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Abstract

Nontraditional displays just started their triumph. In contrast to traditional displays, which are plane and rectangular, they do not
only differ in design and architecture; they also implicate different semantics and pragmatics in the rendering pipeline. We strive
for a generic solution that couples legacy applications with nontraditional displays. In this paper, we present an architecture and
a respective experiment, which exposes a proprietary virtual reality software to a 360 degree virtual environment. Therefore
we introduce a rigorous master-slave design. The proposed architecture requires discussion of the following details: how to
access a proprietary application’s OpenGL stream; how to transmit the OpenGL stream efficiently in a clustered rendering setup;
how to process the OpenGL stream for adaption to nontraditional display semantics; and how to deal with the arising code
complexity, withal. Our design decisions are highly interdependent. The presented architecture overcomes limitations, which
were implied by client-server design in earlier work. The proposed rigorous master-slave design is totally transparent to the
client software, and reduces interdependencies between rendering software and rendering clusters. Thus, it inherently reduces
network round trips and promotes the use of scalable multicast. Our architecture is tested in a reproducible experiment, which
provides a qualitative proof of concept.
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1 INTRODUCTION
Nontraditional displays (e.g., CAVEs, powerwalls,
domes) just started their triumph. In the 1990s, non-
traditional displays were driven by special monolithic
rendering hardware. Together with the advent of cheap
general and graphics computation power driven by
the computer games industry, research shifted towards
rendering clusters made from off-the-shelf hardware,
during the first decade of our century.

In contrast to traditional displays, which are plane and
rectangular, nontraditional displays do not only differ in
design and architecture; they implicate different seman-
tics and pragmatics in the rendering pipeline, too. This
paper discusses several solutions that were implemented
to bring legacy software to nontraditional displays. Our
predecessors inherited client-server semantics from the
OpenGL specification. We present an implementation
that rigorously uses master-slave semantics to enhance
scalability of distributed rendering architectures, beside
other minor optimizations. Throughout our discussion,
we use a practical application scenario that is presented
in this section’s remainder together with a problem state-
ment. Section 2 provides background on interoperability
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of distributed virtual reality software. An architecture,
which enables node-based OpenGL stream processing
with little interference to the communication between a
central OpenGL client software and its local OpenGL
server hardware, is presented in Sections 3 and 4. That
our proposed architecture is feasible is proven with a
reproducible experiment in Sections 5 and 6. Finally,
we conclude with an outlook on future work.

1.1 Application Scenario
Today, every engineering process is supported by soft-
ware. Any reasonable engineering software has a visual-
ization component. Note, the visualization component
is not necessarily a dominant or permanent element of
the user interface; we only require it to be available. We
choose Bitmanagement’s BSContact [8] as an exemplary
sample of generic information and geometry visualiza-
tion. Basically, BSContact is a generic 3D file viewer
for VRML and X3D. Most engineering software is able
to export these data formats. Although, for us BSCon-
tact’s primary functionality is not that relevant. For us it
is important, that BSContact uses the most widespread
patterns of three dimensional data visualization; it is
proprietary; and it renders interactive geometry.

Several nontraditional displays exist in various dimen-
sions and shapes. Most of them have an entertainment
background, but some of them are also used for research
and industrial applications. One of those systems is the
ElbeDom located at the Fraunhofer Institute for Fac-
tory Operation and Automation (IFF) in Magdeburg,
Germany. The ElbeDom is a large cylindrical virtual
environment. It has been designed to satisfy the demand



for immersive virtual reality (VR) and massive multi-
user collaboration in the areas of virtual manufacturing
and factory planning. A detailed description of the sys-
tem and a comparison of similar projection systems are
provided in [22]. Basically, the ElbeDom is representa-
tive hardware for distributed, tiled rendering on curved
screens.

Briefly, the ElbeDom’s cylindrical screen is 6.5m high
and 16m in diameter. The 330m2 screen is covered by
six LDT G2 laser projectors. The projectors operate at
1600×1200 pixels. Thus, the viewer is surrounded by
approximately eleven megapixels from -20◦ below hori-
zon to +30◦ above horizon and full 360◦ in horizontal.
Six so-called warping engines geometrically adjust and
blend the six projector’s pictures. Their input is gener-
ated by a cluster of six commodity nodes. Throughout
this paper we call the six nodes slaves. Among other con-
trol and automation nodes, there is a dedicated headed
node for the operator. We will call it the master in this
paper. The commodity cluster is interconnected via off-
the-shelf GBit Ethernet.

