
GPU Based Computation of the Structural Tensor for
Real-Time Figure Detection

Marcin Bugaj
AGH University of Science and Technology

Al. Mickiewicza 30
30-059 Kraków, Poland

mm.bugaj@gmail.com

Bogusław Cyganek
AGH University of Science and Technology

Al. Mickiewicza 30
30-059 Kraków, Poland

cyganek@agh.edu.pl

ABSTRACT
In this paper we present a real-time realization of the method of detection of local structures in images of

predefined orientation. The method is based on an analysis of the structural tensor computed in monochrome and

color images. Thanks to the GPU implementation of the low-level feature detection an order-of-magnitude

speed-up was achieved compared to the software implementation. The method can be used for real-time

detection of solid objects in HDTV streams as shown by many examples.

Keywords
Structural tensor, corner and edge detection, graphics card, real-time low level feature detection

1. INTRODUCTION
An analysis of low-level features in images

constitutes a front-end in many computer vision

systems. Thus, there is still an ongoing research on

their fast and precise computation methods. One of

the very promising methodologies relies on

computation of the so called structural tensor (ST)

which conveys information on multi-dimensional and

multi-scale local neighborhoods of pixels in 2D, 3D

and higher dimensional images [1][3].

In this paper we present a method of detection of

local features in images of specific orientation. The

method relies on prior computation of the ST which

is proposed to be done in the graphic card (GPU). For

this purpose the HIL library, provided by Cyganek et

al. [3], as well as the CUDA development

environment by nVidia® were used [10][11][12].

The presented method fits well to the concept of

smart cameras which are able to precompute and

transfer low-level features defined by a user. Thanks

to this an order-of-magnitude speed-up was achieved

which allows processing of the HDTV streams in

real-time, as shown by experiments.

The paper is organized as follows. In section 2 we

present an overview of figure detection based on

multi-channel and multi-scale structural tensor. In

section 3 the architecture of the processing platform

is presented. Section 4 contains experimental results.

The paper ends with conclusions provided in

section 5.

2. FIGURE DETECTION WITH THE

STRUCTURAL TENSOR
The structural tensor was first proposed by Bigün et

al. [1], and then used by many authors in context of

different applications [7]. With the structural tensor

each pixel neighborhood can be investigated for their

strength and orientations in terms of local intensity or

color signal gradients. Having a local neighborhood

of pixels , centered at a point x0, the main idea is to

determine a dominating directional vector w which is

as close as possible to all gradients qi in this

neighborhood. This is depicted in Figure 1.

W

gj

g0

gi



x0

xi

xj

xn

gn

Figure 1. Computation of the dominating

orientation vector w in a pixel neighborhood 

based on signal gradients qi.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

In other words, if such w can be determined, then the

whole  can be represented solely by w. Moreover,

its parameters, such as phase and magnitude provide

us important information on a type of a

neighborhood. As will be shown, this can be used to

determine corners or local structures with specific

orientations. In consequence, ST can be used to

detect characteristic figures in images. In our

application it was used to detect e.g. road signs in

real time, as will be shown in experimental section.

More specifically, to compute w of  one needs to

compute gradient vectors qi for all points xi. For

comparison of vectors their inner product is used.

Thus, the vector w at a point x0 is an estimator of an

average orientation in  that fulfills the following

optimization problem

2

arg max () ()

arg max(),

d


 
   

 




T

w

T

w

q x w x x

w Tw

 (1)

where q and w are column vectors, whereas T

denotes the structural tensor, which is defined as

follows

() () ()T d


 T x q x q x x . (2)

The square of the inner product in (1) fulfils the

invariant assumption on rotation of  radians.

Otherwise parallel and anti-parallel configurations of

vectors would cancel out. On the other hand, the

outer product qq
T
 in (2) conveys dimension of the

tensor T.

In a case of multi-channel color images the gradient

vector q can be defined as proposed by Di Zenzo [5].

In this approach summation of the partial gradient

components in image channels is assumed. To find

the ST for images with M channels we employ this

idea to (2), as follows [3]

 

 

1

1 1

() ()

() () .

