
Realtime global illumination using compressed
pre-computed indirect illumination textures

Chris Bahnsen Antoine Dewilde Casper Pedersen Gabrielle Tranchet Claus B. Madsen*

Department of Architecture, Design and Media Technology
Aalborg University
Niels Jernes Vej 14

9220 Aalborg Øst, Denmark

ABSTRACT
In this paper, we present a way to render images in real time, with both direct and indirect illumination. Our
approach uses precomputed indirect illumination images, produced at certain intervals, which need not be constant.
When rendering a scene, the two closest images are then interpolated and added to the direct illumination to
produce the total illumination. Depending on the type of image produced, the algorithm allows a camera to move,
and even objects to be added or modified at runtime to some extent. Finally, we will see that the amount of data to
store and process can also be reduced using a dimensionality reduction algorithm such as PCA.

Keywords
Global illumination, Realtime Rendering, Principal Component Analysis, Phong Shading, Compression

1 INTRODUCTION
Rendering global illumination in real time is a challeng-
ing problem of today’s computer graphics. Although
several techniques exist to compute a full global illumi-
nation model, and hence produce a realistic scene, these
techniques are usually extremely expensive in terms
of computation time, and so are not usable in interac-
tive applications, even though effort has been made to
make these renders as fast as possible [WKB+02]. On
the other hand, algorithms than can achieve interactive
sampling intervals usually do not take into account the
whole illumination model for a dynamic scene and, in
the best cases, only compute a few bounces for light
rays [NPG03].

Current state-of-the-art techniques to render global il-
lumination include, but are not limited to, ray tracing,
photon mapping, and usual algorithms used for inter-
active applications such as the use of Phong shading
with an ambient term to simulate indirect light. Most
algorithms that aim at rendering indirect lighting ef-
ficiently, then use a combination of these techniques,
together with other machine learning elements such as
interpolation, clustering or neural networks. A method

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

using clusters to render efficiently global illumination
has been studied by Christensen et al.[Chr99]. For in-
stance, interpolating images characterizing a luminance
distribution can be done in a non-linear way, using the
data to train a neural network [DRP09]. In a similar
way, Christensen et al.[Chr99] has written about how
to make a faster photon map for rendering global illu-
mination, using a technique similar to clustering as it
will group together during one stage of the algorithm
photons having similar irradiance.

In this paper, our goal is to be able to render a scene
with daylight using precomputed indirect illumination
images. The technique we will explain allows for the
light source to change dynamically on a set path, and
the camera to move freely within boundaries, as well
as dynamic objects to be added and moved around the
scene, if we accept minor, probably unnoticeable inac-
curacies in the indirect illumination. Although this pa-
per will focus on daylight, considering the sun as the
only light source, this technique is actually applicable
to any scene where all the possible lighting conditions
are known beforehand.

The idea our algorithm is based on is quite simple:
we consider the fact that the illumination of a scene
is actually given by both the direct illumination, and
the indirect illumination. Since the direct illumination
changes frequently when it comes to daylight, and since
computationally efficient algorithms to produce it ex-
ist, we will just compute them in real time. In our test
program, we used Phong shading, coupled with basic
shadow mapping; any other model that gives realistic

(a) 3DSMax render (b) Our render

Figure 1: Comparison between a render of total lighting done in Autodesk 3DSMax 2011 and with our technique.

results in real time would work of course. The indirect
illumination, however, will be precomputed at certain
time steps and stored into images used as textures. To
render a certain frame, we will then just compute the
direct illumination (without any ambient term), and add
the indirect illumination that we get by interpolating the
two frames the closest to the one we are rendering. The
interpolation to approximate results is a method that
has proved itself, for instance in [RGS09] where it is
discussed that computing an approximating physically
plausible illumination over physically correct illumina-
tion takes less computation time and gives, as the name
states, very plausible results. Other methods, includ-
ing [RGKS08], also include compressed pre-computed
information in order to speed up rendering (in this
case, precomputed depths and coherent surface shadow
maps).

