
Voxel-Space Shape Grammars

Zacharia Crumley
University of Cape Town

South Africa
zacharia.crumley@gmail.com

Patrick Marais
University of Cape Town

South Africa
patrick@cs.uct.ac.za

James Gain
University of Cape Town

South Africa
jgain@cs.uct.ac.za

ABSTRACT
We present a novel extension to shape grammars, in which the generated shapes are voxelized. This allows easy
Boolean geometry operations on the shapes, and detailing of generated models at a sub-shape level, both of which
are extremely difficult to do in conventional shape grammar implementations. We outline a four step algorithm
for using these extensions, discuss a number of optional enhancements and optimizations, and test our extension’s
performance and range of output. The results show that our unoptimized algorithm is slower than conventional
shape grammar implementations, with a running time that is O(N3) for a N3 voxel grid, but is able to produce a
broad range of detailed outputs.

Keywords:
procedural generation, shape grammars, voxels

1 INTRODUCTION
For video games, virtual environments, and cinema spe-
cial effects, cost-effective content creation is an increas-
ing concern. The amount of models, animations, tex-
tures, and sounds needed for these applications has
been steadily growing with the increase in computa-
tional power and the quality of graphics. It is now at
a point where hundreds of modellers, animators, and
artists will work for months or years to create the con-
tent necessary for a single mainstream video game or
blockbuster film. The large size of these teams means
the costs involved are significant, and in spite of the
number of people working on the project, long develop-
ment times are still the norm. For this reason, content
creators have begun turning to procedural generation,
as a way of decreasing costs and shortening develop-
ment times.
Procedural generation refers to methods designed to
algorithmically generate content, instead of having it
hand-crafted. Minimal human interaction is required –
generally limited to setting the initial parameters of the
algorithm, or providing example inputs.
Today procedural generation is increasingly used to
generate large amounts of high quality content, par-
ticularly plants, landscapes, and textures. This is ev-
idenced by the growth of commercial procedural gen-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

eration software, such as SpeedTree1, Terragen2, and
CityEngine3. There are many procedural generation al-
gorithms [14] but our research focuses specifically on
shape grammars [18]. These are a type of formal gram-
mar, consisting of an axiom (the initial item to begin
with) and a set of production rules which modify, add,
or replace items.
Shape grammars are distinguished from conventional
grammars, in that their rules operate directly on ge-
ometric shapes instead of symbols from an alphabet.
Their production rules include geometric operations on
shapes (such as rotation, scaling, etc.), in addition to
shape replacement (as grammars do with symbols). An
example of a basic shape grammar is shown in figure 1.
Shape grammars were originally developed in architec-
ture as a tool for formalizing architectural design. Al-
though still used for that purpose, they are also find-
ing use in computer science as a method for procedu-
rally generating models of buildings and other struc-
tures. This is the application our research focuses on.
Conventional shape grammars operate on mesh repre-
sentations of shapes. These are moved, rotated, subdi-
vided and otherwise operated on until a final collection
of shape meshes is produced: the output of the shape
grammar.
However, there are two major problems with conven-
tional mesh-based shape grammars, as used in proce-
dural generation and both are difficult to solve.
Firstly, it is difficult to robustly apply constructive solid
geometry (CSG) or Boolean geometric operations on

1 http://www.speedtree.com/
2 http://www.planetside.co.uk/
3 http://www.procedural.com/

Axiom Rule 1 Rule 2

Figure 1: A simple shape grammar that produces an
infinite series of 2D stairs, and its first three iterations.

meshes: overlapping edges and vertices must be identi-
fied and trimmed or removed, whichever is appropriate.
This can lead to complications around numeric stabil-
ity, slivers, degenerate triangles, and other issues. Al-
ternatively, this redundant geometry can be left hidden,
but this is inefficient. It may also be necessary to cre-
ate new geometry. This process is complex, and there
are edge cases that remain problematic. Even with such
an algorithm, the overlap between different shapes can
lead to texture seams. This is visually unappealing and
difficult to overcome.

The second limiting problem of mesh shape grammars
is that texturing is done at a per-shape level. The faces
of each shape, or pre-made piece of geometry, have
fixed texture coordinates and associated 2D textures
that are projected onto the faces. This means it is diffi-
cult to have texture details that span multiple shapes, or
control the textures at a sub-shape level.

For example, it would be difficult to create racing strips
running along a car model produced by a shape gram-
mar, since the different sections of the car are made up
of different polygons created by different rules.

Modifying shape grammars to operate in a voxel-space
solves these limitations. CSG operations on voxels are
trivial, solving the first deficiency. For the second, tex-
tures can be assigned on a per-voxel basis, which allows
details to more easily span shapes and removes the tex-
ture’s association with a specific shape.

