
Visualization of Very Large 3D Volumes on Mobile Devices
and WebGL

José M. Noguera, Juan-Roberto Jiménez
Graphics and Geomatics Group of Jaén. University of Jaén.

Campus Las Lagunillas, Edificio A3, 23071 Jaén, Spain.
{jnoguera,rjimenez}@ujaen.es

ABSTRACT
Platforms based on OpenGL ES 2.0 such as mobile devices and WebGL have recently being used to render 3D
volumetric models. However, the texture storage limitations of these platforms cause that only low-resolution
models can be visualized. This paper describes a novel technique that overcomes these limitations and allows us to
render detailed high resolution volumes on these platforms. Additionally, we propose a software architecture that
permits existing volume rendering techniques to be adapted to mobile devices and WebGL. A set of experiments
has been carried out to assess the performance of the proposed architecture on these platforms with different
volumes of increasing resolution. Results prove that our proposal is feasible, robust and achieves visualization of
very large volumes on constrained platforms.

Keywords: Volume visualization, OpenGL ES, mobile devices, WebGL, large volumetric models, software
architecture.

1 INTRODUCTION
Nowadays mobile devices are extensively used as a
worthy tool in many different scenarios of our life.
Their hardware and software capabilities are constantly
being enhanced, and recent research has demonstrated
their validity to compute complex computer graphics
algorithms. In fact, it has been proved that the vol-
ume visualization field can benefit from the proper-
ties of mobile devices in many interesting applications
[18, 1, 5, 7, 9, 11, 13, 22].

However, it is a common misunderstanding to assume
that the same results can be achieved by a literal trans-
lation to mobile devices of classic algorithms originally
developed for standard PCs or workstations. There are
two important factors that must be taken into account:

• The standard graphics specification of this kind of
devices is OpenGL ES 2.0 [12], which differs from
the desktop PC counterpart in several aspects, e.g.,
the lack of 3D texture support.

• These devices must rely on batteries, so their
hardware and software architectures are designed to
favour power-efficiency instead of pure computing
power.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

In addition, recent advances in display technologies al-
low today’s mobile devices to feature large and high
resolution screens, which require large volumetric mod-
els in order to achieve a minimum of quality. For exam-
ple, newer tablets such as the iPad3 feature screen reso-
lutions that surpass the Full-HD standard used in most
monitors and TV screens. Nevertheless, their GPU and
memory capacities are still limited and do not support
large models directly.

In this paper, we deeply study this problem in the con-
text of direct volume rendering. We present a pro-
posal to render very large volumetric models in order to
meet the user expectations in quality and performance
by overcoming the referred limitations of handheld de-
vices, see Figure 1. Moreover, we describe a software
architecture that allows us to adapt existing volume ren-
dering techniques based on 3D textures to platforms
that only support 2D textures.

The ideas described in this paper are also applied to We-
bGL1, the standard for accelerated graphics on the Web.
As this standard is based on the same specification used
by mobile devices, i.e. OpenGL ES 2.0, it suffers from
the same limitations, including the lack of 3D textures.

Finally, we have implemented a mobile and a WebGL
based prototypes and conducted a set of experiments
to test performance of these platforms under the condi-
tions of maximum storage requirements.

The rest of the paper is organized as follows. Section 2
presents current research in volume visualization tech-
niques for mobile devices and WebGL. In Section 3,

1 https://www.khronos.org/registry/webgl/

64×64×256 128×128×256 256×256×256 512×512×256
Figure 1: Volumes of increasing resolution. Images rendered using the proposed technique.

our novel technique and architecture for volume render-
ing are presented. Section 4 presents our performance
evaluation and discusses the results. Finally, Section 5
concludes the paper.

2 PREVIOUS WORK
In the context of scientific visualization and volume
rendering, a volume is usually represented as a set of
images/slices that are parallel and evenly distributed
across the volume. Equation 1 expresses the compu-
tation of the final color of a given pixel by composing
the colors and opacities of the samples along a given
line across the volume, for a certain wavelength λ [10]:

Cλ (x) =
n

∑
k=0

cλ (x+ rk)α(x+ rk)
n

∏
l=k+1

(1−α(x+ rl))

(1)

where Cλ (x) is the final color at a given position x, c(x+
rk) is the color of the kth sample at position x+rk inside
the volume and a(x+ rk) is its corresponding opacity.

