
WorldPlus: An Augmented Reality Application with
Georeferenced content for smartphones - the

Android example.
Sérgio Graça

1
 João Fradinho Oliveira

1
 Valentim Realinho

1

 sergiogr@gmail.com jfoliveira@estgp.pt valentim.realinho@estgp.pt
1 C3i Centro Interdisciplinar de Investigação e Inovação/Instituto Politécnico de Portalegre

Lugar da Abadessa, Apartado 148, 7301-901 Portalegre

ABSTRACT
In the last few years there has been a significant evolution in the mobile devices hardware capabilities, this

evolution is very important as it allows for more complex applications and services to be developed for this type

of devices. In this paper we describe the concepts and key issues that arise when developing an Augmented

Reality system in a localization application for smartphones in general. WorldPlus presents solutions and

implements these concepts using the Android smartphone as an example. In addition, WorldPlus allows

programmers to develop their own content providers for both an online and an offline mode.

Keywords
Augmented Reality, Smart phone, Android

1. INTRODUCTION
In the last few years there has been a significant

evolution in the mobile devices hardware

capabilities, this evolution is very important as it

allows for more complex applications and services to

be developed for this type of devices.

Platforms like IOS (Mobile Operating System from

Apple) and Android (Mobile Operating System

developed by the Open Handset Alliance with

Google Inc. leadership) are examples of platforms

that were developed for mobile platforms; they

include a set of tools that enable one to take

advantage of the hardware capabilities of the new

mobile devices.

Whilst mobile localization Augmented Reality

applications are not new, in this paper we describe

the concepts and key issues that arise when

developing an Augmented Reality system in a

localization application for smartphones in general,

and offer solutions to some of the problems. We

present available tools that can be used in ordinary

smartphones and implement an augmented reality

system using the Android system as an example,

where the user can browse the world through the

mobile device and find additional information about

his surroundings, with these tools. In this paper we

review the main concepts of an Augmented Reality

based on Localization in Section 2, including

application requirements and the description of two

sources of online content or points of interest POI

that are viewed with our system (Panoramio/photos,

Wikipedia/documents). In Section 3 we present the

WordPlus application, which describes how different

components and services from the OS of mobile

devices can be used to gather geo referenced points

of interest, and how these points are managed and

projected in our system. We show results in Section

4, propose further solutions in Section 5, and

conclude in Section 6.

2. BACKGROUND
In this section we review key concepts that need to

be modeled in order to build our augmented reality

system based on localization, we outline the

application requirements, and review two online

sources of georeferenced information that will be

accessed and viewed with our system.

2.1 Augmented Reality Based on

Localization
Augmented Reality is a concept contained in a larger

concept that is Mixed Realities, Mixed Reality is a

concept that represents a system where various

realities are mixed together, usually mixing the

reality that we all know, the world where we live,

and realities generated by computational processes

To facilitate the comprehension of these concepts,

and relations between them, Paul Milgram has

created a spectrum that clarifies it called Reality-

Virtuality Continuum [Mil94a] (see Fig. 1), the

spectrum goes from Reality (left) that comprises the

world where we live in, with no extra elements

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

computationally generated, to Virtual Reality (right)

where the “world” is completely computer generated

and doesn't have any elements from the real world. In

the middle of these two is the Mixed Reality that

consists in Augmented Reality and Augmented

Virtuality, these two AR and AV are opposite

concepts, while AR is the real world augmented with

computer generated elements, AV is a virtual world

augmented with real world components.

Figure 1: Reality-Virtuality Continuum.

Now that these concepts have been introduced,

Augmented Reality based on localization will be

described in more depth. Augmented Reality is the

mixture between the real world and computer

generated elements, this concept has the following

elements:

 Caption of real world;

 Computer generated elements;

 In a 3D environment.