So, the problem can be narrowed down to finding the
right sampling interval for indirect illumination, and re-
ducing the amount of data to process as much as possi-
ble by compressing the precomputed frames. Defining
a good sampling interval is important so that the pre-
processing is not too long, as we try to avoid rendering
similar images, but the quality of the interpolation is
still acceptable. Reducing the amount of data is impor-
tant both for disk space issues, and to reduce the loading
time.

In the next following sections, we will explain the
algorithm and the above-mentioned issues in more de-
tails. In section 2, we will give a general overview of
our algorithm. In section 3 we will explain our method
in further details, including the possible refinements
(compressing the data using PCA, and defining a dy-
namic sampling interval). Finally, section 4 will be
dedicated to some results analysis, and considerations
for future inspection. All our example images feature
an indoor scene inspired by the castle of Koldinghus
in Denmark, as the first application considered for the
method is a virtual tour of the castle.

*cbahns08 | adewil11 | cped08 | gtranc10@student.aau.dk,
cbm@create.aau.dk

2 OVERVIEW OF THE APPROACH
TAKEN

As explained before, the main idea of our algorithm
is to separate the direct illumination from the indirect
lighting. Since the direct illumination can be computed
easily and holds high-frequency data which makes it
hard to compress, we will use off-the-shelf algorithms
to calculate it in real time; in our demo program, Phong
shading coupled with basic shadow mapping. The indi-
rect illumination, however, will be precomputed at cer-
tain timesteps and stored in a compressed form. When
rendering a frame, we will then interpolate between the
two closest frames computed, and add that indirect il-
lumination to the direct light. Figure 1 shows the re-
sult we get, compared to a scene rendered in a standard
3D modeling program that uses ray tracing and photon
mapping.

However, as we would like to compress the indirect
illumination images, we would like to get rid of as much
high-frequency data as possible. This is the reason why
we also compute the contribution from the skylight sep-
arately. Actually, in our approach, we will consider the
skylight as being a constant contribution that just has to
be scaled depending on the time of the day. In our demo
program, we use a precomputed image for the skylight,
which we scale depending on the position of the sun.
This gives acceptable results for our application but,
of course, any other technique that gives good results
and can run in real time can be used, such as [NJTK95]
where a model of skylight is built and its illuminance is
calculated.

Figure 3 shows the different elements needed. The
final render of an arbitrary frame will then be the sum
of:

• The direct illumination, computed in real time.

• The indirect illumination without skylight. This is
obtained by interpolating between the two precom-
puted frames closest to the one we are rendering.

• The skylight, precomputed according to the lighting
model of your choice.

Aside from compression issues, removing the di-
rect illumination from the precomputed frames also has
other advantages. For instance, it allows for dynamic
objects to be included into the scene with only minor
errors in indirect lighting. Depending on the type of
object, these errors might not even be noticeable to the
untrained, naked eye. However, compared to the scene
with the teapot rendered in a 3D modelling program,
the color bleeding and the blocking of indirect illumi-
nation of the teapot is absent in our render. Figure 2
shows an example of such a scene, where a teapot has
been added dynamically.

Figure 2: A scene with global illumination rendered by
our technique, where a teapot has been added dynami-

cally.

3 DETAILS ABOUT THE METHOD
USED

3.1 Basic idea
Implementing our approach in an application is done in
two steps: first of all, pictures for the indirect lighting
must be generated, at some point before the applica-
tion starts. Only after that step can we actually render
anything. In the next subsection, we will focus on the
issues related to the generation of the images. Let us
just assume that we were able to produce images con-
taining the indirect illumination (without skylight). We
will also assume for now that these images are uncom-
pressed and taken at regular intervals; we will deal with
compression and dynamic sampling interval issues in
the next section. In general, a value that produces high-
quality results while still keeping the number of pre-
computations reasonable, is a framerate of one picture
every five minutes – which, for a sequence of a full day,
gives 288 images to render.

