
Approximating the Fire Flicker Effect Using Local Dynamic
Radiance Maps

Jonathan Brian Metzgar
University of Colorado at

Colorado Springs
jonathan@metzgar-

research.com

Sudhanshu Kumar Semwal
University of Colorado at

Colorado Springs
ssemwal@uccs.edu

ABSTRACT
Realistic fire and the flicker effect is a complicated process to simulate in realtime and little work has been done
to simulate this complicated illumination effect in realtime. Fire is not a directionally uniform source of light but
varies in intensity not only with time but also with direction. Most realtime applications use a standard point light
source model for local illumination effects and may use a model to change the light source intensity with time but not
direction. The problem is that point light sources are isotropic, but many sources of light have anisotropic qualities
as well. Radiance maps and Precomputed Radiance Transfer (PRT) have been used to increase realism at realtime
interactive frame rates. These models approximate global illumination by applying an environment map (typically
approximated with spherical harmonics) to get their soft lighting effect. In this paper we present Local Dynamic
Radiance Maps (LDRM) which uses radiance maps in a local illumination model to add anisotropic behavior to
light sources. We implemented a realtime rendering engine that supports shadow mapping and the physically based
Cook-Torrance model to approximate global illumination. In particular, we generate dynamic radiance maps using
Perlin noise to simulate the nonlinear radiance of fire and we also implement a rudimentary Lattice-Boltzmann
flame rendering effect. Finally, we show how LDRM can be applied not just to approximating the fire flicker effect,
but as a general framework for simulating the illumination properties of other nonlinear light sources.

Keywords: radiosity, global illumination, fire, Lattice-Boltzmann, radiance maps, shadow-mapping.

1 INTRODUCTION
Advances in graphics processing units (GPU) have re-
sulted in not only improved speed and quality of com-
puter generated images, but now feature massively par-
allel processors capable of running several general pur-
pose programs. This parallelism allows for the imple-
mentation of global illumination algorithms. Physical
simulations of natural phenomena like fire and water are
taking advantages of the hardware acceleration.
Rendering fire is a big challenge for computer graph-
ics because it touches so many areas of image genera-
tion. It is even harder to do it well in realtime. One
would want to eventually render fire based on a full 3D
simulation using Navier-Stokes equations and render a
scene in realtime using the illumination effects mod-
eled by a radiosity algorithm. Since this is not practical,
fire imagery is often created through precomputed ren-
derings, video, or particle effects and the illumination

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

comes from a point light source with a dynamic inten-
sity. But, simply modulating the intensity and location
of a point light source does not adequately model the
way that fire radiates in a nonlinear way. It is this non-
linear radiance that causes the flicker effect to occur.

For the last decade, radiance maps and precomputed ra-
diance transfer have become essential for creating high
quality realtime visualizations. Essentially by utiliz-
ing approximations like spherical harmonics, they can
quickly apply the illumination model to objects in a
scene and get radiosity like shading effects. This model
works with an outward-in approach where the incoming
light is mapped to a sphere which is mapped to the pre-
computed radiance map. We propose a variation of this
method that 1) dynamically computes the radiance and
2) is a local source of radiance which can move around
inside an environment. We call these local dynamic ra-
diance maps or LDRM. The main goal of the LDRM
model is to make lights appear and act like they belong
in the scene by modeling their anisotropic behavior as a
function of time.

In this paper, we present a new way to approximate the
flicker effect by procedurally generating a LDRM into
a cube map. This LDRM is projected outwards from
the position of the fire source through the cube texture
and onto the surrounding scene’s geometry simulating

the first bounce of radiosity. To achieve our results, we
have chosen bump mapping, physically based lighting,
and soft shadow mapping algorithms to calculate direct
and indirect illumination of the fire source. Finally, we
implement a procedurally simulated fire effect based on
a Lattice-Boltzmann model which can be simulated on
the GPU or CPU to approximate the flames emitted from
a torch. This is rendered in our scene at the location of
our fire source.