AR Reference Model
The cost and effort in developing mobile AR systems

is quite high. To reduce these, a number of different

software architectures and toolkits have been

proposed. A survey of different mobile and wireless

technologies and how they have impact AR,

including software architectures for mobile AR can

be found in Papagiannakis et al. [Pap08a]. The authors

compare several models and conclude that there is no

single ideal mobile AR system approach but rather

different AR systems according to location (indoors

or outdoors), type of display (handheld or head

mounted displays), content augmentation (static 3D,

virtual characters) as dictated by each application

domain. Reicher [Rei04a] presents a reference

architecture for augmented reality systems organized

into logical subsystems as follows: (i) a tracking

subsystem that in smartphones is typically based on

location sensors in the device such as GPS, compass

and accelerometer allowing 6 degrees of freedom in

displaying a digital object; (ii) an application

subsystem responsible for the main control flow logic

of the application and coordinating communication

between other subsystems; (iii) a world model

subsystem that stores and provides access to a digital

representation of the world, including points of

interest, 3D objects and metadata about the model

itself; (iv) a presentation subsystem responsible for

all output, including reality view streams, 2D and 3D

rendering and audio and tactile outputs; (v) an

interaction subsystem which gathers and processes

any input that the user makes deliberately; and (vi) a

context subsystem that provides the application with

context about the status and situation of the user. We

use an architecture that can be mapped to the one

presented by Reicher.

AR Browsers for Smartphones
Layar [Lay12a] is the most prominent AR browser

designed for smartphone devices. It offers animated

3D rendering, location based tracking, and has a

highly flexible API and a useful set of tools for

developers. Wikitude Worlds [Wik12a] is a general

purpose AR browser with location based tracking,

support for 2D images and it is one of the most easy

to use browsers for developers. The Wikitude Worlds

AR browser is based on the Wikitude API, which is

an open source framework for developing users own

standalone AR applications on iPhone, Android and

some Symbian based devices. Junaio [Jun12a] is a

powerful AR browser which includes features to

support 3D object rendering, location based tracking,

marker and markerless image recognition and a

powerful API for developers. Sekai Camera [Sek12a]

is another example of an AR browser which is a

social augmented reality mobile location-based

service. Wikitude is the only one that supports an

offline mode which is an advantage where the

availability of an internet connection is an issue. Our

approach was to support both online and offline

mode. We provide an architecture that enables

programmers to develop their own content providers

for both online and offline modes. For evaluation

purposes, we provide in the current version of

WorldPlus an offline access of the geo-referenced

Wikipedia articles, and an online access of the geo-

referenced Panoramio photos.

2.2 Application Requirements
In order to implement an Augmented Reality

Localization application on a smartphone, we

identified the following five requirements:

1. Caption of real world – this requirement

will be resolved with the camera that comes with the

mobile device, this camera will help on capturing a

stream of real world images in real time like the AR

concept requires.

2. Gather Points of Interest – these points are

places in the world that are represented by a latitude

and a longitude, these elements will represent the real

world places that the application detects when the

user points the camera at them, they will consist

basically on a bitmap image/tag for each point of

interest with which the user can interact and retrieve

additional information about the place represented.

These graphic elements will be superimposed in the

view of the camera, like a layer on top of the

captured real world images of the camera in which

the images representing the points are drawn.

3. Process Sensors Data – modern mobile

devices have a set of sensors that can track the

position and direction of the device, the

accelerometer sensor and magnetic sensor

respectively.

Figure 2: Three axis system in a device.

The accelerometer´s main objective is to map the

device's position (axis) in relation to the real world, it

measures the force in G's applied in the 3 axis

(Figure 2) and provides values that help one

determine for example if the device is leaning

forwards facing the ground or leaning backwards and

facing the sky. In addition, these values can represent

if the device is in a portrait position or in a landscape

position, enabling an application to decide to perform

some processing based on this information, perhaps

for flipping the user interface elements so that the

user can view them always in a correct position.

Furthermore these values will later be used in the

calculation of the projection of the points of interest

in the device.

The magnetic sensor helps to determine what

direction the device is facing, much like a compass in

reading which direction is north. This sensor is

important to determinate if a given point of interest is

in the same direction that the device is facing, in this

case the point has a high chance of being drawn on

the device's display. The magnetic sensor provides

the values in radians that can be converted to

degrees, it measures from 1 to 360 degrees. 0/360

degrees being the direction of north.

These two sensors are processed at the same time

using methods provided by the Android SDK library,

and it returns 3 values:

 Azimuth – this value corresponds to the

angle between the true north and the direction that

the device is facing.

 Pitch – this value corresponds to the angle

that represents the inclination of the device, if the

device is leaning forward or backward.

 Roll – this value represents the rotation in

the device that helps one determine for example, if

the device is in a portrait position or in landscape.