So, let us assume that we have a set of images con-
taining information about the indirect illumination. In
our tests, we used bitmap images, which gives the ad-
vantage of being encoded over 24 bits, hence contain-
ing more information than compressed file formats. To
render the scene, we will use a custom set of shaders
that will compute the direct illumination, and “paste"
the indirect illumination and the skylight on it.

Loading images from disk takes a significant amount
of time. Because of that, loading the precomputed im-
ages on-the-fly results in a significant drop in frame
rate, while still achieving interactive frame rate though.
So, if the amount of data to load is acceptable (which
it should be once we introduce compression), and if the
application requires fluid animations, it might be bene-
ficial to consider pre-loading all the images in memory
at startup, keeping pointers to the different data, and ac-
cessing them when needed.

The next step is to take advantage of the GPU’s com-
puting capabilities to interpolate and render the scene.
Let us say that we want to render a frame for an arbi-
trary time. We will first find the closest precomputed
images (one before the current frame, one after), then
we will interpolate them to get the correct luminance
value. With pictures taken at a fixed frequency, the in-
dex of the image just before the current frame would
be

N = floor
(

H ×60+M
∆T

)
(1)

where H and M represent the time that is represented
in the frame, ∆T is the time between two precomputed
images, and N + 1 is the image right after the current
frame.

Once the two images closest to the current frame are
retrieved, they are then passed as textures to a spe-
cific fragment shader. This fragment shader calculates
the fragment color by interpolating the two frames and
adding the result to the direct illumination and skylight
contributions, as shown by Equation (2). In our test
renders, we used basic linear interpolation, which gives
plausible results since the indirect illumination has only
low-frequency information. Other kinds of interpola-
tion will be discussed in section 4.2. The equation used
to compute the total luminance of a pixel is:

L(t) = Ldirect(t)+Lsky(t)+(1−α)LN(t)

+αLN+1(t)
(2)

where LN and LN+1 are texels retrieved by sampling the
textures calculated in Equation (1). Since we currently
have a fixed interval between each precomputed frame,
calculating the value for α is quite straightforward. The
computation is given in Equation (3).

α =
(M mod ∆T)−offset

∆T
(3)

where offset is the time (in minutes past midnight) of
the first frame.

The next issue to consider is how to do the texture
lookup, and consequently how to generate the illumi-
nation textures themselves. Basically, three different
methods can be considered, depending on the type of
application:

Figure 3: The different elements that make up the final result. Left: direct illumination (computed at runtime).
Center: indirect illumination (precomputed at several time steps). Right: skylight (precomputed once and scaled)

• If the camera cannot move at all inside the applica-
tion, simply pasting the texture onto the final render
might be enough. In that case, the illumination tex-
ture is a simple 2-dimensional render as shown in
Figure 4.

• If the camera can rotate but not move, using cube
maps might be an option. In that case, the illumi-
nation texture is a cubemap-looking texture or set of
textures (one for each direction).

• In the general case where the camera is allowed to
move freely, using texture atlases might be the op-
tion. In that case, the texture is "pasted" onto the
geometry, and the files are a list of textures.

All options, however, have their shortcomings. The
first option makes having reflective objects in the scene
difficult, as rendering the reflection cube map for such
objects would be tricky. Indeed, when rendering the
cube map for a particular object, the illumination image
for that specific render has to be used. In other words,
this technique needs 6 sets of images for each reflec-
tive object (unless indirect illumination is disabled in
the cube map of course). Furthermore, the illumination
cube map for that object has to be aligned with the ac-
tual render of the scene, which is not trivial.

Figure 4: Illumination texture used if the camera is not
allowed to move

The second technique has the same problem as the
first one, plus the fact that a cube map is also used for
the actual rendering of the scene. Furthermore, since
a cube map takes six times as much space as a regular

2D texture, the amount of data to precompute rises by
almost as much.