Using voxels presents some challenges, such as the
need for large amounts of memory and storage, and
the discrete nature of the underlying grid, which can
introduce aliasing artifacts and other sampling issues.
However, these problems can be dealt with, or worked
around, using tree data structures for efficiently manag-
ing space, which also allow us to use high resolution
voxel grids, reducing the impact of aliasing artifacts.

This paper presents our preliminary research into inter-
preting shape grammars in a voxel space, in contrast to
the traditional mesh geometry approach. Our goal is to
extend the expressive range of shape grammars with the
ability to easily and robustly apply Boolean geometry
operations.

Our major, and novel, contribution is an algorithm for
this process. The algorithm is made up of four main

stages, and produces a mesh model, suitable for use in
real-time, or offline, 3D graphics. We also discuss opti-
mizations and optional steps for the algorithm, as well
as testing its performance and range of output.

2 RELATED WORK

Stiny and Gips [18] first developed shape grammars in
an attempt to formalize architectural design. Although
still used in architecture, they have also been adapted
for use in the procedural generation of structures for
other applications [19, 12].

Early shape grammars were simplistic with a limited
range of output, but over time several ideas from pro-
cedural generation, most notably from L-systems, were
incorporated into shape grammar implementations.
Most notably, environmental sensitivity and stochastic
rules [3]. With environmental sensitivity, rules can
query the current set of shapes and adjust their output
based on the information they get. Stochastic rules
introduce randomness, by randomly choosing different
outputs and parameters to introduce variation in the
shapes generated.

Shape grammars were later extended to building gen-
eration using split grammars [19], which focus on sub-
division of shapes. For example, a building’s wall is
divided first into floors, then the floors into different
rooms, and finally the walls of the rooms into different
windows. Split grammars are particularly well suited to
façade generation [19] due to the regular, grid-like lay-
out of building windows. They work by recursive sub-
division of a shape, guided by following productions
from a rule set. The final set of shapes that arise from
the repeated subdivision form a model of the desired
building wall. However, split grammars are less suc-
cessful at creating internal structure. Early approaches
to this problem tended to be simplistic, such as using
n-sided prisms as the split grammar axioms [4]. Subse-
quently, better methods were developed, such as start-
ing from the building’s footprint obtained from aerial
imagery [7], and creating the building’s structure with
shape grammar rules [12].

Along with the other extensions mentioned, the features
of split grammars have since been incorporated into
current grammar implementations, unifying all features
under one grammar, for greater ease-of-use [12].

The range of output possible from modern shape gram-
mar implementations is extremely broad [12] and as
a result, shape grammars are considered the industry
standard for procedurally generating architecture. They
are able to create whole cities with realistic buildings
(using additional techniques [15] to create the road net-
works and block layout). The best example of this in

practice is the CGA grammar of CityEngine4, which
procedurally creates cities and buildings.
Example-based shape grammars can be used to gen-
erate different models in the same style as the given-
example. This can be done from an image of a build-
ing’s façade [13], or from existing models [2].
The problem of easily, and visually, editing shape gram-
mars has also been addressed by Lipp et al. [9] in their
work on interactively editing shape grammars for archi-
tecture. Their approach is primarily concerned with op-
erating on the grid-like façades of buildings, but does
feature methods for assisting in the overall building
structure creation.
Recent work [1, 5] has also developed methods for au-
tomatically creating a structural skeleton for models
generated by shape grammars. These skeletons can
then be used to create animations or run structural simu-
lations on the generated models using a physics engine.
However, shape grammars do have limitations. In split
grammars, shapes that span multiple subdivisions, and
shape intersections, are difficult to handle gracefully.
In addition, particularly unusual building designs with
complex elements, such as tunnels and interior hollows,
are very hard to generate.
Voxels have seen previous use in procedural genera-
tion, predominantly in games 5 and terrain represen-
tation. However, 3D texture synthesis methods have
been extended to create 3D models. Merell’s algorithm
[11] works by assigning a cuboid section of geome-
try to each voxel type, and then keeping a record of
how these cubes of geometry can be placed adjacent to
each other while keeping the resulting model consis-
tent. Texture synthesis methods are employed to create
a, potentially infinite, voxel grid that corresponds to a
consistent model. One downside is that this requires the
manually created cuboid sections of geometry.
Another modelling approach that allows Boolean
geometry operations while avoiding the issues around
mesh-based CSG was proposed by Leblanc et al.
[8]. Their approach allows modeling of shapes using
Boolean geometry operations, but is substantially more
complex than a voxel-based approach, and does not
solve the issue of creating surface detail at a sub-shape,
or trans-shape, level.