4. Localization System - the application has to

know where the user/device is located on the surface

of the Earth, it needs to know this so that amongst

other tasks it can detect geo referenced points

surrounding the user or get distances from the users

to points with a latitude and a longitude. This can

easily be achieved by a the GPS system that most

devices have already built in, where the system using

a method of triangulation with satellites can locate

the position of the user on the surface of the Earth. In

the particular case of the android platform this

localization system uses a mixture of the GPS and

network systems.

5. Network – to gather points of interest, our

system will use online services such as Panoramio1

that need an Internet connection for retrieving

information. And as mentioned in the “Localization

System” requirement, in the particular case of the

Android platform, network protocols help to

geographical locate the device in a combination of

broadband systems and Wi-fi access points2, this

could be useful, for example, when the GPS service

is not available in certain conditions like inside

buildings. We point out however that in our

experience these alternative localization systems

have a much higher error than GPS, serious limiting

their use.

2.3 Online Content (Points of Interest)
Our system accesses content / points of interest from

two online services: Panoramio for photographs and

Wikipedia for documents, both systems hold

information that is geo-referenced.

2.3.1 Panoramio
Panoramio is an online service that permits people to

submit pictures that are geo referenced by a latitude

and a longitude, the pictures are submitted with some

additional information like the author of the picture,

the title given to the picture by the author, and so on,

people then can share their photos with all the users

of Panoramio. The objective of using this service in

our application is to obtain the pictures taken in the

surroundings of the location of the user and show

these places to the user with all the information

attached to that particular place. When the user turns

on the application, it makes a call to the Panoramio

API that consists on a REST3 call for obtaining the

points near the user of the application. All the points

and their information are obtained formatted in a

JSON object that will be parsed in order to retrieve

and store in memory all the data that is needed. This

type of service is very simple and easy to process

with a simple HTTP Request with a query string

1 Panoramio – Panoramio is an online website that permits

the users to submit geo referenced photographs to the

system, add additional information about the place where

the photograph was taken among other functionalities.

2 More information about this method of localization can

be accessed in the Android SDK Reference Guide in:

http://developer.android.com/reference/android/location/

LocationManager.htm

3 REST – Is a method to obtain information from a web

server with a simple HTTP Request, much like RPC calls

or SOAP but without their formalisms.

containing all the parameters to filter the data.

Services using the same method are spreading

because of its simplicity. A call at the Panoramio's

API is much like the next example.

“http://www.panoramio.com/wapi/template/l

ist.html?tag=mountain&width=280&height=140&r

ows=2&columns=4&orientation=horizontal”

2.3.2 Wikipedia
As is common knowledge, the Wikipedia is a website

that strives to store articles from all branches of

human knowledge, some of these articles are about

places for instance historical places, Museums, and

much more. Articles regarding places often contain

references of latitude and longitude, these articles

become points of interest for our application. These

places will show on the device's display as images (a

tag) with which the user can interact. The Wikipedia

is a good source of points of interest because of the

shear coverage of articles that it stores. Unfortunately

Wikipedia was not designed for fast retrieval of geo-

referenced data like Panoramio. In order for

information on Wikipedia to be used as a source of

points of interest, one needs to download “dumps”

that the Wikipedia shares online in various forms, in

XML files that store all the articles in a given time

stamp, or for example SQL dumps. This way of

sharing all that information is not very mobile phone

friendly as those dumps are released almost every

day and consist of files of a few gigabytes. We filter

offline only the georeferenced points of interest of

such dump files and make the database file available

physically in the mobile for offline querying of GPS

coordinates.

3. WORLDPLUS
WordPlus was implemented using one of the

platforms that is growing rapidly in users, the

Android platform, however we believe that with the

concepts described in this paper it should be easy to

implement an augmented reality application on other

similar platforms like the IOS. In this section we will

first present the architecture of the application and

describe some of the key classes created for the

application along with other classes that were reused

from the Android SDK libraries. We will then

describe in detail how we create the points of interest

and tackle problems such as the size of the data. We

then describe how the sensor data is processed, noise

removed and finally describe the projection method

that enables points to be mapped on to the display.

3.1 Application Architecture
Figure 3 illustrates the main classes of our system

and how they interact between themselves. There are

two central classes that have the most relations with

other classes, the WorldPlus and PoiViewManager

classes, these classes are the foundations of the

application. The WorldPlus class is the base class of

the application, it is the “main” class, responsible for

instantiating the necessary classes when they are

needed and manipulating them as needed in the cycle

of the application by using their methods.

Figure 3: Class diagram of the application.

