
Parallel Treecut-Manipulation for Interactive Level of Detail
Selection

Daniel Schiffner

Goethe Universität
Robert-Mayer-Str. 10

Germany, 60054, Frankfurt (Main)

dschiffner@gdv.cs.uni-frankfurt.de

Detlef Krömker

Goethe Universität
Robert-Mayer-Str. 10

Germany, 60054, Frankfurt (Main)

kroemker@gdv.cs.uni-frankfurt.de

ABSTRACT
We present a dynamic system that allows to alter the Level of Detail (LOD) of a treecut-based object. The adap-
tation and selection is made in a parallel process which avoids stalling or locks because of expensive calculations
and LOD changes. We present a method to control the exchange between the independent threads. Based on this
separation, we present multiple strategies to perform the LOD-selection for point-based representations.

Keywords
Level Of Detail, Parallel LOD-selection, LOD-strategies, Thread Management.

1 INTRODUCTION
Level of Detail (LOD)-techniques are required in
today’s rendering environments to assure interactivity
because of the ever growing number of primitives
used [Hol11]. The selection of a LOD-representation,
for example, can be based on the current view or
object-related properties. However, these selections
may require expensive computations, and thus, discrete
LODs are preferred over continuous methods. We
address this issue and present a system to allow parallel
LOD-selection.

This LOD-selection can be derived using different
strategies. These range from a simple recursive
algorithm up to a priority-based selection. Using a
perceptual metric in combination with a prioritization,
the visual quality of an existing representation is
preserved with respect to the human visual system. As
the necessary calculations made by a perceptual metric
can be expensive, the LOD-selection is performed in a
parallel thread. So, stalling of the rendering is reduced
to a minimum.

In this work, we describe our point-based rendering sys-
tem and show how to manage the individual threads.
Furthermore, we present multiple LOD-strategies that
evolve an existing representation using only local oper-
ations.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Following to this introduction, we will give an insight
into related work and then present our framework. This
includes the synchronization of the evaluation as well as
the LOD-strategies. We present performance and visual
results that were achieved with the proposed framework
and conclude with an outlook regarding future work.

2 RELATED WORK
Several methods to create a LOD-hierarchy exist. Typ-
ically, these levels are created by the hand of a designer
who may be supported by a reduction algorithm. These
pregenerated LODs are then used during rendering and
are exchanged by some kind of metric.

It is possible to avoid the generation of a hierarchy
or pregenerated LODs to reduce the amount of stored
information. Especially interesting in this context are
progressive representations. These produce intermedi-
ate solutions and are not restricted to fixed, i.e. discrete,
levels. For this reason, these methods are referred to
as continuous LOD. Hoppe [Hop96] presented a mesh-
based reduction method, which was extended to point-
based representations by [Wu05].

To create the individual levels, the reduction methods
can exploit geometric information to increase details.
[Gar97], for example, apply an error metric to increase
the quality of the reduced versions. If such an algorithm
is applied sequentially and the results are stored, a hier-
archy is created. The current representation is defined
by a vertex front or a cut / treecut.

Instead of generating details, the vertex front can be
altered to select the representation based on the cur-
rent hierarchy. Schiffner and Krömker [Sch10] use a
treecut to adapt the representation by prioritizing nodes
with high curvature. A similar approach is presented



Controller

TC Evaluation

Feedback Stage

Model

Data

Static
Representation

TC
Modify

Representation

. . . TC
Modify

Representation

Scene View
Extract Data

Invokes
R
efresh

Model Info Visual Info

Update

Commands, etc.

Figure 1: The design of our framework is based upon a Model-View-Controller (MVC) pattern. We introduce
a Feedback Stage, which consists of a LOD-strategies and generates the new representation of the TreeCut. This
component extracts information from both the Model and the View. Changes are relayed via the Controller.

by [Car11], where an octree cut is used to select data
for visualization of large data sets. Both methods avoid
a retraversal of the hierarchy and preserve the current
vertex front, similar to Progressive Meshes [Hop96]
or Progressive Splats [Wu05]. Both cuts includes a
method to alter the current distribution. This idea will
be used as a so-called LOD-strategy within this work.

