
Unsupervised Perception-based Image Restoration of
Semi-transparent Degradation using Lie Group

Transformations

V. Bruni, E. Rossi, D. Vitulano
Dept. SBAI University of Roma Sapienza, Via A. Scarpa 16,00161 Rome, Italy

Istituto per le Applicazioni del Calcolo, C.N.R., Via dei Taurini 19, 00185 Rome, Italy
bruni@dmmm.uniroma1.it {e.rossi,d.vitulano}@iac.cnr.it

ABSTRACT

This paper presents a generalized model for the removal of semi-transparent defects from images of historical or

artistic value. Its main feature is the combination of Lie group transformations with human perception rules that

makes restoration more flexible and adaptive to defects having different physical or mechanical causes. Specifically,

Lie groups allow to define a redundant set of transformations from which it is possible to automatically select the

ones that better invert the physical formation of the defect. Hence, the restoration process consists of an iterative

procedure whose main goal is to reduce defect visual perception. The proposed restoration method has been

successfully tested on original movies and photographs, affected by line-scratches and semi-transparent blotches.

Keywords: Image Restoration, Lie Groups, Human Visual System, Semi-transparent Defects.

1 INTRODUCTION

In the last years, there has been an increasing de-
mand for the fruition of archived material thanks to
the growing development of digital devices. Hence,
a lot of research effort has been devoted to pro-
pose novel and adaptive digital restoration meth-
ods able to deal with image defects like noise, line-
scratches, tear, moire, blotches, shake and flicker
— see [1]-[12]. If on the one hand, the variety of
degradations has led to the definition of specific
detection and restoration models in order to guar-
antee a better precision and adaptivity to different
scenarios; on the other hand, the advent of new
devices and the up-to-date digital technology has
led to the need of a general framework able to si-
multaneously and globally manage different kinds
of degradation. This entails the definition of a new
restoration paradigm that puts human eye as the
final image consumer and judge, independently of
the specific processing method. That is why hu-
man perception is gaining a significant role in image
processing techniques [13]-[16]. In this perspective,
the main goal of digital restoration must be the
perceived quality of the restored images. In [17]
the authors tried to formalize a global detection/
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restoration framework based on both physical
and visual characteristics of the class of analysed
defects. It was mainly based on the following ob-
servation. Image defects are detected by human
eye ’at first glance’ even in complicated contexts
as they represent ’anomalies’ in natural images.
Hence, the reduction of the visual contrast of the
degraded region (visual anomaly) should decrease
the visual contribution of the degraded area with-
out creating new artifacts. The model basically
simulates the Human Visual System (HVS) re-
sponse to the presence of the defect by projecting
the degraded image J into a new space where the
defect becomes the most visible object of the scene.
This space depends on both the physical cause of
the defect and the resolution at which the defect
shows its greatest visibility and it allows to define
appropriate and automatic detection and restora-
tion operators. They still depend on the physical
cause of the defect that, in turn, gives the ’a pri-
ori’ information that makes the restoration process
somewhat independent of the specific image. The
deeper the knowledge about degradation, the lower
the dependence of restoration on the original image.

However, it is not always possible to have detailed
information about the degradation under exam.
Moreover, though their different original causes,
many defects can show the same features on the
image, such as color, shape, etc.. For example, wa-
ter blotches or foxing often have the same visual
appearance on the image, as well as cracks and
scratches, or yellowing and fading. Anyway, in-
dependently of their different nature, these defects



preserve the perception at first sight as common
and primary feature.