This class has the following set of tasks:

 Create an instance of the CameraView, the

CameraView is itself responsible for displaying the

view of the device's camera, real images in real time

that are being captured by the camera.

 Create an instance of the GPSManager to

get the user´s location at any time.

 Create an instance of the PoiViewManager

that is the other central class, and is responsible for

managing all that has to do with the points of interest.

 Create an instance of a Sensor Listener that

receives notifications from the SensorManager every

time that alterations in the state on the sensors of the

device are detected. The sensor listener and sensor

manager are classes used from the Android SDK

libraries.

 Process the data obtained from the sensors,

this includes the task of eliminating the noise created

by the sensors. Values undergo an averaging

procedure (described in section 3.3) before being

passed to the method that deals with the calculations

of the projection, in this way the projection of points

is more stable and prevents points from constantly

jumping between positions on the screen due the

instability of the sensors.

 “Order” the PoiViewManager to calculate

the projection of the points when all the data needed

from the sensors is gathered, this includes data from

the accelerometer, and from the magnetic sensor

more commonly referred as the compass.

The next class discussed will be the

PoiViewManager, this class as the name describes, is

responsible for managing all the process of dealing

with the information contained in the points of

interest (Poi – the class that represents a point of

interest, this class consist on a set of attributes and

interface methods to access them), from the process

of loading the information in memory until the points

are presented to the user, drawn on the device's

display. This class has to accomplish these tasks:

 Load all the information of the points of

interest, this consists on gathering the poi's

information from the poi source mechanisms that

were discussed earlier, like Panoramio or Wikipedia.

For this purpose an interface class was created that

helps one load ubiquitously different types of poi.

Every type of poi source implemented had to

implement the methods necessary to load their

associated information. In this way,

PoiViewManager does not need to know the manner

in which the points are loaded, all it knows is that it

has to call the same function and the points are

loaded in their particular way. This helps in the

scalability of the application, with this interface it is

easy to implement other forms of gathering points of

interest with different processes, and these processes

are then transparent to the application.

 Maintain in memory the information loaded.

 Update that information when it is required,

for example, when the user walks to another location

it is necessary to update the points of interest in

memory with the ones gathered in the new location

and the previous data become outdated.

 Calculate the positions on screen of the tags

that represent the real world places of the points of

interest, the projection is described in section 3.4.

The classes PanoramioHelper and WikiHelper,

are the implementations of the sources of poi, these

classes implement the methods that are necessary to

load the information of the points of interest from

their systems, in this case the Panoramio and

Wikipedia sites. Both classes implement the interface

PoiSource that consist of a set of methods to load

points information, their implementations are

different, as the way in which they load the points is

different as described in the previous section. The

GPSManager class deals with the localization of the

user, the geographical location of the device. This

class has the task to manage the location providers

and to update the location in the application. This

class extends the class LocationManager provided by

the Android SDK, that has all the necessary methods

to manage the localization of the device.

3.2 Gathering Points of interest
The process of developing an application of this kind

relies on the use of several services and systems, like

the ones listed section 2, that have their limitations,

and as a consequence limit the application itself. It is

up to the developer to overcome these limitations

with a design solution that renders itself still useful.

In this section we list the most relevant problems

when dealing with online data for a mobile device,

along with our design solutions that were

implemented. The key problems were: Size of Data;

Age of Data; Dynamic Data;

The Size of Data in any mobile application is crucial,

and in the context of this application it has a great

impact on it's design. First of all, the data, in the

context of WorldPlus, is composed by all the

information associated with the points of interest:

latitude and longitude, a title that represents the

place, images of the place, a description such as

historical facts of that place, along with many other

characteristics that can be associated with a point of

interest and could be important information for the

user experience. The objective of the application is to

gather points of interest that are in the surrounding

environment where the user is located, as we don't

know where a user will use the application, it is

important to have a large number of points of interest

located all around the world so that people from all

places in the world can experience the application.

One of the sources of points of interest are the

Wikipedia articles as mentioned previously, for a few

years now, wikipedia has started to geographically

reference some of their articles. One problem arises:

how can we process all this data?, Wikipedia has a

very large number of articles which means dealing

with gigabytes of information in the application,

something which is impossible to process with the

mobile devices of nowadays, where the space of an

application of this kind normally amounts to only a

few megabytes. So the challenge is not to store the

data in the device, but to create a way in which the

application can retrieve this data, filtered in some

way, so that it could be processed by these devices

and the information presented to the user with a nice

fluid experience. Our main interest was on the

creation of the AR system itself, we did not solve the

problem of transferring and parsing vasts amounts of

data from wikipedia, instead we stored in the

application parsed content from a few points of

interest in order to test basic rendering functionality.

