
Detecting and Removing Islands in
Graphics-Rendering-Based Computations of

Lower Envelopes of Plane Slabs

Kamran Safdar
Fachbereich Computerwissenschaften

Universität Salzburg, A-5020 Salzburg, Austria
ksafdar@cosy.sbg.ac.at

ABSTRACT
Geometric algorithms which make use of graphics rendering often require manipulation and adaption of the pixel
map of the lower envelope of plane slabs. The complex interaction of the slab geometries may give rise to isolated
portions in the pixel map (“islands”) which need to be discarded and patched appropriately. Such problems may
occur, for instance, when attempting to compute multiplicatively-weighted Voronoi diagrams or straight skeletons
in 2D by means of graphics rendering of the lower envelope of plane slabs in 3D. This paper presents general
algorithms for detection, labeling, and removal of islands in an input pixel map. Removal, here, means recovery of
the correct portions of the pixel map in lieu of the islands. The presented island detection algorithm requires only
a constant number of passes over the input pixel map without any dependence on the number of input sites being
processed by the geometric algorithm. This paper introduces the concept of black lists for the removal of islands
and explains how the presented approach can cope with stacked islands, with no need for looping over the stack
of islands for recovery of the correct pixel map underneath it. The discussion is concluded by experimental results
obtained with the implementation of the presented algorithms.

Keywords: black list, FILM, GPGPU, islands, lower envelope, pixel map, plane slabs, rendering-based compu-
tation, SIR, STIR, straight skeleton, weighted Voronoi diagram.

1 INTRODUCTION

1.1 Motivation
Rendering specially crafted distance functions or slab
geometries and projecting their lower envelope is a
well-known approach for obtaining graphics-rendering-
based solutions of geometric problems. For instance,
the use of graphics hardware for computing discretized
versions of Voronoi diagrams of point sites in 2D was
shown already several years ago in early versions of the
OpenGL Programming Guide [WND97]. Roughly, the
Voronoi diagram of a set of point sites in 2D is a par-
tition of the plane into individual regions, the so-called
Voronoi regions, with exactly one region per site, such
that every region is given by the loci of points closer
to its defining site than to any of the other point sites.
At every input point p an upright circular cone is con-
structed above the xy-plane such that its rotation axis
is parallel to the z-axis and such that its apex coincides

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

with the input point. If the envelope of the cone forms
an angle of 45o with the xy-plane then the set of all
points with distance r from p can be identified with the
intersection of the cone with the plane z = r. If every
cone is colored uniquely then a discretized Voronoi di-
agram of the input points can be obtained by rendering
the lower envelope of all cones via a parallel projection
in the direction of +z, which is readily accomplished
on a modern graphics processing unit (GPU).

Hoff et al. [HCK+99] extended this concept to
discretized Voronoi diagrams of more general
primitives in 2D and 3D. We give reference to
[Hae90, Den03b, Den03a, Yam05b, Yam05a, CT05,
VR05, FG06, LZC09] for other illustrative examples of
how the fast rendering and interpolation capabilities of
a GPU have been employed to solve various problems
of a geometric nature.

Generally speaking, in all such rendering-based solu-
tions every input site is assigned a unique color identity
which is used as the color of the slab drawn for this
site. Of-course, the geometries are designed in a way
that they leave no portion of the scene uncovered thus
constituting a correct diagram of the geometric struc-
ture being discretized. Moreover, all such solutions rely
on the parallel projection of the lower envelope of these
slab geometries. The mutual interactions of the geome-
tries often is very complex as the slabs may penetrate

mailto:ksafdar@cosy.sbg.ac.at

each other at multiple locations. From a computational
point of view a problem occurs when a slab geome-
try reappears, in the projected image of the scene, af-
ter penetrating somewhere. These reappearing portions
of the slab geometries project to areas in the pixel map
which we call islands. In simple terms, an island is a set
of pixels which bear the same color identity as some site
but lie isolated from that site in the image. Formally,
we define an island pixel as a pixel from which the pro-
jection of the corresponding site cannot be reached by
traversing only identically colored neighbors.

While the standard Voronoi diagram of a set of point
sites in 2D is indeed given precisely by the lower enve-
lope of a set of cones in 3D and, thus, can be obtained
easily by graphics rendering, this approach is not di-
rectly applicable to multiplicatively-weighted Voronoi
diagrams: For multiplicatively-weighted Voronoi dia-
grams one has to employ cones with different inclina-
tions, which implies that the Voronoi diagram may no
longer corresponds to the projection of the lower en-
velope of the cones to the xy-plane. Rather, the com-
plex interaction of the cone geometries may give rise to
isolated portions in the pixel map (“islands”) that may
need to be taken care of appropriately. Similar prob-
lems arise when one attempts to compute the straight
skeleton of a simple polygon by means of graphics ren-
dering of the lower envelope of certain plane slabs.