Thus, in the end, it turns out that the third method
should be the best suited in most of the applications. It
does not have problems of alignment, and the amount
of data to process is acceptable if the scale of the scene
is limited, as in this example. However, the amount of
memory for storing the frames will increase with the
complexity of the scenes and thus be an expensive so-
lution for dense scenes. In the specific case where the
camera is not allowed to move, then the first or second
method might be best.

In the case of our demo program (and hence all the
pictures of this article), we did not allow the camera to
move, and so chose to implement the first technique.
The results we got could easily apply to another tech-
nique though, as the main change is the way lookup co-
ordinates are computed, and illumination textures are
generated.

Up till now, we assumed that we had indirect illumi-
nation textures available for several time steps. It is now
time to define how to get those images. This is what the
next subsection will be about.

Tips and tricks for rendering images with indirect
illumination only

Obtaining pictures with indirect illumination only
has to be done before the program starts running. Since
our method’s only requirement is that indirect illumina-
tion pictures are available at runtime, the way these im-
ages are obtained is actually flexible: any method that
provides the right output would work – and finding the
optimal way to produce them might be an optimization
in itself. As finding such an algorithm is a different
subject, we will only present here the simple method
we implemented, and that gives good results, while it
might be overly simplified.

For producing the indirect illumination pictures the
commercial modeling tool Autodesk 3DS max® is used.
The model of Koldinghus used in the demo program
is modeled in this tool that can also produce rendered
images with lighting. The settings used are set up to
be as similar as possible to the demo program so as to
enable a comparison of the resulting illumination later

on. These settings are with regards to light and material
color and intensity etc. A point light source is inserted
in the scene to act as the sun. A point light is chosen
to get the same shadow casting as in the demo program
where a point light is used in the shadow map pass and
in the direct light computations. The sun is animated
both in terms of movement where it’s following a path
resembling the sun’s passing on a chosen day, and in
terms of intensity to give a realistic sunrise and sun-
set. The skylight is added to render its contribution to
the global illumination. The images for the two light
sources are rendered separately as we want to add them
to the final illumination separately. Firstly a render with
the point light including only direct light is done, which
is a sequence of images corresponding to a day. Next
global illumination for this light source is rendered and
another sequence is produced. These two sequences
are subtracted to obtain the indirect illumination only,
which is the image sequence that will be used as tex-
tures.

One image is only rendered for the skylight as it is,
as mentioned earlier, a static light source which we
just multiply by an intensity value. All the render-
ing is done with the state-of-the-art Mental ray ren-
derer which gives physically realistic looking results of
global illumination using photon maps and final gather
to compute diffuse indirect illumination.

3.2 Refinements
Compressing the textures using PCA
We apply the principal component analysis (PCA)

on the indirect illumination frames in the time-lapse
sequence in order to reduce dimensionality and the
amount of storage required to save the individual frames.
With a resolution of 800×600 pixels and a frame every
five minutes, this results in a uncompressed file size of
about 400 MB for the total sequence. We use the PCA
to represent as much of the uncompressed information
as possible by maximizing the variance in the time-
lapse sequence onto a lower-dimensional subspace.

The PCA is implemented on only 180 of the total 288
frames to save computational time and requirements.
The discarded frames are all placed in the night and
evening and contain only immerse darkness. The im-
age vectors for the different frames are put together to
produce 480 000 vectors with 180 dimensions, a vector
for each pixel. When the PCA is applied on those vec-
tors, we get 180 eigenvectors with variance as shown in
Figure 5.

Taken into account that the variance is plotted onto a
semi-logarithmic plot, we see that the amount of vari-
ance contained by the single eigenvector is dramatically
decreasing as we go through the eigenvectors. With
only five eigenvectors, we may thus capture 95 % of the
total variance, and if we double the numbers of eigen-
vectors to ten, they contain 98.6 % of the variance in the

0 20 40 60 80 100 120 140 160 180
10

−20

10
−15

10
−10

10
−5

10
0

V
ar

ia
nc

e

Eigenvector

Variance of PCA eigenvectors

Figure 5: Variance of eigenvectors used for PCA

time-lapse sequence. In this case, we get a compression
of 94,5%.