In the case of the Panoramio API, we do have direct

access to all the available online content. One needs

to make the request to the API and process the

response, this revealed itself as the most time

expensive process in the execution of the application.

This process is composed by the request, parsing the

data of the response and transfer of the image files

which are typically photos of the respective locations

and can have arbitrary resolutions.

Age of Data. It is crucial to have data to present in

the application, the basic objective of the application,

but it is equally important that the information is

correct, that it represents exactly the state of the point

of interest in the moment that the user requests it's

information. For example a file showing train delays.

It is important to have a system for point source that

is easy to update so the user always sees correct

information, and not useless outdated data, the lack

of a system that support this issue, could cause

failure of some applications.

Dynamic Data In a tourism hotspot, for example

Rome, it would be useful to have a system that can

show the photos just taken by others in key places of

the city, so other people can visit those places too. A

person could be submitting a photo and another

person nearby could see that photo through the

application, for instance to help navigation. But with

this dynamic aspect arise some problems that consist

on the amount of photos in a given area, e.g. if we

were to define a 1 km radius around the location of

the user and retrieve all the photos taken inside that

radius, the amount of photos retrieved in a place like

Rome could still be prohibitive interaction wise. A

simpler solution that worked well is to limit the

number of points that are computed and drawn with a

fixed number, some tests have been done to

determine empirically the limit of points of interest

that can be computed interactively in the application,

these tests will be described in the results section.

But another issue arises, how can we choose which

points of interest to discard and which ones are the

best to present to the user. This can be achieved by

determining the distance at which the point of

interest is from the position of the user, and then

discard the ones that are more far, compute and

present just those near the user´s location. This is a

straightforward solution to overcome the problem of

having to compute too many points of interest but

there are more elegant solutions that could be

implemented in the future. For example

implementing machine-learned ranking4 techniques

that can determine the most relevant points, as used

in Information Retrieval5 systems, such as search

engines, etc. Points of interest are ranked by an

algorithm that computes a group of special

characteristics of the points and determines their

relevance to the user, this relevance then determines

which points are more interesting/relevant to be

presented. The application could profile the user by

saving user interests, and then the application could

assign different scores to poi categories based on

those interests, some categories would have more

relevance than others or one could create a way of

scoring based on the distance the poi is from the user.

3.3 Sensors
Another problem encountered when developing this

application was the noise that the sensors report in

their readings. The accelerometer sensor of the

4 Machine-Learning Ranking - is a type of supervised or

semi-supervised machine learning technique where the

objective is to create a ranking model with gathered data.

5 Information Retrieval – area of study with methodologies

for searching documents, information inside documents,

etc. In these methodologies there are concepts of scoring

special characteristics of the documents that determine

their relevance.

devices returns values of the acceleration that are

imposed in the device to realize the position of the

device in relation to the real world, as stated in the

previous section. These values are returned in time

intervals of milliseconds, and sometimes they return

values that are not consistent with each other, if we

put a device in a rest position on top of a table for

example, we can see that the sensors don't give

always the same value, the values oscillate around

the real value. Our solution consists on simply saving

the values returned by the sensor in a temporary

collection of data and before the projection of the

points, an average of the values is calculated. Three

read outs are taken and averaged in under 100 ms.

With processing units with multiple cores one

envisages that Kalman filtering in a dedicated core

could be used to further improve results.

