
GPU Based Computation of the Structural Tensor for 
Real-Time Figure Detection 

 

Marcin Bugaj 
AGH University of Science and Technology 

Al. Mickiewicza 30 
30-059 Kraków, Poland 

mm.bugaj@gmail.com 

Bogusław Cyganek 
AGH University of Science and Technology 

Al. Mickiewicza 30 
30-059 Kraków, Poland 

cyganek@agh.edu.pl 

 

ABSTRACT 
In this paper we present a real-time realization of the method of detection of local structures in images of 

predefined orientation. The method is based on an analysis of the structural tensor computed in monochrome and 

color images. Thanks to the GPU implementation of the low-level feature detection an order-of-magnitude 

speed-up was achieved compared to the software implementation. The method can be used for real-time 

detection of solid objects in HDTV streams as shown by many examples. 
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1. INTRODUCTION 
An analysis of low-level features in images 

constitutes a front-end in many computer vision 

systems. Thus, there is still an ongoing research on 

their fast and precise computation methods. One of 

the very promising methodologies relies on 

computation of the so called structural tensor (ST) 

which conveys information on multi-dimensional and 

multi-scale local neighborhoods of pixels in 2D, 3D 

and higher dimensional images [1][3].  

In this paper we present a method of detection of 

local features in images of specific orientation. The 

method relies on prior computation of the ST which 

is proposed to be done in the graphic card (GPU). For 

this purpose the HIL library, provided by Cyganek et 

al. [3], as well as the CUDA development 

environment by nVidia® were used [10][11][12]. 

The presented method fits well to the concept of 

smart cameras which are able to precompute and 

transfer low-level features defined by a user. Thanks 

to this an order-of-magnitude speed-up was achieved 

which allows processing of the HDTV streams in 

real-time, as shown by experiments.  

The paper is organized as follows. In section 2 we 

present an overview of figure detection based on 

multi-channel and multi-scale structural tensor. In 

section 3 the architecture of the processing platform 

is presented. Section 4 contains experimental results. 

The paper ends with conclusions provided in 

section 5. 

2. FIGURE DETECTION WITH THE 

STRUCTURAL TENSOR 
The structural tensor was first proposed by Bigün et 

al. [1], and then used by many authors in context of 

different applications [7]. With the structural tensor 

each pixel neighborhood can be investigated for their 

strength and orientations in terms of local intensity or 

color signal gradients. Having a local neighborhood 

of pixels , centered at a point x0, the main idea is to 

determine a dominating directional vector w which is 

as close as possible to all gradients qi in this 

neighborhood. This is depicted in Figure 1. 
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Figure 1. Computation of the dominating 

orientation vector w in a pixel neighborhood  

based on signal gradients qi.  
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In other words, if such w can be determined, then the 

whole  can be represented solely by w. Moreover, 

its parameters, such as phase and magnitude provide 

us important information on a type of a 

neighborhood. As will be shown, this can be used to 

determine corners or local structures with specific 

orientations. In consequence, ST can be used to 

detect characteristic figures in images. In our 

application it was used to detect e.g. road signs in 

real time, as will be shown in experimental section.  

More specifically, to compute w of  one needs to 

compute gradient vectors qi for all points xi.  For 

comparison of vectors their inner product is used. 

Thus, the vector w at a point x0 is an estimator of an 

average orientation in  that fulfills the following 

optimization problem 
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where q and w are column vectors, whereas T 

denotes the structural tensor, which is defined as 

follows   

( ) ( ) ( )T d


 T x q x q x x . (2) 

The square of the inner product in (1) fulfils the 

invariant assumption on rotation of  radians. 

Otherwise parallel and anti-parallel configurations of 

vectors would cancel out. On the other hand, the 

outer product qq
T
 in (2) conveys dimension of the 

tensor T. 

In a case of multi-channel color images the gradient 

vector q can be defined as proposed by Di Zenzo [5]. 

In this approach summation of the partial gradient 

components in image channels is assumed. To find 

the ST for images with M channels we employ this 

idea to (2), as follows [3] 
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Thus the summation in (3) follows all gradient fields, 

each computed independently for each color channel 

in an image. Finally, let us observe that there are two 

dimensions involved in (1) and (3). The first directly 

follows dimension of the gradients, i.e. it is 2D for 

single image or 3D for video sequences, and so on. 