The main goal of this paper is then the definition
of a general restoration framework that aims at be-
ing almost independent of a priori specific assump-
tions on the degradation under exam. The frame-
work is required to select suitable transformations
from a redundant set only accounting for reduced
’a priori’ information about the defect under exam,
as, for example, the semi-transparency of the de-
graded region. In this way, the same restoration
algorithm can be used for a very wide class of image
degradations. This kind of framework could really
be of interest in several applications since it pro-
motes and facilitates its use by non expert people
and, at the same time, it avoids the development of
integrated softwares able to deal with specific kinds
of degradation. To this aim the role of HVS has
to be emphasized in the whole restoration process
by introducing proper mathematical concepts and
tools. This paper represents a first contribution
to this challenging purpose. It will use Lie groups
theory combined with HVS rules for defining con-
tinuos transformations that also include the ones
that better correlate with the degradation process.
In fact, a local contrast-based restoration process
that embeds transformations in a Lie group gives
us the opportunity of defining a redundant set of
transformations that also contains the inversion of
the unknown degradation process. Furthermore, it
allows to develop a restoration algorithm that auto-
matically selects the more suitable transformations
for points having the same visual contrast. In fact,
infinitesimal operations in Lie algebras and their
integration in global transform in Lie groups are
able to model some human visual phenomena, as
deeply investigated in [18] and [19]. In this paper
Lie groups are of great importance since the final
solution (original not degraded image) is not known
in advance as well as the exact degraded process.
The only assumption is the knowledge of the degra-
dation map. However, the flexibility of the pro-
posed model allows this map to be not precise as it
will be discussed later. Hence, the proposed model
has the following advantages: i) the combination of
HVS and Lie algebra allows the restoration model
to have not a precise target to converge. The model
is only required to force the contrast of the final so-
lution to be in a suitable range of values according
to typical contrasts of the surrounding clean image
— degradation has to be invisible. ii) the variabil-
ity of Lie group transformations and their combina-
tion allows a more flexible model for the degraded
image — they also include the simpler and widely
used translation and shrinking operations [9, 4, 2].

The remainder of the paper is the following. Next
section gives a brief review of Lie Algebra and Lie
group transformations. Section 3 presents the pro-
posed restoration methodology and its refinement
for two kinds of semi-transparent defects: line-
scratches and blotches. Finally, Section 4 presents
some experimental results and concluding remarks.

2 LIE ALGEBRAS AND LIE
GROUPS TRANSFORMATIONS

In the following, we give few mathematical details
about Lie algebra and groups useful to understand
the proposed approach. For a complete treatment
of this topic see, for instance, [20] and [21].

A finite Lie group G is both a multiplicative
group and a differentiable manifold, that is G is
a group locally diffeomorphic to Rn, if n is its di-
mension. As a result, a Lie group G has got both
algebraic and geometric properties, thanks to the
group structure and the differentiable structure re-
spectively, and they are deeply related. Finally,
every Lie group of finite dimension can always be
viewed as a matrix group.

Since a Lie group is a manifold, it has a tangent
space at the identity element e, called its Lie alge-
bra, namely g, which is a vector space of the same
dimension of G. The exponential map exp : g→ G
gives a natural way to move from the Lie algebra
g (vector space) to the group G (manifold) and, in
the case of finite matrix group, it has a very simple
form since it corresponds to matrix exponential: if
X ∈ g, i.e. X is a tangent vector at e in G, then
exp(X) =

∑∞
n=0

Xn

n! .
Most of the matrix Lie groups can be used to de-

scribe transformations in the plane or in the space.
The dimension of the group is the number of free
parameters needed to describe the transformations;
its Lie algebra elements are tangent vectors at the
identity and represent infinitesimal transformations
of the points. In this paper we are interested in
projective transformations that can be described
as a group matrix, Pn, acting on points of Rn ex-
pressed in homogeneous coordinates, with the con-
vention that the (n+1)−th value in the coordinates
is always scaled back to 1. Projective transforma-
tions are characterized by m = n(n + 2) parame-
ters (dimension of Pn), described by the elements
G1, G2, . . . , Gm of a Lie algebra basis. For instance,
for n = 2

G1 =
(

0 0 1
0 0 0
0 0 0

)
G2 =

(
0 0 0
0 0 1
0 0 0

)
translations

G3 =
(

1 0 0
0 0 0
0 0 0

)
G4 =

(
0 0 0
0 1 0
0 0 0

)
scaling

G5 =
(

1 0 0
0 −1 0
0 0 0

)
rotation G6 =

(
0 1 0
1 0 0
0 0 0

)
shear



G7 =
(

0 0 0
0 0 0
1 0 0

)
G8 =

(
0 0 0
0 0 0
0 1 0

)
projections.