Multi-threaded or parallel applications for rendering
often focus on splitting the current representation into
multiple viewports. Applications here range from
Global Illumination [Hol11] to efficient large data set
visualization [Gos12]. Recently, Peng et al. [Pen11]
presented an approach to generate large crowds by par-
allel processing the individual models. Similar to our
work, a scene is optimized for interactive renderings.
They, however, use a fixed evaluation method.

3 SYSTEM DESIGN
As common in graphics applications [Shi10], our
framework is based upon a Model-View-Controller
(MVC) pattern. The Controller invokes the changes
of the Model, i.e. the TreeCut [Sch10], which holds
the current LOD representation. The View uses this
current representation to derive a visual output using a
graphics API.

We extend this default pattern by introducing a
Feedback Stage (see figure 1). It is similar to an
observer component, but with the ability to influence
the Controller. Thus, the Feedback Stage can alter the
Model which results in a different View. The Feedback
Stage utilizes a strategy to apply the necessary LOD-
operations. Therefore, the strategy may need to extract
information from the rendered scene. This is visualized
by the connection between the Feedback Stage and
the View in figure 1. In the following, we will refer
to the extraction of information and application of the
strategy as an iteration.

Thread Management
We separate the Feedback Stage from the Controller,
as it is an independent component. As it has access to
all information required, it will be executed in parallel
to the default rendering. During evaluation, the ren-
dering of the old representation is continued. Due to
the parallelization of both processes, some kind of syn-
chronization needs to be included to avoid deadlocks or
race-conditions.

S
y
n
c
e
d

P
a
r
a
l
l
e
l

S
y
n
c
e
d

Evaluation Rendering

wait

process

Extract

Process Update

Alter Draw

wait Query

Exchange

Data

Signal

if
p
r
o
c
e
s
s

Figure 2: The processing sequence used to control the
evaluation and rendering threads. While the evaluation
is processing, the rendering thread displays the current
LOD-version. Once the evaluation has completed, the
data is exchanged and the LOD is updated gracefully.
The query from the rendering thread is made without
lock. This conditionally triggers the exchange of a new
representation, which must be performed synchronized.



We propose a synchronization-strategy based on two
states that are queried by the rendering thread: wait
and process. This allows to add the evaluation with
only small changes to the rendering code. The ren-
dering thread only has to query for a new representa-
tion, while the Feedback Stage will handle the complete
strategy evaluation and LOD-selection. The performed
steps are visualized in figure 2.
We leverage the fact that the TreeCut is only repre-
sented with an index-list. The derivation of a new LOD
thus only requires to generate a new index-list, which
will be swapped or blended with the current one. This
minimizes stall and flicker once a new representation is
available. Only a pointer, or the VBO id, needs to be
replaced. No copying of this data is performed during
synchronization.
On initialization of the evaluation thread, the state is
set to wait. In this state, all data can be accessed
safely from the rendering thread. Here, no locking the
data is required as no processing is performed. Only in
this state the data will be exchanged. As stated before,
the evaluation will generate an index-list, which can be
swapped with the current one used for display.
If a new representation is requested, because the scene
has changed or is considered invalid, the rendering pro-
cess issues an update request to the evaluation via a sig-
nal. The evaluation thread is then set to the process-
state. The rendering continues displaying the old rep-
resentation as long as the evaluation is generating an
updated version. After rendering a single frame, the
evaluation is queried.
When starting to generate a new representation, the
evaluation extracts the required data. This includes to
copy the current index-list used by the rendering thread.
As this is an read-only operation, no lock is required.
LOD-strategies may need to aquire additional data from
the View or the Model which can also be copied without
a lock.
After completion of a single iteration, the evaluation
thread will change its state to wait. As it is possible
that the current representation is optimal for the applied
strategy, a flag is used to indicate this case. This also
allows to accelerate the LOD-strategies as they may ter-
minate prematurely.
When the evaluation is in wait-stage again, the Ex-
change is executed. The Exchange does not cause a
race-condition in both threads, because neither the ren-
dering nor the evaluation requires access to the crucial
data at this time. Additionally, we only require to ex-
change, i.e. swap, the used index-list if a new represen-
tation has been generated.
The Feedback Stage can be invoked again directly after
the completion of the iteration. No additional updates
to the Feedback Stage are required, as it extracts the
current information in parallel.

