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ABSTRACT 

In this paper, we propose a novel method of interactive fluid simulating based on SPH, and 

implement it on CUDA (Compute Unified Device Architecture). Firstly we use SPH (Smoothed 

Particle Hydrodynamics) theory to simulate the motion of fluids. Secondly we propose an interactive 

method between fluid and rigid objects. We treat the rigid objects as two different types, static one and 

dynamic one. We deal with the two types in separately suitable ways in order to enforce their motion 

similar to the real world. By taking advantages of CUDA which are greatly effective for large scale 

numeric computation in parallel, our simulation achieves real time with low cost. 
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1. Introduction 

As a common phenomenon in nature, simulation 

of fluid including water and smoke is an important 

part in visual reality. After Reeves’ proposal of 

particle system in 1983, which is used to present 

non-solid objects such as water, fire and smokes, 

researchers have done a lot of work for simulating 

fluid vividly and effectively. Fluid simulation is 

usually applied in medical image visual reality and 

video game. Simulating fluid in computer is a tough 

issue. Although the theory of computational fluid 

dynamics has existed for many years, some properties 

of fluid which contains convection, turbulence and 

surface tension are difficult to be expressed through 

simple modeling. However, due to the fact that the 

real time simulation is more important than 

computational precision in computer graphics, the 

mathematical model and implementation focus on 

real time and visual effects more than precision in 

fluid computation. 

The earliest approach of fluid simulation is 

simple particle system, which is proposed by Reeves 

in simulating fire and flake [Ree83a]. After that, 

Shinya and Stam improved particle system 

respectively in their work by introducing random 

turbulences [Shi92a] [Sta93a]. Fluid simulation based 

on Navier-Stokes Equations is implemented in 2D 

space firstly, both Gamito and Yaeger et al. have 

made contributions to it [Gam95a] [Yae86a]. In 1997, 

Stam et al. proposed an approach based on grid to 

simulating smoke [Sta99a], which is the first 

interactive method on fluid simulation. 

There are two approaches of simulating fluid 

based on Navier-Stokes equations, the Eulerian 

viewpoint and the Lagrangian viewpoint. 

In the Eulerian approach, which is based on 
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position, the fluid properties on some fixed points are 

computed. The absolute locations of fixed points 

never change, and the properties need to be computed 

are velocity, pressure, density, etc. The Eulerian 

method is appropriate for simulating gases, while is 

not able to present liquid well in wave and foam. The 

Lagrangian approach is different from Eulerian one 

as it is based on particles. Desbrun et al. and 

Tonnesen use particles to present soft objects [Ses96a] 

[Ton98a]. Witkin et al. use particles to control 

implicit surface [Wit94a]. Dan et al. simulate lava by 

using particles [Sto99a]. Comparing with Eulerian 

approach, Lagrangian approach has several following 

advantages. First, it’s not grid based, so fluid can 

move in the whole scene and interact with other 

object. Second, it can present more details of fluid, 

such as the mergence and dispersing of water drop. 

Recently, the most common Lagrangian 

approach is based on smoothed particle 

hydrodynamics (SPH), which is proposed by Lucy in 

1977 [Luc77a] firstly used in 

astronomical phenomenon. Muller et al. introduced 

SPH theory to compute fluid simulation in 2003 

[Mul03a]. Their approach simplifies solution method 

of Navier-Stokes equations, while the amount of 

calculation is so great that it’s hard to implementing 

animation in real time when the quantity of particles 

is huge. 

Development of programmable GPU technique 

makes large-scale numeric computation be solved 

effectively under low cost. Due to the feature, SPH 

method can be solved in parallel. Through 

programming on GPU, real-time simulation for 

large-scale-particles fluid becomes possible. The 

GPU based radix sorting approach designed by Satish 

et al. combining with spatial uniformed-grid, reduces 

the cost in finding neighbors of particles 

[Sat08a].Then the method improves the 

computational speed. In 2004 Amada et al. 

implemented forces’ computation of particles 

[Ama04a], while the neighbor finding task is still 

done by CPU. The method completely implemented 

on GPU is firstly proposed by Kolb and Cunts in 

2005 [Kol05a]. This approach emerges earlier than 

CUDA. 

 CUDA is a general-purpose GPU programming 

toolkit released by nVIDIA in 2007, which makes it 

possible to use C language program on GPU. With 

the help of CUDA, the processors of GPU can run 

parallelly by independently executing the same 

groups of operations on different sets of data. The 

above features are well suited for SPH method, 

because the same groups of operations such as force 

computation, speed and position update are 

completely same and have to be executed for each 

particle. 