3.4 Point Projection
The point projection is the process that maps the real

places on the display of the device, using tags that

consist of a bitmap that represent the points. Our

calculations are based on the work of Matuscheck

[Mat11a]. The projection is divided in two different

calculations, the horizontal projection and the vertical

projection, the first consists on calculating the screen

coordinate in the X axis (horizontal) and the second

consists on calculating the Y screen coordinate. To

draw a point in the device's display it is necessary to

have an X and an Y coordinate P(x,y). The horizontal

projection is based on two similar but different

values, the azimuth that we mentioned earlier, that

the magnetic sensor provides, and the bearing, that is

the angle formed between the true north and a given

point on Earth that the device is facing. Before

describing these calculations it is important to define

the angle of view, the angle of view in this

application is defined by a 45 degree angle, in the

horizontal and in the vertical projections. In the case

of the horizontal projection this angle will define two

boundaries, like two “arms” that embrace the field of

view of the application and determine what is inside

of the field of view and shown to the user. Figure 4

illustrates these concepts. As can be seen the azimuth

is the angle formed between North and a point that

the device, in this case the little man is facing. The

bearing is calculated in the same way but it requires

an additional point, but if we assume that the point

that the little man is facing is a point of interest we

can say that the bearing to that point has the same

value as the azimuth. In the projection if the azimuth

and bearing to a point is the same or very close, that

point is a good candidate to be drawn on the display,

it means that the device is facing in the direction of

that point. After knowing the two angles needed we

can define a horizontal screen coordinate from them,

we know that the azimuth is always in the middle of

the screen, if the bearing has the same value as the

azimuth the position of the point will be in the

middle of the display.

Figure 4: Azimuth calculation (adapted [Phy12a]).

In the case that the bearing to a point is greater than

the azimuth then we know that the point is in the

right half of the screen, or else, if the bearing is less

than the azimuth we know that the point is in the left

half of the screen. With this we have a horizontal

screen coordinate. Now that we have the horizontal

screen coordinate for the point, it is necessary to

calculate the vertical coordinate for it, the vertical

projection, that consists in calculating the Y

coordinate that the point will have on the device's

display. Like in the horizontal projection, the vertical

angle of view is defined with an angle of 45 degrees.

Figure 5: Altitude culling calculation.

Figure 5 shows the triangle (a,b,c) that represents

half of the vertical field of view. As mentioned

before the full vertical angle of view is 45 degrees,

the full vertical field of view would have a similar

triangle mirrored in the bottom of the one presented.

It is important to define some variables before we

calculate the vertical projection, first of all the

position of the user and it's device, the user is located

in the vertex formed by ca facing to b, c is the upper

boundary, a is the line that connects the position of

the user with the position of the point of interest, a

represents the distance between those two points. The

b line represents the height of the point in relation to

the height of the position of the user. For example, if

the user is at 500 meters high and the point has an

altitude of 630 meters b will be the difference

between them, 130 meters. Representing the position

of a point is defined by a line d that also represent the

angle formed between the position of the user and the

position of the point of interest. This is the angle that

we need to determine if the point of interest is in the

field of view or not, if it will be drawn in the device's

display or not. We calculate this angle using the Law

of Cosines, this law trivially determines a set of rules

that can be used to calculate angles and lengths of the

sides of a triangle that has a 90 degree angle.

We have the distance between the two points (a), we

have the height of the point in relation to the height

of the user position (b), we know that the angle

formed between a and b is a 90 degree angle, what is

missing is the angle formed between the user position

and the point of interest position. This is what we are

going to calculate next using a rule of the Law of

Cosines. The Law of Cosines is an generalization of

the Pythagorean Theorem, the base is the next

formula.

d^2 = a^2 + b^2

Here d is our hypotenuse (squared) and is equal to

the sum of the squares of the two sides (a and b). We

can now obtain the length of d that will help to

determine the angle that we are looking for, using the

next formula.

a = d * cos(y), where y is the angle that we need.

By transforming the equation we obtain the angle.

cos(y) = a / d or, y = cos(a/d)

In this way the angle formed between where the user

is looking at and the height of the point is obtained.

Finally, and similar to the horizontal projection, we

just need to compare angles, the angle y (calculated

just now) and the angle that restricts the vertical field

of view represented as c, if the angle y is lesser than

the boundary angle it means that the point is in the

angle of view, if it is greater it means that the point is

outside the angle of view and it will not be drawn in

the device's display. In this way we can determine if

the point is inside the field of view and calculate the

exact screen coordinate.

4. RESULTS
In this section we present results from WordPlus, our

augmented reality application. Results were carried

out on a HTC Wildfire, with a 528 Mhz CPU,

512MB ROM and 384MB RAM. Fig 6, shows how

the application is shown to the user. Namely the

application consist in showing the user points of

interest (poi) that are located near the location of the

user, in this case four points of interest are shown (in

green), which were gathered from the Panoramio

system, the user can interact with these tags and

request additional information.

Figure 6: Points of interest (Poi) in WorldPlus.

