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ABSTRACT
We present a line feature matching method for model-based camera pose tracking. It uses the GPU for computing
the best corresponding image line match to the edges of a given 3D model on a pixel basis. Further, knowledge
about the model is considered to improve the matching process and to define quality criteria for match selection.
Each edge is rendered several times with image offsets from the last estimated position of the model. The shader
counts the number of pixels in an underlying canny-filtered camera input image. Returning the best fit by pixel
count can be done applying occlusion queries. A speed-up can be achieved using a more elaborate shader with
texture read-back reducing the number of rendering passes. The matching shader is not limited to work with lines
and can be extended to other structures as well.
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1 INTRODUCTION
Camera pose tracking is the process of estimating the
viewing position and orientation of a camera. This can
be performed using a model of the environment repre-
sented by 3D data available from a modeling process
or created online. Using a model leads to more stable
tracking without drift occurrence, as it is the case for
frame-to-frame tracking. Further the model serves as
an absolute reference for initialization.

The pose estimation problem is based upon establish-
ing 2D-3D correspondences between features of the
model and features in the camera image that may be
points, lines or higher structures. The aim is to min-
imize the distance between projected 3D features and
their 2D correspondences in the camera image. Estab-
lishing these correspondences is crucial for estimating
a good camera pose. False matches lead to shifting in
the pose, jittering or even loss of the tracking.

Tracking on CAD models was realized by [Com03],
and respectable success in combination of edges with
texture information could be demonstrated by [Vac04].
Current research is focused on SLAM (Simultaneous
Localization and Mapping) algorithms [Kle07], where
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feature cloud maps are reconstructed from the visible
surroundings.

In the approach of analysis-by-synthesis even further
knowledge about the model is used for the tracking pro-
cess. Beginning from an initially estimated pose or the
pose of the given 3D model in the last image, a ren-
dered image or a structure of features is synthesized to-
gether with a collection of additional information avail-
able from rendering process or from global knowledge.
In the analysis step these are compared to a real camera
image to estimate the current camera pose. In [Wue07]
they use depth and normal information to derive the
line trait of the model. The work of [Sch09] analyzes
similarity-based and feature-based methods for com-
paring synthetic and real image and [Bra11] simulate
the lightning conditions to improve tracking.

We present a method for matching model edges to lines
in the camera image using the GPU. It uses the model
knowledge to define the quality of the matches for
match selection. In our approach we work with straight
lines but the technique is not limited to this type of fea-
ture and can be used for other structures as well.

2 RELATED WORK
The problem of matching and registration of images
does not only appear in camera pose tracking but also
in applications of object recognition and image regis-
tration e.g. for medical purposes. In our approach we
want so solve for the 3D pose of a camera in a model-
based tracking system. What we are focusing on, is
a method for line feature-based model-image matching
so that the knowledge about the model geometry and



perspective can be used to improve the correspondences
and to define quality criteria, which is not a usual task.

Possible approaches for matching are intensity-based
similarity measures regarding the entire image or
patches of it, analysis of the image in the frequency
domain or discrete image features like points and lines,
describing visually perceivable structures in the image.

Detection and matching of feature points has been de-
veloped for a long time. First, the locations of interest-
ing points like edge crossings or corners are detected in
the image. The pixel surrounding of an interest point
is then described by a vector of intensities, and may
also include scale and orientation as SIFT [Low99] and
SURF [Bay08] do. Matching is realized by comparing
the entries of these descriptors which may be very time
consuming due to scale space calculation. For accelera-
tion there exist GPU-based implementations of feature
detection, matching or tracking algorithms as the well-
known KLT [Shi94] by [Sin06].

Feature edges can be detected by common image pro-
cessing filters like the Sobel operator or more advanced
developments as the canny algorithm [Can86]. Sobel
and Canny implementations using the GPU in the con-
text of a particle filter framework are shown in [Kle06]
and [Bro12]. Line matching is mainly realized by min-
imizing the Euclidean distances between the projected
model edges and corresponding gradients in the image.
A simple distance measure may be gained by projecting
the start and end point of the model edge to the image
line or matching in parameter space. However, this re-
quires a parameter transformation as Hough [Dud72],
which may be expensive. In [Low91] simply the per-
pendicular distances of the projected model and the 2D
image segments are used and in [Low92] a combination
of distance and orientation is proposed.