The second dimension comes from a number of 

image channels M in (3). Discrete realization of the 

structural tensor was analyzed by Hauecker et al. 

[7]. This is given as follows 

( ) ( )ˆ ( , ) ( )ij i jT F R R 

   , (4) 

where Ri
()

 a -tap discrete directional operator and 

F is a smoothing kernel at scale  [3]. For Ri
()

 we 

used the directional filters provided by Farid et al. 

[6]. 

 

Figure 2. Processing path for corners and edges detection. 
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Figure 3. Pixel format of the output image. 



In image processing the structural tensor is very 

useful in a slightly different form, i.e. computing 

phase and magnitude of the vector w. The phase of 

the vector w in (1), which corresponds to an 

eigenvector of the greatest eigenvalue of T, can be 

found analytically from the following 

representation [7] 

 1 2 2
TT

xx yy xyw w T T T    w . (5) 

From the above the following is easily obtained 

2
atan2

xy

xx yy

T

T T


 
    

. (6) 

This formula is directly used to find local structures 

in images with requested phase. In this case we need 

to additionally check trace of T which should be 

greater than a predefined threshold , that is 

xx yyt T T    . (7) 

For corner detection the eigenvalues of T should be 

computed, as follows 
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It can be shown [7] that the analysis of a type of local 

pixel neighborhoods can be based on the analysis of 

the local eigenvalues (8). However, the two 

eigenvalues can be joined together in a form of the 

following coherence component [1] 
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The above coefficient takes on 0 for ideal isotropic 

areas or structures with constant intensity value, and 

reaches 1 for ideally directional structure. 
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Figure 4. Architecture of the class hierarchy. 



3. ARCHITECTURE OF THE 

IMPLEMENTATION PLATFORM 
In implementation of the oriented structures in 

images (e.g. corners, edges, etc.) based on the 

aforementioned structural tensor, the CUDA graphics 

cards were used. The code was compiled with nvcc - 

enhanced-C compiler. HIL library was utilized as a 

tool for image and image operation representation 

[3]. Figure 2 shows the data flow for an operation of 

searching corners and edges. The image is first 

copied to the GPU global memory. Structure tensor is 

calculated, which requires pre-filtering of images, 

calculation of their derivatives, point-by-point 

images multiplication and their smoothing, as 

outlined in formula (4). In the present 

implementation the maximum length of each of the 

filters is 11.  

The matrix representation of the structure tensor 

obtained at this stage is not too useful, so we go on a 

vector representation (5). Now following parameters 

are given explicitly: the angle indicating the direction 

of maximum change in image (6), the tensor trace (7) 

and coherence level c (9) for each pixel of the image. 

We are looking for image points for which the 

direction of maximum change imposed is within the 

desired range of angles, provided that the coherence 

is greater than the set threshold value. Minimum 

value of coherence c is particularly important 

because it significantly affects the accuracy. Corner 

detection is to find points for which the minimum 

eigenvalue of the structural tensor exceeds a given 

threshold value (8). The result of these operations is 

an image in which each pixel contains two flags. The 

first one indicates the presence of a corner, while the 

other the presence of an edge having desired pitch. 

The output pixel format is illustrated in Figure 3. 

Image in this form is copied from the GPU global 

memory to host memory.  

In this implementation we put special emphasis on 

efficient GPU memory management. Indeed, it 

appears that the time of allocation and release of 

GPU memory is long and comparable with the 

duration of structure tensor computation. One also 

cannot neglect the transfer time from the CPU 

memory to the GPU memory. The first of the 

dilemmas was resolved by transferring the 

responsibility for memory allocation for cudaStream 

class instance. This class was created in our 

framework for the purpose of effective memory and 

CUDA streams management. Once the memory was 

allocated by cudaStream it is destroyed by the same 

stream object. During the detection of corners and 

edges the memory transfer takes place only twice - 

when copying the original image to the GPU memory 

and copying back the result image to the CPU 

memory. All operations that happen during 

processing allocate GPU memory using a 

cudaStream class object. Number of GPU-CPU 

memory transfers has been limited to a necessary 

minimum. The Figure 4 shows a UML diagram of 

the classes needed to create the corners and edges 

detectors. To make any calculations using the GPU 

one has to create an object of the class 
CUDAImageOperation. Then decorate it with 

CUDAImageOperationDecorator and its derived 

classes. The last decorator must be 

CUDAImageOperationFinalize class instance. 