M

k k

k

M M

k k k

k k

d

d



 

 





 

T q x q x x

q x q x x T

 (3)

Thus the summation in (3) follows all gradient fields,

each computed independently for each color channel

in an image. Finally, let us observe that there are two

dimensions involved in (1) and (3). The first directly

follows dimension of the gradients, i.e. it is 2D for

single image or 3D for video sequences, and so on.

The second dimension comes from a number of

image channels M in (3). Discrete realization of the

structural tensor was analyzed by Hauecker et al.

[7]. This is given as follows

() ()ˆ (,) ()ij i jT F R R 

   , (4)

where Ri
()

 a -tap discrete directional operator and

F is a smoothing kernel at scale  [3]. For Ri
()

 we

used the directional filters provided by Farid et al.

[6].

Figure 2. Processing path for corners and edges detection.

don’t care bits don’t care bits 0xFF – corner present 0xFF – edge present

32 bits = sizeof(foat)

Corner presence flag Edge presence flag

Figure 3. Pixel format of the output image.

In image processing the structural tensor is very

useful in a slightly different form, i.e. computing

phase and magnitude of the vector w. The phase of

the vector w in (1), which corresponds to an

eigenvector of the greatest eigenvalue of T, can be

found analytically from the following

representation [7]

 1 2 2
TT

xx yy xyw w T T T    w . (5)

From the above the following is easily obtained

2
atan2

xy

xx yy

T

T T


 
    

. (6)

This formula is directly used to find local structures

in images with requested phase. In this case we need

to additionally check trace of T which should be

greater than a predefined threshold , that is

xx yyt T T    . (7)

For corner detection the eigenvalues of T should be

computed, as follows

   
21 2

1,2 2
λ 4xx yy xx yy xyT T T T T

 
     

 
. (8)

It can be shown [7] that the analysis of a type of local

pixel neighborhoods can be based on the analysis of

the local eigenvalues (8). However, the two

eigenvalues can be joined together in a form of the

following coherence component [1]

2

1 2

1 2

λ λ

λ λ
c

 
  

 

. (9)

The above coefficient takes on 0 for ideal isotropic

areas or structures with constant intensity value, and

reaches 1 for ideally directional structure.

+GetPixel() : float
+SetPixel() : float

-fData

TImageFor

+GetCornersImage() : TImageFor
+GetEdgesImage() : TImageFor
+isEdge() : bool
+isCorner() : bool

EdgesAndCornersImage

+operator()() : void*

#fResourceAccessPolicy
#fOperationCompletionCallback

TImageOperation

+operator()() : void*

-inputImage : TImageFor&
-stream : cudaStream&

CUDAImageOperation

+operator()() : void*

-operation : TImageOperation*

CUDAImageOperationDecorator

+operator()() : void*

-prefilter
-derivative
-smoothing

CUDAImageOperationST

+operator()() : void*

-threshold_angles : float
-threshold_corners : float
-angle_ranges

CUDAImageOperationST2TAC

+operator()() : void*

-outputImage : TImageFor&

CUDAImageOperationFinalize

+operator()() : void*

-fRetImageRef : TImageFor&
-fInImage1_Ref : TImageFor&

TUnaryImageOperationFor

+operator()() : void*

-operation : TImageOperation*

CUDAUnaryGetEdgesAndCorners

1

1

1

1

GPU
Convolution,

Matrix multiplication,
Changing ST representation

Looking for edges and corners

*

*

** *

*

*

*

«uses»

«uses»

«uses»
«uses»

*

*

Figure 4. Architecture of the class hierarchy.

3. ARCHITECTURE OF THE

IMPLEMENTATION PLATFORM
In implementation of the oriented structures in

images (e.g. corners, edges, etc.) based on the

aforementioned structural tensor, the CUDA graphics

cards were used. The code was compiled with nvcc -

enhanced-C compiler. HIL library was utilized as a

tool for image and image operation representation

[3]. Figure 2 shows the data flow for an operation of

searching corners and edges. The image is first

copied to the GPU global memory. Structure tensor is

calculated, which requires pre-filtering of images,

calculation of their derivatives, point-by-point

images multiplication and their smoothing, as

outlined in formula (4). In the present

implementation the maximum length of each of the

filters is 11.

