
Contact Hardening Soft Shadows using Erosion

Andreas Klein
Munich University of

Applied Sciences
Lothstrasse 64

80335 Munich, Germany
andreas.klein@hm.edu

Alfred Nischwitz
Munich University of

Applied Sciences
Lothstrasse 64

80335 Munich, Germany
nischwitz@cs.hm.edu

Paul Obermeier
MBDA Deutschland

GmbH
Hagenauer Forst 27

86529 Schrobenhausen,
Germany

paul.obermeier@mbda-
systems.de

ABSTRACT
In this paper, we present an image based method for computing contact hardening soft shadows by utilizing an ero-
sion operator. Our method is based on shadow mapping and operates in screen space. By using object silhouettes
in hard shadows, we estimate the penumbra size and scale an erosion operator to generate the penumbra areas.
Furthermore, we present two solutions to generate the shadow factor for the penumbra areas. Our method works
best for small penumbras and can be easily integrated into existing shadow mapping based applications.

Keywords
Shadow Mapping, Soft Shadows.

1 INTRODUCTION

Shadows are an important part for the human percep-
tion. They give clues about the spatial relationship and
the form of objects. Real world shadows can be divided
into an umbra and a penumbra. An umbra occurs when
a light source is completely occluded and a penumbra
when it is partially occluded.

In real-time rendering, a popular method to generate
shadows is shadow mapping [Wil78a]. Shadow
mapping assumes point light sources and thus, only
hard shadows are produced. However, real world light
sources are extended, and they generate penumbras,
whose size often can be proportional to the light size
and the receiver-blocker distance.

Current methods for generating contact hardening soft
shadows are not suited for high shadow map resolu-
tions [Lau07a], require a high amount of texture fetches
[Fer05a] or the performance decreases with the number
of shadow maps [Gum10a].

We present an algorithm to produce contact hardening
soft shadows using an erosion operator. Our algorithm
is an extension to shadow mapping and operates in

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

screen space. Furthermore, it is suited for high shadow
map resolutions as well as multiple shadow maps.

2 RELATED WORK
The rendering of soft shadows has been studied exten-
sively over the last years. Therefore, we focus our re-
view on publications closely related to our work. For
an exhaustive survey on other methods see [Eis11a].

Percentage closer filtering (PCF) [Ree87a] is a popu-
lar method for generating soft shadows. The idea is to
make multiple shadow comparisons within a user de-
fined filter window. The shadowing factor is then built
by averaging the result. To generate contact hardening
soft shadows with PCF, Fernando [Fer05a] proposed
percentage closer soft shadows (PCSS). He introduced
a blocker search as a preprocessing step, where he sam-
pled the shadow map to calculate an average blocker
depth for each screen space pixel and approximated a
penumbra width with a parallel planes approximation.
Finally, he used the penumbra width to scale the PCF
filter window.

Arvo et al. [Arv04a] estimated the penumbra regions
by detecting the edges in hard shadows and propagat-
ing a visibility factor using a flood fill algorithm. Rong
and Tan [Ron06a] accelerated this method using jump
flood fill algorithms. Gumbau et al. [Gum10a] dilated
a shadow map to replace the blocker search of PCSS.
Furthermore, they replaced the PCF filtering with a sep-
arable Gaussian blur.

There are several approaches to calculate soft shadows
in screen space. Robison and Shirley [Rob09a] used
a screen space distance map to estimate a penumbra



width and blurred a hard shadow map with it. Hanjun
and Huali [Han10a] developed an algorithm that prop-
agates a shadow factor using erosion and dilation that
is closely related to our work. However, we incorpo-
rate contact hardening soft shadows as well as penum-
bra anti-aliasing. Aguado and Montiel [Agu10a] pre-
sented an approach where a penumbra size is propa-
gated using a mipmap flood fill and the penumbra is
generated with a Gaussian filter in screen space. How-
ever, this approach produces light leaks which can be
reduced by using multiple layers. MohammandBagher
et al. [Moh10a] used a projected shadow map in screen
space to estimate a penumbra size and to blur a hard
shadow map

3 ALGORITHM OVERVIEW
Our algorithm computes the penumbra in screen space
and is an extension to existing shadow mapping ap-
proaches. The algorithm proceeds as follows. First,
we render hard shadows with a shadow mapping al-
gorithm. Second, we detect edges in the hard shad-
ows and store the blocker-receiver distance as well as
the camera-receiver distance for the edge pixels. Now
we can calculate the penumbra width since it is pro-
portional to the blocker-receiver distance and indirect
proportional to the camera-receiver distance. Next, we
erode the edges with a filter kernel that is scaled ac-
cording to the penumbra width and thus, estimating the
inner and outer penumbra regions for contact hardening
soft shadows. In order to generate the final penumbra,
we propose two solutions. First, by filtering the shadow
map in the penumbra regions with PCF and second, by
directly calculating it during erosion.