2 PREVIOUS WORK
Simulating fire is a fluid simulation problem that has a
variety of solutions ranging from artist derived flame
profiles, procedural generation of flames, and fluid
simulation of flames. [Ngu01a] and [Ngu02a] present
a solution for Navier-Stokes equations to simulate the
flames but is time consuming. [Hon07a] combine
both a Navier-Stokes simulation with detonation shock
dynamics to get wrinkled flames and cellular patterns
but also takes a long time to render. A near realtime fire
simulation and control system that uses artist derived
flame profiles is described by Lamorlette and Foster
in [Lam02a]. The Perlin noise function and an artist
specified flame profile is used to generate procedural
fire by [Ful07a].
The groundbreaking 1970’s work by [Har73a] and
[Har76a] first introduce the Lattice-Boltzmann Model
(LBM) methods which have become the basis of many
non Navier-Stokes fluid simulations. [Wei02a] use
overlapping textures with turbulence details employing
LBM for motion of the flames. [Zha03a] also employ
LBM to simulate fire fronts around solid objects.
Some models, such as [Lam02a], discuss in much de-
tail how to compute the lighting effects. For example
[Lam02a] uses an emitting sphere at each flame seg-
ment to generate lighting. It is assumed that the light-
ing details are automatically handled at the renderer
level which combine several global illumination algo-
rithms like radiosity, ray tracing, and/or photon map-
ping. Importance sampling using volumetric illumina-
tion has been used by [Zha11a]. GPU simulation with
volumetric data creates a variety of realistic and detailed
fire simulation such as moving fire [Hor09a],
Radiance maps are images that store the intensities of
light passing through each pixel. The direction of the
light is determined by the projection used to create the
image. They are used in high dynamic range imagery
(HDRI) as described by [Deb97a]. Methods such as
precomputed radiance transfer (PRT) first introduced
by [Slo02a] use a spherical harmonics representation
for low-frequency radiance computation. These spher-
ical harmonics representations approximate a high res-
olution HDRI radiance map and are very effective for
relighting objects in an environment. Primarily they
have been used for static scenes but the technique is

expanding for dynamic scenes as well. For example,
[Kri05a] relight architectural models in real-time with
moving lights by combining precomputed point light
source clouds.

3 THE POINT LIGHT MODEL
The predominantly implemented illumination model for
fire in realtime applications is the point light source
model. It is used widely because there is hardware sup-
port for the algorithm and also because it is easy to com-
pute the shading value since the light position is sub-
tracted from the vertex or fragment position to get the�L
vector that is used by a Lambertian illumination model.
In some implementations, the intensity is constant with
a distance based falloff function. It can become more so-
phisticated by varying the intensity of the light or adding
a random perturbation to the coordinates of the light
source. The intensity and position are often varied us-
ing a smooth noise or interpolation scheme. The easiest
way to think of this is a person holding a simple light
bulb with a rapidly sliding dimmer switch and a jittery
hand. In Figure 1, you can see the smooth uniform in-
tensity that the point light model has. The problem is
that point light sources are isotropic, but many sources
of light are anisotropic. We will now present the LDRM
model which attempts to model the anisotropic features
that fire and other natural phenomena possess.

4 THE LDRM MODEL

Figure 1: The LDRM method is compared to the point
light source method. In the LDRM image, the intensity
and frequency is turned up very high to clearly show
the difference of the LDRM method and the point light
source method. Realistic settings would be tuned to be
more subtle.

Our Local Dynamic Radiance Map (LDRM) model
stores a dynamically computed radiance map at co-
ordinates P. The light emitted from P is cast in all
directions simulating the first bounce of radiosity. The
radiance may either be precomputed as an animation

or procedurally generated in realtime. A cube map or
other similar abstraction is an ideal way of storing these
radiance values.
We reproduce Kajiya’s rendering equation [Kaj86a] be-
low so we can illustrate how the LDRM fits into this
standard model:

I(x,x�) = g(x,x�)[ε(x,x�)+
�

ρ(x,x�,x��)I(x�,x��)dx��]. (1)

The radiance of the LDRM is represented by ε(x,x�)
while being directly affected by the visibility of the point
x at point x� by the function g(x,x�). More specifically,
the function ε(x,x�) is the radiance coming from direc-
tion�L where�L is the vector from the position of the light
source to the point x, and is the direction of the sample.
This value can be obtained by looking into the radiance
map using the direction provided. For example, most
graphics hardware have the ability to easily look up this
value from a cube map using a vector as an input.