Hence, every real linear combination of G1, ..., Gm
is an infinitesimal projective transformation in the
vector space that corresponds to a transformation
of the group Pn thanks to the exponential map.
The infinitesimal transformation of a generic point
p ∈ Rn is L̃j = Gj p̃, where p̃ is the point p
expressed in homogeneous coordinates. We de-
note by Lj the corresponding affine coordinates of
L̃j , j = 1, . . . ,m. Hence, for n = 2, we have

L1 = ( 1
0 ) L2 = ( 0

1 ) L3 = ( xy ) L4 = ( x
−y )

L5 = ( y
−x ) L6 = ( y

x ) L7 =
(
xy

y2

)
L8 =

(
x2

xy

)
.

3 THE PROPOSED RESTORA-
TION MODEL

The degraded image J at the point p = (x, y)T can
be modeled as

J(p) = T (I(p)),

where T is the unknown degradation transforma-
tion and I is the original image. The goal should
be to find the inverse of T , namely T −1, in order
to reconstruct the original image I. The key point
is that T is unknown. The proposed model set a
suitable group of eventually redundant transforma-
tions where automatically select T −1. In particu-
lar, the selected group is the group of projective
transformations (in the plane or in the space as
we will explain later): it contains translation and
shrinking operations commonly used in restoration
models but also rotations, shears and projections.
Hence, we fix a group of transformations and the
iterative procedure that selects their best composi-
tion, rather than a specific type of transformation.
Moreover the projective group is a Lie group and its
geometrical structure is exploited in order to define
a simple iterative procedure to select T −1.

3.1 Distance minimization

The iterative procedure presented in [22] has been
used. It mainly exploits the relation between Lie
algebras and Lie groups to map a given submani-
fold S1 of Rn to another one, S2, through a suitable
composition of transformations of the group, min-
imizing their distance. More precisely, let p ∈ S1,
np the unit normal at S1 in p and dp the distance
between p and S2 along np. So d =

∑
p∈S1

dp is
the global distance between S1 and S2. The Lie
group structure allows to look for an infinitesimal
transformation inside the Lie algebra (that is a vec-
tor space), instead of a global transformation of
the group, and then to move it to the group by

the exponential map. So the problem is linear and
the goal is just to find α1, ..., αm ∈ R, such that
the corresponding infinitesimal action on p, that is∑m
j=1 αjL

p
j , projected onto the normal direction np

minimizes d, that is

(α1, . . . , αm) =

= argmin
αj

∑

p∈S1


dp −

m∑

j=1

αj
(
Lpj · np

)



2

. (1)

Therefore, ~α = (α1 . . . αm)T is such that ~α = ~A−1~b,
where ~A is the matrix whose elements Ajh are de-
fined as follows

Ajh =
∑

p∈S1

(
Lpj · np

)
(Lph · np)

while ~b is a column vector whose elements are

bh =
∑

p∈S1

dp (Lph · np) .

Hence, t =
∑m
j=1 αjGj is the infinitesimal trans-

formation in the Lie algebra that minimizes the
distance between S1 and S2 and T = exp(t) its
corresponding element in the group. S1 is updated
applying T to its points and the minimization algo-
rithm is applied to the new couple

(
S

(1)
1 , S2

)
,where

S
(1)
1 = T (S1), and so on until the distance between
S1 and S2 is small enough. For the numerical com-
putation of exp(t) applied to generic point p, a 4th
order Runge Kutta algorithm can be used — see
[22] for details. It is equivalent to cut the 4th or-
der series expansion of the matrix exponential and
apply it to the point p, that is

T ≈ I + t+
1
2
t2 +

1
6
t3 +

1
24
t4,

but it directly manages affine coordinates.
It is worth stressing that this procedure has much

in common with the basic concepts of convex pro-
jections for restoration, described in [23]. However,
in this case we do not use neither convex sets nor
orthogonal projections, but only iterated projective
transformations in Rn and their algebraic and geo-
metrical properties.

3.2 HVS embedded in the minimiza-
tion algorithm

We would like to apply the iterative procedure de-
scribed in the previous section to the damaged im-
age by modeling it as a suitable submanifold S1

of Rn, in order to select the transformations that
move S1 towards the clean image S2. It is worth
observing that for blotches restoration, n = 3 and



Figure 1: Parabolas are the target curves used in
the iterative procedure. Markers are in correspon-
dence to two different groups of points selected with
the SMQT transform. Dashed and dotted parabo-
las are their corresponding target curves.

the whole degraded area is modeled as a surface
in R3 while for scratch restoration n = 2 and each
degraded row is modeled as a curve in R2. Un-
fortunately, in case of digital restoration the final
clean image is unknown so that the aforementioned
procedure would be unfeasible.