Volume visualization algorithms have not been applied
to mobile devices until recently. First attempts over-
came the mobile devices limitations by employing a
server-based rendering approach. This approach relies
on a dedicated rendering server that carries out the ren-
dering of the volume and streams the resulting images
to the mobile client over a network [7, 9]. Also follow-
ing a server-client scheme, Zhou et al. [22] employed a
remote server to precompute a compressed iso-surface,
which is sent to the mobile device allowing a faster ren-
dering. Moser and Weiskopf [11] introduced an interac-
tive technique for volume rendering on mobile devices
that adopts the 2D texture slicing approach. Noguera
et al. [13] proposed an algorithm that overcomes the
3D texture limitation of mobile devices and achieves
interactive frame rates by caching the geometry of the
slices in a vertex buffer object (VBO). ImageVis3D [5]
is an iOS application that uses the 2D texture slicing

approach. While the user is interacting the number of
slices is drastically reduced. At the end of an inter-
action a new image is rendered with the whole set of
slices. This rendering step is carried out in the mobile
device itself, or in a remote server in case of complex
or large models. Focused on the visualization of bones,
Campoalegre [18] also proposed a client-server scheme
where the model is compressed in the server side by the
Haar Wavelet function and reconstructed in the client
device. On the other hand, Congote et al. [1] imple-
mented a ray-based technique using the WebGL stan-
dard.

All the aforementioned techniques share the same lim-
itation: the lack of 3D textures on OpenGL ES 2.0 and
WebGL severely restricts the size and resolution of the
volumetric models that can be rendered. The problem is
aggravated on WebGL, as these applications are usually
run on desktop computers equipped with large moni-
tors.

The following proposals deal with the problem of very
large volumetric models but in the context of PC or
workstations whose features differ from the intrinsic
peculiarities of mobile devices and WebGL. A straight-
forward method to deal with a large volume is the brick-
ing technique [2]. This technique subdivides the vol-
ume into several smaller blocks in such a way that a sin-
gle block fits into texture memory. Gunthe and Straßer
[3] used a wavelet based volume compression in order
to render large volume data at interactive frame rates
in a standard PC. Tomandl et al. [17] combined lo-
cal and remote 3D visualization (standard PC + high-
end graphics workstation) achieving low-cost but high-
quality 3D visualization of volumetric data. Schneider
and Westermann [15] also overcame the problem of the
limited texture memory by compressing large scale vol-
umetric data sets. Their solution takes advantage of
temporal coherence on animated environments. Thelen
et al. [16] introduced a dynamic subdivision scheme in-
corporating multi-resolution wavelet representation to

visualize data sets with several gigabytes of voxel data
interactively on distributed rendering clusters. Finally,
Xie et al. [21] subdivided the volume dataset into a
set of uniform sized blocks and combined early ray ter-
mination, empty-space skipping and visibility culling
techniques to accelerate the rendering process.

3 METHODOLOGY
This section details the algorithm, the software archi-
tecture and the implementation details that we propose
to render large volumetric models on handheld devices
and WebGL. Volumes are usually stored as a set of
slices, each one containing a 2D image that represents
the intersection of the volume with the slice. Common
volume rendering approaches [19] store these slices in
a 3D texture. However, neither mobile devices nor We-
bGL support 3D textures. This limitation can be over-
come by storing the slices in a single 2D texture follow-
ing a mosaic configuration [1, 13]. Nonetheless, with-
out recurring to external servers, this technique limits
the size of the volume that can be stored because 2D
textures are considerably smaller than 3D textures.

