
Interactively Simulating Fluid based on SPH and

CUDA

Yige Tang

Beijing Normal University

No. 19 XinJieKouWai St

Haidian District

100875, Beijing, China

solidsnake1905@gmail.co

m

Zhongke Wu

Beijing Normal University

No. 19 XinJieKouWai St

Haidian District

100875, Beijing, China

zwu@bnu.edu.cn

Mingquan Zhou

Beijing Normal University

No. 19 XinJieKouWai St

Haidian District

100875, Beijing, China

mqzhou@bnu.edu.cn

ABSTRACT

In this paper, we propose a novel method of interactive fluid simulating based on SPH, and

implement it on CUDA (Compute Unified Device Architecture). Firstly we use SPH (Smoothed

Particle Hydrodynamics) theory to simulate the motion of fluids. Secondly we propose an interactive

method between fluid and rigid objects. We treat the rigid objects as two different types, static one and

dynamic one. We deal with the two types in separately suitable ways in order to enforce their motion

similar to the real world. By taking advantages of CUDA which are greatly effective for large scale

numeric computation in parallel, our simulation achieves real time with low cost.

Keywords

Simulation, Fluid, SPH, CUDA, Interactive

1. Introduction

As a common phenomenon in nature, simulation

of fluid including water and smoke is an important

part in visual reality. After Reeves’ proposal of

particle system in 1983, which is used to present

non-solid objects such as water, fire and smokes,

researchers have done a lot of work for simulating

fluid vividly and effectively. Fluid simulation is

usually applied in medical image visual reality and

video game. Simulating fluid in computer is a tough

issue. Although the theory of computational fluid

dynamics has existed for many years, some properties

of fluid which contains convection, turbulence and

surface tension are difficult to be expressed through

simple modeling. However, due to the fact that the

real time simulation is more important than

computational precision in computer graphics, the

mathematical model and implementation focus on

real time and visual effects more than precision in

fluid computation.

The earliest approach of fluid simulation is

simple particle system, which is proposed by Reeves

in simulating fire and flake [Ree83a]. After that,

Shinya and Stam improved particle system

respectively in their work by introducing random

turbulences [Shi92a] [Sta93a]. Fluid simulation based

on Navier-Stokes Equations is implemented in 2D

space firstly, both Gamito and Yaeger et al. have

made contributions to it [Gam95a] [Yae86a]. In 1997,

Stam et al. proposed an approach based on grid to

simulating smoke [Sta99a], which is the first

interactive method on fluid simulation.

There are two approaches of simulating fluid

based on Navier-Stokes equations, the Eulerian

viewpoint and the Lagrangian viewpoint.

In the Eulerian approach, which is based on

mailto:solidsnake1905@gmail.com
mailto:solidsnake1905@gmail.com
mailto:zwu@bnu.edu.cn

position, the fluid properties on some fixed points are

computed. The absolute locations of fixed points

never change, and the properties need to be computed

are velocity, pressure, density, etc. The Eulerian

method is appropriate for simulating gases, while is

not able to present liquid well in wave and foam. The

Lagrangian approach is different from Eulerian one

as it is based on particles. Desbrun et al. and

Tonnesen use particles to present soft objects [Ses96a]

[Ton98a]. Witkin et al. use particles to control

implicit surface [Wit94a]. Dan et al. simulate lava by

using particles [Sto99a]. Comparing with Eulerian

approach, Lagrangian approach has several following

advantages. First, it’s not grid based, so fluid can

move in the whole scene and interact with other

object. Second, it can present more details of fluid,

such as the mergence and dispersing of water drop.

Recently, the most common Lagrangian

approach is based on smoothed particle

hydrodynamics (SPH), which is proposed by Lucy in

1977 [Luc77a] firstly used in

astronomical phenomenon. Muller et al. introduced

SPH theory to compute fluid simulation in 2003

[Mul03a]. Their approach simplifies solution method

of Navier-Stokes equations, while the amount of

calculation is so great that it’s hard to implementing

animation in real time when the quantity of particles

is huge.

Development of programmable GPU technique

makes large-scale numeric computation be solved

effectively under low cost. Due to the feature, SPH

method can be solved in parallel. Through

programming on GPU, real-time simulation for

large-scale-particles fluid becomes possible. The

GPU based radix sorting approach designed by Satish

et al. combining with spatial uniformed-grid, reduces

the cost in finding neighbors of particles

[Sat08a].Then the method improves the

computational speed. In 2004 Amada et al.

implemented forces’ computation of particles

[Ama04a], while the neighbor finding task is still

done by CPU. The method completely implemented

on GPU is firstly proposed by Kolb and Cunts in

2005 [Kol05a]. This approach emerges earlier than

CUDA.