4 LOD-STRATEGIES
Once a TreeCut has been established, only two core op-
erations are applied (refine, coarse), which repre-
sent the changes in the detail. To alter the representa-
tion in a global manner, we apply LOD-strategies that
are based solely on the current cut.
We include a threshold value to control the application
of the individual operations. This counteracts repet-
itive refines or coarses of nodes. We, hereby,
mean that a node is refined in an iteration while it
is coarsened in the next.
In the following, we will present three different types
of strategies: An optimization, a bucket-based approach
and a recursive traversal of the hierarchy. The latter dif-
fers from the first ones because it operates on the com-
plete LOD-hierarchy instead. It is included to show the
universal applicability of the proposed thread manage-
ment.

Optimization Strategy
The optimization LOD-strategy evaluates the current
cut and applies a partial sorting based on a priority
value, similar to [Car11]. This strategy requires some
kind of limitation regarding the cut-size, e.g. a maximal
node count. The priorities of the parent nodes should
to be larger than their children to avoid artifacts. Oth-
erwise, a parent node, i.e. a coarser representation, is
favoured over a more detailed one.
During the Extract in the evaluation thread (refer to fig-
ure 2), the priorities are aquired. In our implementation,
we use the curvature from the cut-nodes as priorities.
The partial sorting is applied by iterating the complete
cut and storing only the nodes with highest and lowest
priority.
The algorithm selects nodes with highest priority for
refinement, while nodes with lowest priority are

Nodes

HighLow

Optimize

if space

refine

if no-space

coarse

if {} or no-gain

abort

re
p
ea
t

Figure 3: The optimization LOD-strategy for TreeCut-
evaluation. Only the nodes with highest and lowest pri-
ority are processed. This accelerates the evaluation as
it reduces the theoretical time complexity [Car11]. The
most important ones are refined, while the least im-
portant ones are coarsened. This strategy requires a
maximal node count to be applied



coarsened in the representation. A coarse frees
space for further refinement with more important nodes.
The operations performed by this strategy are visual-
ized in figure 3.

As the partial sorting size can be considered constant
during run-time, e.g. the size is not changed during an
iteration, a linear time-complexity is given: O(n logk)
with k being the constant partial sorting size and n the
size of the current cut.

The threshold is defined as the minimal gain in prior-
ity required when altering the TreeCut. Therefore, the
primitives in the sorted sequences (low and high) are
compared before a coarse is applied. A refine is
always executed as long as space is available.

Bucket-based Strategy
The second strategy assigns a target bucket to each node
within the cut. The strategy alters the TreeCut to match
a certain distribution as closely as possible. This strat-
egy requires a method that determines the target bucket
for a node.

An example for application is the generation of a
stippling-like appearance of an object. The target
bucket for each node is derived by using the illumi-
nation at the current node’s location. The darker the
current location, the more nodes are used within this
region, i.e. the hierarchy is refined. The node is
coarsened if a lighter representation is required.

In figure 4, an exemplary application of the LOD-
strategy is shown. For each node, a target bucket is
calculated. If this bucket differs from the currently as-
signed bucket, the delta is used to determine the accord-
ing cut-operation. In the figure, a + denotes a posi-
tive delta and a refine needs to be applied, a - is a
coarse. The 0 is the special case, that the node al-
ready has the correct bucket and no operation is neces-
sary.