We extend this mosaic configuration solution to exploit
the maximum texture capacity of the GPU in order to
deal with larger volumetric models. Our idea is based
on maximizing the multi-texture storage capacity of the
device by using all the available texture units and color
channels. Usually, current handheld devices are able
to store up to 8 RGBA textures of 20482 texels each.
These numbers give us a maximum volume size of 5123

voxels when using our technique, which is considerably
larger than the models rendered until now on mobile
platforms.

Our technique stores the 3D volume by placing each
slice one next to the other in a given color channel of a
2D texture. If the texture dimensions are exceeded, we
continue storing slices in the next color channel. This
way, data-level parallelism is optimized [6, 20]. When
all the channels of the texture are completed, the re-
maining slices are stored in consecutive texture units
following the same pattern. Figure 2 shows an exam-
ple of a 2D texture where each color channel stores a
subset of slices in a mosaic configuration. Thus, each
RGBA color represents the values inside four different
non-consecutive slices of the volume.

Our storage configuration technique can be utilized
with any standard volume rendering approach based
on 3D textures. Figure 3 illustrates our proposal for a
volume rendering architecture designed for OpenGL
ES 2.0. This architecture is divided into two main
parts: the texture memory and the shader. The texture
memory is used to store both the 3D volume and the
transfer function. The volume is stored using multi-
textures as previously described. On the other hand, the
transfer function refers to the texture normally required

Figure 2: Four mosaics stored in an RGBA texture.

... Transfer
Function

Direct Volume Rendering
Technique

Sh
ad

e
r

Te
xt

u
re

s

Texture Coords.
Adapter

3D Model

Figure 3: Software architecture of our proposal.

by volume rendering techniques to assign a color to
each voxel [19]. Thereby, different parts of the model
(bones, muscles, etc.) can selectively be emphasized
by interactively modifying the transfer function.

In the shader section there are two modules: the texture
coordinate adapter (TCA) and the selected direct vol-
ume rendering (DVR) technique. The DVR technique
sends a 3D coordinate to the TCA and receives back an
interpolated grey-tone. This tone is then converted into
an RGBA value according to the given transfer func-
tion and used to compute the color of the corresponding
fragment. It is important to remark that the DVR tech-
nique is unaware of the underlying 3D model storage
method. In fact, this architecture provides an straight-
forward mechanism to adapt existing DVR techniques
to the platforms we are interested in this paper.

aux1 = f loor(S∗ z)

aux2 = f loor
(

aux1

MxMy

)
depth = min

(
1.0,

MxMy

S

)
zini = aux2 ∗depth

zres =
z− zini

depth

u1 = f loor
(

aux2

Maxch

)
ch1 = mod(aux2,Maxch)

Listing 1: Computation of the texture unit u1, the color
channel ch1 and the corresponding (x,y,zres) from the
3D texture coordinate (x,y,z).

The TCA module transforms the 3D texture coordinate
provided by the DVR technique to a format suitable for
the volume representation and computes the grey-tone.
The returned value includes the trilinear interpolation
with the one-voxel distance neighbourhood. The pro-
cess performed by this module can be decomposed into
two differentiate tasks.

The first task consists of deriving the texture unit u1, the
RGBA channel ch1 and the new local 3D texture coordi-
nates (x,y,zres) from the original 3D texture coordinates
(x,y,z). Listing 1 shows how to compute these values.
S is the number of slices in the volume, Mx ×My is the
maximum number of slices in a mosaic stored in a sin-
gle color channel of a texture, see Figure 2, and Maxch
is the number of channels per texture. As the slices
are stored in a consecutive manner along the channels
and texture units, each mosaic stores an interval of the
z-component of the full volume. The value zres is the
residual z defined as the original z minus the z coordi-
nate of the voxel stored in the first texel of the selected
mosaic.

The second task is devoted to compute a pair of 4-
tuples (u1,ch1,x1,y1), (u2,ch2,x2,y2) that define two
texels from the set of 2D textures, where ui,chi refers to
the texture unit and the color channel, respectively, and
xi,yi are the 2D texture coordinates of the desired texel
in the corresponding mosaic stored in the texture unit ui.
These two texels are neighbours along the z direction,
and are placed in the same or in consecutive mosaics.
The grey-tones of these texels are merged to simulate
trilinear interpolation. Note that bilinear interpolation
is automatically obtained by the texture interpolator of
the GPU. Listing 2 shows how to perform these opera-
tions. Here, T is an array of 2D samplers that contains
the volumetric model.

