwise
invisible nodes or regions of the graph.

3 CONCEPT
In this section we will describe how we derive a deter-
ministic global layout from a set of local layouts. We
therefore transfer the panorama stitching algorithm to
the graph layout domain. Before we can perform our
layout stitching algorithm, a set of subgraphs with over-
lapping node sets needs to be created. A local layout is
then computed for every subgraph - independent from
the rest of the graph. We refer to these subgraph layouts
as patches from now on. We then align these patches
to match the positions of all nodes that exist in more
than one subgraph as good as possible. The position
of nodes that exist in multiple patches are then merged
and a unified layout is created. The basic idea is illus-
trated in Figure 2. In the final step, we will explain how
to create a layout that consists of more than just two
patches.

3.1 Definitions
We define a graph G(V,E) comprising a set of vertices
V together with a set of edges E. Our method works

Figure 2: The green layout patch is aligned to the red
patch using the four shared nodes. Nodes that exist in
both layouts are merged, creating a unified layout of
both patches.

with both directed and undirected edges without limita-
tions. However, we will assume for the sake of simplic-
ity that the graph is connected, i.e. a path exists between
every pair of nodes in G. We also define a clustering
C(V) as a mapping of V to a set of classes, so that every
vertex in G is linked to one or more classes.

3.2 Pre-processing
The series of visible frames is defined by the user who
is browsing this graph on a local level. We do not
define the means of interaction here, but we assume
that the set of visible nodes can be derived from the
user’s interaction. Our concept defines a local layout
for this subgraph. Given a set of visible nodes, the set
of layout patches that need to be merged can be derived.
The frame which was displayed during the last timestep
does not influence the layout of the current frame. This
ensures that the same picture is created – independent
from the exploration path.

If no set of patches for a graph is provided, we com-
pute a cover of overlapping subgraphs from a topology-
based clustering, so that every vertex of the graph is
contained in at least one patch. Our approach works
with basically any clustering algorithm. However, we
point out that the cluster size and content have an influ-
ence on their layout which in turn influences the cluster
shape that is used for the stitching.

The resulting clusters cannot be used directly as
patches, because the clustering typically creates a
partition of the graph, i.e. every node is contained in
exactly one single cluster only. A straight-forward
approach to make them overlap is to include neighbors
of the first degree. In other words: nodes from other
patches that are directly connected are added to the
node set of the patch. Larger sets are created by adding
neighbors of neighbors and so on.

We consider two clusters to be connected if they share
at least three nodes. This is the minimum number of
points that is required for the layout patch alignment
computation.

As soon as the subgraphs are created, a layout is
computed for each of them. This can be performed
completely independently which allows for using

different layout algorithms. Moreover, the computation
can be done in a pre-processing step, but also deferred
until the layout is actually needed which avoids
unnecessary computational overhead. Force-directed
algorithms such as that of Fruchterman and Reingold
appear to be a sound choice as they reveal local
structure and are flexible to integrate user-specified
requirements[Kob12].

3.3 Shape Matching
The sub-layouts are computed independently, therefore
the position of nodes is given in a local coordinate sys-
tem. Nodes that exist in more than one layout generally
have different positions in each of them. We will now
describe how two patches with overlapping node sets
can be aligned so that the distance in between is min-
imized. Individual node positions do not fit perfectly,
but this will be fixed in a later step.

The idea of stitching shapes is based on the work of
Brown and Lowe[BL07] who describe an approach for
automatic panorama stitching. The authors compute a
matching transformation for images based on distinct,
but overlapping point clouds. This process is far less
complex for graph layouts as no image post-processing
such as brightness compensation is required. Most im-
portantly, the point correspondences in the two point
sets is known in our setting which simplifies the algo-
rithm.

The second, important contribution comes from the
the shape-matching algorithm of Müller et al. which
works with identical point clouds but in a very differ-
ent context[MHTG05]. The authors present a method
that allows for elastic deformation of three-dimensional
objects. With the help of shape matching, the points
of the deformed object can be gradually transformed
back to their original position. For that, the two ge-
ometric point sets are compared and a transformation
that reduces the pair-wise distance between all points
to a minimum is deduced. Apart from translation and
scaling, their transformation scheme offers refinements
such as twisting and compression which are not present
in the work of Brown and Lowe.