In order to get the image vectors onto the ten eigen-
vectors, the transposed of the assembled frame vectors
are projected on each eigenvector. To restore the im-
ages, the reverse process is simply executed. With ten
eigenvectors with a dimension of 180 and ten projected
vectors with a dimension of 480 000, we are able to re-
construct the image sequence. The 121st reconstructed
frame of this sequence is shown in Figure 7 on page 7
together with the original, with little noticeable differ-
ence. Further comparison of the frames is found in sec-
tion 4.3 on page 8.

Dynamically select the sampling interval depend-
ing on light changes

As mentioned we want to have a realistic looking
passing of a day with regards to the indirect illumina-
tion with the least amount of data. If we can discard
some of the images which hold the indirect illumina-
tion, and instead interpolate images to produce the illu-
mination, so that it is not noticeable for the user, then
we can achieve exactly this lower data amount that is
desirable. For this a algorithm has been produced which
can be explained in some simple steps;

1. First we have two equally big intervals with images
representing the day.

2. The first and the last image in each interval is lin-
early interpolated to a middle frame and the pro-
duced images is compared to the first and last one
of the interval.

3. If the interpolated image is noticeably different from
the first or last in the interval, the interval is split in
two, and a new frame is rendered for the time of
the interpolated image, the middle frame. This new
frame becomes the first and last image in the two
new intervals.

4. This continues for every interval produced until the
images needed are rendered. With this relative sim-
ple algorithm you save the computation time of do-
ing big and complicated renders of global illumina-
tion by only rendering the images needed to make

(a) Reference scene (b) Our render. All the objects are taken
into account

(c) Perceptual difference between the
two results

(d) Reference scene (e) Our render. The teapot is added at
runtime

(f) Perceptual difference between the two
results

Figure 5: Differences between our render and a reference. Top: all objects are taken into account for the indirect
lighting. Bottom: dynamic objects are added

the indirect illumination look realistic for the se-
quence of the day.

The way the interpolated frame in an interval is com-
pared to the first, is by utilizing a tool called Percep-
tualDiff [YCS+04]. This tool uses knowledge about the
just noticeable difference [SJ10], in the field of color,
to calculate the number of perceivable different pixel in
the two images and then evaluates if a person is able to
see a difference between the two images.

For the demo program the algorithm is used on the
sequence of indirect illumination images which con-
tains images for every five minutes. This reduces the
sequence density and thereby the data loaded by the
demo program, which also reduces the loading time on
startup. Since the images now don’t have the same
spacing between them, an application like the demo
program, using them also requires this info to interpo-
late the sequence correctly.

On Figure 6 the result of applying the algorithm is
seen. The pictures at night are left out because they
are totally black. We see that there is a lot of activity
at sunrise and sunset, and also at two instances in be-
tween where the light source representing the sun goes
behind a wall with no windows (mimicking sunrise and
sunset). The peaks around 900 minutes are due to in-
creased activity at the right wall with the lamp posts.
The amount of images needed per hour varies from
twelve, meaning that every frame in the sequence needs
to be rendered, to intervals of 30 minutes which gives
only two per hour.

200 300 400 500 600 700 800 900 1000 1100 1200
0

2

4

6

8

10

12

Time of day (min)

F
ra

m
es

 p
r.

 h
ou

r

Number of real frames required for interpolation of timelapse sequence

Figure 6: The dynamic sampling interval through the
day

4 RESULTS AND DISCUSSION
The very first and most trivial way to analyze the re-
sults obtained is just to look at the rendered pictures
and judge, with the naked eye, how they look. Figure 1,
in section 2, shows a render of a random frame in our
program, and compares it to the same scene, rendered
in a state-of-the-art 3D program. At first glance, we can
easily agree on the fact that both images look similar.