3 FRAMEWORK
The process of interpreting a shape grammar to produce
a model in our framework consists of five stages (one
of which is optional), and requires two inputs from the
user. The final output is a textured mesh, suitable for
use in modern graphics applications. The two user in-
puts are:

4 http://www.procedural.com/
5 http://www.minecraft.net/

Shape Grammar Interpretation

Shape Voxelization

Voxel Detailing

Mesh Generation

Mesh Post-processing

tagged shapes

voxel grid with tags

detailed voxel grid

mesh of voxel grid

Grammar Specifiction

Detailing Rule Set

Figure 2: A flow chart of our algorithm. The cyan boxes
are user inputs; the grey boxes are the four stages of the
algorithm. Arrow labels show the output of each stage.
Mesh post-processing is optional.

Shape Grammar Specification: This is the set of pro-
ductions and associated parameters for the shape
grammar itself.

Detailing Rule Set: The collection of rules that are
used to assign visual detailing information to the
voxel grid. This information is used when display-
ing the created model.

The five stages of the algorithm are:

1. Shape Grammar Interpretation: The input gram-
mar is run to produce a collection of shapes.

2. Shape Voxelization: The shapes from the previous
step are voxelized into a voxel grid.

3. Voxel Detailing: Surface voxels in the grid are as-
signed visual detailing information.

4. Mesh Generation: A mesh representation of the
voxel shape is produced, using the marching cubes
algorithm.

5. Mesh Post-processing (optional) The generated
mesh is smoothed and refined.

Below, we cover each of the five stages in detail, ex-
plain their operation, what inputs they use, and what
outputs they generate. Figure 2 shows an overview of
the process.

3.1 Shape Grammar Interpretation
The first stage of the algorithm requires that we specify
a shape grammar and then iterate it to produce the out-
put set of shapes. This step is very similar to applying
a conventional shape grammar, with some minor dif-
ferences. A set of shape grammar rules, and an axiom
shape, are provided by the user. This rule set is then
run on the axiom, producing new shapes and modify-
ing existing shapes on each iteration of the rules. This
continually-updated set of shapes (the current shape set)
converges to the final output of the shape grammar. An

rule 0: building_base -> roof (shape: triangle) | tower (shape: rectangle; symmetry:
reflective) | window (shape: square; symmetry: reflective) | door (shape: square)

rule 1: roof -> chimney (shape: rectangle)

rule 2: tower -> tower_peak (shape: triangle) |
tower_window (shape: rectangle)

rule 3: window -> window_arch (shape: triangle)

rule 4: door -> door_arch (shape: circle)

Axiom: building_base

Figure 3: A simple shape grammar being interpreted in parallel to form a basic building. Grey shapes are additive,
and red ones are subtractive. Position and size information in the example grammar are not shown, for the sake of
simplicity. Note that the final step involves the symmetric copies being created, as the grammar only requires two
iterations to complete.

Algorithm 1 Shape Grammar Interpretation
currShapeSet←{Axiom}
iterations← 0
while iterations < MaxIterations and
currShapeSet.hasNonTerminals() do

if parallelExecution = TRUE then
for all i ∈ currShapeSet do

i← doRuleDerivation(i)
end for

else
a← getFirstNonTerminal(currShapeSet)
a← doRuleDerivation(a)

end if
iterations← iterations+1

end while
for all i ∈ currShapeSet do

if i.hasSymmetry() then
s← i.createSymmetricCopies()
currShapeSet.insert(s, i−1)

end if
end for

example of this stage is shown in figure 3. Pseudocode
for this process is shown in algorithm 1.

This process will terminate under one of two condi-
tions: Either after a user-defined maximum number of
iterations, or once all shapes are terminal and none of
the rules can be performed on the set of shapes.

Rules can be interpreted in parallel (as done in L-
systems [16]), or in series (as done in traditional formal
grammars [12]). These are appropriate in different situ-
ations, depending on the type of model being generated
by the shape grammar. Serial rule derivation is suitable
for most situations, except for models that have fractal
qualities, where parallel rule derivation is advised.

Any of the many enhancements and extensions to gram-
mar generation methods can be used here: environ-
mental sensitivity, stochastic rules, a derivation tree for
querying earlier shape set states, and more.

Our implementation includes these three extensions, as
well as split grammar operators [12]. For more infor-

mation on these extensions, we refer readers to the lit-
erature [16, 12, 3]. We also have a collection of stan-
dard utility functions for common operations, such as
scaling, translation, rotating, and hollowing shapes. All
that is required from this stage of the generation process
is a specification of the final set of shapes.

There are two grammar extensions that we found very
useful for generating models in our experiments.

First is the tagging of shapes with metadata. One of the
operations that the shape grammar rules can perform is
to add metadata tags to shapes in the current shape set.
We implemented these as arbitrary strings. These serve
to preserve additional information about the shapes that
can be used in later stages of the generation algorithm.
For example, in generating a castle, a cylinder (and its
children if recursive tagging is used) could be tagged
with “type:tower” and “material:stone”. These tags in-
dicate additional properties of the shape that enhance
later detailing and texturing.