Figure 2: Two LDRMs generated using different fre-
quencies of noise and their corresponding effect on the
environment.
From Kajiya’s rendering equation, we then map this to a
simplified model where we can incorporate our render-
ing algorithms. Since we are not simulating the integral
in his equation, we decided to make that a constant value
and focus on just ε and g which is just the radiance of the
light source and the visibility of the light source with the
surface being illuminated. Essentially, the LDRM acts
like a Gaussian surface in the sense, that instead of try-
ing to compute the interactions with the actual flames or
other phenomena and the surrounding environment, we
perform an intermediate step of mapping it to a surface
we can easily use in a rendering situation. This is clearly
seen in Figure 3.
The incoming radiance which we will now call R, is then
divided into the specular and diffuse reflection colors
kspecularR and kdi f f useR, respectively where kspecular +
kdi f f use = 1. Depending on the reflectance model used,
kspecular and kdi f f use may be computed differently. We
decided to implement the Cook-Torrance model and we
will discuss later in section 4.1 how to compute these
values.
The dynamic radiance of a torch fire is approximated
by using Ken Perlin’s noise function. The radiance of
each direction of the torch fire is computed and stored
inside the radiance map. The unit vector l is used as
input to the Perlin noise function and the resulting value
is used to look up the color associated with the radiance.

Figure 3: The LDRM method (right) differs from the
point light source method (left) by modeling the light’s
outgoing radiance as a function of time, intensity, and
direction.

A blackbody radiation color map is used to give color to
the torch fire. An example color map is shown in Figure
7.
The LDRM is flexible. If a variety of natural phenom-
ena used the same kind of simulation algorithm but dif-
fered only in color, a different color map will easily al-
low for adjusting that. For example, fire could probably
use the same simulation code, but the specific chemical
combustion properties would be approximated by map-
ping the resulting intensity values with the appropriate
color map.
In our implementation, we have chosen Perlin noise be-
cause it generates smooth noise that can be animated
and provides enough variety for our ideas to be imple-
mented. Generation of a LDRM function that simulates
the unique properties of fire (or other phenomena) is
most definitely a topic for future study but is outside the
scope of our research. Later we will discuss this pos-
sibility, but our experiments with Perlin noise showed
significant enough improvement in scene realism ver-
sus the traditional point light source method that we dis-
cussed in the last section.

Figure 4: The LDRM projects radially from the center
of the light position. Areas in blue get ambient lighting
while others get direct illumination.

Figure 4 shows a diagram of how the LDRM method
works. The box located around the position of the light
represents the cube map. The arrows emitted from the
center of the light through the box will look up the ap-
propriate radiance and project it on the environment. If
the area is in shadow (represented by shaded blue areas)
then an ambient algorithm can determine the final illu-
mination of those fragments. The containing rectangle

and the red and green rectangles represent the environ-
ment and objects visible to the light source. Figure 2
shows two example LDRMs generated using two differ-
ent frequencies of noise. It can be easily seen how the
LDRM works in a practical sense by observing that vari-
ation in intensity in the environment corresponds to the
frequency of noise.

5 IMPLEMENTATION

Figure 5: A rendering of the fire flicker effect program.

Our fire flicker effect simulation presented in this paper
is designed to employ the LDRM model. A variety of
rendering algorithms is used to simulate global illumi-
nation and a screenshot is shown in Figure 5. The global
illumination algorithm implements the Cook-Torrance
model, Blinn bump mapping, and cube map shadow
mapping. It uses a simple ambient function that approx-
imates indirect illumination by scaling the direct illu-
mination by the amount of shadow present at that pixel
location. The Cook-Torrance model allows for physi-
cally based illumination while the bump mapping algo-
rithm allows for increased higher-frequency pseudo de-
tails. Finally instead of rendering the LDRM cube map
in the scene, flames are dynamically computed and ren-
dered into 2D textures and drawn onto rectangles in a
fan like structure to give the torch a 3D look. In effect,
the torch fire is used as an aesthetic place mat to show
where the LDRM is located in the scene.