Another popular distance-based matching method
is the Moving Edges algorithm [Bou89]. It is
used in various tracking frameworks as shown in
[Har90],[Dru02],[Com03] or [Vac04] to name some of
them. The model edge is sampled for control points
and from these, orthogonal search lines are spanned
in both directions. Alongside these line normals the
gradient maximum of the image is calculated and the
distance between 3D control point and 2D image point
found is minimized. To deal with possible multiple
gradient maxima the approach can be improved using
multiple hypotheses for each sample point which
provides higher stability [Vac04][Wue05].

3 THE MATCHING SHADER
3.1 Shader Outline
The model-based tracking approach uses a 3D model of
the object to be tracked. Model edges can be obtained
from this model by rendering an image with the last

pose, detecting lines in the image and back-projecting
to the model in order to gain 3D coordinates. Instead
we use the model data structure directly by selecting
individual edges and performing a visibility test. So
the image processing step on the rendered image can be
omitted. The advantage of a candidate edge list is that
the matching result can be sorted and weighted by the
quality of the matches.

For these 3D model edges corresponding 2D line
matches should be found in the camera image. This
camera image is canny-filtered so that natural structures
are expressed as a binary image. The model edges
selected for matching are projected and rendered with
a matching shader from the pose of the last estimation
with frame buffer write disabled. For each drawn
pixel of the model edge the called pixel shader reads
the value of the underlying canny image at the pixel
position. If there is a black edge pixel in the canny
image, the shader outputs a color. Otherwise it is
discarded and the render pass will interrupt. The
concept is displayed in figure 1 and listing 1 shows the
matching shader in GLSL code.

Figure 1: Rendered edge (red), image pixel edge
(black) and common pixel to be counted (hatched).

The number of successful render passes now corre-
sponds to the number of image line pixel counted. Re-
trieving this result number can be done by running oc-
clusion queries while rendering (Section 3.3). The pixel
count itself tells us about the probability that a found
line in the canny image corresponds to a model edge.
The number of counted pixel is a measure of the line
length. Ideally the matching shader count equals the
model edge length.

Using information of the model can help to improve the
matching process. From the known pixel length of the
rendered model edge we can expect a certain length of
the image line response and thus define a threshold for a
minimum pixel count. If the image line found does not
fulfill this minimum length, it will be rejected as corre-



Vertex shader
void main()
{

gl_Position = ftransform();
gl_TexCoord[0] = gl_MultiTexCoord0;

}

Fragment shader
uniform sampler2D cannyImg;
vec3 val;
void main()
{

val = texture2D(cannyImg, gl_TexCoord[0].st).xyz;
if(( val != vec3(1.0,1.0,1.0) ))

gl_FragColor = vec4(0.0,0.0,0.0,1.0);
else

discard;
}

Listing 1: Counting shader.

spondence. In the next section we show further criteria
for evaluation of the matches like depth and distance.

3.2 Sample Edge Generation
While we assume small movements of the camera from
one image to the next, the model edges must be varied
in position and orientation covering translations and ro-
tations of the camera. This is done by sampling several
new image edges around the known projected model
edge. For each model edge start and end point in the
image are known. Around these new points are sam-
pled with an offset, e.g. on a 3x3 window around the
central model edge start and end point, 8 new possible
points are generated for each one. All generated points,
including the original ones, are then connected to new
edges, resulting in a total of 81 candidate edges in this
case. Figure 2 and 3 show an example for some sample
edges covering possible translations and rotations of the
model edge. Notice that the sampling is done in 2D im-
age space for projected edges. The 3D model data itself
remains rigid.

For all of these candidate sample edges the matching
shader returns a number of pixel counted as described
in Section 3.1. The candidate edge returning the high-
est pixel count can be regarded as the best fitting match.
Beneath the expected pixel length, it is even possible to
consider the distance between the pixel count results of
each candidate as quality criterion for matching. Sim-
ilar parallel lines will return almost equal numbers of
pixel count and thus can be recognized as ambiguous
features. Such results may be rejected for matching.

Choosing the offset depends on accuracy and compu-
tational speed. A higher offset covers stronger move-

Figure 2: Generating edge samples (dotted) for a given
model edge on a 3x3 window.