Secondly, we support the specification of symmetry in
the grammar rules. Our grammar implementation has
special operators for indicating that a shape, or group
of shapes, (and any child shapes that derive from them)
should be cloned to create symmetrical versions.

We support two types of symmetry: rotational and re-
flective. In rotational symmetry, three arguments are
provided to the operator, from which positioning infor-
mation for the symmetrical copies can be derived: Prot
- the center point around which the symmetric branches
are rotated; Vrot - a vector normal to the plane of rota-
tion, and Nrot - the number of rotational copies to create.

For reflective symmetry, only two arguments are re-
quired to fully construct the mirror copies of the shape,
or group of shapes, to be reflectively copied: Pre f - a
point on the plane of reflection, and Vre f - a normal to
the plane of reflection.

Symmetry information is specified when the grammar
is run, but symmetric copies are only added once the
grammar rules terminate. This is done as a post-process
because further shapes could be added to the set of
shapes undergoing symmetry, in iterations after the

symmetry is specified. Rather than tracking the sym-
metric copies and updating each of them for every
change in shape, we simply flag the set of shapes for
symmetry and wait until the rule derivation completes,
before creating the symmetric copies.

Once the shape grammar has finished, a full specifica-
tion of the final output set of shapes is passed to the
next stage. This includes positions, dimensions, orien-
tations, tags, and any other relevant information.

3.2 Shape Voxelization
In this phase, the shapes output from the shape gram-
mar are voxelized into a voxel grid. This is analogous
to rasterizing vector graphics into a pixel format. An
example of this process is shown in figure 4, and pseu-
docode in algorithm 2.

Algorithm 2 Shape Voxelization
shapes← getShapeGrammarOutput()
shapes← sortByPriority(shapes)
shapes_bbox← getBoundingBox(shapes)
gridResolution← getVoxelGridResolution()
voxelGrid← initializeEmptyGrid(gridResolution)
for all i ∈ shapes do

i← scaleShape(i, gridResolution, shapes_bbox)
end for
for all i ∈ shapes do

voxelGrid.voxelizeShape(i)
end for
return voxelGrid

Due to the large memory requirements of storing voxel
grids naïvely, it is infeasible to store the grid as a 3D
array. Our implementation uses an octree, to efficiently
manage space [17].

It is possible to use other tree data structures for stor-
ing the voxel grid, such as point region octrees (PR-
octrees), kd-trees, or R-trees. In the general case, where
no assumptions can be made about the data sets to be
stored, and no special look-ups are required, the best
option is an octree [17]. This is because the other tree
types all require re-balancing (an expensive operation).

Tags associated with the shapes to be voxelized are
assigned to the relevant voxels. In the case of over-
lapping shapes, it is possible that a voxel may inherit
tags from multiple shapes. This is not problematic at
this stage, but may cause ambiguities during detail-
ing, which could have unintended consequences. Users
should bear this in mind when designing grammars.

The order in which shapes are added is also important,
because shapes may be additive or subtractive (additive
for creating solid structures, or subtractive for carving
empty spaces out of solids). Adding and subtracting
geometry in this manner is not commutative. Hence a

Figure 4: The output of the simple building shape gram-
mar from figure 3 after being voxelized. The colours of
the voxels correspond to the tags they inherited from the
shapes. Grey indicates ‘material:wall’, brown indicates
‘material:roof’, and the dark grey ‘material:chimney’.

grammar may generate unintended results, depending
on the order in which the shapes are voxelized.

To resolve this ambiguity, the shape grammar can as-
sign a priority to the shapes. This is an integer that de-
termines when the shape will be voxelized. Before vox-
elization, the shapes are sorted by priority, and added in
sorted order. This allows a user to control when shapes
are added, and resolve order-dependency issues.

Finally, we can manually edit the voxel grid once the
shapes have been voxelized. This could be done to al-
low hand-crafted modifications to the output of a gram-
mar, or because the user is dissatisfied with some aspect
of the output that is difficult to correct in the grammar.

Manual editing is important for artists and modellers,
and our shape grammar extensions do not restrict it at
all, although it requires voxel editing software.

The final output of this stage is a 3D voxel grid, where
each voxel is either solid or empty, and may have meta-
data tags associated with it.

3.3 Voxel Detailing
In this stage of the algorithm, voxels are assigned an
appearance in the final model. This can include, but is
not limited to, texturing information, bumps maps, dis-
placement maps, lighting information, and materials.
This is done on a per-voxel basis, by a user-created rule
set which operates on each voxel individually. These
rules may iterate over the voxels multiple times, al-
lowing the creation of complex multi-pass detail. For
example, cellular automata patterns could be created,
since they map very well onto the discrete, gridded na-
ture of voxels. The scope of these rules is extremely
broad, and features such as context-sensitivity and ran-
domness can easily be included. Everything from as-
signing a simple texture based on position, to random-
ized complex multi-pass procedural methods are possi-
ble. A simple example of a voxel grid after undergoing
detailing is shown in figure 5, and pseudocode of the
detailing process is found in algorithm 3.