5.1 Illumination and Shadow Model
The Cook-Torrance model was chosen because it is a
physically based model. Other models can easily be in-
tegrated as desired. The LDRM was used to supply the
specular color kspecularR for the Cook-Torrance model.
This color is mixed in with the surface color of the frag-
ment being rendered and scaled by the dot product of
the surface normal and incoming light vector�L.
Since a torch is an omni-directional light source, cube
mapped shadow mapping was selected to render the
shadows. It is a fairly straightforward algorithm to im-
plement, but it does take some tweaking to get the high-
est image quality. We chose to write a scalable multi-
sampled shadow algorithm that we could adjust to mea-
sure performance of our technique. The number of sam-
ples can go from one sample to N = 257 samples. Here

N can be varied based on the hardware capabilities of
the system. The penumbra width is adjustable as a con-
stant parameter in the shader program. Figure 6 shows
two screenshots of the program using 1 sample shadows
and 257 sample, wide penumbra shadows.

Figure 6: These two images shows a basic one sample
shadow and a wide penumbra, 257 sample shadow.

5.2 Radiance Cube Map Generation
Perlin noise is a simple solution to generating non-linear
radiance that is repeatable, smooth, and fluid. Depend-
ing on application performance, the noise can either be
generated on the GPU or CPU. The fire program im-
plemented in this paper used the GPU and a render-to-
texture set up to render the six sides of a cube map. The
GPU code for generating Perlin noise was implemented
by [Gus06a] which we slightly modified to adjust for
noise scaling and animation parameters used in the fire
program.
The six textures are used as a cube map in the final ren-
dering pass by the global illumination shader. The gray
scale output of the radiance is then converted from heat
values to RGB values by looking up the data in a color
look up table. The texture is updated once per frame
or as needed to maintain a target frame-rate. The color
look up table is shown in Figure 7 and one side of a
LDRM is shown in figure 8.

Figure 7: The color look up table mapping heat to their
corresponding RGB values.

Figure 8: One face of a cube map generated by the
LDRM method.
Special care needs to be taken to balance the noise so
that it adds a subtle lighting effect to the scene. If the
frequency of the noise is too high then the effect may
look overdone where it can quickly be distracting. On
the other hand, using hardly any noise or under using the
effect will look as if the effect is not being used, so care-
ful balancing needs to done to find a good range where
the effect will be effective. Figure 2 shows this effect in

practice. Note how the high frequency map may make
the environment look splotchy which is not realistic.
The LDRM may be used to create good lighting effects,
but it is not complete without some motion of the shad-
ows in the environment. Perlin noise is used once again
to compute a time-varying offset which we add to the
original position of the light. This new position is used
to render the shadow maps and lighting. The final prod-
uct then has dancing shadows which enhance realism.

5.3 Global Illumination in the Simulation
The equation

Cout =max(Rambient ,Rshadow) ·
�
kdi f f use +Rspecular · kspecular

�
.

(2)
is the basis for the global illumination algorithm for the
fire program. The Rambient term specifies the ambient
intensity of the pixel, the Rshadow represents the contri-
bution of any direct lighting occuring at the pixel, the
kdi f f use term is the color of the surface at that pixel, the
kspecular term is the color of the specular reflection of the
pixel, and the Rspecular term is the amount of reflected
light at the pixel.
The terms are all computed from four different algo-
rithms. The first algorithm is bump mapping which cal-
culates the normal of the pixel. The second algorithm
is the Cook-Torrance model which calculates the specu-
lar reflectance values Rspecular and kspecular of the pixel.
The third algorithm is the Cube Map Shadow algorithm
which allows for omni-directional point light sources.
Finally, the fourth algorithm is an intensity falloff model
for the Rambient term to model indirect light. These have
been covered in detail in previous works, but integrat-
ing them together will be briefly explained in light of
the equation to compute Cout .