1.2 Problem Statement
Our primary goal is to provide interoperability between
arbitrary proprietary virtual reality software and arbi-
trary nontraditional displays. Looking at this paper’s
application scenario alone, several questions arise. Bit-
management’s BSContact has been developed for tra-
ditional displays connected to local graphics hardware.
Thus, one has to consider aspects of syntactical, se-
mantical and pragmatical interoperability between the
visualization software and the nontraditional display’s
rendering pipeline. Challenges, how to interface a pro-
prietary software’s visualization component and how
to handle variant implementations of several hundred
OpenGL functions frame our considerations.

2 BACKGROUND
Engineers describe system architectures in terms of com-
ponents and interfaces. Depending on the engineer’s
domain and preferred method, what we call a compo-
nent may be called an object, device, service, module, or
other too. We focus on the domain of computer science.
Therefore, a component is a definable software artifact.
Connections of components are differentiated between
tight couplings and loose couplings. Tight coupling ex-
ploits interdependencies and relations between compo-
nents; the connected components are not supposed to be
exchanged. A loose coupling minimizes dependencies
and relations between the components to a well-defined
specification of the interface; loosely coupled compo-
nents tend to be exchangeable. In real life, couplings are
not clearly the one or the other. Rather, real couplings
distribute in a continuum with ideal loose coupling on
one end and with ideal tight coupling on the other end.

The distinction is made, whether an instance is more the
one or the other.

Coupling components is the subject of interoperabil-
ity. Interoperability is a field of active research. The
most exhaustive, recent survey we know of was done
by Manso et al. [17]. They declare seven levels of in-
teroperability: technical, syntactic, semantic, pragmatic,
dynamic, conceptual, and organizational. In our con-
text it is sufficient to stick with a three level hierarchy
of interoperability [14], which we briefly introduce as
follows:

Syntactic interoperability is data exchange with a
common set of symbols to which a formal grammar
applies.

Semantic interoperability is information exchange
with a shared, common vocabulary for interpretation
of the syntactic terms.

Pragmatic interoperability is contextual exploitation
of applications and services through shared knowl-
edge.

Another aspect about couplings are messaging patterns.
Most procedural, object-oriented, and distributed sys-
tems follow the client-server pattern. A server compo-
nent provides an interface. A client component requires
an interface. If a client’s required interface and a server’s
provided interface are compatible, they can be connected.
Then, the client uses the server. Servers or services can
be stateful or stateless. If the server is stateless, the
effect to a request depends on the request only. If the
server is stateful, the reply depends on the request and
on the server’s state.

The Gang of Four [7] identified an extreme variant,
where the request declares the client’s interest in a series
of replies – the observer pattern. Other names are one-
way messaging, publish-subscribe, producer-consumer,
or master-slave as we call it in this paper. Master-slave
tends to be loosely coupled, because in an ideal imple-
mentation the consumer requires no knowledge about
identity or number of the producers and vice versa as
well, for example.

An interface definition covers a slice of the interoper-
ability hierarchy. Most interface definitions in computer
science, especially application programming interfaces’
documentations focus on syntactic and semantic interop-
erability. Software developers usually delegate technical
interoperability to electrical engineers, who design com-
puter chips and network links. The upper half of the
interoperability hierarchy usually is in the responsibility
of software project’s stakeholders.

In a system of n components, one may implement
O(n2) adapters for each coupled pair of components.
When there is a common concept, which is shared
among several interfaces, established protocols and other



interface specifications are reused for multiple compo-
nents. This we call an interoperability platform. In a
system of n components, one implements O(n) adapters
between each component and the interoperability plat-
form.

There has been vast work to establish interoperabil-
ity platforms for VR applications. For example, Schu-
mann [23] uses the high-level architecture (HLA) for
syntactical interoperability among distributed simula-
tions; Ošlejšek [21] tries to establish semantic interoper-
ability with a unified scene graph definition. The crucial
point in the design of an interoperability platform is
the common concept shared between participants. In
our observation, there are two types of interoperability
platforms: those which declare and impose an artificial
common concept; and those which find and exploit an
existing common concept. We believe that the latter have
better chances to succeed in software evolution. Looking
at the abundance of VR software, there is one thing ob-
viously common: OpenGL. The OpenGL specification
defines syntax through function signatures together with
a finite state machine and it defines semantics through
human readable documentation for modules and func-
tions.

We are not the first ones who exploit the well sup-
ported OpenGL industry standard for interoperability.
The commercial software products TechViz XL [2] and
ICIDO’s Capture [1] impressively show the potential.
However, because they are closed-source they give lit-
tle value to our discussion. During our discussion we
mostly refer to selected aspects of Chromium [11, 16],
Lumino [25], and BroadcastGL [13].