 CUDA is a general-purpose GPU programming

toolkit released by nVIDIA in 2007, which makes it

possible to use C language program on GPU. With

the help of CUDA, the processors of GPU can run

parallelly by independently executing the same

groups of operations on different sets of data. The

above features are well suited for SPH method,

because the same groups of operations such as force

computation, speed and position update are

completely same and have to be executed for each

particle.

2. Fundamentals

2.1 Smoothed Particle Hydrodynamics

Essentially, SPH is a computational model to

compute the interactive result of each particle in the

fluid system. It defines a way to compute properties

of a fix point impacted by other particles in the

continuous space. A distance related weighted

function which is called kernel function is the

key of SPH method. is the distance between some

position and particle position . Another form

of kernel function is | | . Kernel function

satisfies the following equation ∫ | |

 .We use poly6 kernel as our kernel function, its

form is

 {

 (1)

After affirming kernel function, smoothed fields

 of arbitrary attributes of the particle as

 ∑

 | | (2)

After replacing the kernel in formula (2) by the

gradient of the kernel, we easily get the gradients of

the field as following.

 ∑

 | | (3)

 In SPH simulation, we only need consider

pressure, viscous force and external force. Pressure

and viscous force can be calculated by above

formulations.

2.1.1 Pressure

Formula (2) is used on computing pressure yields

 ∑

 | | (4)

If there are only two particles, the pressure force

calculated by formula (4) will not be symmetric

because the pressures at the locations of the two

particles are not equal. Following equation is a

simple, stable and fast solution.

 ∑

 | | (5)

Since particles only carry the three quantities mass,

position and velocity, the pressure at particle

locations has to be evaluated firstly.

We compute pressure by using equation (6)

 (6)

Here is a gas constant and is the

environmental pressure.

2.1.2 Viscosity

We use following equation to calculate

viscosity.

 ∑

 | | (7)

Since viscosity forces are dependent on velocity

differences and not on absolute velocities, there is a

natural way to symmetrize the viscosity forces by

using velocity differences:

 ∑

 | | (8)

2.1.3 External Forces

External forces include gravity, collision forces

and interaction forces with environment. They are

applied directly to the particles without the use of

SPH.

2.1.4 Computing Procedure

The SPH model is executed under the following

steps:

1) Find neighbors of each particle

2) Calculate the particle density

3) Calculate forces on particles

4) Update position and velocity of particles in

next time step

After finishing these steps, the particles move

obeying SPH rules can be rendered shown in Figure

1.

2.2 Neighbors Search

SPH is computationally heavy. The first step is

finding neighbors of each particle. In worst case, each

particle should be compared with all of others, whose

complexity is .To avoid this, using uniform

grid reduces most of cost. We use the algorithm

presented in [Gre08a], which can be summarized as

follows:

Figure 1. A group of SPH particles. Their

motions are computed by above formulas.

1) Divide the simulation domain into a

uniform grid.

2) Use the spatial position of each particle to

find the cell it belongs to.

3) Use the particle cell position as input to a

hash function

4) Sort the particle according to their spatial

hash.

5) Reorder the particles in a linear buffer

according to their hash value.

After those steps, it satisfies that particles in the

same cell will lie consecutively in the linear buffer,

which makes finding neighbors much more

effectively.

Radix sort’s implementation on GPU is

proposed by Satish et al. [5]

(a)

Before sort:

ParticleIndex

81 2 3 4 5 6 7

ParticleCell

20 3 0 1 1 2 1

(b)

After sort:

ParticleIndex

81 2 3 4 5 6 7

OldIndex

81 23 4 5 67

ParticleCell

20 30 1 1 21

CellStart

1 3 6 8

CellEnd

2 5 7 8

(c)

3. Interaction with Rigid Objects

We classify rigid objects into two types. One

type of them is static object such as glass with water.

However the water acts, the glass keeps still. Another

type is dynamic object such as a block on the water.

We use different methods to simulate them

respectively.

3.1 Interaction with Static Objects

It is easy to compute the interaction between

particles and static rigid objects. Since the object

can’t move, there is no need to compute a force from

the particles on the object. We only compute the

penalty force, which forces the particle back into the

fluid region in the opposite direction. Deformation

will not happen on that static object.