2. Fundamentals 

2.1 Smoothed Particle Hydrodynamics 

Essentially, SPH is a computational model to 

compute the interactive result of each particle in the 

fluid system. It defines a way to compute properties 

of a fix point impacted by other particles in the 

continuous space. A distance related weighted 

function      which is called kernel function is the 

key of SPH method. is the distance between some 

position   and particle     position   . Another form 

of kernel function is   |    | . Kernel function 

satisfies the following equation ∫  |    |    

 .We use poly6 kernel as our kernel function, its 

form is 
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After affirming kernel function, smoothed fields 

      of arbitrary attributes    of the particle as 
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After replacing the kernel in formula (2) by the 

gradient of the kernel, we easily get the gradients of 

the field as following. 
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 In SPH simulation, we only need consider 

pressure, viscous force and external force. Pressure 

and viscous force can be calculated by above 

formulations. 

 

2.1.1 Pressure 

Formula (2) is used on computing pressure yields 
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If there are only two particles, the pressure force 

calculated by formula (4) will not be symmetric 

because the pressures at the locations of the two 

particles are not equal. Following equation is a 

simple, stable and fast solution. 

 

  
        

          ∑   
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Since particles only carry the three quantities mass, 

position and velocity, the pressure at particle 

locations has to be evaluated firstly. 

We compute pressure by using equation (6) 

 

                (6) 

 

Here   is a gas constant and    is the 

environmental pressure. 

2.1.2 Viscosity 

We use following equation to calculate 

viscosity. 
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Since viscosity forces are dependent on velocity 

differences and not on absolute velocities, there is a 

natural way to symmetrize the viscosity forces by 

using velocity differences: 
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2.1.3 External Forces 

External forces include gravity, collision forces 

and interaction forces with environment. They are 

applied directly to the particles without the use of 

SPH. 

 

2.1.4 Computing Procedure 

The SPH model is executed under the following 

steps: 

1) Find neighbors of each particle 

2) Calculate the particle density 

3) Calculate forces on particles 

4) Update position and velocity of particles in 

next time step 

After finishing these steps, the particles move 

obeying SPH rules can be rendered shown in Figure 

1. 

 

 

 

2.2 Neighbors Search 

SPH is computationally heavy. The first step is 

finding neighbors of each particle. In worst case, each 

particle should be compared with all of others, whose 

complexity is      .To avoid this, using uniform 

grid reduces most of cost. We use the algorithm 

presented in [Gre08a], which can be summarized as 

follows: 

Figure 1. A group of SPH particles. Their 

motions are computed by above formulas. 



 

1) Divide the simulation domain into a 

uniform grid. 

2) Use the spatial position of each particle to 

find the cell it belongs to. 

3) Use the particle cell position as input to a 

hash function 

4) Sort the particle according to their spatial 

hash. 

5) Reorder the particles in a linear buffer 

according to their hash value. 

 

After those steps, it satisfies that particles in the 

same cell will lie consecutively in the linear buffer, 

which makes finding neighbors much more 

effectively. 

Radix sort’s implementation on GPU is 

proposed by Satish et al. [5] 

 

 

(a) 

Before sort: 

ParticleIndex 

81 2 3 4 5 6 7
 

ParticleCell 

20 3 0 1 1 2 1
 

(b) 

After sort: 

ParticleIndex 

81 2 3 4 5 6 7
 

OldIndex 

81 23 4 5 67
 

ParticleCell 

20 30 1 1 21
 

CellStart 

1 3 6 8
 

CellEnd 

2 5 7 8
 

(c) 

 

3. Interaction with Rigid Objects 

We classify rigid objects into two types. One 

type of them is static object such as glass with water. 

However the water acts, the glass keeps still. Another 

type is dynamic object such as a block on the water. 

We use different methods to simulate them 

respectively. 

 

3.1 Interaction with Static Objects 

It is easy to compute the interaction between 

particles and static rigid objects. Since the object 

can’t move, there is no need to compute a force from 

the particles on the object. We only compute the 

penalty force, which forces the particle back into the 

fluid region in the opposite direction. Deformation 

will not happen on that static object. 

When a particle collides with a static object, a 

penalty force is applied. Moore and Wilhelms 

provide a comprehensive introduction to the penalty 

force method [Mat88a]. Here we use the penalty 

force applied to a fluid particle can be calculated by 

equation (9). 

 

                       (9) 

 

In equation (9),   is the distance by which the 

particle has interpenetrated the static object,    is a 

Figure 2. Data structure used by radix sort. (a) 

presents particles’ position in the cells. (b)is 

status of arrays before sort. (c) shows the 

arrays needed after sort. The particles in same 

cell are consecutive in ParticleIndex array. We 

use OldIndex array to get the particle index 

before sort in order to access the velocity and 

position of particles. 



 

spring constant,    is a damping constant,   is the 

normal vector at the collision location, and   is the 

relative velocity of the particle to the static object. 