It is important to know here that a few of the iso-
lated portions may not actually be islands, but true fea-
tures of the geometric structure being approximated.
Such islands are referred to as false islands. Exis-
tence of false islands is understandable as for example,
a multiplicatively-weighted Voronoi diagram can actu-
ally have disjoint Voronoi regions. Or, while approxi-
mating a straight skeleton, false islands may appear in
the pixel map because of certain true islands isolating
them from their corresponding slabs and all of them
collectively forming a large complex island. Removal
of the “island” tags from such false-islands purely de-
pends on the geometric structure being approximated.

The false islands which appear while computation of
the discrete straight skeleton are efficiently dealt by the
proposed “stir” algorithm as it utilizes the outline of an
island for recovery of the correct portions of the di-
agram underneath it. And, in case of a false island,
the site corresponding to the false island participates
in forming the outline of the complex island containing
this false island. The reason for this is that a false island
is actually a portion of the correct diagram and, there-
fore, its leading part exists in the outline of the complex
island which contains it. The removal of this complex
island is carried out in a way that the false island por-
tions remain intact and, hence, the actual diagram is
recovered. Figure 1 illustrates an example of such false

islands (highlighted in red) while sketching the straight
skeleton of a simple polygon.

In case of a multiplicatively-weighted Voronoi diagram,
a false island pixel may be dealt by appropriately com-
paring its distance to the corresponding site and its dis-
tance to the sites which form the outline of the complex
island containing this false island. The depth value of
each pixel, here, is proportional to the distance of this
pixel to its corresponding site in terms of its weight.

(a) Original pixel map. (b) Detected islands.

(c) False islands (red).
(d) Recovered sketch
of straight skeleton.

Figure 1: False islands encountered while approximat-
ing straight skeleton of a simple polygon.

1.2 Main Contribution
The identification and, more importantly, removal
of islands is a prerequisite for being able to extend
rendering-based computations to geometric structures
where the normal projection of the lower envelope of a
suitably defined set of plane slabs does not suffice to re-
veal a discretized approximation of the structure. This
paper highlights this problem and presents remedies
for its resolution.

The main contributions of the presented work are:

1. A robust algorithm for the detection of islands in the
rendering of a lower envelope of plane slabs.

2. Introduction of the concepts of black lists, and out-
lines of islands for recovering correct portions of the
geometric structure hidden underneath the islands.

3. An efficient approach to deal with multiply stacked
islands.

To put the problem of island detection and removal in
such a pixel map in an actual geometric context, we
briefly discuss the construction of a multiplicatively-
weighted discretized Voronoi diagram of point sites us-
ing the cones method (by Hoff et al. [HCK+99]), and
our own graphics-rendering-based technique for com-
puting a discretized straight skeleton of a simple poly-
gon.

1.3 Witnessing islands while constructing
weighted discrete Voronoi diagrams

This discussion refers to the well-known cones
method [HCK+99] for the construction of discretized
Voronoi diagrams in 2D; the authors claimed that it is
easily extendable to multiplicatively-weighted Voronoi
diagrams. For simplicity, let us suppose that the input
contains only point sites. The distance functions, cones
in this case, are multiplicatively weighted [OBS92]
and thus have variable angles. Furthermore, consider
the case as illustrated in Figure 2 in which sites
a, b, and d, have the same weight, however, site c
has a higher weight and thus a higher base angle of
the corresponding cone drawn over it. Due to this
wider angle, this cone at site c (shown in green color
in figs. 2 to 4) is responsible for three islands in the
cross-sectional area under consideration. These islands
are illustrated by dash-dotted-green lines in fig. 2.
The dashed lines represent the non-visible sides of the
cones. The dotted-red, dotted-blue, and dotted-purple
portions, in the same figure, represent the actually
correct but hidden parts of the diagram due to islands.

a b c d

z-axis

xy-plane

Figure 2: Islands arising due to site c.

a b c d

z-axis

xy-plane

Figure 3: Visible lower envelope containing islands.

a b c d

z-axis

xy-plane

Figure 4: Lower envelope after removal of islands.

Similarly, if various sites carry different weights many
islands may pop-up in the rendered pixel map which

need to be taken care of. Figure 5 illustrates another
example of islands experienced in a pixel map while
computing a multiplicatively weighted discrete Voronoi
diagram.

(a) All weights set to 1.
(b) One site (color-ID: red)

with higher weight.

(c) Detected islands. (d) Voronoi diagram after
removal of islands.

Figure 5: An example of islands appearing in the pro-
jection of the lower envelope of weighted distance func-
tions while computation of discrete Voronoi diagram.