5.4 Ambient and Shadow Term
The ambient term is a simple approximation based on
a inverse falloff law from the distance to the fire. The
ambient term Ra is computed by the formula

Rambient =
1

4|L| . (3)

This equation is a variation based on the inverse power
law I = P

4πr2 which gives us a brighter overall light in-
tensity which is normally lost unless you do a full on
radiosity simulation to get the intensity back through in-
direct reflections. This gives us some of that light which
is normally “lost” in a local illumination model.
The shadow term Rshadow is computed with the follow-
ing formula:

Rshadow = min
�
�Nvertex ·�L,�Nbump ·�L

�
∗ 1

n

n

∑
j=0

s j (4)

where �Nvertex is the interpolated vertex normal, �Nbump
is the per pixel normal derived from the normal map,
�L is the incoming direction of the light source, n is the
number of samples being used for the shadows, and s j is
the boolean result of comparing the jth pixel depth value
to the light depth buffer which is either 1 or 0. Taking the
minimum of the dot products eliminates bump mapping
on polygons not facing the light.
Together the ambient and shadow terms are used to de-
termine the minimum illumination level of the fragment
to be rendered. A simple maximum function is used to
choose the ambient term or shadow term. If a fragment
is completely shadowed, then the ambient term is used,
otherwise the fragment is in penumbra and has some il-
lumination.

5.5 Diffuse and Specular Term
The diffuse term kdi f f use is generated from the surface
color or texture of the object. The specular terms
Rspecular and kspecular are the coefficient of the reflected
light and its color, respectively. This is where we can
incorporate the LDRM model. The kspecular value is
obtained by using the �L vector as the lookup in the
LDRM cube map. The Rspecular term is based off the
Cook-Torrance model equation [Coo81a]

Rspecular =
F
π

DG
(N ·L)(N ·V)

. (5)

F is the Fresnel term, D is the micro-facet distribution
factor, G is the geometric attenuation factor, V is the
view vector, and L is the vector from the light to the frag-
ment. Additional details about using the Cook-Torrance
may be found by referring to the original paper. It is im-
portant to note that the LDRM model is not just limited
to Cook-Torrance, but may be incorporated with any il-
lumination model.

5.6 CPU and GPU 2D Flame Simulation
Our flame rendering system is based off a simple cellular
automata model to generate fire. This cellular automata
is a simplified model of Lattice Boltzmann Methods
(LBM) which originated with the work of [Har73a].
[Che98a]’s work summarize the developments of the
model into its more current form. The method works
by using a lattice structure representing the fluid to be
simulated. A convection operator and collision oper-
ator transform the lattice over time and cause the fluid
process to occur. The nineties demo scene fire effect
used a simple averaging function to cause convection
and simulate collisions. Figure 9 shows a screenshot
that simulates this full screen fire effect.
This fire effect can be modified to generate small flames
or torch sources. Further improvements can be made to
increase precision as well. Typically this effect uses 8-
bit integer mathematics to store the heat values. While

Figure 9: This image shows a fire simulation where the
entire bottom row is used as the heat source and that
use of integer math causes noisy artifcats near these ran-
domized heat sources.

this is accurate enough for most of the effect, it results
in artifacts near the source of the fire as shown in Figure
9. Changing the representation from integers to floating
point math eliminates these artifacts and increases dy-
namic range. This can be coupled with established HDR
techniques and physically based color computations for
different chemical reactions.
The flame is generated by adding or seeding heat to
points on the lattice. The flame will flow during the
convection operator step. During the collision opera-
tor step, the flame mixes together. The three steps will
cause the flame to take shape as this process repeats.
A simple circular falloff model is used for seeding the
heat to the fire. Notice in Figure 11 two different kinds
of falloff patterns: the simple radial falloff used in the
fire program and a noisy radial falloff used for the fires
in Figure 10. By quickly changing the location of the
falloff pattern, turbulence is created. The fire effect and
varying levels of turbulence are shown in Figure 10.

Figure 10: The radius of the circle in which the center
of the flame source is moved causes a more turbulent
flame. On the far right, improperly handled edges cause
“heat sink” artifacts.