Figure 3: Sampled edges from the model in 2D image
space. Only some random edges are shown for better
visibility.

ments of the line features because more lines are sam-
pled at greater distances and with wider angles, but this
leads to a decrease in performance, especially when us-
ing occlusion queries. From the model knowledge the
information about the depth of the 3D edge can be used
to improve the sample edge generation. Movements
far away from the camera lead to smaller shifting in
pixel space while the same movement next to the cam-
era is expressed in a large shift in pixel space. Knowing
the depths of start and end point from the model edge,
we can define different sizes for the sampling windows
for both points, i.e. perspectively dependent genera-
tion of sample edges. If the depths of both points differ
more than a threshold, for the nearer point more sample
points are generated than for the farther point. This re-
duces the total number of sample edges to be rendered.

3.3 Occlusion Query Management
Retrieving the pixel count from the matching shader by
occlusion queries affords a management process that
can handle multiple queries to be executed fast. We
have a list of model edges to be rendered and for each
one a separate occlusion query has to be run. But the



graphics hardware limits the number of queries that can
efficiently return a result in sequence. Trying to retrieve
the counter result immediately after each query has fin-
ished would stall the CPU [Fer04].

While there are more edges to be rendered than queries
can be executed, the task has to be splitted in several
passes. A set of n maximal queries is created. A part of
the model edges can be rendered until the maximum
number of n available queries is reached. Then the
results of all n queries have to be retrieved before a
new block of n queries can be started for the remain-
ing edges. The result with the highest count is stored.
Alternatively an ordered list of the results can be cre-
ated for better comparing of the results. The absolute
number of query calls is also counted and the process
finishes, when all edges have been drawn (See listing
2).

create n query objects
generate sample edges
enable shader
load canny texture
disable color and depth buffer write
while( query count != number of edges ){

for n queries{
start query
render edge
end query
query count++

}
for n queries{

retrieve result
if query result > last query

save result
}

}
enable color and depth buffer write
disable shader

Listing 2: Using managed occlusion queries.

3.4 Advanced Texture Read-Back
The results showed that using a simple shader with oc-
clusion queries does not perform very well with large
sets of edges to match (see section 4). Therefore, we
developed a more sophisticated shader for matching a
significant amount of edges in short time by extending
our first shader approach. It is based on texture read-
back incorporating the sample edge generation. Oppos-
ing to the occlusion query approach the sample edges
are not precomputed on CPU. The generation and com-
putation of the sample edges is entirely transferred to
graphics hardware. Thus the number of render passes
is reduced to the number of model edges, instead of
rendering each sample edge in its own pass. Further

this solves the problem of stalling the CPU while wait-
ing for the occlusion query result. The pixel count of
all sample edges belonging to one model edge can be
retrieved with one texture read-back.
In addition to the canny texture the pixel shader now
gets the coordinates of projected 2D start and end point
of the model edge and the offset for sample edge gen-
eration as input variables. As described below, the
shader calculates new sample points in a window with
the given offset around the start and end point of the
model edge.

Figure 4: Shader target texture organization.

Each new start and end point is then connected to a sam-
ple edge. This is done by the shader performing the
Bresenham line algorithm [Bre65a] between every start
and end point generated. The pixel coordinates result-
ing from the line calculation are used to search for cor-
responding pixels on the canny-texture. The number of
counted pixels is written as output value on the render-
target texture. One render-target texture can store all
counter results of the sample edges generated for one
model edge. The texture has the size of all possible
sample edges, e.g. when 9 sample points are generated
in a 3x3 window for every start and endpoint, 81 sam-
ple edges are checked and this number of results has to
be stored in the texture. Thus the texture must have size
9x9 for 81 entries.
Figure 4 shows the organization of the texture. For the
start points A and end points B every column and its u-
coordinate correspond to one start point in the sample
window and every row and its v-coordinate correspond
to one end point. Every pixel in the texture is now ad-
dressed for the result of one sample edge. The pixel
shader is aware of the texture coordinate (u,v) it is go-
ing to write its value to, so it can use this information
to apply an offset to the start and end point of the input
model edge to generate the sample points. Thus, each
pixel shader call calculates one sample edge depending
on its writing position as follows.
Subtracting the offset from the x and y coordinates of
the model edge start point A gives us the position of the
first start point A0 with the lowest coordinates in the



sample window. From that point, adding the modulo of
the u coordinate and window width s to the x coordi-
nate and adding the division of the u coordinate by the
window width s to the y coordinate results in the new
sample start point:

s = 2*offset+1
sampleStartX = modelStartX - offset + (u % s)
sampleStartY = modelStartY - offset + (u / s)
sampleEndX = modelEndX - offset + (v % s)
sampleEndY = modelEndY - offset + (v / s)