Stex = min(MxMy,S)

aux3 = f loor(zres ∗Stex)

aux4 = mod(aux3 +1,Stex)

x1 =
aux3

Mx
+

x
Mx

y1 =
f loor

(
aux3
My

)
My

+
y

My

x2 = f ract
(

aux4

Mx

)
+

x
Mx

y2 =
f loor

(
aux4
My

)
My

+
y

My

next = c+ step(aux3,aux4)

u2 = t + step(Maxch,next)

ch2 = mod(next,Maxch)

v1 = tex2D(T [u1], (x1, y1))[ch1]

v2 = tex2D(T [u2], (x2, y2))[ch2]

V = mix(v1, v2, zres ∗Stex −aux3)

Listing 2: Computation of V , the value of the grey-tone
at position (x,y,z).

The shaders represented by Listings 1 and 2 have care-
fully been designed in order to avoid flow control op-
erators, when possible, by promoting the use of built-in
GLSL functions like step. Observe that the use of flow
control operators have a cost in the GPU of mobile de-
vices.

4 RESULTS

In order to measure the effectiveness and performance
of our technique two prototypes have been imple-
mented. The first one is a mobile application using
OpenGL ES 2.0 and the second one is a desktop
solution using WebGL. The selected technique for the
DVR module is a ray-based technique implemented in
the GPU [4, 8]. This technique basically consists of a
loop of n steps that traverses the volume accumulating
color and opacities along a given ray-direction.

Recall that our architecture is independent of the visu-
alization technique, and a faster texture-based approach
could have been used instead [13]. However, our goal
was not to measure the performance of the DVR tech-
nique, but to assess the performance and scalability
when the resolution of the 3D model increases and mul-
tiple textures are used.

In our experiments, we used the CT human male dataset
provided by the Visible Human Project2. This dataset
has a total resolution of 5122 ×1877 voxels.

4.1 Results on Mobile Devices
The experiments were conducted on an iPad2
tablet. This device features a dual core PowerVR
SGX543MP2 GPU and the iOS 5 operating system.
The test application was developed as a native iOS
application, using C++ and GLSL ES 2.0. According
to Apple’s technical specifications, this device supports
a maximum 2D texture size of 20482 texels, and up to
8 texture units.

Our experiments intended to cover all the range of
model resolutions provided by our technique. We used
a subset of the CT human dataset, shown in Figure 4,
with different resolutions. For each experiment, a 100
frame animation of the camera rotating around the
CT human model was generated, and the mean times
needed to render each frame were taken. Due to the
tile-based deferred rendering architecture [14] used by
the GPU, OpenGL ES calls can be deferred until the
scene is presented. In order to perform exact timings,
we forced the frame rendering to finish by means of a
glFinish call. Figure 5 shows graphically the results
obtained in milliseconds. The results for the following
experiments are included:

• 1283A: stored using one single-channel texture.

• 1283B: the same model as the previous experiment.

• 2563A: stored using one RGBA texture.

• 2563B: stored using four single-channel textures.

• 5122 ×384: stored using six RGBA textures.

The experiment 1283A utilized a simplified version of
the TCA module that only handles one mosaic, similar
to the proposal of Congote et al. [1], while the experi-
ments 1283B, 2563A, 2563B and 5122 × 384 used our
proposed TCA module that can deal with high resolu-
tion 3D models.

Note that 5122 × 384 is the maximum resolution that
can be achieved by our technique on this device, be-
cause one texture unit is used by the transfer function
and another one is required by the rendering technique.

In all cases, uncompressed 20482 textures were used.
The ray-based DVR technique performed 80 steps in all
the experiments. The screen resolution was 480× 320
pixels.