We trivially acquire a set of vertices that exist in two
given layouts by computing the intersection of the two
sets.

As long as the set contains at least three vertices, we can
use the standard least-squares fitting method [AHB87]
to compute a deterministic matching transformation.
For the sake of simplicity, we will restrict this compu-
tation to rigid transformation, i.e. rotation and transla-
tion, but general affine transformations are feasible as
well. For every point p in sublayout A we specify its
counterpart p′ in sublayout B as

p′i = Rpi + t + εi

Figure 3: Rotating one of the two point clouds (green)
reduces the average distance between pairs.

Here, R is a rotation matrix, t a translation vector and ε

the measure of error. After solving for ε and accumu-
lating the error over all points, we get

ε
2 =

n

∑‖εi‖2 =
n

∑‖p′i− (Rpi + t)‖2

The error becomes minimal if both point clouds have
the same centroid [AHB87]. This can be achieved by
subtracting the centroid of their respective sets (denoted
as cp and cp′) from the point locations. The task is
now to find an optimal rotation matrix where the pair-
wise distance is minimal for all points. This matrix can
be deduced from a 2× 2 cost matrix H that measures
the distance between two point clouds. We subtract the
centroids from both datasets to bring them to the origin
and define this matrix H as

H =
n

∑
i
(pi− cp)(p′i− cp′)

T

Using singular value decomposition (SVD), the matrix
H can be factorized into two rotations U and V and a
diagonal scaling matrix S.

[U,S,V] = SV D(H)

See, for example, the introduction by Wall el al.
[WRR03] for details on the mathematical background
of the singular value decomposition. The final desired
rotation matrix can be computed as:

R =VUT

The final result is a transformed point p̂i that represents
the point pi of sublayout A in the coordinate system of
sublayout B.

p̂i = R(pi− cp)+ cp′

The accumulated difference between p̂i and the original
point p′i relates to the previously computed error ε and
can be used as a quality measure for this transformation
process.

3.4 Combining multiple shape matching
transformations

The approach we presented so far works well for com-
bining two patches. However, in general, a frame con-
sists of more than that. We therefore describe how to

stitch multiple patches in one frame and how we create
a smooth transition between two consecutive frames.
The problem we solve here is to find a deterministic
order in which the patches are stitched. Therefore, we
create a meta-graph of the patches. Two patches are
connected, if two patches share common nodes (see
Figure 5 left and center). Thus, they can be stitched
together. For the remaining part of the paper, this graph
is referred to as patch graph.

If the patches that should be merged are connected di-
rectly, only a deterministic order of stitching operations
needs to be defined. Otherwise, also a connecting series
of patch stitchings must be generated to ensure that also
distant patches can be combined.

This series of stitchings of overlapping patches can
been seen as a path in the patch graph. Also, on this
level of abstraction, the interactive exploration can be
seen as a user-driven traversal of this patch graph.

Starting with a single patch, the user continues explor-
ing, eventually reaching a part of the graph, that can not
be visualized without including additional patches in
the visible subgraph. Adjacent patches are then added
until the requested graph region can be visualized. This
graph traversal must be stateless and therefore indepen-
dent of previously visible patches. If this was not the
case, different exploration paths would have different
stitching orders thus result in different global layouts.
Three possible setups are depicted in Figure 4.

Figure 4: Three patches (A, B, C) with correspond-
ing 1-to-1 stichtings (top row). If the patches would
be stitched in the order they become visible, differ-
ent stitched layouts would result. In this configuration
three different global layouts could be produced (bot-
tom row).

The reason for this is that the patch graph contains mul-
tiple paths that connect the visible patches. Reducing
the number of edges naturally leads to a reduction of
the number of paths. To enforce a stable matching or-
der, we remove all edges from the patch graph that are
not strictly necessary to keep the graph connected (see
the illustrations in Figure 5). What is left is a spanning
tree of the graph and can be computed by Kruskal’s al-
gorithm.