Doing the same for the end point B and v coordinate
returns the corresponding end point. Between these the
Bresenham line will be calculated by the shader and the
pixel count is written to the current position.
After the shader run the texture is read-back to CPU
and the maximum value is determined by comparing
all pixel values. From the pixel position (u,v) of the
maximum and the offset applied, the pixel coordinates
of the resulting sample edge can now be identified by
the formulas shown above. It is also possible to use
parallel reduction as described in [Fer04a] to directly
obtain the maximum on the texture instead of using the
CPU. Advanced computation of the resulting texture,
like applying a non-maximum suppression leads to fur-
ther quality criteria beneath the length of the matching
line. The counting results of parallel edges are ordered
diagonally on the target texture, which enables a quick
check for this second quality criterion, e.g. given the
case of figure 4 having a maximum at pixel position
(2,2) and one or more significant high counts on one of
the pixels in the diagonal from (0,0) to (8,8) this shows
the existence of at least one parallel line with similar
length and may lead to rejection of this match.

3.5 Optical Flow Support
Strong shaking of the camera may introduce a high
level of motion blur. Due to the limited search area de-
fined by the generated sample edges, the correct match-
ing and subsequently the tracking may be lost when the
image line is shifted too far. To prevent this, strong
movements can be detected by estimation of optical
flow [Bea95]. Calculating optical flow predicts the dis-
placement of pixels in between two frames of an image
sequence. The movement of the distinct start and end
points of each projected model edge between the last
and the current camera frame can be determined using
a sparse optical flow function from OpenCV [Ocv11]
that accepts an array of feature points as input. The
predicted new start and end point positions corrected
by optical flow are then used for sample edge genera-
tion. Matching with optical flow support allows reduc-
ing the distribution of sample edges because the match-
ing can be performed in a smaller region. Using fewer
sample edges leads to faster computation time. Another
method to overcome motion blur is using additional in-
ertial sensors [Rei06] to estimate rapid camera motion.

4 RESULTS
We tested our shader-based matching approach by
tracking simple and complex objects on indoor and
outdoor scenes (figure 5). As camera input we used
video streams at a resolution of 640x480 pixels with
varying lighting conditions. The canny filter applied to
the camera images is taken from the OpenCV [Ocv11]
implementation with standard parameters (threshold1
= 50, threshold2 = 200, aperture = 3).

The initial camera pose is assumed to be roughly known
at the start of the sequence, which is a prerequisite for
model-based tracking. This may be done by manually
aligning the model in the camera frame. The intrin-
sic parameters of the video camera delivering the input
stream are gained from previous calibration. Models of
the tracking scenes are available and from these lists of
the model edges are built to be used for the matching
process. Each model edge is projected from the cur-
rent camera pose and the matching shader returns the
corresponding image line. For the computation of the
new camera pose from the line correspondences we use
a non-linear Levenberg-Marquardt optimization.

Figure 5: Test scenes (video and rendered model).

We compared our shader approach to two other
distance-based matching methods. One method is
to parameterize the binary canny image by a Hough
transform [Dud72]. The model edge is projected into
the image plane and a window around this edge defines
a region of interest where the Hough transform is run.
The output is a list of straight image lines defined
by the parameters of line angle to the y-axis and line
distance to the image origin. These can be directly
compared to the parameters of the corresponding



model edge. However, matching in two dimensional
parameter space proves to be very unstable. Neither
length nor line similarity is judged this way, so we
did not further consider this approach. Measuring the
distance in image space can be done by projection
of the start and end point of the model edge to the
straight image line found by the Hough transform.
The problem is the high dependency of the results
on the chosen parameters of the transform. Possible
matches are extremely ambiguous and lead to jittering
in the estimated pose. At strong motion some matches
completely fail.

Another popular approach is to set control points along
the model edge and search for strong image gradients
on orthogonal lines through these control points. We
used an implementation from [Vis11] for our tests. The
pose becomes more stable, but movements or interrup-
tions in the image lines corrupt the matching result.
Generally, these distance measures in image space can
lead to stable camera pose estimation when the cam-
era movement is slow and smooth enough, which is the
case in the controlled indoor test scenario (figure 5 top,
middle). However, at fast camera movements inducing
motion blur the matching fails. We will show this on
examples of the outdoor scene (figure 5 bottom).