After the buckets have been calculated for all siblings,
the operations are validated. As in the optimization
LOD-strategy, a refine has higher precendence than
a coarse. For this reason, the left branch is expanded
in figure 4.

Special care has to be taken, if a coarse-operation
needs to be applied. The parent node needs be inspected
as well. The operation is only executed, if the bucket of
the parent does not invalidate it. A small example will
illustrate this scenario.

In the right branch of the tree in figure 4, a coarse
needs to be applied. Therefore, the parent node is in-
spected (visualized by the question mark). In this case,
the target bucket for the parent does not have a different
delta (it is 0), i.e. it does not invalidate the operation.
Thus, the coarse can be applied safely. The same ap-
plies, if the delta would be negative. If the parent would

have a positive value, the node would be expanded in
the next iteration. This would invalidate the operation
and introduce a flicker into the represenation and the
coarse is not executed.

As each node within the cut is evaluated, a linear time
complexity is given: O(n) with n being the cut-size.

For this LOD-strategy, the threshold is defined as the
minimal delta that is required to force a coarse. We
have achieved good results by a threshold of 0.

Recursive Strategy
The last strategy evaluates the complete LOD-hierarchy
instead of the current cut. This method is inspired by
the QSplat rendering system [Rus00]. Starting at the
root node, the new cut is defined by the individual nodes
when aborting the recursion. This abort is either due to
culling, small splat area, or when no further refinement
is possible, i.e. a leaf node is reached.

For this method it is required to additionally store the
complete hierarchy, which is not the case for the other
two LOD-strategies. During the Extract-step, this hier-
archy is mapped to be accessible. The evaluation then
starts the recursive traversal on a plain index-list.

The worst time complexity of this algorithm is O(N)
where N is the number of nodes within the tree. As
the abort criterion includes culling, an acceleration is
achieved, which results in an average logarithmic time
complexity for large objects.

As opposed to the other two methods, the recursive
strategy generates a new cut instead of manipulating an
existing one. Thus, the definition of the threshold is not
applicable to this strategy.

5 RESULTS
We tested the different evaluation strategies with our
rendering system. We measured the rendering times
and the overhead introduced by the usage of our sys-
tem. The proposed LOD-strategies are compared to
each other and the evaluation times in dependency of
the original primitive count and the current count will
be given as well.

+ 0 -

0

- - +

+ -

?

Figure 4: The bucket-based strategy for TreeCut-
evaluation. Each node is assigned a target node. All sib-
lings and the parent define the operation to be applied.
If a coarse-operation is requested, the parent node is
inspected (indicated by the question mark). Only if the
operation is considered save, it is executed.



 0

 10

 20

 30

 40

 50

 0 500,000 1,000,000 1,500,000

T
im

e
 [

m
s
]

Surfels

Without Feedback (fit)
Feedback (fit)

Figure 5: The performance impact when using the pro-
posed Feedback System. The new representation gen-
erated is swapped from the evaluation thread to the ren-
dering. Note that the increase is not required every
frame, but only when an iteration has been completed.
In our prototype, no changes are made to the represen-
tation during rendering. The average overhead is the
difference between the fitted lines.

A sequential comparison is not included using the pro-
posed strategies, but can be derived easily by summing
up the rendering and evaluation times.

Additionally, we present some visual outputs generated
by our renderer. For all renderings, we use a point-
based rendering method that utilizes the Phong Splat-
ting technique presented by [Bot05].

As noted before, we use the curvature as the priority
value in case of the optimization LOD-strategy. The
curvature identifies important regions on the surface of
the object, and detail is preserved in regions where the
surface changes. This was also presented in [Sch10]
and [Lee05]. We preprocessed the curvature and in-
cluded it within the LOD-hierarchy. Additionally, we
assure that parent nodes have a higher curvature value
than their children. During rendering of the scene, the
maximal node count is set to be idendtical to the count
given by the recursive LOD-strategy.