Rendering Hard Shadows
The first step in the algorithm is to render hard shadows
and auxiliary buffers. We assume that a shadow map
has already been rendered. The scene is rendered from
the observer and we perform a standard shadow com-
parison for each screen space pixel. We store a one in
a screen space hard shadow buffer for each lit pixel and
a zero for each shadowed pixel. Additionally, the depth
difference between the blocker and receiver as well as
the distance to the camera is stored. Furthermore, we
store the diffuse color in a separate texture to calculate
the final shading in the last pass.

Edge Detection
The second step is to estimate the penumbra regions
by detecting the edges in the screen space hard shadow
buffer. As the hard shadow buffer is a binary image, we
can easily detect the edges with a 3 x 3 Laplacian filter,
which needs five texture fetches: 0 1 0

1 −4 1
0 1 0



We calculate the penumbra width for each edge pixel
by using the parallel planes approximation of Fernando
[Fer05a]. Additionally, the kernel size is scaled based
on the camera-receiver distance [Gum10a]:

ωpenumbra =
(dreceiver −dblocker)ωlight

dblockerdobserver

where ωlight is the light dimension. We store the
penumbra width in the second texture channel.

Erosion
After the edges have been detected, they are eroded
with a variable sized erosion filter1. We estimate the
erosion by using a min-max mipmap [Isi06a, Dmi07a]
(Figure 1). Recall that the edge texture stores a zero
for each boundary pixel in the first channel and the
penumbra size in the second channel. First we gener-
ate the min-max mipmap hierarchy for the edge texture
by performing a min operation in the first channel and
a max operation in the second texture channel. During
erosion we calculate a maximum search radius for the
given light dimension and the distance to the observer
in order to find the closest edge, as the penumbra widths
are only stored in the edge pixels. We choose a mipmap
level based on the maximum search radius and query
the min-max mipmap hierarchy. If the first channel con-
tains no boundary pixel, we immediately terminate the
erosion. Otherwise, we read the penumbra width from
the second texture channel and choose again a mipmap
level. Finally, we access the mipmap hierarchy in this
mipmap level and test for boundary pixels. If a bound-
ary pixel is found, we store the penumbra width in the
result texture. Otherwise we discard the pixel.

Determine the Shadow Factor
In the final pass, we use PCF to determine the shadow
factor for each pixel. We scale the PCF filter based on
the penumbra width and combine the result with the
hard shadow map rendered in the first pass.

4 ESTIMATE A SHADOW FACTOR
WITH EROSION

A second solution is to estimate a shadow factor di-
rectly during erosion. In order to realize this idea, some
changes in the algorithm are necessary.

As the screen space hard shadow buffer is rendered
from the observer’s viewpoint, objects may occlude
shadowed areas and thus, the edge detector will pro-
duce edges which do not belong to penumbra regions.
As Arvo et al. [Arv04a] pointed out, this issue can
be solved by testing the shadow map for silhouettes on

1 In terms of image processing this operation is an erosion, as
the zeros in the edge texture are propagated.



1.

2.

3.

Figure 1: Erosion of the edges using a min-max mipmap. First, we choose mipmap level based on a maximum
search radius and read the penumbra size from the max channel of the mipmap. Second, we calculate a mipmap
level based on the penumbra size and read the edge value stored in min channel. Finally, we output the penumbra
size if the edge value can be classified as a boundary pixel.

each detected edge pixel. We use the same 3 x 3 Lapla-
cian filter and compare the result against a threshold. If
the result is within the threshold, the edge pixel is valid
and will be used in the next step. Otherwise, we discard
it.