1.4 Experiencing islands while approxi-
mating straight skeleton of a polygon

Skeletons, being important structures for representation
of 2D objects based on their topological characteris-
tics, are of much interest in many geometry applica-
tions. The term “straight skeleton” was first tossed by
Aichholzer et al. in 1995 [AAAG95], who are also
the first ones to give an algorithm for computing the
straight skeletons for interior of simple polygons. The
straight skeleton of a polygon is defined by the set of
lines traced out by its vertices during a shrinking pro-
cess in which the edges of the polygon are moved in-
wards towards its interior, such that, at any instance
of time, every shrinking edge is parallel to the original
edge and the orthogonal distance between every shrink-
ing and the corresponding original edge is the same.
While this shrinking process, if any vertex passes over
a non-adjacent edge, the polygon is split into two and
the shrinking process is continued in each individually.
The lines traced are known as arcs and their endpoints
which are not vertices of the polygon are known as
nodes. The arcs, the nodes, and the vertices of the poly-
gon collectively define a graph embedded in the interior
of the polygon which is its straight skeleton.

A straight skeleton is composed of only straight line
segments and is closely related to, but not same as,
the Voronoi-based medial axis offsetting scheme as
the latter may contain circular arcs in addition to the
straight lines. And, this fact makes straight skeletons
advantageous over any other skeleton type as process-
ing straight lines turns out to be less complex than han-
dling some curved constructs.
Suppose we are given, as input, the n vertices of a sim-
ple polygon P . Assuming P to lie on the z = 0 plane
of the 3D euclidean space and using the general con-
vention of assuming height of a point to be its z-value,
certain slabs are drawn over each vertex. Each of these
n vertices is assigned a unique color identity which is
used as the color for its corresponding slab. The exte-
rior of P contains background color of the scene since
all n geometries grow from the edges towards the inte-
rior of P . Moreover, the mutual interaction of these
slabs is extremely complex as they penetrate each other
at multiple locations. Hence, islands may exist in the
parallel projection of the lower envelope of these slabs.
These islands must be removed to achieve an accurate
sketch of the straight skeleton of P . Figure 6 shows an
example island occurring due to the interaction of slabs
constructed over the vertices of an input polygon.

(a) Input polygon. (b) Projected pixel map.

(c) Detected island. (d) Straight skeleton sketch.

Figure 6: An example of island in the projection of the
lower envelope of slab geometries.

2 DETECTION AND REMOVAL OF IS-
LANDS – A GENERAL APPROACH

The approach is to process the parallel projection of the
lower envelope of slabs, which are drawn by the em-

ployed geometric structure approximation technique,
by detecting, uniquely identifying, and removing all is-
lands in it. The projection is saved as a color pixel map
and island detection is carried out on it as the first step.
If any islands are encountered then the island labeling
algorithm is invoked which labels every island making
it uniquely identifiable. Subsequent to this, the pixel
map is fed to the island removal procedure which gen-
erates a correct diagram patch for every island, and ap-
propriately stitches these patches in the pixel map in
place of the corresponding islands. If no islands are de-
tected in the first step then this indicates that the output
of the employed geometric technique is already correct
and requires no further processing.

2.1 Detecting the islands
To detect islands in the projected pixel map, an island-
boolean-map having resolution the same as that of the
pixel map is maintained. The approach is to mark all
pixels as island pixels first and then start changing their
boolean flags based on the colors and flags of their
neighborhood. Here, it is assumed that the input sites
are projected adjacent to the background color of the
scene (as in case of a polygon with background color
on its exterior). Or, if this is not the case then the sites
are projected in background color while still keeping
the color identities of their corresponding slabs intact.
In the latter case, the projections of sites are recovered
back to their original colors later after island detection.
A pixel is marked as a non-island pixel only if its
color is the background color of the scene, or if any
of its neighboring pixels has the background color, or
if any of its neighboring pixels has a color same as the
pixel under question and that neighbor has already been
marked as a non-island pixel. This leads to the island
detection algorithm which iterates over the whole pixel
map from one end to the other updating the pixel flags
and leaving behind the actual islands. This continues
until no pixel flag is updated during a pass of the pixel
map.
The assumption of sites being projected in, or adjacent
to, background color not only guarantees the generality
of island detection but also ensures the island detection
to be fail-safe. This is because, the islands are assumed
as not to have any connectivity to their corresponding
sites via their identically colored neighboring pixels and
that the islands are detected based on their relationship
to the background of the scene. Moreover, islands may
be classified into two kinds based on their relationship
to the sites responsible for their occurrence. If an island
is due to only one site, it is called a simple island. And,
if it is due to more than one sites then it is referred as
a complex island. Islands due to different sites but ly-
ing immediately adjacent to each other are regarded as
a single complex island. The sites responsible for ex-
istence of islands are called bad sites. In other words,

a bad site is the one a portion of whose corresponding
slab is projected as an island in the pixel map.