When a particle collides with a static object, a

penalty force is applied. Moore and Wilhelms

provide a comprehensive introduction to the penalty

force method [Mat88a]. Here we use the penalty

force applied to a fluid particle can be calculated by

equation (9).

 (9)

In equation (9), is the distance by which the

particle has interpenetrated the static object, is a

Figure 2. Data structure used by radix sort. (a)

presents particles’ position in the cells. (b)is

status of arrays before sort. (c) shows the

arrays needed after sort. The particles in same

cell are consecutive in ParticleIndex array. We

use OldIndex array to get the particle index

before sort in order to access the velocity and

position of particles.

spring constant, is a damping constant, is the

normal vector at the collision location, and is the

relative velocity of the particle to the static object.

3.2 Interaction with Dynamic Rigid

Bodies

Computing interaction with dynamic objects is

more complicated.

We treat dynamic rigid bodies as a portion of

fluid whose initial density is greater than the initial

density of the fluid. The only difference is in

computing the pressure impaction between fluid and

particles of rigid bodies. The rigid particles push the

fluid away from the rigid bodies. Likewise, the fluid

particles apply a pressure that results in a pure

translation or rotation of the rigid bodies.

The pressure applied on a rigid body particle is

given by equation (10), and the pressure at a fluid

particle is given by equation (11).

 {
 (

)

 (10)

 {
 (

)

 (11)

Here,

is the rigid body’s initial density,

while
 is the fluid’s.

The rigid objects construct of rigid particles,

whose motion is restricted to translation and rotation

without deformation. Pressure is applied individually

to each rigid particle, causing them to move

independently. After that, we need modify the

position of those particles to keep the rigid body’s

shape.

 The mass of whole object formed by rigid

particles is calculated by formula (12).

 ∑ (12)

Here, is the single particle’s mass. Assuming all

of the particles are the same, then the velocity of the

center of mass can be computed by formula (13).

∑ (13)

N is the amount of particles, and is velocity

of a single particle .The angular velocity of the rigid

body is approximated by equation (14).

∑ (14)

Here is the location of a single particle

relative to its corresponding rigid body center of

mass.

By using those above equations, we can get a

rigid object’s velocity and angular velocity. Then we

can simulate the motion of that rigid object.

4. CUDA Computation

In our implementation, we use three texture

arrays to store positions, velocities and densities of

particles in last computing procedure, and we write

new values to global memory of GPU respectively.

The following Table 1 outlines the steps of our SPH

algorithm with CUDA.

SPHCompute() //for each frame

{

 Copy particles’ properties from CPU to GPU

 Set physical parameters of environment

 Hash particles by their spatial position

Sort particles using radix-sort

/*--ComputeDensity--*/

Launch CUDA kernel function for each

thread

Each thread calculate one particle

Compute new densities using other particles

in 27 neighbor grids by using SPH kernel function

 __syncthreads()

Table 1.The procedure of SPH computing in our

implementation

5. Rendering

By using density we have computed in above

work, the Marching Cubes method is applied in our

work. An image spaced method is applied to simulate

the refractive effect. The rendering method not only

obtains a good visualization effect, but also bring

little calculation burden. The rendering results are

shown in Figure 3.

.

6. Conclusions

In this paper, we presented an interactive fluid

simulating method based on Smoothed Particle

Hydrodynamics. Our implementation can simulate

fluid in real time and vividly with the help of CUDA

and GLSL. The fluid we simulate looks like in real

world with wave and foam. Additionally, the method

which we propose in this paper also makes the fluid

interacting with rigid objects well. The fluid in the

box can move with the rotation of the box. The wood

block in the box is floated under the force from the

water. Figure 4 shows the interactive results of our

implementation.

(a) Result of interacting with static rigid objects.

(b) Result of interacting with dynamic rigid objects.

Through using CUDA, the method achieves real

time simulation, since we take the advantage of the

capacity of parallel computation afforded by GPU.

Our implementation runs on below platform:

Windows7 OS 64-Bit， Intel(R) Core(TM) i7

CPU @3.07GHZ, 6GB RAM and GeForce GTX 570

with 1280MB video memory.

The results of frame rates are shown in table 2.