To take advantage of the aforementioned me-
thod and to preserve the original image informa-
tion, HVS perception mechanisms can be embed-
ded in the restoration process. They allow us to
define a suitable range of admissible intensity val-
ues for the damaged area to be not visible with
respect to its neighborhood. In other words, to be
invisible, the degraded region must be contained
in a certain cone of visibility, that depends on
the global intensity value of the analysed image; at
the same time, abrupt changes in the final solution
are not allowed in order to avoid artifacts in cor-
respondence to the frontier of the degraded region.
The range of admissible values for the final solution
cannot exceed the one of the surrounding informa-
tion, in terms of visibility bounds, in order to be
perceived as a natural scene component. The cone
of visibility for n = 2 can be then defined as in
Fig. 1, where the upper and lower parabola curves
respectively reach the greatest and least allowed
values, namely r2 and r1, and the initial point of
the cone of visibility is in the range of invisible
luminance value with respect to the average of the
surrounding information [25]. To obtain it, the vi-
sual contrast of pixels in the area around the initial
points, namely R, must satisfy Weber’s law, i.e.
IR−IB
IR

< τ , where IR and IB are the luminance
of the region R and its background B, while τ is
the just noticeable threshold [24]. For n = 3, the
cone is defined in the same way replacing parabolas
with paraboloids. The cone of visibility is then the
target S2. Hence, the degraded image is moved in-

side the cone by the distance minimization iterative
procedure in order to make the damage invisible.

However, a further consideration has to be made
for semi-transparent degradation. Despite the wide
flexibility of Lie transformations, the minimization
process in eq. (1) is global. In fact, at each step
the parameters {αj}j=1,...,m are the same for each
point of the degraded area. Hence, if on the one
hand global transformations preserve the original
information contained in the degraded region, on
the other hand they forget that pixels may have
been subjected to a different amount of degrada-
tion. In order to find a tradeoff between preserva-
tion of original information and model flexibility,
it is necessary to classify damaged pixels account-
ing for their visual feature and restore them ac-
cordingly. We aim at processing in the same way
points that are equally perceived by human eye i.e.,
points having the same visual contrast have to con-
verge to the same target sub-manifold. In order to
classify pixels with the same visual contrast, the
Successive Mean Quantization Transform (SMQT)
[26] is used. It groups pixels having the same visual
features. More precisely SMQT builds a binary
tree using the following rule: given a set of data
D and a real parameter L (number of levels), split
D into two subsets, D0 =

{
x ∈ D|D(x) ≤ D} and

D1 =
{
x ∈ D|D(x) > D

}
, where D is the mean

value of D. D0 and D1 are the first level of the
SMQT. The same procedure is recursively applied
to D0 and D1 and so on until the Lth level, that is
composed by 2L subsets. Each group belongs to a
sub-manifold (defined by interpolation). The tar-
get sub-manifold of the i-th group is defined as a
paraboloid (parabola) cut by the plane z = M + ∆
(line y = M + ∆) for n = 3 (n = 2), where M is
the mean value of the intensity surrounding values
and ∆ accounts for the global visibility of the de-
graded area with respect to the external one, and
whose vertex is proportional to the mean value of
the group. Hence, each group converges to the cor-
responding sub-manifold, as shown in Fig. 1, ac-
cording to the minimization in eq. (1). The iter-
ative minimization process stops when the target
sub-manifold has been reached, in agreement with
visibility bounds. More precisely, if S(K)

1 is the
solution at the K-th iteration for the i−th group
and S2 the corresponding target sub-manifold, then
S

(K)
1 is an acceptable solution if

∑
p |S(K)

1 (p)− S2(p)|∑
p S2(p)

≤ τ , (2)

where the first member is the Weber’s contrast [24,
27] evaluated at the points of the analysed sub-



manifolds, while τ is the just noticeable detection
threshold for that visual contrast [24, 27].