2.1.1 Four-neighbors versus Eight-neighbors
testing

Defining the term neighbor is of crucial importance
for accurate island detection. Two candidate schemes,
namely four-neighbors and eight-neighbors are the nat-
ural candidates for adoption. Considering only four
neighbors (left, right, top and bottom) of a pixel to be its
actual “neighbors” wins over the the other alternate in
cases where some pixels of an island have diagonal con-
nectivity to the non-island portions of their respective
slabs. These island pixels are actually part of the island
but are missed by the eight-neighbor-testing scheme as
it assumes them as connected to their corresponding
slabs and marks them as non-islands. However, the
four-neighbor-testing is able to detect such pixels cor-
rectly and marks them as islands since it does not per-
form any diagonal connectivity checks. For an illustra-
tion of this fact, see Figure 7 which is taken from one
of the experiments approximating the straight skeleton
of a polygon.

(a) Portion of
pixel map.

(b) A zoomed
portion of fig(a).

(c) Detected
island.

Figure 7: An island detected using four-neighbor con-
nectivity testing.

Thus, eight-neighbors testing is not a good choice for
adoption regardless of its early connectivity detection
as compared to its counterpart. This leaves us with the
four-neighbors testing scheme which works perfectly
as it is capable of handling the cases which the eight-
neighbors testing scheme fails to take care of.

The four-neighbors testing mechanism, as a drawback,
requires an extra pass over the input pixel map for re-
moval of single pixel thick areas which are actually
not islands but are marked as islands due to the lack
of diagonal-connectivity testing. These areas may oc-
cur as diagonally connected strips of single pixels. For
an example, see Figure 8 which is taken from one of
the experiments approximating the straight skeleton of
a polygon.

2.1.2 Orders of processing the pixel map
The order of processing the pixel map in subsequent it-
erations of the island detection algorithm is extremely
important as it can greatly effect the overall number
of iterations required to accurately detect the islands.

(a) Portion of the
original pixel map. (b) Detected islands.

Figure 8: Single pixel thick islands detected using the
four-neighbor testing scheme without an extra pass.

Moreover, since immediate neighbors of every pixel are
to be analyzed, the island detection algorithm should
process the pixel map within the bounding box (second
pixel in the second row –to– second-last pixel in the
second-last row).
Let us consider the processing of a pixel map start-
ing from the lower left corner of the box area inside
it and moving row by row towards the top right corner.
All non-island pixels which are direct neighbors of the
background color, or ones which have a connectivity to
it via their left or bottom neighbors will be correctly
marked in the very first pass of the pixel map. For each
subsequent pass, a one-pixel thick layer of the not yet
marked non-island pixels, adjacent to already marked
non-island pixels, will pass the non-island-pixel test,
thus, leaving behind the actual island pixels. Similarly,
if the pixel map is processed from the top right corner
to the bottom left corner, a large number of non-island
pixels having connectivities to the background color via
their top or right neighbors pass the non-island test in
the very first iteration.
Thus, altering the order of processing the pixel map
at every subsequent iteration greatly boosts the detec-
tion of islands. To achieve maximum performance,
we apply a four-way processing of the pixel map.
That is, processing in the following order: First
Iteration – bottom-left-to-top-right, Second Iteration –
top-right-to-bottom-left, Third Iteration – bottom-right-
to-top-left, Fourth Iteration – top-left-to-bottom-right;
and then repeating this order for any subsequent
iterations.
Experiments on various datasets using different pro-
cessing orders (one-way, two-way, four-way) prove the
four-way-four-neighbor testing to be the best choice.
For details, please see section 3. Two sample runs
of the island detection algorithm using four-way-four-
neighbor testing are illustrated in Figure 9.

2.2 Labeling the islands
One of the island removal techniques presented in this
paper requires unique identification of every island in

Figure 9: Progress of each iteration (left-to-right) of the four-way-four-neighbor testing for island detection in
example pixel maps (left most in both rows) projected during approximation of the straight skeleton of a simple
polygon having twenty vertices (first row), and the weighted Voronoi diagram of thirty randomly generated point
sites (second row). The right most image in both rows contains the detected islands.

the pixel map thus laying the basis of the basic re-
quirement for an island labeling algorithm. Moreover,
in some later parts of the geometric solution being
computed, the overall technique may also require in-
formation relating some particular island(s) for which
we must be able to uniquely identify and distinguish
it/them.

Let us assume that island detection has already been
applied to the input pixel map and some islands do ex-
ist which need to be labeled. The island labeling algo-
rithm maintains an island-label-map having resolution
the same as that of the pixel map. It begins by initializ-
ing the island-label-map to all zeros – zero is regarded
as the non-island label. The algorithm parses the island-
boolean-map and considers only island pixels. For ev-
ery such pixel, it generates a new label and assigns it to
this pixel by recording this label at the pixel’s position
in the island-label-map. Along with this, it compares
the labels of the neighboring pixels. The eight-neighbor
scheme is adopted here for defining the term “neigh-
bor”. This boosts the performance as the connectivity
information does not effect a pixel’s island flag and,
rather, lets the determination of labels of the diagonal
neighbors beforehand. Now, if a neighbor of the cur-
rent pixel has a non-zero label, and this label is smaller
than that of the current pixel, then the algorithm sets the
current pixel’s label same as that of the neighbor pixel
just tested.