Figure 5: The original graph is reduced to a graph of
patches which is then reduced to a spanning tree. This
tree is used to define unique paths between any two
nodes.

It is also able to incorporate edge weights, thus com-
puting the spanning tree with lowest total weight – the
minimum spanning tree (MST). Starting with a graph
that has contains all nodes but no edges, edges with the
lowest weight are continuously added as long as they
don’t lead to cycles in the graph.
Although the error value of each matching seems like a
natural choice to maximize the quality of the whole lay-
out, several drawbacks lead us to the decision against
using it. First and foremost, using the matching error as
edge weight is possible only if the matching error was
known for all pairs of connected patches. Computing
the optimal affine transformation of all possible com-
binations of layout patches is rather time-consuming.
Furthermore, interactive manipulation of a single patch
layout would result in changing weights for its incident
edges, which in turn could cause changes in the span-
ning tree of the patch graph.
Instead, we define a similarity-based weight function so
that edges between pairs of patches with large overlap
ratios have lower edges weights. They are then most
likely to be stitched first. The Jaccard similarity coef-
ficient is a measure that indicates how similar two sets
are and is defined as:

J(A,B) =
|A∩B|
|A∪B|

This measure does not require the computation of the
matching error between all edges in the patch graph.
Similar to the distance function that is often used in
graph clustering, we can use this (or another) similar-
ity measure and assign this value to the edges of the
patch graph.
For every pair of layout patches in this spanning tree,
only one single path exists. These paths in the tree are
no longer the shortest in general when compared tot the
original patch graph, but this reduction in freedom re-
sults in consistent patch stitching chains. This also en-
sures independence of previous frames, as the stitch-
ing order is fixed. We use the root of the spanning tree
as end point for all paths. Thus, every visible patch is
stitched to its parent patch until the root node in encoun-
tered. This is a critical aspect as it ensures that patches

are always matched to the same neighbor patches. The
local position of a node is thus transformed by the se-
ries of affine transformations of the patches along the
path to the root patch.

Some nodes belong to multiple patches and would,
without additional correction, have multiple positions
on the drawing canvas. We therefore derive from all
these positions a commonly shared, unique position. In
such cases, we use a linear combination of the nodes’
weight factor to place the nodes depending on time and
the user focus. This ensures a smooth transition from
one layout frame to another.

4 PRELIMINARY TESTS
In this section we will present some test results of both
artificial and real datasets. First we demonstrate the
concept in detail using a basic test graph. Second, we
use a real dataset to demonstrate that different explo-
ration paths result in congruent layouts.

4.1 Concept verification
The first test run is based on a graph of the form of
a Venn diagram for three sets (see Figure 6). It con-
tains three node rings that overlap at the center. This
graph is small yet complex enough to test the correct-
ness of our approach. Its structure allows, on the one
hand, the extraction of three overlapping patches – the
rings – and ensures, on the other hand that their layouts
overlap only very little while having excellent matching
error scores.

Figure 6: From left to right: The Venn diagram (1) is
split into three overlapping subgraphs (2). These form
a patch graph (3) with 3 patches and 3 edges which is
reduced to a tree (4) to enable a stable interactive ex-
ploration.

We create the patch graph and compute a spanning tree.
Using the tree, we then merge one patch after another
in coordination with the interactive exploration compo-
nent. The green patch is shown first and thus forms the
root patch for rendering and remains as it is (Figure 7
left). The blue patch is flipped, rotated and translated
to the bottom of the green, minimizing the matching er-
ror between the green and the blue patch. The common
nodes are then merged, creating the layout in Figure 8
center). In the next step, the orange patch is aligned
with the blue, already aligned patch. This results in a
total transformation (Figure 8 right) of about 180◦ for
the orange patch. Lastly, the node positions are unified
where necessary and merged for the final, visible graph.

A

B

C

A B C Result

0

1

2

3

Figure 7: Individual layouts of the three patches of the
Venn diagram graph.