In order to compute the shadow factor, we implemented
the variable sized erosion in a gathering approach. First,
we determine a maximum kernel size and search for
edge pixels within this area. If an edge pixel is found,
we calculate its penumbra width and check, whether the
current pixel is within its range. We continue until we
found the edge pixel with the smallest distance to the
current pixel. The shadow factor of the outer penumbra
can then be directly calculated:

souter =
ωpenumbra −dmin

2ωpenumbra

where dmin is the minimum distance to the edge and
ωpenumbra the penumbra size. The inner penumbra is
simply calculated with sinner = 1− souter.

Figure 2: Left: Artifacts due to aliasing in hard shad-
ows. Right: Result after the distance correction. Note
that there are still some incorrect pixels at the transition
from the outer to the inner penumbra.

Due to aliasing in the screen space hard shadow buffer,
this method replicates the aliasing in the penumbra
(Figure 2).

To increase the visual quality, we search for a best fit
straight line by a least square method in a discrete envi-
ronment around each edge pixel prior to the erosion and
store the line parameters in an auxiliary texture. During
erosion, we read the line parameters from the texture
and calculate the vector vline from the edge pixel’s cen-
ter to the line. Finally, we add vline to the vector from
the erosion point to the edge, calculate the distance and
use it during erosion (Figure 3).

This compensates parts of the aliasing in the screen
space hard shadow buffer and increases the visual qual-
ity (Figure 2). However, there are still some incor-
rect pixels at the transition from the outer to the inner
penumbra. We will try to solve this issue in future work.

Figure 3: In order to improve the visual quality, we
search for a best fit line and offset the vector to the edge
with the vector from the edge to the line. Finally, we
use the distance of the resulting vector during erosion.



5 RESULTS
We compared our algorithm against a PCSS implemen-
tation and a reference solution. This PCSS implementa-
tion uses a Poisson disk for the blocker search and PCF
filtering. Both methods use 32 samples for the final
PCF. The reference solution is realized by approximat-
ing the area light source with 512 point light sources.
The screen resolution was 1920 x 1080 pixels and the
shadow map size was 2048 x 2048. Figure 4 and 5
shows the resulting images and Table 1 the performance
results. Table 2 shows the duration of the algorithm
steps in the buddha dataset. The performance results
were obtained on an Intel Xeon E5620 CPU with 2.4
GHz, 8 GB RAM and a NVIDIA GeForce GTX 680
graphics card with 2048 MB memory.

Cactus Hairball Buddha
(188K tris) (2.88M tris) (1.08M tris)

Erosion 1.62 12.56 5.77
PCSS 8 1.58 11.51 4.68
PCSS 32 1.60 11.89 5.11
PCSS 64 1.66 12.44 5.69

Table 1: Performance results in comparison with PCSS
using 8, 32 and 64 blocker search samples. The screen
resolution is 1080p.

Step Time [ms]
Shadow Map 2.20
Hard Shadows 2.52
Edge Detection 0.31
Erosion 0.30
Shading 0.44

Table 2: Duration of the algorithm steps using the bud-
dha dataset.

6 DISCUSSION
The bottleneck of PCSS [Fer05a] is the blocker search
that is performed for each screen space pixel. Our moti-
vation is to replace the blocker search per pixel by oper-
ating only on silhouettes of hard shadows. However, the
rendering chain of our method is more complex. Thus,
a speedup is only achieved when the blocker search is
performed with 64 samples per pixel and the penum-
bra area is small. In contrast to PCSS, our method does
not produce artifacts resulting from a small number of
blocker search samples when rendering fine structured
geometry, such as in Figure 4.
One possible issue in the method of [Gum10a] is that
the algorithm operates on shadow maps. In contrast
our algorithm operates on a screen space hard shadow
buffer, which makes it attractive for applications with
multiple shadow maps.
Compared to [Han10a] we incorporated variable sized
penumbras and increased the visual quality by calculat-
ing the distance to a best fit straight line. Furthermore,

we implemented a second solution for generating the
shadow factor with a PCF filter, which results in a su-
perior image quality.

Nevertheless, this technique has limitations. As our
method is based on PCSS, it has the same limitations,
such as overestimating the penumbra size. Further-
more, the erosion size is bounded and thus, we may
miss relevant occluding information. This could result
in visible artifacts. Due to mipmap erosion and the
scaling of the penumbra width based on the distance
to the camera, our method introduces aliasing when the
camera is moved. Another limitation is that the visual
quality is strongly dependent on the quality of the hard
shadows. Consequently, aliasing reduction algorithms
such as cascaded shadow mapping (CSM) [Eng06a]
and light space perspective shadow maps (LiSPSM)
[Wim04a] should be used.