 

3.2 Interaction with Dynamic Rigid 

Bodies 

Computing interaction with dynamic objects is 

more complicated. 

We treat dynamic rigid bodies as a portion of 

fluid whose initial density is greater than the initial 

density of the fluid. The only difference is in 

computing the pressure impaction between fluid and 

particles of rigid bodies. The rigid particles push the 

fluid away from the rigid bodies. Likewise, the fluid 

particles apply a pressure that results in a pure 

translation or rotation of the rigid bodies. 

The pressure applied on a rigid body particle is 

given by equation (10), and the pressure at a fluid 

particle is given by equation (11). 
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Here,   
     

is the rigid body’s initial density, 

while   
      is the fluid’s. 

The rigid objects construct of rigid particles, 

whose motion is restricted to translation and rotation 

without deformation. Pressure is applied individually 

to each rigid particle, causing them to move 

independently. After that, we need modify the 

position of those particles to keep the rigid body’s 

shape. 

 The mass   of whole object formed by rigid 

particles is calculated by formula (12). 

 

  ∑           (12) 

 

Here,    is the single particle’s mass. Assuming all 

of the particles are the same, then the velocity of the 

center of mass can be computed by formula (13). 

 

   
 

 
∑           (13) 

 

N is the amount of particles, and    is velocity 

of a single particle  .The angular velocity of the rigid 

body   is approximated by equation (14). 

 

  
 

 
∑              (14) 

 

Here   is the location of a single particle   

relative to its corresponding rigid body center of 

mass. 

By using those above equations, we can get a 

rigid object’s velocity and angular velocity. Then we 

can simulate the motion of that rigid object. 

 

4. CUDA Computation 

In our implementation, we use three texture 

arrays to store positions, velocities and densities of 

particles in last computing procedure, and we write 

new values to global memory of GPU respectively. 

The following Table 1 outlines the steps of our SPH 

algorithm with CUDA. 

 

SPHCompute() //for each frame 

{ 

 Copy particles’ properties from CPU to GPU 

 Set physical parameters of environment 

 Hash particles by their spatial position 

Sort particles using radix-sort 

/*--ComputeDensity--*/ 

Launch CUDA kernel function for each 

thread 

Each thread calculate one particle 

Compute new densities using other particles 

in 27 neighbor grids by using SPH kernel function 

 __syncthreads() 

  

 



 

 

Table 1.The procedure of SPH computing in our 

implementation 

 

5. Rendering 

By using density we have computed in above 

work, the Marching Cubes method is applied in our 

work. An image spaced method is applied to simulate 

the refractive effect. The rendering method not only 

obtains a good visualization effect, but also bring 

little calculation burden. The rendering results are 

shown in Figure 3. 

 

 

 

. 

6. Conclusions 

In this paper, we presented an interactive fluid 

simulating method based on Smoothed Particle 

Hydrodynamics. Our implementation can simulate 

fluid in real time and vividly with the help of CUDA 

and GLSL. The fluid we simulate looks like in real 

world with wave and foam. Additionally, the method 

which we propose in this paper also makes the fluid 

interacting with rigid objects well. The fluid in the 

box can move with the rotation of the box. The wood 

block in the box is floated under the force from the 

water. Figure 4 shows the interactive results of our 

implementation. 

 

(a) Result of interacting with static rigid objects. 

 

(b) Result of interacting with dynamic rigid objects. 

 

Through using CUDA, the method achieves real 

time simulation, since we take the advantage of the 

capacity of parallel computation afforded by GPU. 

Our implementation runs on below platform:  

Windows7 OS 64-Bit， Intel(R) Core(TM) i7 

CPU @3.07GHZ, 6GB RAM and GeForce GTX 570 

with 1280MB video memory. 

The results of frame rates are shown in table 2. 

 

/*--Compute Force--*/ 

Launch CUDA kernel function for each thread 

Each thread calculate one particle 

Calculate forces using densities computed above, 

including pressure and viscosity 

Handle external forces such as gravity 

} 

Figure 3. Water rendered by using marching 

cube. The refraction effects are generated by 

CGSL 

Figure 4. Results of interacting with 

rigid objects 



 

number of Particles frame rate (FPS) 

65,536 98.1 

131,072 42.2 

262,144 18.8 

(a) results without free surface rendering 

 

number of Particles frame rate (FPS) 

65,536 50.9 

131,072 22.8 

262,144 10.4 

(b) results with free surface rendering 

Table 2. Runtime result of our implementation on 

above platform 

 

The large performance gap between the results in 

Table 2(a) and the ones in Table 2(b) is due to the 

surface rendering. The surface rendering takes extra 

cost on memory and time. The above table presents 

that our implementation performs very well.  
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