Figure 11: Two falloff patterns for seeding fires. The
second pattern adds some turbulence to the resulting
flames.
This fire effect can be computed using a GPU and
a graphics based shader language (i.e. GLSL) was
adequate for our simulation. The algorithm is shown
in Listing 1 and is fairly straightforward. It determines
whether the fragment is in the simulation area or not
(which if not handled correctly creates “heat sinks"
shown on the far right in Figure 10). Simulating
diffusion and cooling is obtained by averaging several
neighbor samples at each fragment and multiplying

by a factor li f e, respectively. Heat is added to all the
fragments located inside a circle (a “heat sink") which
is randomly jittered according to the desired turbulence
of the flame.

@VERTEXSHADER
uniform mat4 ProjectionMatrix;
varying vec2 uv;

void main() {\\
uv = gl_MultiTexCoord0.st;

gl_Position = ftransform();
}

@FRAGMENTSHADER
#version 140
uniform sampler2DRect FireLattice;
uniform sampler1D radianceCLUT;
uniform float a, b, radius;
uniform float width, height;
uniform float heat, life;
uniform float turbulence;
in vec2 uv;
out vec4 gl_FragColor;
float rand(vec2 co) {
return fract(sin(dot(co.xy ,vec2(
12.9898,78.233))) * 43758.5453);

}
void main() {
float x = uv.s, y = uv.t;
float data = 0;
float r2 = radius * radius;

if (x >= 1 && x < width-2 &&
y >= 3 && y < height-1) {

if (x >= a-radius && x < a+radius &&
y >= b-radius && y < b+radius) {

float f = (x-a)*(x-a) + (y-b)*(y-b);
if (f < r2) {
data = texture(FireLattice,

vec2(x, y)).a;
data += heat * (1 - f/r2);

}
}
data+=texture(FireLattice,

vec2(x, y+1)).a;
data+=texture(FireLattice,

vec2(x-1, y-1)).a;
data+=texture(FireLattice,

vec2(x+1, y-1)).a;
data+=texture(FireLattice,

vec2(x, y-2)).a;
data = clamp(data * life / 4.0,

0.0, 1.0);
} else {
data = 0;

}
vec3 color2 = texture(radianceCLUT,

data).rgb;
gl_FragColor = vec4(color2,data);

}

Listing 1: A GLSL Shader that computes the flame sim-
ulation.

6 RESULTS
The LDRM model takes up relatively little extra load
in conjunction with normal rendering depending on the
number of lights being used. The majority of perfor-
mance loss comes from shadow mapping when large
numbers of samples are being used. Rendering high res-
olution LDRM cube maps may also reduce performance
but this can be mitigated by using low resolution maps
when large numbers of lights are being used.
The benchmarks were conducted using a Windows 7
OS, Intel i7 930 2.80GHz processor with 6GB of RAM,
and a NVIDIA GeForce GTX 480 graphics card with
1.5 GB of GDDR5 memory. Each benchmark was mea-
sured by recording the number of frames per second
(FPS) once per second over a period of 25 seconds. The
mean frame rate was then computed to filter noise in
the readings, though the noise present was so low that
it had an insignificant effect on the final numbers. Fi-
nally, we kept the frame rate as high as possible so we
could ensure that our simulation would run on less ca-
pable graphics cards.

Figure 12: A comparison of radiance cube map size ver-
sus performance.

We tested the performance of our method using differ-
ent resolution LDRM cube maps and by not rendering
them at all. Figure 12 shows the results when 1, 2, 4, or
8 lights are being used. When using a 256x256 LDRM
cube map, performance drops by 41%, 68%, and 83%
for 2, 4, or 8 lights, respectively. When using 512x512
cube maps, performance drops by 39%, 66%, and 82%
for 2, 4, or 8 lights, respectively. For 1024x1024 cube
maps, performance drops by 33%, 60%, and 77% for
2, 4, or 8 lights, respectively. Compared to not us-
ing LDRMs at all, performance drops by 4% to 17%
for 256x256 cube maps, 6% to 25% for 512x512 cube
maps, and 11% to 42% for 1024x1024 cube maps.
Next, we tested the performance of our flame rendering
system on the CPU and the GPU. Overall, the GPU had
a clear lead in performance especially as resolution is
increased. However, until much higher resolutions of
flame simulations are used, the number of flames ren-
dered per second on the CPU was in the hundreds which
is sufficient. It is also clearly shown that using the GPU
in conjunction with the CPU yielded little decrease in
overall performance. We are unable to easily compare