The matrix representation of the structure tensor

obtained at this stage is not too useful, so we go on a

vector representation (5). Now following parameters

are given explicitly: the angle indicating the direction

of maximum change in image (6), the tensor trace (7)

and coherence level c (9) for each pixel of the image.

We are looking for image points for which the

direction of maximum change imposed is within the

desired range of angles, provided that the coherence

is greater than the set threshold value. Minimum

value of coherence c is particularly important

because it significantly affects the accuracy. Corner

detection is to find points for which the minimum

eigenvalue of the structural tensor exceeds a given

threshold value (8). The result of these operations is

an image in which each pixel contains two flags. The

first one indicates the presence of a corner, while the

other the presence of an edge having desired pitch.

The output pixel format is illustrated in Figure 3.

Image in this form is copied from the GPU global

memory to host memory.

In this implementation we put special emphasis on

efficient GPU memory management. Indeed, it

appears that the time of allocation and release of

GPU memory is long and comparable with the

duration of structure tensor computation. One also

cannot neglect the transfer time from the CPU

memory to the GPU memory. The first of the

dilemmas was resolved by transferring the

responsibility for memory allocation for cudaStream

class instance. This class was created in our

framework for the purpose of effective memory and

CUDA streams management. Once the memory was

allocated by cudaStream it is destroyed by the same

stream object. During the detection of corners and

edges the memory transfer takes place only twice -

when copying the original image to the GPU memory

and copying back the result image to the CPU

memory. All operations that happen during

processing allocate GPU memory using a

cudaStream class object. Number of GPU-CPU

memory transfers has been limited to a necessary

minimum. The Figure 4 shows a UML diagram of

the classes needed to create the corners and edges

detectors. To make any calculations using the GPU

one has to create an object of the class
CUDAImageOperation. Then decorate it with

CUDAImageOperationDecorator and its derived

classes. The last decorator must be

CUDAImageOperationFinalize class instance.

Since the operation of searching corners and edges is

often needed, CUDAUnaryGetEdgesAndCorners

class was defined which provides a convenient

façade for above function classes. The following

code listing shows exemplary usage of this class:

TImageOperation * operation = new
CUDAUnaryGetEdgesAndCorners
(ProcessedImage, OriginalImage,
AngleRanges, *stream);

(*operation)(); // perform detection

CUDAImageOperation class and the classes derived

from CUDAImageOperationDecorator use

elementary GPU functions - the CUDA kernels.

These are the following functors: one-dimensional

convolution, matrix point-by-point multiplication, the

tensor representation transformation, search engine

for edges and corners, etc. The method operator()

of these classes calls them asynchronously,

instructing CUDA driver to carry out them in the

near future, but not waiting for them to complete.

The time between the completion of execution of the

kernel function and the end of their commission is a

time where the CPU is in a ‘sleep’ state. The

potential of unused CPU computational power is

supposed to be utilized in further development.

4. EXPERIMENTAL RESULTS
Performance of edges and corers detection operation

has been investigated on artificial and real images.

Tests were performed on two machines: a laptop

Core2Duo 1.8GHz, 2GB of RAM with the graphics

card GeForce8400M GS and PC computer i7 3.0GHz

endowed with the graphics card GeForce Quadro FX

3800M. Achieved performance differs significantly

which results from different capabilities of the

graphics cards – especially number of processing

cores and their clock. Throughput was obtained by

measuring the time of 16 times repeated detection

operation. Time was measured by CUDA timers.

The plots in Figure 5 compare the throughput of

detection operations. Performing calculations using

the graphics card results in at least tenfold

improvement in efficiency, comparing with bare

CPU computations as well as with the OpenMP

parallelized version of HIL [4]. This gain increases

slightly with a resolution of the input image, since

operating on large images increases the profit

resulting from the small CPU-GPU transfer to

parallel operations (convolution, matrix

multiplication) time ratio. Figure 6 is a diagram of

operations performed on the graphics card while

testing the edges and corners detector obtained using

computeprof v4.0. The diagram includes a

function performed on the graphics card as well as

their duration. GPU work breaks during single

detection are rare and short. This is a desired effect,

because GPU time is not wasted. This is made

possible through the use of asynchronous kernel

functions and sparse synchronization of the CPU and

GPU. The synchronization function is invoked only

in necessary moments - when the CPU needs to use

the results of calculations of the GPU.