Results in Figure 5 show that the rendering times are al-
most constant among all the tested datasets when using

2 http://www.nlm.nih.gov/research/visible/
visible_human.html

Figure 4: The CT human model on an iOS mobile de-
vice. Resolution 2563 using 4 textures and 80 steps-
raytracing.

0

200

400

600

800

1000

1200

1400

128^3A 128^3B 256^3A 256^3B 512^2x384 1283 A 1283 B 2563 A 2563 B 5122 x 384

Figure 5: Rendering time (ms) for an iPad2 mobile de-
vice. Screen resolution: 320×480 pixels. Raytracing:
80 steps.

the same TCA module. This suggests that the resolution
of the volumetric model does not have a significative
impact on the performance of the rendering process, as
long as the model fits in the device’s memory. The per-
formance of the volumetric rendering depends on the
screen resolution and on the number of steps performed
during the raycasting rather than on the model resolu-
tion, as it was studied in [1, 13].

As stated above, the experiments 1283A and 1283B
were performed using the same dataset but different
TCA modules. The experiment 1283B used our
technique to compute the texture coordinates whereas
1283A used a simplified one. It was possible to use
this simplified version because the model is small
enough to fit in one mosaic. As shown in Figure 5, the
rendering time of the second experiment doubles the
time achieved by the first one. Our proposed technique
neither increases the number of texture accesses nor

adds additional conditional branches in the shader.
Nevertheless, it increases its longitude by about a dozen
of straightforward code lines to handle additional color
channels and texture units, see Listings 1 and 2. Albeit
these lines only perform simple computations, they are
repeated once per step.

The experiments 2563A and 2563B employed a dataset
that is too large for one mosaic of 20482 pixels. Two
strategies can be used to store it: we can use either one
RGBA texture (2563A) or four single-channel textures
(2563B). Our experiments show that there are no signi-
ficative differences between both strategies in terms of
rendering times, and as a consequence, we can use the
best suited for our particular application.

Finally, we also prove that our technique allows us to
exploit all the available texture resources of the mobile
device in order to render a very large dataset. We man-
age to render a model of up to 5122 ×384 voxels while
keeping the same rendering speed.

4.2 Results on WebGL
Following, we conducted a similar set of experiments
to test the performance of the WebGL implementation.
The tests were carried out using an Intel Core2 Quad
CPU Q6600, 4 GB of RAM, a GeForce 8800GT and
Windows 7 SP1 64 bits. As web browser, we tested
Opera 11.50 labs (build 24661).

The selected GPU supports 2D texture sizes of up to
81922 texels and provides 16 texture units. Given that
the texture size is considerably larger than the provided
by the iPad2, we used a larger subset of the CT human
dataset for our experiments, as shown in Figure 6.

In order to measure the rendering times, we forced the
WebGL canvas to redrawn continuously and counted
the number of frames rendered during an animation.
This animation consisted of the camera rotating around
the model during 5 seconds. Figure 7 shows graphi-
cally the mean times needed to render each frame in
milliseconds. The results for the following experiments
are included:

• 5122 × 256A: stored using one single-channel tex-
ture.

• 5122×256B: the same model as the previous exper-
iment.

• 5122 ×1024: stored using one RGBA texture.

The experiment 5122 × 256A utilized the simplified
version of the TCA module described in Section 4.1,
while the experiments 5122 × 256B and 5122 × 1024
used our proposed TCA module. In this case, we used
uncompressed 81922 textures and 128 steps for the ray-
casting. The WebGL canvas resolution was 8002 pixels.

We found that Opera stopped working every time we
tried to load more than one 81922 texture. The reason
was that the NVIDIA driver exceeded the Windows im-
posed rendering time limit (TDR) of two seconds. This
limited our experimentation to a model of 5122 ×1024
voxels, which is the maximum size that can be encoded
using all color channels of a single 81922 RGBA tex-
ture.

Interestingly, we did not run into these problems when
we were experimenting with mobile devices, in spite of
the fact that both platforms share the OpenGL ES 2.0
specification. In our opinion, today’s WebGL imple-
mentations are still relatively immature and the tested
mobile device proved to be a more predictable and sta-
ble platform. As opposed to WebGL under Opera, the
iPad2 was able to correctly handle all our experiments,
including those using the maximum texture size on all
the available texture units.