Detailing Rules
rule_0: if "material:roof" in tags then texture = red_tile
rule_1: if "material:chimney" in tags then texture = black_stone
rule_2: if "material:stone" in tags then texture = random_selection(grey_brick,
dark_brick)
rule_3: if voxel.borders_enclosed_space() == true then texture = blue_paint

Figure 5: The voxel grid from figure 4 after detailing.
Each voxel has been assigned a texture in accordance
with the detailing rule set supplied. Non-surface voxels
are ignored, and are not displayed in the diagram.

Algorithm 3 Voxel Detailing
detailingRuleSet← getDetailingRuleSet()
maxIterations← getMaxDetailingIteration()
sur f aceVoxels← voxelGrid.getSurfaceVoxels()
for i = 1 to maxIterations do

for all j ∈ sur f aceVoxels do
n = voxelGrid.getNeighbouringVoxels(j)
j.detailTags← detailingRules.runRules(j, n)

end for
end for

Detailing is done on a per-voxel level as opposed to
the per-shape level of conventional shape grammars be-
cause this allows more complex procedural detailing
of generated models, and it is much easier for detail
features to span shapes and work on sub-shape scales.
This also circumvents the problem of texture seams be-
tween adjacent shapes prevalent in conventional gram-
mars. The disadvantage to this freedom is more com-
plexity for the user. This complexity could be reduced
in two ways. Firstly, by creating a visual rule editor to
use, as opposed to text-based programming. Secondly,
by designing an interface that allowed rapid prototyping
of rules on small examples, to quickly detect problems.
However, we did not implement these, and leave them
to future work.

Relevant details about the voxel are passed to the rule
set. In our implementation these details are: tags as-
sociated with the voxel; normal of the voxel; the max-
imum resolution of the octree; the coordinates of the
current voxel; the count of the current iteration of the
rule set, and the above details for all neighbouring vox-
els, within a user-specified radius.

It should also be noted that this stage is independent of
previous steps. A detailing rule set can be applied to

Figure 6: Our Enterprise model with two different de-
tailing rule sets applied to it. Above, with its original
detailing; below, with a camouflage pattern. This shows
how detailing rule sets that are not reliant on shape tags,
such as camouflage, can be applied to any voxel grid.

any voxel grid, and does not need to concern itself with
how that data set was produced.

It is possible to have a detailing rule set that is com-
pletely independent of metadata tags. For example, de-
tailing that creates a consistent pattern across the entire
model without using the context information from the
tags. These detailing rules will work on any model pro-
vided to them, regardless of tags. An example of such a
detailing rule set being applied to a model intended for
a different rule set is shown in figure 6.

However, in most practical situations, we expect that
rules from the detailing rule set will be dependent on
metadata tags in the voxel data set. For example, de-
tailing a house’s walls with brick textures and the doors
with wooden ones requires that the two parts of the
model be distinguished. Hence the user should en-
sure that the shapes in the shape grammar are properly
tagged for the detailing stage.

Running snippets of code for each voxel in a grid can
be extremely slow, especially so if the grid is large, or
the rule’s code is complex. For this reason, we only run
the rule set on surface voxels in the grid.

We define a surface voxel to be any solid voxel in the
grid which is 26-connected to at least one empty voxel.
Because the marching cubes algorithm does not gener-
ate triangles for completely empty or solid space, only
voxels on the border between solid and empty space
will affect the final model. All others can be ignored.

Using the hierarchical structure of the octree, surface
voxels can be quickly identified. If a node of the octree
does not have any children, then only the voxels around
the edge of that node need be checked further. For all
reasonable models, this dramatically reduces the num-
ber of surface voxel candidates that need to be checked,
improving speed by an order of magnitude or more.

The final output of this step is a voxel grid where all
surface voxels have been assigned detailing informa-
tion. This information must unambiguously provide all

information required for rendering, either as is, or when
converted to a mesh.