Figure 5 Achieved performance on different machines

Figure 6 GPU load timing during edges and corner detection

It is worth noting that the performance of these

operations should depend on length of the applied

filters. In the above implementation always 11-tap

filter is used. In the case of smaller length filters

redundant coefficients are supplemented by zeros.

Figure 7, Figure 8 and Figure 9 present detected

corners and edges in computer generated test patterns

as well as in a real image containing several road

signs. The 3-tap filters (Simoncelli, Binomial) were

used during operations. Filter details in [3].

Figure 7. a) Original image b) angles in range (50, 70) c) angle in range (-50, -70) d) corners.

Figure 8. a) Original test image b) angles in range (50, 70) c) angles in range (0, -10) d) corners.

Figure 9. a) Real image b) angles in range (-50, -90) c) corners.

Figure 10. Pattern image and edges detection in full angle ranges

Detection in ranges (0, 20), (20, 40), (40, 80), (80, 10) in first row

Detection in ranges (-20, 0), (-40, -20), (-60, -80), (-100, -80) in second row

5. CONCLUSIONS
In this paper we present a method of detection of

low-level features of specific orientation in images.

These are corners and linear structures of predefined

phase which allow detection of rigid objects, such as

road signs, cars, etc. First the structural tensor is

computed with help of the HIL library augmented

with the graphic card with the CUDA environment.

The presented method allows computations which in

the worst case are at least an order-of-magnitude

faster that an equivalent serial and multi-core

software realization. This, in turn, allowed real-time

operation on HDTV streams which is shown in the

provided experimental results. Finally, the presented

implementation was made available from the Internet

and can be downloaded at [9].

6. ACKNOWLEDGMENTS
Financial support of the Polish funds for scientific

research is greatly acknowledged.

7. REFERENCE
[1] Bigün, J., Granlund, G.H., Wiklund, J.,

Multidimensional Orientation Estimation with

Applications to Texture Analysis and Optical Flow.

IEEE PAMI 13(8), (1991) 775-790

[2] Carson, C., Belonge, S., whichGreenspan, H., Malik,

J., Blobworld: Image Segmentation Using

Expectation-Maximization. IEEE PAMI 24(8), (2002)

1026-1038

[3] Cyganek, B., Siebert J.P.: An Introduction to 3D

Computer Vision Techniques and Algorithms, Wiley

(2009)

[4] Cyganek, B.: Adding Parallelism to the Hybrid Image

Processing Library in Multi-Threading and Multi-

Core Systems. 2nd IEEE International Conference on

Networked Embedded Systems for Enterprise

Applications (NESEA 2011), Perth, Australia, 2011

[5] Di Zenzo S., A note on the gradient of a multi-image.

Computer Vision, Graphics and Image Processing, 33:

(1986) 116-125

[6] Farid, H., Simoncelli, E.P., Differentiation of discrete

multidimensional signals. IEEE Trans. Image Proc.

13(4) (2004) 496-508

[7] Hauecker, H., Jähne, B., A Tensor Approach for

Local Structure Analysis in Multi-Dimensional

Images. Technical Report, University of Heidelberg

(1998)

[8] http://www.wiley.com/legacy/wileychi/cyganek3dco

mputer/supp/HIL_Manual_01.pdf

[9] http://student.agh.edu.pl/~mbugaj/Detector/Detector.r

ar

[10] NVIDIA, CUDA C Programming Guide (2011)

[11] Sanders, J., Kandrot, E., CUDA by example: an

introduction to general-purpose GPU Programming,

Addison-Wesley (2011)

[12] NVIDIA, CUDA Toolkit Reference Manual, (2011)

http://www.wiley.com/legacy/wileychi/cyganek3dcomputer/supp/HIL_Manual_01.pdf
http://www.wiley.com/legacy/wileychi/cyganek3dcomputer/supp/HIL_Manual_01.pdf
http://student.agh.edu.pl/~mbugaj/Detector/Detector.rar
http://student.agh.edu.pl/~mbugaj/Detector/Detector.rar