Looping the island-boolean-map and the island-label-
map with this simple testing scheme assigns unique la-
bels to all islands. Thus, the underlying idea is simi-
lar to the standard connected component labeling tech-
niques, that is, to assign a temporary label to each island
pixel and update it depending on whether its immedi-
ate neighbor pixels also belong to the same island. As
an example of the labeling output, Figure 10 illustrates
an island map and the corresponding island-label-map
with labels converted to the levels of gray.

(a) Sample island-map.
(b) The corresponding

island-label-map.

Figure 10: An example grid of island labels with labels
converted to the levels of gray.

Similar to the island detection, different orders of pro-
cessing of the island-label-map can be adopted for la-
beling the islands. Application of a two-way processing
of the pixel map ensures a generally speedy approach,
since the eight neighbor scheme is employed here.

2.3 Removing the islands
Removal of islands is the most important step towards
computation of the geometric structure being approxi-
mated. This section presents two island removal algo-
rithms which can be adopted depending upon the types
of the islands detected, and the requirements of the
problem being addressed. If no complex island is de-
tected in the pixel map then the first algorithm is used
which operates per bad site and hence has a worst case
complexity of the number of input sites (n) times the
resolution of the input pixel map. This algorithm is
named sir abbreviating “Simple Island Removal”.

In worst scenarios, if more than one bad sites exist, it
is not unlikely to have islands which are stacked over
each other in a way that the top islands hide the ones
underneath them. In such cases, removal of the visi-
ble islands in the pixel map may result in popping up
of new islands in their places thus leaving the prob-

lem of island removal unresolved. The second island
removal algorithm is capable of handling such stacked
islands without requiring any extra looping over each
stack of islands for their removal, hence, keeping the
overall worst case complexity under controlled bounds.
This variant of island removal is referred to as stir ab-
breviating “Stacked Island Removal”. Thus, if removal
of stacked islands is essential, or if any complex islands
are encountered in the pixel map, then “stir” is used
which operates per island and has a higher theoretical
worst case complexity than “sir”.

Both algorithms, “sir” and “stir”, rely on a simple data
structure which is called a black list. As the name sug-
gests, it is a list of sites whose corresponding geome-
tries are temporarily banned from being displayed in the
scene based on certain criteria. The criteria, of-course,
relates to involvement in creation of islands. In short,
a black list is a sorted list of unique barred bad-sites.
Moreover, both of these algorithms rely on the basic
philosophy of patching the correct portions of the dia-
gram in place of the islands. Temporarily black listing
a bad site makes its geometry to be shutoff thus also
shutting-off the islands due to it, and making the dia-
gram underneath them visible on the lower envelope.
These correct portions are patched in place of the is-
lands in pixel map. The patch operations have been im-
plemented as a parse of the pixel map while updating
pixels relating to the island being processed. One could
restrict the processing of entire pixel map in both “sir”
and “stir” to bounding boxes of the islands being re-
moved. This, however, does not really pay-off in real
practice because of the overheads involved in comput-
ing and saving these bounding boxes.

2.3.1 Simple island removal – sir
The “sir” simply iterates on all bad sites, shutting-off
their corresponding slabs one-by-one, and recovering
the portions of diagram underneath the islands due to
each of them. The worst case complexity of “sir” is thus
O(r ·w · h), where r is the number of bad sites (r < n),
w is the width, and h is the height of the pixel map.
Considering m = w · h to be the resolution of the pixel
map, the worst case time complexity bounds to O(r ·m).
The pseudo-code of “sir” is outlined in algorithm 1.

2.3.2 Stacked island removal – stir
It is straightforward to see that the slabs projected im-
mediately adjacent to an island are the ones which ac-
tually constitute the correct portion of the diagram un-
derneath it. Thus, black listing all bad sites except
those participating in forming the outline of an island
removes any possibility of more islands being stacked
underneath it. The “stir” relies on this concept and
utilizes the outline information for providing a gen-
eral approach to remove stacked and complex islands.
The pseudo-code of “stir” is outlined in algorithm 2.

Require: pixelMap[] = the pixel map to process;
islandBoolMap[i] = true if pixel i is an island pixel;
noO f Islands = total number of islands encountered;
noO f BadSites = total number of bad sites.