A

B

C

A B C Result

0

1

2

3

A

B

C

A B C Result

0

1

2

3

A

B

C

A B C Result

0

1

2

3

Figure 8: Initially, only the green layout is visible (left).
In the next step, the blue patch is matched against
the green patch (center). Finally, the orange patch is
matched to the blue patch (right).

The second test we performed was with a pair of star-
shaped subgraphs which has been extracted from a real
dataset. The layout of both subgraphs is strongly af-
fected by the high degree of the central nodes. The in-
tersection of the node sets contains only four elements,
but both star nodes are included. This leads to a signifi-
cant overlap of the patches, but the star patterns are still
visible (Figure 9).

YX

YX

YX

YX

YX

YX

YX

YX

YX

YX

YX

YX

YX

YX

YX

YX

YX

YX

YX

YX

YX

Figure 9: Two star-shaped patches (green, blue) are
stitched together forming a single graph layout (gray).
The common nodes (red) that form the base for the
matching are the only nodes that are distorted. Al-
though the central nodes are in both sets, both patches
are recognizable in the stitched layout.

In a similar dataset, two star-shaped graphs have been
extracted again, but this time, they intersect only at their
boundaries.

Figure 10: Two star-shaped patches (green, blue). A
clear outlier region in the green patch leads to a clear
separation in the stitched layout (right).

As can be seen in Figure 10, the patterns are stitched
with only very little deformation of the original shapes.
More importantly, the nodes that form the connection
between the two clusters are clearly distinguishable in
the stitched layout.

4.2 Exploration independence
The claim of this paper is to create a deterministic lay-
out which is independent of the exploration path. We
test this hypothesis by navigating through several clus-
ters of a larger graph in different order and compare the
generated layouts.

The dataset for this test is a network graph from the
medical domain [GCV+07] with roughly 1.5k nodes,
5.5k edges. Our clustering algorithm created 77 layout
patches. The size of the graph features a fair amount
of complexity while still being visually comprehensi-
ble when viewed as a whole (Figure 11). We used a
force-directed layout of the whole dataset to display the
exploration path as ground truth and compare the re-
sults. With only one single parameter – the number of
iterations – the chinese whispers algorithm [Bie06] ap-
peared to be a good choice for the clustering of this
graph.

Figure 11: The explored graph part in the global layout

Several different explorations have been performed to
verify the validity of our approach. They all started at
different points exploring the same clusters, but in dif-
ferent orders. As can be seen in the teaser figure on the
first page, the resulting stitched layouts are congruent.
The construction of two exemplary stitched layouts is
depicted in Figure 12 and Figure 13, respectively.

5 CONCLUSION & OUTLOOK
In this paper we presented a new approach that aims to
create dynamic graph layouts which are independent of
the exploration path. It works independent of specific
layout algorithms and thus also works for highly dy-
namic force-directed layout algorithms. When the user
explores large graphs with dynamic views, new nodes

Figure 12: The first exploration through five clusters in
the order 1, 2, 3, 4, 5.

Figure 13: In the second run, the clusters were explored
in the inverse order resulting in a congruent layout.

are typically added in the proximity of existing, linked
nodes.
This approach is thus highly dependent on the explo-
ration path – the layout can look very different even for
very similar explorations. Our method overcomes this
limitation with techniques from the computer vision do-
main where image stitching is used to merge multiple
photographs with overlapping areas into a larger im-
age. In analogy to that, our method uses pre-computed
layout patches that are sewn together in deterministic
order. Consequently, the resulting layout is stable, in-
dependent of the user’s exploration path and will, thus,
always look the same. In contrast to many other dy-
namic graph layout algorithms, a fair amount of com-
putational effort can be pre-computed which increases
the interactivity and reduces the workload at runtime.
Being able to work with different layout algorithms for
different patches makes it also very versatile.
Compared to conventional layout methods, the addi-
tional computational effort is also rather small. The
cost of layout computation is increased by the factor of
nodes that exist in multiple matches. Runtime costs are
limited to the creation a 2×2 cost matrix and its decom-
position which has a constant running time [MHTG05].
The layout stitching method we presented sees the sub-
graph as a disconnected point cloud and merges the
patches without respect to the topological structure.
Closely related to that, it also ignores the points that
are not in the intersection of the two nodes sets. As a
result, two layouts could be aligned so that the disjoint
parts overlap as well which is undesired.
We assume that more sophisticated approaches for the
computation of the patch overlaps could mitigate this
problem and improve the stitching quality. This in-
cludes the use of the graph topology metrics such as
connectivity to find and include the best-fitting nodes.
An ideal strategy would include nodes that emphasize