Summing up, HVS is exploited for 1) classifying
groups of pixels according to their visual contrast;
2) defining the cone of visibility and the target sub-
manifolds inside it that have to be reached by each
group of pixels; 3) defining the stopping criteria for
the iterative procedure.

In the next sub-section the whole restoration al-
gorithm is presented. Afterward, two well known
semi-transparent defects are briefly presented: line
scratches and blotches. They represent an interest-
ing case study. In fact, the physical formation of
semi-transparent defects can be complex and can
depend on several conditions and events that can-
not be known or reproduced in real applications.
They can be caused by dirt or moisture on archived
material as well as mechanical stress of the support.
Hence, they often partially obscure image regions
(see Fig. 2) and appear as more or less irregular re-
gions with variable shape and size, having a slightly
different color from the original one [7, 9]. They
can be then easily confused with scene components
since they do not completely hide the underlying
original information, that must be retained (after
restoration) for its historical and/or artistic value.

3.3 The Algorithm

In the following, the whole restoration algorithm is
briefly summarized.

1. Estimate the extrema of the cone of visibility
r1, r2 from the surrounding information. They
respectively are the minimum and maximum
values of a neighborhood of the degraded area;

2. Apply SMQT to the degraded area;

3. Compute the target curves whose vertices are set
according to the mean amplitudes of the groups
computed in step 2 and the output of step 1;

4. For each group in step 2, apply the iterative pro-
cedure in Section 3.2, where the targets are the
ones of step 3, until eq. (2) is satisfied;

5. Perform masking refinement.

The last step is different according to the degra-
dation kind. For semitransparent blotches it cor-
responds to the study of the contrast properties
of pixels in order to understand if degraded pixel
are already masked by the original image; for line-
scratches it corresponds to apply the visibility-
based weights in eq. (5), as next section shows.

Figure 2: Examples of semi-transparent defects in
real photographs and movies.

3.4 Line scratches

Line scratches are common defects on old film se-
quences. They appear as straight lines spreading
over much of the vertical extent of an image frame,
as shown in Fig. 2. They can have a different
color and are of a limited width [7]. They are often
caused by mechanical stress during the projection
of a film and occupy the same or a similar location
in subsequent frames. The works [1] and [28] pro-
vided a physical model for the observed scratches.
It has been proved that they are the result of light
diffraction effect that occurs during the projection
and/or the scanning process. In fact, a scratch is
a thin slit on the film material and it is crossed
by the light in the projection process. Since the
slit (width and depth) is not uniform as a different
amount of the original information is removed in
the degradation process, the damaged area can be
modeled as a partially missing data region and it
is well represented by the following equation

J(x, y) = (1−(1−γ)e
−2
ωp
|y−cp|)I(x, y)+(1−γ)Lx(y)

(3)
where (x, y) are the coordinates of image pixels,
Lx(y) is the 1D function model for the scratch, i.e.

Lx(y) = bpsinc
2

(
y − cp
ωp

)
, (4)

with bp, cp and ωp respectively the maximum bright-
ness, the location (column number) and the hori-
zontal width of the scratch on the image. γ is a nor-
malization parameter that measures the global vis-
ibility of the scratch in the degraded image, while
e
−2
ωp
|y−cp| approximates the positive decay of the

scratch contribution from its central part toward its
end. γ compares the average energy of the peaks of
the horizontal cross-section of the image with the
one of the scratch and it is in the range [0, 1]; hence,
the smaller γ the more perceptible the scratch.



Taking into account the reduced horizontal width
of a line-scratch, n is set equal to 2, the minimiza-
tion algorithm is applied row by row and the limit-
ing curves of the cone of visibility, as in Fig. 1,
are the ones to which the iterative procedure has
to converge. However, accounting for the impul-
sive nature of the defect, as in the equation model
(4), a refinement of the final solution is required,
according to the scratch visibility with respect to
its local context. More precisely, for each point of
the scratched area the following weight is applied
to the output of the minimization process in eq. (1)

S̄
(K)
1 (x, y) = w(y)S(K)

1 (x, y), (5)

where w(y) = γe
−2
ωp
|y−cp|, according to the degra-

dation model in eq. (3).