Ensure: pixelMap[] = correct pixel map with no islands
1: if (noO f Islands > 0) then
2: for badSite = 1→ noO f BadSites do
3: blackList← badSite, and re-render the scene
4: tempPixelMap← f ramebu f f er
5: for y = 1→ imageHeight do
6: for x = 1→ imageWidth do
7: pix = (x,y)
8: if ((islandBoolMap[pix] = true) AND

(pixelMap[pix] = colorID(badSite))) then
9: pixelMap[pix]← tempPixelMap[pix]
10: islandBoolMap[pix]← f alse
11: blackList← NULL

Algorithm 1: The core sir algorithm

Require: pixelMap[] = the pixel map to process;
islandBoolMap[i] = true if pixel i is an island pixel;
islandLabelMap[i]> 0 if pixel i ∈ island “islandLabelMap[i]”;
noO f Islands = total number of islands encountered;
noO f BadSites = total number of bad sites;
island.outline = set of bad sites present in the outline of island;
island.label = the unique label of island;

Ensure: pixelMap[] = correct pixel map with no islands
1: if (noO f Islands > 0) then
2: for island = 1→ noO f Islands do
3: for badSite = 1→ noO f BadSites do
4: if (badSite /∈ island.outline) then
5: blackList← badSite
6: re-render the scene
7: tempPixelMap← f ramebu f f er
8: for y = 1→ imageHeight do
9: for x = 1→ imageWidth do
10: pix = (x,y)
11: if (islandLabelMap[pix] = island.label) then
12: pixelMap[pix]← tempPixelMap[pix]
13: islandBoolMap[pix]← f alse
14: islandLabelMap[pix]← 0
15: blackList← NULL

Algorithm 2: The core stir algorithm

The worst case complexity of “stir” is O(i · (r+w ·h)),
where i is the number of islands processed, r is the num-
ber of bad sites (r < n), w is the width, and h is the
height of the pixel map. Considering m = w ·h to be the
resolution of the pixel map, the worst case time com-
plexity bounds to O(i · (r+m)).

Experiments prove that adopting “stir” in place of “sir”
actually boosts performance when the number of input
sites is fairly large. This happens because the graphics
card has to render lesser number of geometries in each
iteration as compared to rendering all geometries except
one every time. Hence, the algorithm which appears
theoretically worse, performs actually better on large
datasets. Additionally, this adoption ensures removal
of stacked islands as a positive side effect.

2.3.3 Handling dependency chains of islands
It is interesting to note that an island may exist due to
the existence of another island in the pixel map. And

this may also be true for that source island. Thus, it
is possible for a pixel map to contain chains of depen-
dencies of islands. Hence, it may become necessary to
remove some other islands before a certain island is re-
moved. An example of a dependency chain of islands
is illustrated in Figure 11. Some islands in such a chain
are actually the true features (“false” islands) of the di-
agram being computed and appear isolated because of
the other “true” islands in the chain which isolate them
from their corresponding slabs. A straightforward ap-
plication of “sir” in such cases may not give the desired
results. Moreover, the “stir” algorithm may require
more than one runs in such cases. As in the first run, it
will remove the root of this chain, and in the subsequent
runs the reset of the chain will be processed. Further-
more, if the dependency chain forms a cycle then the
“stir” requires a run of the “sir” algorithm, prior to its
application, to remove one of the islands in the chain in
order to break the cycle.

Such situations can be avoided by marking the “false”
islands, which form links in these chains, as non-islands
prior to the application of any island removal algorithm.
We name this process as film abbreviating “False Is-
land Marking”. Hence, the application of “film” before
removing islands lets us efficiently handle the depen-
dency chains of islands. Here we use the term partici-
pants to refer to the individual islands constituting the
complex island which is a dependency chain.

Slab ‘A’

Slab ‘B’

Slab ‘C’

Slab ‘D’

Slab ‘E’

Figure 11: An illustration of a dependency chain of is-
lands with true islands shown in falling tiling pattern,
and false islands highlighted in rising tiling pattern.

False island marking – film All participants of a com-
plex island are, by default, assumed to be “true” islands.
The algorithm processes all complex islands in the pixel
map and classifies their participants as possibly-false,
false, and true. The classification is performed based
on the relationship of a participant to the outline of
the complex island being processed. First, all partic-
ipants of the complex island being processed are ana-
lyzed. If the color of a participant is same as that of
an outline constituent then that participant is marked as
“possibly-false”. As a next step, the outline adjacent
to every “true” participant is checked for existence of
a constituent having color same as a “possibly-false”
participant of this complex island. If found then that

“possibly-false” participant is marked as a “false” par-
ticipant. This is done because when this “true” partici-
pant will be removed then the participant which is now
marked as “false” will actually get connected to its cor-
responding slab thus forming a portion of the diagram
being processed (for instance, see the false island corre-
sponding to slab ‘C’ in Figure 11). Following this, the
outline information of this newly marked “false” par-
ticipant is checked for existence of a constituent having
color same as that of any other “possibly-false” partic-
ipant of this complex island. If found then that partici-
pant is marked as a “true” participant. This is because,
as this newly marked “false” participant is to stay in the
diagram, it will isolate this newly marked “true” partic-
ipant from its corresponding slab (for example, see the
island portion corresponding to slab ‘D’ in Figure 11).
If all participants of a complex island are marked as
“false” then all of them are actually “true” participants
and must be handled accordingly. Finally, the boolean
flags and labels of all “false” participant pixels are ap-
propriately updated.