certain visual features of the cluster layout to make the
structure memorable. We are convinced that the in-
terpretation of layouts as images features a plethora of
concepts and approaches just waiting to be transferred
and applied to graph layouts.

6 REFERENCES
[AHB87] K. S. Arun, T. S. Huang, and S. D.

Blostein. Least-Squares Fitting of Two
3D Point Sets. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence,
PAMI-9(5):698 –700, sept. 1987.

[AMA07] D. Archambault, T. Munzner, and
D. Auber. TopoLayout: Multilevel Graph
Layout by Topological Features. Visu-
alization and Computer Graphics, IEEE
Transactions on, 13(2):305 –317, march-
april 2007.

[APP11] D. Archambault, H. Purchase, and B. Pin-
aud. Animation, Small Multiples, and
the Effect of Mental Map Preservation in
Dynamic Graphs. Visualization and Com-
puter Graphics, IEEE Transactions on,
17(4):539 –552, april 2011.

[Bie06] Chris Biemann. Chinese Whispers: an
Efficient Graph Clustering Algorithm and
its Application to Natural Language Pro-
cessing Problems. In Proceedings of the
First Workshop on Graph Based Meth-
ods for Natural Language Processing,
TextGraphs-1, pages 73–80, Stroudsburg,
PA, USA, 2006. Association for Compu-
tational Linguistics.

[BL07] Matthew Brown and David G. Lowe. Au-
tomatic Panoramic Image Stitching using
Invariant Features. International Journal
of Computer Vision, 74:59–73, 2007.

[BM12] Ulrik Brandes and Martin Mader. A quan-
titative comparison of stress-minimization
approaches for offline dynamic graph
drawing. In Marc Kreveld and Bettina
Speckmann, editors, Graph Drawing, vol-
ume 7034 of Lecture Notes in Computer
Science, pages 99–110. Springer Berlin
Heidelberg, 2012.

[DMS+08] T. Dwyer, K. Marriott, F. Schreiber,
P. Stuckey, M. Woodward, and
M. Wybrow. Exploration of networks
using overview+detail with constraint-
based cooperative layout. Visualization
and Computer Graphics, IEEE Trans-
actions on, 14(6):1293 –1300, nov.-dec.
2008.

[EHK+04] Cesim Erten, Philip J. Harding,
Stephen G. Kobourov, Kevin Wampler,

and Gary Yee. GraphAEL: Graph Anima-
tions with Evolving Layouts. In Giuseppe
Liotta, editor, Graph Drawing, volume
2912 of Lecture Notes in Computer Sci-
ence, pages 98–110. Springer Berlin Hei-
delberg, 2004.

[ELMS91] Peter Eades, Wei Lai, Kazuo Misue, and
Kozo Sugiyama. Preserving the mental
map of a diagram. Proceedings of COM-
PUGRAPHICS, 91(9):24–33, 1991.

[FT04] Y. Frishman and A. Tal. Dynamic Draw-
ing of Clustered Graphs. In IEEE Sympo-
sium on Information Visualization (Info-
Vis ’04), pages 191–198, 2004.

[FT08] Y. Frishman and A. Tal. Online Dynamic
Graph Drawing. IEEE Transactions on
Visualization and Computer Graphics,
14(4):727 –740, july-aug. 2008.