The user “browses” the world that surrounds him and

discovers points/green tags when he directs the

camera at them. When the user holds the device with

an inclination the points will react to that motion,

pushing the points up if the inclination is towards the

ground like (Figure 7).

Figure 7: Poi projected with inclination.

Or with an inclination towards the sky pushing the

points to the bottom of the screen (Figure 8).

Figure 8: Poi projected with inclination.

We found that the biggest bottleneck for rendering is

the projection calculation. In order to determine the

maximum number points of interest that the system

can compute coordinates and render whilst still being

interactive, we performed some tests running the

application with different amounts of points of

interest in memory at a given time. Namely tests

computing 25, 50 and 100 points of interest were

carried out. In the first case the application runs

smoothly in a range of 10-15 frames per second, the

user can have a fluid navigation experience with no

“freezing” effect at all. With 50 points the result was

a range of 6-10 frames per second, again a good

experience is provided, it is possible to move the

equipment around and the points are projected almost

instantly. With 100 points the result was 4-8 fps, in

this case when the user moves the equipment it can

take a couple of seconds to update the points on the

screen. These tests led us to limit our system to 50

points of interest so that the user can have the best

experience with it. On the network/transfer of images

side, tests showed that 20 points of interest retrieved

from the Panoramio take an average of 9 seconds to

load and parse all the data. We note that with the

parsed offline wikipedia dump file, these access lags

are non-existent as points are loaded into main

memory when the application starts.

5. FUTURE WORK
In the future, we would like to obtain more sources of

points of interest, there are many services online that

contain geographical referenced information that can

be used in this type of application. Our application is

prepared for scalability, new sources of points are

easily implemented with a few lines of code. We

would like to create a way for the users to create their

own points of interest and submit them so that they

can be shared with friends or other users of the

service. We would like to find a way to more

efficiently parse Wikipedia. One way would be to set

up a computer that stores a database with all the

information of the Wikipedia articles that are needed

in the application, and create some services for

accessing that data across the internet. In this way it

would be possible to update the information that is

used in the application in a transparent manner, on

the side of the application it is not known if the

information stored in the server is up to date or not, it

just makes calls to retrieve the data. All the updates

could be achieved by a routine on the server side that

picks up the new dumps given by the wikipedia,

those dumps could be parsed and the resulting

information could be stored in the database that is

accessed by the application.

6. CONCLUSIONS
We have presented WorldPlus. An Augmented

Reality Application with Georeferenced content for

smartphones. We described the requirements,

concepts, components, problems and designed

solutions using the Android platform as an example.

We presented problems for mobile devices such as

the size of the retrieved data and dynamic content

that are likely to still be research topics in the future.

REFERENCES
[Jun12a] Junaio Home Page http://www.junaio.com/

[Lay12a] Layar Home Page http://www.layar.com/

[Mil94a] Milgram P., Takemura H., Utsumi A., Kishino F.,

1994. Augmented Reality: A class of displays on the

reality-virtuality continuum..

[Mat11a] Matuscheck J. - Finding Points Within a Distance

of a Latitude/Longitude Using Bounding

Coordinates:http://janmatuschek.de/LatitudeLongitude

BoundingCoordinates. At 2011-08-10.

[Pap08a] Papagiannakis, G., Singh, G., Thalmann, N.,

2008, “A survey of mobile and wireless technologies

for augmented reality systems2, in Computer

Animation and Virtual Worlds, Vol. 19, No. 1, pp.3-22.

[Rei04a] Reicher, T., 2004, “A Framework for

Dynamically Adaptable Augmented Reality Systems”,

PhD thesis, Technische Universität München, library.

[Sek12a] http://sekaicamera.com/

[Wik12a] http://www.wikitude.org/en

[Phy12a] www.physics.csbsju.edu/astro/CS/CS.05.html

http://www.junaio.com/
http://www.layar.com/
http://sekaicamera.com/
http://www.wikitude.org/en

	ABSTRACT
	1. INTRODUCTION
	2. BACKGROUND
	2.1 Augmented Reality Based on Localization
	2.2 Application Requirements
	2.3 Online Content (Points of Interest)
	2.3.1 Panoramio
	2.3.2 Wikipedia

	3. WORLDPLUS
	3.1 Application Architecture
	3.2 Gathering Points of interest
	3.3 Sensors
	3.4 Point Projection

	4. RESULTS
	5. FUTURE WORK
	6. CONCLUSIONS
	REFERENCES