The application of “film” provides three benefits: First,
it breaks the cycles in the dependency chains of islands.
Second, it ensures the accuracy and integrity of the di-
agram. And third, it reduces the count of participants
constituting the complex island, hence, reducing the
number of pixels to be processed for its removal.

2.4 Salient features of the algorithms
Generality For detection and labeling of islands, no as-
sumption is made with respect to the input primitives as
these algorithms purely operate on a discrete grid which
does not grow or shrink depending upon any factors.
The island detection and removal approach is generally
applicable to all graphics rendering based algorithms as
islands are one of the major challenges towards their
completeness, and rendering slabs and projecting their
lower envelope is a basic feature of all such techniques.

Simplicity These algorithms can be easily implemented
on the available graphics systems as from/to GPU data
transfer functionalities are vastly supported. Moreover,
these techniques do not have any special case arising
which requires special handling.

Robustness Our algorithms use the features of the
projected pixel map to efficiently handle highly sophis-
ticated problems due to islands. For instance, the “stir”
algorithm is capable of handling stacked islands with-
out requiring any extra looping over each stack thus giv-
ing highly efficient throughput.

3 RESULTS
The statistics discussed in this section have been
recorded while conduct of our experiments using a
standard PC with Intel Core i7-2600 CPU clocked at

 0

 2

 4

 6

 8

 10

 12

 14

 1 10 100 1000 10000 100000

pa
ss

es
 o

f t
he

 p
ix

el
 m

ap

number of sites

pixel map passes
pixel map passes fit

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000 10000 100000

tim
e

(m
ill

is
ec

on
ds

)

number of sites

time (ms)

time fit

Figure 12: Plots of data relating sample runs of is-
land detection using the four-way-four-neighbor testing
scheme.

3.4GHz processor, and NVIDIA GeForce GTX 460
graphics card. The results presented here are based on
tests with a pixel map resolution of 1000×1000. Han-
dling datasets with more than a hundred-thousand point
sites is not much meaningful with this resolution as
this increases the chance of many very closely spaced
sites being approximated by a single pixel. Therefore,
the analytical data has been restricted to be bounded
in the range [1,100000] for the number of input sites.
Moreover, due to lack of space, the statistics relating
weighted Voronoi diagram computation have been
omitted. The presented results relate to the experiments
approximating the straight skeletons. The Table 1, and
Figures 12 & 13, summarize some information from
the benchmarks.

It is evident from the figures presented in Table 1 that
the four-way-four-neighbor testing scheme for island
detection is a robust algorithm. This is also supported
by the plots shown in Figure 12. Experiments show
that, while detecting islands using this scheme, the
number of passes of the pixel map do not grow with an
increase in the number of sites being processed. Rather,
this count of passes follows a constant value. Similarly,
it can be observed in the second plot shown in Figure 12
that the increase in the time consumed by this island

 1

 10

 100

 10 100 1000 10000 100000

pa
ss

es
 o

f t
he

 p
ix

el
 m

ap

number of sites

pixel map passes
pixel map passes fit

 1

 10

 100

 1000

 10 100 1000 10000 100000

tim
e

(m
ill

is
ec

on
ds

)

number of sites

time (ms)

time fit

Figure 13: Plots of data relating sample runs of is-
land labeling using the two-way-eight-neighbor testing
scheme.

detection algorithm variant also does not exhibit any
significant growth with respect to the number of input
sites. A very slight increase in the time consumption
occurs when the number of input sites crosses several
tens of thousands and approaches the hundred-thousand
limit. This is because a majority of pixels now pass the
island test and require their island boolean flags to be
updated.

Variant
Passes of Time (ms)
pixel-map consumed

1-way; 8-neighbor 455 3610.790
1-way; 8-neighbor; interlaced1 612 2771.825
1-way; 4-neighbor 612 2780.503
2-way; 8-neighbor 225 231.160
2-way; 8-neighbor; interlaced1 519 1848.751
4-way; 8-neighbor 14 104.622
4-way; 4-neighbor 14 99.104

Table 1: Peaks of data relating sample runs of vari-
ous variants of the island detection algorithm applied
to same datasets.

1 Odd and even rows of pixels are processed in alternate it-
erations, similar to the interlaced raster scanning for scan-
conversion of an image.

Figure 13 presents the plots of data relating sample
runs of the island labeling algorithm using the two-way-
eight-neighbor testing scheme. The least-squares line
fit both for the number of passes of the pixel map, and
for the time consumed by the labeling algorithm, with
respect to the number of input sites, follows a constant
value until the size of the input reaches an order of 104.
A slight increase is observed in both of these trends be-
yond this level. The reason for this ascent is the increase
in the number of island pixels requiring their label in-
formation to be updated. The increase in this case can
observed slightly more significant than the one in case
of island detection. This is because every island pixel
now requires eight comparisons for getting its label in-
formation updated in contrast to the earlier case where
every island pixel required four comparisons for having
its island boolean flag modified.