Figure 13: On the left, we see that application perfor-
mance is not affected until high resolution lattice sizes
are used. On the right, the GPU far surpasses the CPU
in raw fire rendering performance.

our flame rendering algorithm with others because ours
is not volumetric and has very strong boundary condi-
tions which make it incapable of handling interactions in
a 3D environment which a volumetric simulation could.
When integrated with the global illumination simula-
tion, the GPU advantage becomes more obvious. CPU
performance drops off fast when using high resolution
lattice simulations, though it is almost unnoticeable
when using reasonably sized maps. In contrast, the
GPU simulations have a very small performance
penalty when using large lattices. It should be noted
that multithreading was not used in the CPU simulation,
but the GPU still has enough compute power for the
large lattice sizes that even an 8 core CPU could not
outperform it. Figure 13 shows the performance graphs
for running the global illumination simulation and
rendering the flames with either the CPU, GPU, or
both. It also shows the baseline performance of the GI
simulation without rendering the flames. Effectively,
you get the flame rendering for free for small resolution
flame images.

Figure 14: On the left, antialiasing halves overall per-
formance. On the right, reasonable numbers of shadow
samples still allow interactive frame rates.

Finally, we examine the performance of the global illu-
mination algorithm. Figure 14 shows the performance
of the global illumination algorithm both when using
multi-sampled shadows and different resolution shadow
maps, respectively. When using a reasonable number of
lights, it is very easy to obtain very interactive rates. Per-
formance drops quite a bit when using anti-aliasing, but
the image quality is greatly improved and small pixel ar-
tifacts that show up when not using anti-aliasing almost
entirely disappear.
Shadow quality is very good at 33 samples per pixel and
the frame-rate is quite interactive. Wide penumbras are
allowed which increases the realism of far off shadows
where the area lighting effect of the flames would not

create sharp edges. The shadow map size affects per-
formance but not as dramatic as varying the number
of samples. Memory usage does increases quickly so
tweaking is necessary to determine the lowest accept-
able shadow map resolution.
Adding motion to the shadows does a good job of dis-
tracting the observer from noticing some minor prob-
lems with shadow mapping. Some of these problems
include light leakage or surface acne. Ultimately, the
moving shadows create the realistic appearance that the
fire has on the scene while the LDRM model adds a sub-
tle ambience to the scene, that when switched off, makes
the simple intensity modulation based fire flicker effect
seem somewhat lifeless.

7 CONCLUSION AND FUTURE WORK
The LDRM model presented in this paper helps add re-
alism to scenes where torch fires are being used. The
ambiance created by using shifting anisotropic illumi-
nation patterns add subtle depth and realism to scenes
compared to the simple point light source model. The
performance penalty is small and the algorithm is trivial
to implement for any realtime graphics engine.
Future study of LDRMs to enhance direct illumination
is promising and is an excellent extension to normal pre-
computed radiance transfer. In the future we are looking
into simulating a volumetric fire and comparing the ac-
tual radiance with our approximation. We believe that
creating LDRM models of other nonlinear light sources
would be highly beneficial towards accurately simulat-
ing other phenomena in a realtime application. Finally,
we are looking into using spherical harmonics as a sub-
stitute for cube maps which may allow LDRMs to be
used in resource limited environments.

8 REFERENCES
[Che98a] Chen, S., and Doolen, G.D., Lattice boltzmann

method for fluid flows. Annual Review Fluid Mechanics,
1998, pp.329-364.

[Coo81a] Cook, R. L., and Torrance, K. E., A reflectance
model for computer graphics. Proceedings of the 8th an-
nual conference on Computer graphics and interactive
techniques, ACM, New York, NY, USA, SIGGRAPH
’81, 1981, pp. 307–316.