7 CONCLUSIONS AND FUTURE
WORK

We proposed a method for generating contact hardening
soft shadows in screen space. As with all image based
methods, this technique works best for small penum-
bras and can be used to extend shadow mapping based
applications. Furthermore, we presented two solutions
to generate a shadow factor for the penumbra. While
the mipmap erosion is fast and produces results com-
parable to PCSS, the calculation of the shadow factor
during erosion still produces some artifacts.

For future work, we wish to explore the possibility to
replace the least square line fitting with a low pass filter
and try to reduce the remaining artifacts.

8 ACKNOWLEDGMENTS
We thank the anonymous reviewers for their useful
comments. The work of A. Klein is funded by MBDA
Deutschland GmbH.

9 REFERENCES
[Agu10a] Aguado, A. and Montiel, E. MipMapped

Screen Space Soft Shadows. In GPU Pro 2. 2010
[Arv04a] Arvo J., Hirvikorpi M., Tyystjarvi J. Ap-

proximate Soft Shadows with an Image-Space
Flood-Fill Algorithm. Computer Graphics Forum
23, 271-279, 2004.

[Dmi07a] Dmitriev K., Uralsky Y. Soft shadows using
hierarchical min-max shadowmap. GDC 2007,
2007.

[Eis11a] Eisemann E., Schwarz M., Assarsson U.,
Wimmer M. Real-Time Shadows, Taylor & Fran-
cis, 2011.

[Eng06a] Engel W. Cascaded shadow maps. In Shader
X5, Engel W., (Ed.). Chares River Media, 197-
206, 2006.



Figure 4: Visual results in the cactus dataset. Top Left: Our algorithm. Top Right: PCSS with 8 blocker search
samples. Notice the artifacts resulting from missed blockers due to the small number of blocker samples. Bottom
Left: PCSS with 64 blocker search samples. Bottom Right: reference solution.

[Fer05a] Fernando R. Percentage-Closer Soft Shad-
ows. ACM SIGGRAPH 2005 Sketches, 2005.

[Gum10a] Gumbau J., Chover M., Sbert M. Screen
space soft shadows. In GPU Pro - Advanced Ren-
dering Techniques, Engel W., (Ed.). A.K. Peters,
2010.

[Han10a] Hanjun J., Huali S. Rendering fake soft shad-
ows based on the erosion and dilation. 2nd Inter-
national Conference on Computer Engineering
and Technology, 234-236, 2010.

[Isi06a] Isidoro J. R. Shadow Mapping GPU-based
Tips and Techniques. GDC 2006, 2006.

[Lau07a] Lauritzen A. Summed-area variance shadow
maps. In GPU Gems 3, Nguyen H., (Ed.).
Addison-Wesley, 157-182, 2007

[Moh10a] MohammadBagher M., Kautz J.,
Holzschuch N. and Soler, C. Screen-space
percentage-closer soft shadows. ACM SIG-
GRAPH 2010 Posters, 2010.

[Ree87a] Reeves W. T., Salesin D. H., Cook R. L.
Rendering antialiased shadows with depth maps.
In Conf.proc SIGGRAPH ’87, ACM, 283-291,
1987.

[Rob09a] Robison A. and Shirley P. Image space gath-
ering. In Conf.proc. High Performance Graphics
2009, 91-98, 2009.

[Ron06a] Rong G., Tan T.-S. Utilizing jump flooding
in image-based soft shadows. In Conf.proc. VRST
’06, ACM, 173-180, 2006.

[Wil78a] Williams L. Casting curved shadows on
curved surfaces. In Conf.proc. SIGGRAPH ’78,
ACM, 270-274, 1978.

[Wim04a] Wimmer M., Scherzer D., Purgathofer
W. Light space perspective shadow maps. In
Conf.Proc. Eurographics Symposium on Render-
ing, 2004.



Figure 5: Resulting shadows from the hairball and buddha datasets. Note that the shadow softness increases with
the blocker-receiver distance. From left to right: Our method, PCSS with 32 blocker search samples, PCSS with
64 blocker search samples and reference solution.