3.4 Mesh Generation and Post-processing
There are many methods for rendering voxel grids.
These are often based on ray tracing, or point rendering.
In some situations it may be suitable to render the out-
put of the shape grammar with these methods, but most
graphics applications today work with triangle meshes,
not voxel data sets. For this reason, we need to convert
our voxel data set into a mesh that can be used in con-
ventional raster graphics applications, such as modern
3D game engines.
The marching cubes algorithm [10] is a well-
established solution to the problem of extracting a
mesh representation of a voxel grid or isosurface.
We make use of it to produce a mesh version of our
generated model.
The algorithm outputs a list of triangles, each of which
can be associated with a voxel in the input grid. Each
triangle is then assigned textures, materials, and other
detailing information from the surface voxel.
Hence we end up with a fully textured and detailed
mesh representation of the voxel grid that the original
shape grammar produced.
The mesh produced by the marching cubes algorithm is
suitable for direct use in graphics applications, but its
visual quality could be improved by post-processing.
One of the problems with the marching cubes algorithm
is that the output mesh has visual artifacts caused by the
discrete nature of the voxels. Curves in particular, are
not fully captured during the meshing process, and will
instead appear ‘bumpy’, although increasing the reso-
lution of the voxel grid can reduce this.
The severity of this problem can be reduced by an ap-
propriate mesh smoothing algorithm, which will signif-
icantly decrease the impact of such artifacts [6].
It should be noted though, that naïve smoothing algo-
rithms can lose details that are not artifacts, and should
be retained, such as sharp corners. For this reason,
we recommend the use of one of the more advanced
smoothing algorithms, which will retain these features.
There are a number of such algorithms, but in general
these advanced methods of smoothing come at the cost
of more complexity and a longer running time.

3.5 Optimizations
There are several optimizations to our algorithm that we
did not implement due to time constraints. These have
the potential to dramatically reduce running times, and
hence we discuss them here.
Voxelization of shapes can be performed extremely ef-
ficiently by exploiting the hierarchical nature of the oc-
tree. Beginning at the root of the tree, query the inter-
section between each of the eight children of the octree

node, and the shape to be added. If the area covered by
a child node is entirely within the shape, then that voxel
is set with the shape’s information, if there is a partial
intersection between the child node and the shape, then
the algorithm is recursively called on that node.

While faster, this is more complex to implement, and
requires an exact collision detection algorithm. We
suggest that future implementations make use of this
method to greatly reduce run times.

The implementation of marching cubes can also be sub-
stantially accelerated by only marching over the surface
voxels of the voxel grid. Since solid or empty regions
will not produce triangles, the voxels of those regions
need not be processed. The list of surface voxels from
the detailing step can be re-used here.

4 TESTING AND EXPERIMENTATION
In order to evaluate our voxel-space extensions to
shape grammars we undertook three experimental
tasks: performance testing, where we analyzed the
time and memory required; variation testing, where
we produce multiple similar models from a single
grammar; and output range testing, where we examine
the range of outputs our algorithm can produce, and its
ability to generate models of well-known structures.

4.1 Performance
We analyzed our algorithm’s performance across a va-
riety of voxel grid sizes and user inputs. The two main
results of interest are the time taken to generate a model,
and the peak memory usage of the process.

We decomposed timing into the four stages of the al-
gorithm to get an idea of their relative durations (post-
processing was excluded as it is an optional step).

Testing was performed on a PC with an Intel Core 2
Duo clocked at 2.4Ghz and 3 gigabytes of RAM.

Performance testing was conducted with a selection of
36 shape grammar and detailing rule-set combinations,
at 4 different voxel grid resolutions. The selection of
grammars and rule sets was specifically chosen to en-
compass a wide range of complexity. figure 7 shows
the timing results across all of the 36 models.

Before analyzing the results it should be noted that
our implementation was strictly intended as a single-
threaded proof-of-concept. Hence, performance was
not a priority, and there is large scope for improvements
in this area (as mentioned in section 3.5.) Nonethe-
less, we include our results as we believe they provide
a baseline for comparison to future implementations of
our work.

The first thing to note is that the shape grammar inter-
pretation is orders of magnitude faster than the other

64 128 256 512
0

100

200

300

400

500

600

700

800

900

Mesh Generation
Voxel Detailing
Shape Voxelization

Size of Voxel Grid

R
un

ni
ng

 T
im

e
(i

n
se

co
nd

s)

Figure 7: A cumulative graph of the average times taken
for our algorithm to run on 36 different inputs, covering
a range of complexities. Shape grammar interpretation
is not shown as it was negligible compared to the other
three stages.

stages, due to its independence from the voxel grid res-
olution. The average interpretation time was 50 mil-
liseconds. Due to the minuscule relative time, grammar
interpretation is not shown in figure 7.

As expected the running times of the other stages of
the algorithm is approximately cubic in the size of the
voxel grid. This is expected, as their running time is
directly proportional to the number of voxels to operate
on, which scales cubically with the size of the grid.

The biggest cause of variation in running times is the
number of iterations in the surface detailing. Because
each voxel must be processed for every iteration, the
number of iterations makes a large difference in the
amount of processing to be done, especially for higher
voxel grid resolutions.

Peak memory usage followed the same pattern of be-
ing cubic in the resolution of the voxel grid. The min-
imum and maximum amount of memory used, across
all testing inputs, were approximately 150 and 1400
megabytes, respectively.