/*--Compute Force--*/

Launch CUDA kernel function for each thread

Each thread calculate one particle

Calculate forces using densities computed above,

including pressure and viscosity

Handle external forces such as gravity

}

Figure 3. Water rendered by using marching

cube. The refraction effects are generated by

CGSL

Figure 4. Results of interacting with

rigid objects

number of Particles frame rate (FPS)

65,536 98.1

131,072 42.2

262,144 18.8

(a) results without free surface rendering

number of Particles frame rate (FPS)

65,536 50.9

131,072 22.8

262,144 10.4

(b) results with free surface rendering

Table 2. Runtime result of our implementation on

above platform

The large performance gap between the results in

Table 2(a) and the ones in Table 2(b) is due to the

surface rendering. The surface rendering takes extra

cost on memory and time. The above table presents

that our implementation performs very well.

7. References

 [Ama04a] T. Amada, M. Imura, Y. Yasumuro, Y.

Manabe, K. Chihara. Particle - based fluid simulation

on the GPU. Proc. ACM Workshop on General -

purpose Computing on Graphics Processors, 2004.

[Gam95a] M. N. Gamito, P. F. Lopes, and M. R.

Gomes. Two dimensional Simulation of Gaseous

Phenomena Using Vortex Particles. In Proceedings of

the 6th Eurographics Workshop on Computer

Animation and Simulation, pages 3–15. Springer -

Verlag, 1995.

[Gre08a] S. Green. Cuda Particles. Technicle report,

NVIDIA.

[Kol05a] A. Kolb, N. Cuntz. Dynamic particle

coupling for GPU-based fluid simulation. Proc. 18th

Symposium on Simulation Technique, 722-727,

2005.

[Luc77a] L. B. Lucy. A numerical approach to the

testing of the fission hypothesis. The Astronomical

Journal, 82: 1013-1024, 1977.

[Mat88a] M. Matthew, J. Wilhelms, Collision

Detection and Response for Computer Animation.

Proceedings of the 15th Annual Conference on

Computer Graphics and Interactive Techniques,

ACM Press: p. 289-298, 1988.

[Mul03a] M. Muller, D. Charypar, M. Gross.

Particle-Based Fluid Simulation for Interactive

Applications.Eurographics/SIGGRAPH Symposium

on Computer Animation, 2003

[Ree83a] W. T. Reeves. Particle systems: a technique

for modeling a class of fuzzy objects. ACM

Transactions on Graphics 2(2), pages 91-108, 1983.

[Sat08a] N. Satish, M. Harris, M. Garland. Designing

efficient sorting algorithms for many core gpus.

NVIDIA Technical Report NVR-2008-001, NVIDIA

Corporation, Sept, 2008.

[Ses96a] M. Desbrun and M. P. Cani. Smoothed

particles: A new paradigm for animating highly

deformable bodies. In Computer Animation and

Simulation ’96 (Proceedings of EG Workshop on

Animation and Simulation), pages 61-76. Springer -

Verlag, Aug 1996.

[Shi92a] M. Shinya and A. Fourier Stochastic Motion:

Motion Under the Influence of Wind. In Proceedings

of Eurographics’92, pages 119-128, September 1992.

[Sta93a] J. Stam and E. Fiume. Turbulent Wind

Fields for Gaseous Phenomena. In Proceedings of

SIGGRAPH ’93, pages 369–376. Addison-Wesley

Publishing Company, August 1993.

[Sta99a] J. Stam. Stable fluids. In Proceedings of the

26th annual conference on Computer graphics and

interactive techniques, pages 121–128. ACM

Press/Addison-Wesley Publishing Co., 1999.

[Sto99a] D. Stora, P. Agliati, M. Cani, F. Neyret, J.

Gascuel. Animating lava flows. In Graphics Interface,

pages 203-210, 1999.

[Ton98a] D. Tonnesen. Dynamically Coupled

Particle Systems for Geometric Modeling,

Reconstruction, and Animation. PhD thesis,

University of Toronto, November 1998.

[Wit94a] A. Witkin and P. Heckbert. Using particles

to sample and control implicit surfaces. In Computer

Graphics (Proc. SIGGRAPH ’94), volume 28, 1994.

[Yae86a] L. Yaeger and C. Upson. Combining

Physical and Visual Simulation. Creation of the

Planet Jupiter for the Film 2010. ACM Computer

Graphics (SIGGRAPH ’86), 20(4):85–93, August

1986.

Acknowledgements
The work is partially supported by National Natural

Science Foundation of China (No: 61170170) and the

Fundamental Research Funds for the Central

Universities (No: 2009SD-11)

Corresponding author, Email: zwu@bnu.edu.cn

mailto:zwu@bnu.edu.cn