The bucket-based strategy uses the illumination infor-
mation to derive a target bucket for each node. We use a
fixed splat size for each node, and so create a stippling-
like appearance of an object.

Finally, the recursive method implements the QSplat hi-
erarchy and enables the basic QSplat method to be ren-
dered efficiently using the Phong Splatting technique
[Bot05] without further adaptation.

Time Measurements
Our prototype is written in C++ and openGL. The tests
were made with a Intel i5 with 3.47 GHz, 8.0 GB
RAM and a nVidia GeForce 260 GTX with 896MB
RAM. The graphics in figure 5 show the overhead in-
troduced due to the exchange of the newly generated

LOD-version after an iteration has been completed.
Note that this increase is only generated if the eval-
uation is in wait-stage and a new LOD-version was
created. The overall time falls below the version with-
out the Feedback Stage (labeled Without Feedback) be-
cause rendering is accelerated and less primitives are
required.
The graphs in figure 6 show the performance of the pro-
posed strategies. We tested each strategy with multiple
objects that are drawn in a predefined scene. During
rendering, only one object and one light source is used.
Both are rotated and moved to assure a large number
of update request for the LOD-strategies. The objects
are taken from the Standford 3d repository [3DScan].
As the same scene is used for all objects and LOD-
strategies, the aquired evaluation times are comparable.
We omit information of the transfer of the data from the
evaluation thread to the rendering thread as the gener-
ated data is only swapped.
As expected, both TreeCut-based strategies perform
with linear time complexity. The bucket-based (refer
to figure 6a) LOD-strategy does not change the size
of the TreeCut as much as in the optimization LOD-
strategy (refer to figure 6b). This is due to the fact that
the bucket-based strategy is not limited by a maximal
node count.
The optimization LOD-strategy allows to include any
priority into an existing hierarchy. The evaluation re-
mains linear despite the performed sorting. In the
shown case, 8k elements are sorted.
The recursive strategy applies the QSplat traversal pre-
sented by [Rus00]. The abort criterion includes back-
face culling, and for this reason, multiple nodes or sur-
fels can be rejected early. This results in an overall ac-
celeration of the traversal. For simple objects, the gain
is not as large as with objects with higher geometric
complexity. However, the strategy does not allow fine-
tuning of a single representation. Only the recursive
algorithm can be altered.

Visual Results
Some results achieved with the proposed LOD-
strategies are shown in figure 7. A directional light
source is used for illumination.
In figure 7a, we applied the bucket-based strategy along
with an illumination-based target bucket function. We
determine the target bucket by weighting the current il-
lumination with respect to the depth of the node and
maximal depth of the tree. This creates a stippling-like
appearance of the drawn object. We enhanced Phong
Splatting technique for the bucket-based approach to
generate both a closed surface and equal-sized surfels.
The visual quality of the rendered version depends
mainly on the used hierarchy. We enhanced the gener-
ation by using a node as parent instead of the average



 0

 50

 100

 150

 200

 250

 300

 0 100,000 200,000 300,000 400,000 500,000

T
im

e
 [
m

s
]

TreeCut Size [Nodes]

Bucket (fit)

(a) Bucket-based LOD-strategy performance
graph.

 0

 50

 100

 150

 200

 250

 300

 0 100,000 200,000 300,000 400,000 500,000

T
im

e
 [
m

s
]

TreeCut Size [Nodes]

Optimization 8k (fit)

(b) Optimization LOD-strategy performance
graph.

 0

 50

 100

 150

 200

 250

 300

 0 250,000 500,000 750,000

T
im

e
 [
m

s
]

TreeCut Size [Nodes]

Dragon
Bunny

Lion
Buddha

(c) Recursive LOD-strategy performance
graph.