These running times are significant for larger resolu-
tion grids. However, in practice, users can prototype
their grammars and rule sets on lower resolution mod-
els and, once satisfied with them, then do off-line gen-
eration of a high resolution model for actual use. This
means the long running times for large models will not
significantly disrupt work-flow.

4.2 Variation and Range Testing
Variation testing involved randomizing the parameters
in several of our shape grammars, and producing mul-
tiple models from them. The objective is to ensure that
our algorithm is capable of producing many different
models that share a similar style, from a single shape
grammar. A selection of the models produced in this
manner are shown in figure 8.

As can be seen from the images, our algorithm is capa-
ble of producing a variety of models, sharing a common

theme and style, from a single shape grammar and de-
tailing rule set, by randomizing the parameters of the
shape grammar and detailing rules.

To test the power of our shape grammar extensions, we
created shape grammars and detailing rule sets repre-
sentative of a broad variety of models, including imita-
tions of well-known existing structures. A selection of
these generated models are shown in figure 9.

5 LIMITATIONS
There are two limitations to our voxel-space shape
grammar algorithm that could restrict its potential uses.

Firstly, in order to obtain a high quality model from
a voxel data set, the set must be at a high resolution,
so as to remove “blocky” visual artifacts caused by the
discrete nature of a voxel grid. Mesh smoothing as a
post-process helps, but it is not sufficient on its own.

However, the higher the resolution, the slower the voxel
detailing process is. This is because each voxel in the
model must be detailed, and the number of voxels is
cubic in the dimensions of the voxel grid.

Secondly, texturing at a per-voxel level may be insuf-
ficient in certain cases, such as for curved surface de-
tails, where the discrete nature of the underlying voxel
data can cause visual artifacts. For example, an elabo-
rate spiral design with fine curved detail on the side of
a spaceship would almost certainly run into sampling
issues if created with a detailing rule set.

A possible solution to this problem would be allowing
the addition of decal textures to the final version of the
mesh. These decals would replace the existing details
in certain locations and display detail that could not be
created within the detailing rule set framework.

It must be noted though, that neither of these limitations
are critical, and none of them should be problematic in
the majority of cases.

6 CONCLUSION
We have presented a novel extension to conventional
shape grammars, where the shape output of the gram-
mar is voxelized, allowing more robust Boolean geom-
etry operations and a new per-voxel approach to detail-
ing the surface of generated models.

These extensions address two shortcomings in current
shape grammar implementations: the support of com-
plex shapes through CSG, and sub-, or trans-, shape de-
tailing at per-voxel level, for more elaborate and con-
trolled texturing.

Our algorithm is slower and more memory intensive
than conventional shape grammar implementations, but
not outside acceptable limits. Additionally, our exten-
sions allow the generation of a wide range of models,
including variations from a single shape grammar.

Figure 8: A selection of tanks and space stations produced by two of our shape grammars, using randomized
parameters in their rules. This shows how a single grammar can produce multiple models in the same style. These
models were all generated from cubic voxel grids of resolution 256.

Figure 9: A broad selection of the models produced by our algorithm, using a range of detailing rule sets and
shape grammar extensions, including cellular automata patterns, symmetry and multiple-pass textures. All of
these models were generated using a cubic voxel grid of size 256.

Our extensions add new functionality to shape gram-
mars, without losing existing capabilities, and signifi-
cantly increase the range of achievable content.

6.1 Future Work
The per-voxel detailing stage could be expanded to ad-
dress the interior of generated models. In our work, we
have only performed detailing on the surface voxels of
the model, but the method could be extended to detail
the interior voxels too. This would allow the creation of
details such as rooms inside generated buildings.
Post-processing could also be done on the voxel grid
before it is detailed. This could be used to add, remove,

and tag voxels to create detail corresponding to damage,
wear and tear over time, growth of mold, and more.

The voxel detailing rules could be extended to operate
at multiple resolutions of the voxel grid. Octree nodes
could easily be coalesced to form a lower-resolution
version of the model, to which the rule set could then
be applied. This would allow the creation of large scale
detailing initially, working down to finer details as the
rules are run at higher resolutions.

Finally, a solution to the constraint of texturing being
limited to a per-voxel level is the use of decal textures
on the generated mesh. Detailing could be extended to

allow arbitrary textures to be projected onto the gener-
ated mesh, complimenting the textures assigned in the
detailing step. This would allow texturing beyond the
per-voxel level our system is currently limited to.

ACKNOWLEDGEMENTS
The financial assistance of the National Research Foun-
dation (NRF) towards this research is hereby acknowl-
edged. Opinions expressed and conclusions arrived at,
are those of the authors and are not necessarily to be
attributed to the NRF.