Nevertheless, comparing Figures 5 and 7 we can easily
observe that WebGL is more than one order of magni-
tude faster than the selected mobile device when render-
ing a similar volumetric model, even with a commodity
desktop PC.

The experiments 5122 × 256A and 5122 × 256B (see
Figure 7) used a model that can be stored in a single
mosaic. Therefore, our proposed TCA module was not
strictly needed for such a small model. As stated above,
both experiments differed in the TCA module. The dif-
ference in time shows the cost of including our module
to deal with large models. We can clearly see that the
GPU handles the additional operations without a no-
ticeable increment of time.

The last experiment (5122 × 1024) used a large model
that cannot be encoded on one mosaic in a conventional
way. Therefore, our TCA module is mandatory to ren-
der it. In this case, the four color channels of a texture
were used, and thus, the model was four times larger
than the one used in the previous experiments. This ex-
periment showed that the rendering time is greater than
in the previous experiments. This result is somewhat a
surprise, since the texture dimensions, operations and
texture fetches are the same. In fact, the only difference
is the number of color channels.

5 CONCLUSIONS
Due to the today’s mobile GPU limitations, it was not
possible to render volumetric models larger than 1283

voxels on devices such as the Apple’s smartphones and
tablets. However, in this paper we have proposed a
novel technique that enables mobile devices to render
very large volumes by using multi-texturing to encode
volumetric models on a set of RGBA 2D textures.

We have also proposed a simple and easy to implement
architecture that can be used to adapt any existing di-

Figure 6: Visible human dataset rendered with WebGL, resolution: 5122 ×1024 voxels.

0

20

40

60

80

100

120

140

512^2x256A 512^2x256B 512^2x10245122 x 256 A 5122 x 256 B 5122 x 1024

Figure 7: Rendering time (ms) for a desktop PC with a
nVidia Geforce 8800GS. Screen resolution: 8002 pix-
els. Raytracing: 128 steps.

rect volume rendering technique based on 3D textures
to mobile devices and WebGL.

Our experiments have proved that we can render vol-
umes of up to 5123 × 384 voxels on a mobile device
without decreasing the rendering speed. The proposed
technique is also very akin to WebGL, because this
standard shares the same limitations that mobile de-
vices, mainly the lack of 3D texture support.

Regarding future works, we plan to study texture com-
pression in order to reduce cache issues and improve ef-
ficiency. Furthermore, we plan to test the performance
problems when transmitting large volumes across the
Internet on WebGL. We want to explore multiresolution
techniques in order to optimize network bandwidth.
Progressive refinement techniques can probably be used
in this context to improve the user interaction experi-
ence with the volume.

ACKNOWLEDGEMENTS
This work has been partially supported by the Span-
ish “Ministerio de Ciencia e Innovación” and the Eu-
ropean Union (via ERDF funds) through the research
project TIN2011-25259; by the “Consejería de Inno-
vación, Ciencia y Empresa” of the “Junta de Andalucía”

and the European Union (via ERDF funds) through the
research project P07-TIC-02773; and by the University
of Jaén through the project PID441012.

6 REFERENCES
[1] J. Congote, A. Segura, L. Kabongo, A. Moreno,

J. Posada, and O. Ruiz. Interactive visualization
of volumetric data with WebGL in real-time. In
Proceedings of the 16th International Conference
on 3D Web Technology, Web3D ’11, pages 137–
146, New York, NY, USA, 2011. ACM.

[2] K. Engel, M. Hadwiger, J. M. Kniss, A. E. Lefohn,
C. R. Salama, and D. Weiskopf. Real-time vol-
ume graphics. In ACM SIGGRAPH 2004 Course
Notes, SIGGRAPH ’04, New York, NY, USA,
2004. ACM.

[3] S. Guthe and W. Straßer. Real-time decompres-
sion and visualization of animated volume data.
Proceedings of the IEEE Visualization Confer-
ence, pages 349–356, 2001.