Since the operation of searching corners and edges is 

often needed, CUDAUnaryGetEdgesAndCorners 

class was defined which provides a convenient 

façade for above function classes. The following 

code listing shows exemplary usage of this class: 

 

TImageOperation * operation = new 
CUDAUnaryGetEdgesAndCorners 
(ProcessedImage, OriginalImage, 
AngleRanges, *stream);  

(*operation)();  // perform detection 

 

CUDAImageOperation class and the classes derived 

from CUDAImageOperationDecorator use 

elementary GPU functions - the CUDA kernels. 

These are the following functors: one-dimensional 

convolution, matrix point-by-point multiplication, the 

tensor representation transformation, search engine 

for edges and corners, etc. The method operator() 

of these classes calls them asynchronously, 

instructing CUDA driver to carry out them in the 

near future, but not waiting for them to complete. 

The time between the completion of execution of the 

kernel function and the end of their commission is a 

time where the CPU is in a ‘sleep’ state. The 

potential of unused CPU computational power is 

supposed to be utilized in further development. 

4. EXPERIMENTAL RESULTS 
Performance of edges and corers detection operation 

has been investigated on artificial and real images. 

Tests were performed on two machines: a laptop 

Core2Duo 1.8GHz, 2GB of RAM with the graphics 

card GeForce8400M GS and PC computer i7 3.0GHz 

endowed with the graphics card GeForce Quadro FX 

3800M. Achieved performance differs significantly 

which results from different capabilities of the 

graphics cards – especially number of processing 

cores and their clock. Throughput was obtained by 

measuring the time of 16 times repeated detection 

operation. Time was measured by CUDA timers.  

The plots in Figure 5 compare the throughput of 

detection operations. Performing calculations using 

the graphics card results in at least tenfold 

improvement in efficiency, comparing with bare 

CPU computations as well as with the OpenMP 



parallelized version of HIL [4]. This gain increases 

slightly with a resolution of the input image, since 

operating on large images increases the profit 

resulting from the small CPU-GPU transfer to 

parallel operations (convolution, matrix 

multiplication) time ratio. Figure 6 is a diagram of 

operations performed on the graphics card while 

testing the edges and corners detector obtained using 

computeprof v4.0. The diagram includes a 

function performed on the graphics card as well as 

their duration. GPU work breaks during single 

detection are rare and short. This is a desired effect, 

because GPU time is not wasted. This is made 

possible through the use of asynchronous kernel 

functions and sparse synchronization of the CPU and 

GPU. The synchronization function is invoked only 

in necessary moments - when the CPU needs to use 

the results of calculations of the GPU. 

 

Figure 5 Achieved performance on different machines 

 

Figure 6 GPU load timing during edges and corner detection 

It is worth noting that the performance of these 

operations should depend on length of the applied 

filters. In the above implementation always 11-tap 

filter is used. In the case of smaller length filters 

redundant coefficients are supplemented by zeros. 

Figure 7, Figure 8 and Figure 9 present detected 

corners and edges in computer generated test patterns 

as well as in a real image containing several road 

signs. The 3-tap filters (Simoncelli, Binomial) were 

used during operations. Filter details in [3]. 



 

Figure 7. a) Original image b) angles in range (50, 70) c) angle in range (-50, -70) d) corners. 

 

Figure 8. a) Original test image b) angles in range (50, 70) c) angles in range (0, -10) d) corners. 

 

Figure 9. a) Real image b) angles in range (-50, -90) c) corners. 



 

 

Figure 10. Pattern image and edges detection in full angle ranges 

Detection in ranges (0, 20), (20, 40), (40, 80), (80, 10) in first row 

Detection in ranges (-20, 0), (-40, -20), (-60, -80), (-100, -80) in second row 

5. CONCLUSIONS 
In this paper we present a method of detection of 

low-level features of specific orientation in images. 

These are corners and linear structures of predefined 

phase which allow detection of rigid objects, such as 

road signs, cars, etc. First the structural tensor is 

computed with help of the HIL library augmented 

with the graphic card with the CUDA environment. 

The presented method allows computations which in 

the worst case are at least an order-of-magnitude 

faster that an equivalent serial and multi-core 

software realization.  This, in turn, allowed real-time 

operation on HDTV streams which is shown in the 

provided experimental results. Finally, the presented 

implementation was made available from the Internet 

and can be downloaded at [9]. 
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