Figure 6: The performance graphs of the proposed LOD-strategies. The values are given for an average single
iteration. The LOD-strategies have been applied to mulitple objects with varying sizes. The first two offer linear
time complexity, but the priority strategy has a larger overhead due to the required partial sorting. The recursive
strategy is able to fast reject large portions of the hierarchy, which results in logarithmic time.

as proposed by [Rus00]. This suppresses motion of
surfels when changing the LOD. Also, the more leaf
nodes are available, the better the dark regions can be
displayed.

A result generated with the optimization LOD-strategy
is shown in figure 7b. The surfels are prioritized by the
local curvature and surfel-size. This preserves details at
regions where the object’s surface is changing. Larger
surfels are used in flat regions resulting in a reduction
of the number of used surfels. In the shown image, only
45k surfels (original 183k) are used. The surfel-size has
been added to avoid generation of too large splats that
could mask detailed areas. This additional information
is solely required for point-based representations.

Figure 7c shows the result created with the recursive
LOD-strategy. Obviously, there is no difference in the
visual quality compared to the original QSplat algo-
rithm if plain splatting is used. However, the paral-
lelization increases performance of the rendering. This
is because the rendering can leverage VBOs and so
avoids repetitive transfer of rendering data.

A higher visual quality is achieved by using the Phong
Splatting technique. This can be used without any adap-
tation as the LOD-strategy is independent of the ren-
dering. With the original QSplat, the multiple render-
passes of the Phong Splatting would require to traverse
the hierarchy more than once, which would massively
penalize the performance.

A rendering with the maximal available detail of a sam-
ple object (the Stanford lion) is depicted in figure 7d.
It uses all 183408 leaf nodes and does not offer more
details than the reduced versions (shown in figures 7b
(45K) and 7c (87K)).

6 CONCLUSION AND OUTLOOK
Our approach increases the range of parallel pro-
cessing existing LOD-hierarchies. The different
LOD-strategies account for many scenarios, ranging

from budget-based restrictions with perceptual opti-
mization up to a bucket-based selection where nodes
are assigned a specific level. Also, non-cut-based
methods can benefit from the proposed system, which
has been shown as well by including the QSplat
algorithm.

As the object and selection is made in parallel, no
stalling of the actual rendering occurs. In addition, the
exchange between old and new representation can be
made with blending to avoid flicker artifacts. The newly
deduced LOD is not generated in advance, but created
using information from the current representation. This
allows a finer grained adaptation to a given scenario.
Due to the design, the system can be included into ex-
isting LOD-management systems as a data provider for
new LOD-versions.

All presented strategies have a low theoretical time
complexity and show good performance in our proto-
type. The parallel processing of the data preserves in-
teractivity of the rendering without being restricted to
a fixed LOD-set. The synchronization is achieved by
a simple query and thread-safe exchange is assured by
design.

The LOD-strategies can be extended to account for in-
formation that is present in the scene. For example, the
optimization strategy can include perceptual informa-
tion acquired from the current scene. This increases the
quality of the representation, while no new data needs
to be generated. Especially interesting is the application
of the TreeCut methods within the GPU to completely
avoid transfer of data between CPU and GPU.

Yet, the system and the strategies are not optimal and
need to be refined. Similar to other approaches, we
plan to evaluate our system using many objects. The
question arises, whether a centralized thread or a agent-
based approach provides better results. Developers
should be supported to decide which is the best for their
scenario.



(a) Bucket-based strategy.
The Stanford dragon is
altered in dependency of the
illumination.

(b) Optimization strategy. The sur-
fels for rendering are prioritized by
their curvature and surfel-size. This
version uses 45k surfels.

(c) Recursive strategy. The surfels
are generated by the QSplat algo-
rithm (87k surfels).

(d) High quality rendering without
the Feedback Stage (183k surfels).

Figure 7: Results generated with proposed LOD-strategies. A stippling like appearance can be created by deter-
mining the target bucket based on the current illumination. The second figure has been generated with the curvature
and surfel-size as priority. The recursive splatting method presented by QSplat can be accelerated by employing a
recursive evaluation strategy. The figure on the right shows the high detailed version of the Stanford lion.