This, however, is not a sufficient way of analyzing
results, and we will need a way to quantify the differ-
ence between the two techniques. In this section, we
will consider the state-of-the-art render as the standard,
and compare our results to this reference. For that, we
will, like in 3.2, use the notion of perceptual differ-
ence [YN04], which describes the difference between
two images in terms of how a human would perceive
it. First of all, we will just analyze our basic renders

(a) Original frame (b) Perceptual difference of
restored frame with 10

eigenvectors

(c) Blow-up of region with 10
eigenvectors

(d) Blow-up of region with 20
eigenvectors

Figure 7: Comparison of information loss produced by PCA. A gamma correction of 2 has been applied to the
frames.

(with and without objects added dynamically), then in
the next sections we will analyze the impact of the var-
ious compression methods on the final result.

4.1 Perceptual difference between our
renders and a reference

As explained above, we will focus on the perceptual
difference, in normal conditions, between an image ren-
dered in our program and an image rendered using the
commercial program 3DSMax by Autodesk. For that,
we will use [YCS+04], a utility program that computes
the perceptual difference between two images. Its im-
plementation is highly based on [YN04].

Figure 5 summarizes the results for two types of
scene:

• The top row shows a scene where all the objects
have been taken into account during the preprocess-
ing stage, so that the indirect illumination is correct.

• The bottom row shows a scene where the red teapot
has been added during runtime, i.e. it hasn’t been
taken into account while calculating the indirect il-
lumination. In the reference picture, however, the
whole scene is subject to indirect illumination, and
so the teapot is included in it.

As we can see, in the first case, the perceptual differ-
ence is mainly due to minor differences in the way both
scenes are rendered, because the light’s intensities can’t
exactly match. The perceptual difference is then mainly
due to these discrepancies in direct illumination, as well
as a small geometrical mismatch in the areas covered by
shadows. All the regions in shadow, lit by indirect illu-
mination only, present no noticeable difference.

Unsurprisingly, results are similar when an object is
added dynamically. In Figure 5f, we see that there are
only few errors on the teapot itself as well as the nearby
floor where the indirect illumination is approximated;
the other discrepancies are due to the setup in both en-
vironments, as explained above.

4.2 Choosing the right interpolation func-
tion

One of the criteria to decide on when using our tech-
nique is: “what interpolation function to use?". In the-
ory, that choice should influence the quality of the final
render, and you might want to choose the most accurate
interpolation method, to get the best results. In prac-
tice, however, we observe that this is not the case, as
most interpolation functions need a lot of computation
in order to choose the non-linear parameters, for results
that are only slightly better than linear interpolation.

The main problem with most interpolation methods
is that they need to run on the whole dataset to com-
pute the parameters needed. In our work, that means
that most images must be preprocessed to generate the
interpolation function. Linear interpolation, however,
only needs two images to compute a third one, which is
the easiest function, albeit not very accurate.

Accuracy, however, is not really an issue with our
dataset. As explained in section 2, we weeded out all
the high frequency data from our images to only keep
the low-frequency indirect illumination. That means
that indirect illumination only present small changes
between two frames, and so interpolating them should
not provide major artifacts. Furthermore, if we use the
Just Noticeable Difference as a threshold, then the inter-
polation should present no noticeable artifacts. Figure
8 shows results for such an interpolation graphically. A
perceptual difference test on these images shows that
no pixel is visibly different, although the arithmetic dif-
ference between the two images shows some minor in-
terpolation errors.

4.3 Quality loss induced by PCA
In section 3.2, we described the method of reducing
the dimensionality of 180 frames into only ten vectors.
The 121’st frame in the sequence has been restored and
contains 99.6 % of the variance of the original frame.
However, as it might be seen from a the image of the
perceptual difference in 7b and as a closer inspection
of the frames reveals, differences in color nuances and
transitions appears. This is apparent at the back wall
of the church and on the floor where some transitions

from light to darker grey is smoother in the original
than the restored frame and other transitions does not
appear. Further differences occur in the lamps when a
hardly visible, small pocket of white in the distant lamp
is converted to grey. A blow-up of this region is shown
in the third frame of Figure 7.