Our matching shader has proven to deliver good match-
ing results with minimal error even in the worst scenario
of a video captured with a strongly shaking hand cam-
era. The following figures illustrate the results of three
matching approaches on a test sequence after the oc-
currence of strong motion. The motion blur occurs for
duration of 6 frames while the image content is shifted
over 80 pixels in this time. We regard the matching er-
ror in the frame right after this strong motion. Figure
6 shows the shift of the image within the 6 frames and
the sub-picture the moment of strongest motion blur in
the video sequence which disturbs the canny image to
a large extent. Image lines are only partly visible and
hard to handle by the matching methods.

Figure 6: Image shift with strong motion blur.

The line projection approach (figure 7) obviously gets
distracted by the parallel pipe next to the house cor-
ner, which is an ambiguous feature. The error ends up
with a maximum displacement of 37 pixels. The match-
ing with orthogonal search (figure 8) is more precise
concerning ambiguities but also gets disturbed by the
motion blur up to an error of 24 pixels. The match-
ing shader approach with optical flow support (figure
9) overcomes the blur and results in an error of 3 pixel
displacement.

Figure 7: Line projection results after motion.

Figure 8: Orthogonal search results after motion.

In figure 10 the moment of strongest motion blur in the
outdoor scene can be seen together with the resulting
pose estimation overlay from the matches proposed by
our method. Concerning the parameters, in our tests we
found a good window size for the generation of sample
edges at 4x4 with supporting optical flow. Without op-
tical flow the best trade-off between computation time
and matching quality could be reached with generating
sample edges at 7x7 windows. The best threshold for
rejection of the image line length as match is 3

4 of the
model line length.

Table 1 lists the average computation time in millisec-
onds of the components for our matching approach on



Figure 9: Matching shader results after motion.

Figure 10: Correct camera pose computation at strong
motion blur (top) and for other scenes.

a Intel Core2Duo 3.2GHz with nVidia GeForce GTX
285. The canny filter and optical flow calculation step
are called only once for a new frame, independently of
the number of edges to match. Although time consump-
tion for the canny filter is not too high, this additional
step can be reduced by implementing gradient search
inside the shader instead.

Next, times for the occlusion query approach and the
texture read-back variant are compared. The number
in brackets names the amount of edges to render. Obvi-

Canny filter 5 ms
Optical flow 4 ms
Occlusion query 97 ms (11), 54(7), 7(2)
Texture read-back 18 ms (11), 14,(7), 7(2)

Table 1: Computation time.

ously using a query executes fast only when a very little
number of edges is used. But enlarging the number of
model edges the texture approach quickly outperforms
the query usage. Overall, real-time capability for track-
ing is ensured, however the implementation is not yet
optimized.

5 CONCLUSION
We presented a shader approach for matching corre-
sponding image lines to model edges in a model-based
tracking scenario. The knowledge about the model is
used to improve the matching and to define criteria for
match selection. For a given model edge based on the
last pose several sample edges are generated and ren-
dered with a matching shader. The shader counts un-
derlying pixels of a canny-filtered camera input image
at the position of the edges. The image line with highest
accordance to criteria of length and distance is chosen
as match. This procedure delivers good matching and
results in a correct camera pose estimation even at oc-
currence of strong motion blur.

We compared two methods to realize the matching
shader. Using a simple counting shader and occlusion
queries to retrieve the pixel count result is straightfor-
ward but significantly lowers the frame rate when many
sample edges are generated because each render pass.
The more sophisticated way is to read-back a texture
value which can be done quite fast. The whole process
of sample edge generation can be transferred into the
shader, so a render pass is only called once per model
edge instead for each sample edge.

Although we used straight lines from our testing mod-
els, the work is not limited to this type of feature. The
counting shader can be extended to run on other render-
able structures as well, like circles, curves or NURBS.
For this purpose the sample generation algorithm has
to be adapted to the wanted structure to match. A fur-
ther advancement could be the integration of gradient
calculation into the shader. This would save the canny
preprocessing step to the camera image. Additionally,
when calculating the gradient, the gradient orientation
is also known. This could be used by the matching
shader to count those pixels only, which have the same
gradient direction and thus belong to the same line.
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