[4] M. Hadwiger, P. Ljung, C. R. Salama, and
T. Ropinski. Advanced illumination techniques
for GPU-based volume raycasting. In ACM SIG-
GRAPH 2009 Courses, SIGGRAPH ’09, pages
2:1–2:166, New York, NY, USA, 2009. ACM.

[5] ImageVis3D. ImageVis3D: A real-time volume
rendering tool for large data. scientific computing
and imaging institute (sci), 2011. [accessed 29
September 2011].

[6] F. Ino, S. Yoshida, and K. Hagihara. RGBA pack-
ing for fast cone beam reconstruction on the GPU.
In , Proceedings of the SPIE Medical Imaging,
2009.

[7] S. Jeong and A. E. Kaufman. Interactive wire-
less virtual colonoscopy. The Visual Computer,
23(8):545–557, 2007.

[8] J. Kruger and R. Westermann. Acceleration tech-
niques for GPU-based volume rendering. In Pro-
ceedings of the 14th IEEE Visualization 2003
(VIS’03), VIS ’03, pages 38–, Washington, DC,
USA, 2003. IEEE Computer Society.

[9] F. Lamberti and A. Sanna. A solution for display-
ing medical data models on mobile devices. In
SEPADS’05, pages 1–7, Stevens Point, Wiscon-
sin, USA, 2005. World Scientific and Engineering
Academy and Society (WSEAS).

[10] M. Levoy. Display of surfaces from volume data.
IEEE Comput. Graph. Appl., 8:29–37, May 1988.

[11] M. Moser and D. Weiskopf. Interactive Volume
Rendering on Mobile Devices. In Workshop on
Vision, Modelling, and Visualization VMV ’08,
pages 217–226, 2008.

[12] A. Munshi, D. Ginsburg, and D. Shreiner.
OpenGL(R) ES 2.0 Programming Guide.
Addison-Wesley Professional, 1 edition, 2008.

[13] J. Noguera, J. Jiménez, C. Ogáyar, and R. Segura.
Volume rendering strategies on mobile devices. In
International Conference on Computer Graphics
Theory and Applications (GRAPP 2012). Rome
(Italy), pages 447–452, 2012.

[14] Power VR. PowerVR Series5 Graphics SGX ar-
chitecture guide for developers, 2011.

[15] J. Schneider and R. Westermann. Compression
domain volume rendering. Proceedings of the
IEEE Visualization Conference, pages 293–300,
2003.

[16] S. Thelen, J. Meyer, A. Ebert, and H. Hagen.
Giga-scale multiresolution volume rendering on
distributed display clusters. Lecture Notes in
Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 6431 LNCS:142–162, 2011.

[17] B. Tomandl, P. Hastreiter, C. Rezk-Salama, K. En-
gel, T. Ertl, W. Huk, R. Naraghi, O. Ganslandt,
C. Nimsky, and K. Eberhardt. Local and remote
visualization techniques for interactive direct vol-
ume rendering in neuroradiology. Radiographics,
21(6):1561–1572, 2001.

[18] L. C. Vera. Volumetric medical images visualiza-
tion on mobile devices. Master’s thesis, Polytech-
nic University of Catalonia, 2010.

[19] D. Weiskopf. GPU-based interactive visualiza-
tion techniques. Mathematics and visualization.
Springer, 2007.

[20] C. Wooley. GPU Gems 2: Programming Tech-
niques for High-Performance Graphics and
General-Purpose Computation (Gpu Gems),
chapter 35, pages 557–571. Addison-Wesley Pro-
fessional, 2005.

[21] K. Xie, J. Yang, and Y. , Zhu. Real-time visu-
alization of large volume datasets on standard pc
hardware. Computer Methods and Programs in
Biomedicine, 90(2):117–123, 2008.

[22] H. Zhou, H. Qu, Y. Wu, and M. yuen Chan. Vol-
ume visualization on mobile devices. In 14th
Pacific Conference on Computer Graphics and
Applications, pages 76–84, 2006.