(a) Original frame (b) Interpolated frame

Figure 8: Comparison of a random frame and its inter-
polated counterpart.

In order to acquire a more vivid representation of
the frame with more transitions and nuances imminent,
the number of vectors used for compressing the frames
is doubled to 20. The overall improvement of the se-
quence may be small however, as the variance only in-
creases to 99.83%, a relative improvement of approx-
imately 0.23 %. This small improvement in the total
variance captured is visible on the blown-up frame on
figure 7d as the original, white ray of light on the distant
lamp now is apparent. Additionally, with this increase
in the number of eigenvectors, there are no longer a per-
ceptual difference between the precomputed and the es-
timated frames.

5 CONCLUSION
In conclusion, we see that our algorithm gives good re-
sults, and allows using total indirect illumination in an
interactive context. If combined with a texture atlas to
provide the indirect illumination, it allows for a camera
to move freely within boundaries, and if programmed
carefully, dynamic objects could also be added with
only minor errors. Furthermore, selecting a varying
amount of frames across the sequence, and compress-
ing them with an algorithm such as PCA, allows get-
ting similar results while greatly reducing the amount
of data to store and process.

The main area of improvement of our algorithm, that
could be the topic of another research work, is the
way the indirect illumination textures are precomputed.
Finding a way to have indirect illumination images pre-
computed as fast as possible might be interesting in
most applications.

REFERENCES
[Chr99] Per H. Christensen. Faster photon map

global illumination. Journal of graphics
tools, 4/3:1–10, 1999.

[DRP09] Samuel Delepoulle, Christophe Renaud,
and Philippe Preux. Light source storage
and interpolation for global illumination:
A neural solution. Studies in Computa-
tional Intelligence, 240/2009, 2009.

[NJTK95] Eihachiro Nakamae, Guofang Jiao, Kat-
sumi Tadamura, and Fujiwa Kato. A
model of skylight and calculation of its il-
luminance. Image analysis applications
and computer graphics, 1024/1995:304–
312, 1995.

[NPG03] Mangesh Nijasure, Sumanta Pattanaik,
and Vineet Goel. Interactive global illu-
mination in dynamic environments using
commodity graphics hardware. In 11th
Pacific Conference on Computer graphics
and Applications, pages 450–454, 2003.

[RGKS08] Tobias Ritschel, Thorsten Grosch, Jan
Kautz, and Hans-Peter Seidel. Interac-
tive global illumination based on coherent
surface shadow maps. In Proceedings of
graphics interface 2008, 2008.

[RGS09] Tobias Ritschel, Thorsten Grosch, and
Hans-Peter Seidel. Approximating dy-
namic global illumination in image space.
In Proceedings of the 2009 symposium on
Interactive 3D graphics and games, 2009.

[SJ10] Melissa K. Stern and James H. Johnson.
Just noticeable difference. Corsini Ency-
clopedia of Psychology, pages 1–2, 2010.

[WKB+02] Ingo Wald, Thomas Kollig, Carsten
Benthin, Alexander Keller, and Philipp
Slusallek. Interactive global illumination
using fast ray tracing. In EGRW ’02 Pro-
ceedings of the 13th Eurographics work-
shop on Rendering, 2002.

[YCS+04] Hector Yee, Scott Corley, Tobias Sauer-
wein, Jeff Breidenbach, Chris Foster, and
Jim Tilander. Perceptual image diff.
http://pdiff.sourceforge.net/, 2004.

[YN04] Yangli Hector Yee and Anna Newman. A
perceptual metric for production testing.
In SIGGRAPH ’04 ACM SIGGRAPH 2004
Sketches, 2004.