Funding assistance for this research was also provided
by the University of Cape Town.

7 REFERENCES
[1] Richard Baxter, Zacharia Crumley, Rudolph

Neeser, and James Gain. Automatic addition
of physics components to procedural content. In
Proceedings of the 7th International Conference
on Computer Graphics, Virtual Reality, Visual-
isation and Interaction in Africa, AFRIGRAPH
’10, pages 101–110, New York, NY, USA, 2010.
ACM.

[2] Martin Bokeloh, Michael Wand, and Hans-Peter
Seidel. A connection between partial symmetry
and inverse procedural modeling. In ACM SIG-
GRAPH 2010 papers, SIGGRAPH ’10, pages
104:1–104:10, New York, NY, USA, 2010. ACM.

[3] Peter Eichhorst and Walter J. Savitch. Growth
functions of stochastic lindenmayer systems.
Information and Control, 45(3):217–228, June
1980.

[4] Stefan Greuter, Jeremy Parker, Nigel Stewart, and
Geoff Leach. Real-time procedural generation
of ‘pseudo infinite’ cities. In Proceedings of the
1st international conference on Computer graph-
ics and interactive techniques in Australasia and
South East Asia, GRAPHITE ’03, pages 87–ff,
New York, NY, USA, 2003. ACM.

[5] Martin Ilčík, Stefan Fiedler, Werner Purgath-
ofer, and Michael Wimmer. Procedural skeletons:
kinematic extensions to cga-shape grammars. In
Proceedings of the 26th Spring Conference on
Computer Graphics, SCCG ’10, pages 157–164,
New York, NY, USA, 2010. ACM.

[6] Thouis R. Jones, Frédo Durand, and Mathieu
Desbrun. Non-iterative, feature-preserving mesh
smoothing. In ACM SIGGRAPH 2003 Papers,
SIGGRAPH ’03, pages 943–949, New York, NY,
USA, 2003. ACM.

[7] R. G. Laycock and A. M. Day. Automatically
generating large urban environments based on the
footprint data of buildings. In Proceedings of the
eighth ACM symposium on Solid modeling and

applications, SM ’03, pages 346–351, New York,
NY, USA, 2003. ACM.

[8] Luc Leblanc, Jocelyn Houle, and Pierre Poulin.
Modeling with blocks. The Visual Computer
(Proc. Computer Graphics International 2011),
27(6-8):555–563, June 2011.

[9] Markus Lipp, Peter Wonka, and Michael Wim-
mer. Interactive visual editing of grammars for
procedural architecture. In SIGGRAPH ’08: ACM
SIGGRAPH 2008 papers, pages 1–10, New York,
NY, USA, 2008. ACM.

[10] William E. Lorensen and Harvey E. Cline. March-
ing cubes: A high resolution 3d surface construc-
tion algorithm. SIGGRAPH Comput. Graph.,
21:163–169, August 1987.

[11] Paul Merrell. Example-based model synthesis.
In Proceedings of the 2007 symposium on Inter-
active 3D graphics and games, I3D ’07, pages
105–112, New York, NY, USA, 2007. ACM.

[12] Pascal Müller, Peter Wonka, Simon Haegler, An-
dreas Ulmer, and Luc Van Gool. Procedural mod-
eling of buildings. In SIGGRAPH ’06: ACM
SIGGRAPH 2006 Papers, pages 614–623, New
York, NY, USA, 2006. ACM.

[13] Pascal Müller, Gang Zeng, Peter Wonka, and Luc
Van Gool. Image-based procedural modeling of
facades. In SIGGRAPH ’07: ACM SIGGRAPH
2007 papers, page 85, New York, NY, USA, 2007.
ACM.

[14] F. Kenton Musgrave, Darwyn Peachey, Ken Per-
lin, and Steven Worley. Texturing and modeling:
a procedural approach. Academic Press Profes-
sional, Inc., San Diego, CA, USA, 1994.

[15] Yoav I. H. Parish and Pascal Müller. Procedu-
ral modeling of cities. In Proceedings of the 28th
annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’01, pages
301–308, New York, NY, USA, 2001. ACM.

[16] P. Prusinkiewicz and Aristid Lindenmayer. The
algorithmic beauty of plants. Springer-Verlag
New York, Inc., New York, NY, USA, 1990.

[17] Hanan Samet. The design and analysis of spa-
tial data structures. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1990.

[18] G. Stiny and J. Gips. Shape grammars and the
generative specification of painting and sculpture.
Information processing, 71:1460–1465, 1972.

[19] Peter Wonka, Michael Wimmer, François Sil-
lion, and William Ribarsky. Instant architecture.
In SIGGRAPH ’03: ACM SIGGRAPH 2003 Pa-
pers, pages 669–677, New York, NY, USA, 2003.
ACM.