[Deb97a] Debevec, P. E., and Malik, J., Recovering high dy-
namic range radiance maps from photographs. Proceed-
ings of the 24th annual conference on Computer graphics
and interactive techniques, ACM, New York, NY, USA,
SIGGRAPH ’97, 1997, pp. 369–378.

[Ful07a] Fuller, A. R., Krishnan, H., Mahrous, K., Hamann,
B., and Joy, K. I., Real-time procedural volumetric fire.
In Proceedings of the 2007 symposium on Interactive 3D
graphics and games, ACM, New York, NY, USA, I3D
’07, 2007, pp. 175–180.

[Gus06a] Gustafson, S., Dsonoises, a set of useful functions
for sl., 2007. url:http://staffwww.itn.liu.se/~stegu
/aqsis/DSOs/DSOnoises.html

[Har73a] Hardy, J., Pomeau, Y., and de Pazzis, O., Time evo-
lution of a two-dimensional classical lattice system. Phys.
Rev. Lett. 31, 5, 1973, pp. 276–279.

[Har76a] Hardy, J., de Pazzis, O., and Pomeau, Y., Molecular
dynamics of a classical lattice gas: transport properties
and time correlation functions. Phys. Rev. A 13, 5 (May),
1976, pp.1949-1961.

[Hon07a] Hong, J.-M., Shinar, T., and Fedkiw, R., Wrinkled
flames and cellular patterns. In ACM SIGGRAPH 2007
papers, 2007, ACM, New York, NY, USA, SIGGRAPH
’07.

[Hor09a] Horvath C and Geiger W., Directable high Resolu-
tion simulation of fire on the gpu. In ACM SIGGRAPH
2009 papers, 2009, ACM, New York, NY, USA, SIG-
GRAPH ’09, 28(3).

[Kaj86a] Kajiya, J. T., The rendering equation. In ACM SIG-
GRAPH 1986 papers, ACM, New York, NY, USA, SIG-
GRAPH ’86, 1986, pp. 143-150.

[Kri05a] A. W., Akenine-Möller, T., and Jensen, H. W., Pre-
computed local radiance transfer for real-time lighting
design. ACM Trans. Graph. 24, July 2005, pp. 1208-
1215.

[Lam02a] Lamorlette, A., and Foster, N. Structural model-
ing of flames for a production environment. Proceedings
of the 29th annual conference on Computer graphics and
interactive techniques, ACM, New York, NY, USA, SIG-
GRAPH ’02, 2002, pp. 729-735.

[Ngu01a] Nguyen, D. Q., Fedkiw, R. P., and Kang, M. A
boundary condition capturing method for incompressible
flame discontinuities. Journal of Computational Physics
172, September, 2001, pp. 71–98.

[Ngu02a] Nguyen, D. Q., Fedkiw, R., and Jensen, H. W.
Physically based modeling and animation of fire. Pro-
ceedings of the 29th annual conference on Computer
graphics and interactive techniques, ACM, New York,
NY, USA, SIGGRAPH ’02, 2002, pp. 721–728.

[Slo02a] Sloan, P.-P., Kautz, J., and Snyder, J. Precomputed
radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. Proceedings of the 29th
annual conference on Computer graphics and interactive
techniques, ACM, New York, NY, USA, SIGGRAPH ’02,
2002, pp. 527–536.

[Wei02a] Wei, X., Li, W., Mueller, K., and Kaufman, A.
Simulating fire with texture splats. Proceedings of the
conference on Visualization ’02, IEEE Computer Soci-
ety, Washington, DC, USA, VIS ’02, 2002, pp. 227–235.

[Zha03a] Zhao, Y., Wei, X., Fan, Z., Kaufman, A., and Qin,
H. Voxels on fire. Proceedings of the 14th IEEE Visual-
ization 2003 (VIS’03), IEEE Computer Society, Wash-
ington, DC, USA, VIS ’03, 2003, pp. 36.

[Zha11a] Zhang, Y., Zhu, D., Qiu, X., Wang, Z. Important
Sampling for volumetric illumination of flames. Visual
Computing in Biology and Medicine, VR in Brazil, Com-
puter & Graphics, 35(2), 2011, pp. 312-319.