We plan to include a complete perception model in
the optimization LOD-strategy. In this case, a full 3d
model, like [Sch11] or [Lee05], seems most suitable,
as the perception information is extracted directly from
the 3d data.

The bucked-based method does currently not include
important properties like blue-noise [Hil01]. This infor-
mation needs to be encoded within the hierarchy during
generation of the LOD and has to be ensured during
selection of the individual nodes as well. Also, the tar-
get bucket function needs to carefully select nodes for
replacement.

Finally, the system itself needs be enhanced, so that
the performance and the selection quality increases.
We plan to extend it with environmental information,
e.g. processing power or battery. This allows to selec-
tively apply the LOD-selection on different hardware
platforms, while being restricted to a universal, system-
independent criterion.

7 REFERENCES
[3DScan] http://graphics.stanford.edu/

data/3Dscanrep/.
[Bot05] Botsch, M., Hornung, A., Zwicker, M.,

Kobbelt, L. P. High-Quality Surface Splatting
on Today’s GPUs. Eurographics Symposium on
Point-Based Graphics. pp.17-24. 2005.

[Car11] Carmona, R., Froehlich, B. Error-controlled
real-time cut updates for multi-resolution volume
rendering. Computers & Graphics. pp.934–944.
2011.

[Gar97] Garland, M., and Heckbert, P. S. Surface Sim-
plification using quadric errormetrics. The art and
interdisciplinary programs of SIGGRAPH 97.
pp.209–216. 1997.

[Gos12] Goswami, P., Erol, F., Mukhi, R., Pajarola, R.,
Gobbetti, E. An Efficient Multiresolution Frame-
work for High Quality Interactive Rendering of

Massive Point Clouds using Multi-way kd-Trees.
The Visual Computer 28. 2012.

[Hil01] Hiller, S., Deussen, O., Keller, A. Tiled Blue
Noise Samples. Vision, modeling and visualiza-
tion. pp.265–272. 2001.

[Hol11] Hollander, M., Ritschel, T., Eisemann, E.,
and Boubekeur, T. ManyLoDs: Parallel Many-
View Level-of-Detail Selection for Real-Time
Global Illumination. Computer Graphics Forum
30. pp.1233–1240. 2011.

[Hop96] Hoppe, H. Progressive Meshes. SIGGRAPH
96 conference proceedings. pp.99–108. 1996.

[Lee05] Lee, C. H., Varshney, A., Jacobs, D. W. Mesh
saliency, Proceedings of ACM SIGGRAPH 2005.
pp.659–666. 2005.

[Pen11] Peng, C., Park, S., Cao, Y., and Tian, J. A
Real-Time System for Crowd Rendering: Par-
allel LOD and Texture-Preserving Approach on
GPU. Lecture notes in computer science vol.
7060. pp.27–38. 2011.

[Rus00] Rusinkiewicz, S. and Levoy, M. QSplat: a
multiresolution point rendering system for large
meshes. SIGGRAPH 2000 conference proceed-
ings. pp.343–352. 2000.

[Sch10] Schiffner, D., Krömker, D. Tree-Cut: Dy-
namic Saliency Based Level of Detail for Point
Based Rendering. Sensyble 2010. pp.37–43.
2010.

[Sch11] Schiffner, D., Krömker, D. Three Dimensional
Saliency Calculation Using Splatting. Sixth In-
ternational Conference on Image and Graphics
(ICIG). pp.835–840. 2011.

[Shi10] Shirley, P., Marschner, S. R., and Ashikhmin,
M. Fundamentals of computer graphics 3rd edi-
tion. 2010.

[Wu05] Wu, J., Zhang, Z., and Kobbelt, L. P. Pro-
gressive Splatting. Eurographics Symposium on
Point-Based Graphics. pp.25–32. 2005.