[GBPD05] Carsten Görg, Peter Birke, Mathias Pohl,
and Stephan Diehl. Dynamic Graph
Drawing of Sequences of Orthogonal and
Hierarchical Graphs. In János Pach, edi-
tor, Graph Drawing, volume 3383 of Lec-
ture Notes in Computer Science, pages
228–238. Springer Berlin Heidelberg,
2005.

[GCV+07] Kwang-Il Goh, Michael E. Cusick, David
Valle, Barton Childs, Marc Vidal, and
Albert-Lázló Barabási. The Human Dis-
ease Network. Proc. of the National
Academy of Sciences USA, 104(21):8685–
8690, 2007.

[HEL05] Xiaodi Huang, Peter Eades, and Wei Lai.
A framework of filtering, clustering and
dynamic layout graphs for visualization.
In Proceedings of the Twenty-eighth Aus-
tralasian conference on Computer Science
- Volume 38, ACSC ’05, pages 87–96,
Darlinghurst, Australia, Australia, 2005.
Australian Computer Society, Inc.

[HEW98] Mao Lin Huang, Peter Eades, and Junhu
Wang. Online Animated Visualization of
Huge Graphs using a Modified Spring Al-
gorithm. Journal of Visual Languages &
Computing, 9(6):623–645, 1998.

[Kob12] Stephen G. Kobourov. Spring embedders
and force directed graph drawing algo-
rithms. CoRR, abs/1201.3011, 2012.

[LPP+06] Bongshin Lee, Catherine Plaisant, Cyn-
thia Sims Parr, Jean-Daniel Fekete, and
Nathalie Henry. Task taxonomy for graph
visualization. In Proceedings of the 2006
AVI workshop on BEyond time and errors:
novel evaluation methods for information

visualization, BELIV ’06, pages 1–5, New
York, NY, USA, 2006. ACM.

[MCH+09] Tomer Moscovich, Fanny Chevalier,
Nathalie Henry, Emmanuel Pietriga, and
Jean-Daniel Fekete. Topology-aware nav-
igation in large networks. In Proceed-
ings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’09,
pages 2319–2328, New York, NY, USA,
2009. ACM.

[MHTG05] Matthias Müller, Bruno Heidelberger,
Matthias Teschner, and Markus Gross.
Meshless Deformations Based on Shape
Matching. ACM Trans. Graph.,
24(3):471–478, July 2005.

[MPWG12] K. Marriott, H.C. Purchase, M. Wybrow,
and C. Goncu. Memorability of Visual
Features in Network Diagrams. IEEE
Transactions on Visualization and Com-
puter Graphics, 18(12):2477–2485, dec.
2012.

[MSDK12] T. May, M. Steiger, J. Davey, and
J. Kohlhammer. Using Signposts for Navi-
gation in Large Graphs. Computer Graph-
ics Forum, 31(3 pt. 2):985–994, 2012.

[Nor96] Stephen C. North. Incremental layout
in dynadag. In Proceedings of the Sym-
posium on Graph Drawing, GD ’95,
pages 409–418, London, UK, UK, 1996.
Springer-Verlag.

[SP08] Peter Saffrey and Helen Purchase. The
"mental map" versus "static aesthetic"
compromise in dynamic graphs: a user
study. In Proceedings of the ninth con-
ference on Australasian user interface -
Volume 76, AUIC ’08, pages 85–93, Dar-
linghurst, Australia, Australia, 2008. Aus-
tralian Computer Society, Inc.

[vHP09] Frank van Ham and Adam Perer. Search,
Show Context, Expand on Demand: Sup-
porting Large Graph Exploration with
Degree-of-Interest. IEEE Transactions
on Visualization and Computer Graphics,
15:953–960, 2009.

[vHP12] Frank van Ham and Adam Perer. Inte-
grating Querying and Browsing in Partial
Graph Visualizations. IBM Technical Re-
port 12-01, 2012.

[WRR03] Michael Wall, Andreas Rechtsteiner, and
Luis Rocha. Singular Value Decomposi-
tion and Principal Component Analysis.
A practical approach to microarray data
analysis, pages 91–109, 2003.