3.5 Semi-transparent blotches

Such blotches are caused by water penetration into
paper or chemical reactions whose final visual ef-
fect is a darker region on the document with vari-
able shape, color and intensity. Unfortunately, the
lack of distinctive features, like shape and color,
does not allow the definition of a precise model for
the degraded image. However, part of the origi-
nal information still survives after the degradation
process. Due to the larger physical dimension of
the blotch with respect to the line scratch, n is set
equal to 3 and the distance minimization algorithm
is applied to the whole degraded area modeled as a
surface in R3. The group of projective transforma-
tions in the space has dimension 15 and it contains
the same types of transformations as for n = 2.
The restoration process is exactly the one described
above. Anyway, due to the high semi-transparency
of this kind of defects and its variable dimension, a
different amplitude of the cone of visibility has to
be used for the darkest and brightest points of the
degraded area. Hence, a pre-processing step to sep-
arate darkest and brightest region of the damage is
required. Moreover, in the masking refinement, the
study of contrast properties allows to understand if
pixels are already masked by original image infor-
mation: in this case it may be more convenient to
leave them unchanged to avoid the creation of an-
noying artifacts, as it is described in detail in [29].

4 EXPERIMENTAL RESULTS

The proposed approach has been tested on selected
images from the photographic Alinari Archive in
Florence, affected by semi-transparent defects and
on several real sequences (digitized copies of ac-
tual damaged films) having different subjects and
of 1-2 minutes length (1500- 3000 frames). Some

results are shown in Figs. 3 and 4. It is impor-
tant to test the method on real damages. Since the
precise physical process and the corresponding real
transformation are unknown, artificial defects are
not representative of real applications on archived
material.

In all tests, the size of the neighbouring area of
the degraded region is three times the one of the
degraded area, while the number of groups of the
SMQT in step 2 has been set equal to 8 for semi-
transparent blotches and 2 for line scratches. The
visual quality of the restored images is very sat-
isfactory. Textures are well preserved as well as
details of the original image information, while an-
noying artifacts, like spikes, halo effects or over-
smoothed regions, do not appear. In fact, the dif-
ferent processing of pixels having different contrast
value contributes to the flexibility of the restora-
tion model. The convergence process is different
for each group of points so that it could happen
that some groups converge after one or two itera-
tions while others require longer convergence time.
In that way, the restoration process has two main
advantages: halo effects at the borders of the de-
graded region and over-smoothing of the restored
pixels are missing. In addition, the refinement pro-
cedure allows to successfully deal with some deli-
cate cases, as the intersection between the degraded
area and a darker region of the image as the third
example in Fig. 3 and the Knight shoulder in Fig.
4, and also to make the restoration process more in-
dependent of detection results. Finally, it is worth
emphasizing two additional advantages of the pro-
posed method. Even though it involves iterative
procedures to converge to the final solution, it uses
simple and fast operations so that just 4/5 itera-
tions on average are required for convergence. The
time of each iteration depends on both the dimen-
sions of the image and the degraded area. For in-
stance, in the case of the blotch in Fig. 5, each
iteration takes 45 seconds on average; in the case
of the scratch in Fig. 6, each iteration for each row
takes just 1/2 seconds. In addition, the algorithm
does not require user’s interaction, since it auto-
matically adapts each of its steps to the analyzed
image.

For the sake of completeness, the restoration re-
sults have been compared with some recent restora-
tion methods of semi-transparent defects [9, 4, 2,
28]. Since the clean image is not available in real
applications, quantitative measures or metrics to
determine the goodness of the restoration are not
convenient. Comparison is then based on the per-
ceived visual quality: some results are shown in
Figs. 5 and 6. As it can be observed, the pro-
posed restoration procedure gives high quality im-



Figure 3: Semi-transparent blotches: Original
(Left) and restored (Right) images.

ages even though it is based on less assumptions
about the considered degradation.

All the aforementioned features make the pro-
posed method a valid and promising attempt to the
definition of a user’s friendly and global restoration
framework. Future research will be then oriented to
further generalize the proposed restoration frame-
work to make it more flexible and adaptive to a
wider class of degradation kinds.

Figure 4: Line-scratches: Original (left) and corre-
sponding restored images (right).

Figure 5: Clockwise order Original image, restored
using methods in [9, 4, 2], and the proposed one.

Figure 6: Left to right Original image and restored
using the methods in [28] and the proposed one.
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