4 CONCLUDING REMARKS
This paper highlights a very challenging problem (exis-
tence of islands) faced by geometric algorithms which
make use of the graphics rendering and interpolation
capabilities of a GPU. An efficient and general solu-
tion to this problem is proposed. The presented algo-
rithms can be applied in combination with any such ge-
ometric technique thus ensuring its conformance to the
task. The concept of black listing bad sites has been in-
troduced and efficiently utilized for recovering correct
diagram patches in lie of the islands. An incremental
application of this patchwork on the pixel map trans-
forms it into the required final diagram of the geomet-
ric structure being computed. The proposed approach
ensures the accuracy of a patch by avoiding blacklist-
ing of the sites which actually form the correct portion
of the diagram in replacement of the corresponding is-
land. This also certifies removal of all islands which
may be stacked under this island at no extra processing
cost. Moreover, the proposed algorithms also serve as
a few steps towards the first ever GPU-based attempt to
approximate the straight skeleton of a simple polygon.

ACKNOWLEDGEMENTS
This work was supported by the Higher Education
Commission (HEC), Pakistan, and the Universität
Salzburg, Austria.

REFERENCES
[AAAG95] O. Aichholzer, F. Aurenhammer, D. Alberts,

and B. Gärtner. A novel type of skeleton for
polygons. Journal of Universal Comp. Sc.,
1(12):752–761, 1995.

[CT05] J. Champagne and W. Tang. Real-time simula-
tion of crowds using Voronoi diagrams. In The-
ory and Practice of Comp. Graphics, pages 195–
201, Canterbury, United Kingdom, 2005. Euro-
graphics Association.

[Den03a] M. O. Denny. Algorithmic Geometry via Graph-
ics Hardware. PhD thesis, Universität des Saar-
landes, Saarbrücken, 2003.

[Den03b] M. O. Denny. Solving geometric optimiza-
tion problems using graphics hardware. Comp.
Graphics Forum, 22(3):441–452, 2003.

[FG06] I. Fischer and C. Gotsman. Fast approxima-
tion of high-order Voronoi diagrams and distance
transforms on the GPU. Journal of Graphics,
GPU, and Game Tools, 11(4):39–60, 2006.

[Hae90] P. Haeberli. Paint by numbers: Abstract image
representations. In SIGGRAPH ’90: Proc. of the
17th annual Conf. on Comp. Graphics and In-
teractive Techniques, pages 207–214, New York,
NY, USA, 1990. ACM.

[HCK+99] K. E. Hoff, T. Culver, J. Keyser, M. Lin, and
D. Manocha. Fast computation of generalized
Voronoi diagrams using graphics hardware. In
SIGGRAPH ’99: Proc. of the 26th Annual Conf.
on Comp. Graphics and Interactive Techniques,
pages 277–286, New York, NY, USA, 1999.
ACM.

[LZC09] C. L. Li, G. Zhou, and C. W. Chan. A graphical
approach to approximate offset computation. In
Proc. of the 6th Intl. Conf. on Comp. Graphics,
Imaging and Visual., CGIV ’09, pages 217–221,
Washington, DC, USA, Aug 2009. IEEE Comp.
Society.

[OBS92] A. Okabe, B. Boots, and K. Sugihara. Spatial tes-
sellations: Concepts and applications of Voronoi
diagrams. John Wiley & Sons, Inc., New York,
NY, USA, 1992.

[VR05] M. Vona and D. Rus. Voronoi toolpaths for
PCB mechanical etch: Simple and intuitive al-
gorithms with the 3D GPU. In IEEE Intl. Conf.
on Robotics and Automation, pages 2759–2766,
2005.

[WND97] M. Woo, J. Neider, and T. Davis. OpenGL Pro-
gramming Guide (2nd ed.): The Official Guide to
Learning OpenGL Version 1.1. Addison-Wesley
Longman Pub. Co., Inc., Boston, MA, USA,
1997.

[Yam05a] O. Yamamoto. An acceleration technique for the
computation of Voronoi diagrams using graph-
ics hardware. In ICCSA (Part 1): Intl. Conf. on
Computational Sc. and its Appl.s, volume 3480
of Lecture Notes in Comp. Sc., pages 786–795.
Springer Berlin / Heidelberg, 2005.

[Yam05b] O. Yamamoto. Fast computation of three-
dimensional convex hulls using graphics hard-
ware. Japan Journal of Industrial and Applied
Mathematics, 22:291–310, 2005.

	Introduction
	Motivation
	Main Contribution
	Witnessing islands while constructing weighted discrete Voronoi diagrams
	Experiencing islands while approximating straight skeleton of a polygon

	Detection and Removal of Islands – A General Approach
	Detecting the islands
	Four-neighbors versus Eight-neighbors testing
	Orders of processing the pixel map

	Labeling the islands
	Removing the islands
	Simple island removal – sir
	Stacked island removal – stir
	Handling dependency chains of islands

	Salient features of the algorithms

	Results
	Concluding Remarks