3 EXPOSING A PROPRIETARY APPLI-
CATION’S OPENGL STREAM

In [18], the authors evaluate four techniques, how to
intercept a proprietary application’s invocations of the
OpenGL API. Three out of the four techniques have
been used in multi-hosted rendering before. The re-
link library technique (e.g., MPIglut [15], although it is
not a node-based stream processor) cannot be applied
to proprietary software. The replace dynamic library
technique (e.g., Chromium [11]) is unreliable within
MS Windows’ dynamic library facility. The virtual de-
vice driver technique (e.g., VirtualBox [26]) does not
scale for complex application scenarios. We prefer the
binary interception technique because it is flexible and
robust at once.

The binary interception technique was introduced by
Hunt and Brubacher [12] to instrument and extend pro-
prietary software. An injected intermediary manipulates
the proprietary software’s binary image at runtime. We
illustrate the principle in Figure 1. For each function that
should be instrumented, the intermediary installs what
is referred to as detour. The installation procedure for a
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(a) In unmodified software, the client requests the server function (1);
then the server function returns a reply (2).
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(b) In intercepted software, the detouring code redirects the instruction
pointer to an instrumentation function (2). We internally invoke the
original function through the trampoline (3,4,5). After processing the
request-reply tuple, we return to the client (6).

Figure 1: Binary Interception

function overwrites the first bytes of the server’s func-
tion with machine code, which detours the execution
path to the intermediary’s function. When the OpenGL
client invokes an intercepted OpenGL server’s function,
the overlaid detouring code is executed instead of the
original code. In effect, the client invokes the interme-
diary’s function. The installation procedure produces a
so-called trampoline function, which keeps the original
server’s function available. The trampoline contains a
backup of the server function’s machine code that was
overwritten during installation of the detour and addi-
tional machine code that repatriates the execution path
to the unmodified remainder of the server function’s
machine code. In effect, invocations of the trampoline
delegate calls to the server.

Microsoft Windows’ implementation of OpenGL,
which is determined to be compatible with OpenGL
version 1.1, provides 2400 functions (c.f., Section 6),
which divide into 357 core functions, 1671 extension
functions, and 372 alias functions. Core functions are
provided in the opengl32.dll’s symbol table. We in-
stall interceptions for every core function during startup
time before the application is able to access them. Ex-
tension functions are provided on the client’s demand on
the server through the wglGetProcAddress func-
tion. We install interceptions for every extension func-
tion when it is passed through the wglGetProcAd-
dress function for the first time. What is known as
alias functions are alias names for core or extension func-
tions. In the data structure that tracks installed intercep-
tions, alias functions are associated with their respective
original functions.

In result, the complete OpenGL API is instrumented.
Our instrumentation functions first transparently dele-
gate the client’s request to the original function through
the trampoline. After the original function returned
(item 5 in Figure 1b), the request-reply tuple is available
to the instrumentation function from a totally transpar-
ent observation. In our further discussion, a published
sequence of request-reply tuples we call the OpenGL



(a) Traditionally, the client’s requests are fanned to the distributed
renderer and replies are merged after a full round trip. The display’s
semantics and pragmatics are opaque to the client.

(b) With our approach, the server master uses a local server to gather
replies with minimal latency. Then it publishes the requests with
attached replies to the slaves without network round trips. The slaves
adapt semantics and pragmatics transparently.

Figure 2: A node-based OpenGL stream processor that
multicasts request-reply tuples has looser couplings.

stream. After publication of the new OpenGL stream
element, we return to the original OpenGL client using
the reply from the original server function. Thus, we
have extracted the OpenGL stream from the client-server
coupling with minimal interference.

4 FULL MULTICAST SEMANTICS
FOR OPENGL STREAM DISTRIBU-
TION

Commonly, implementations of node-based, distributed
OpenGL processing use unicast via TCP/IP for data dis-
tribution. We guess that this design decision has two
major reasons. Back in the days of the first hype about
rendering on commodity clusters (for a survey see Chen
et al. [5]), TCP/IP was available, tried-and-tested, and
well supported. Further, for those systems it is a basic
assumption, that the invocation actually happens on the
remote site; and thus, return values and argument alter-
ations have to be propagated back from the distributed
OpenGL server to the central client. Figure 2a illus-
trates this in terms of distributed systems. The OpenGL
client’s requests are fanned to multiple OpenGL servers.
For operations with output, the server fan adapts the
client’s request for the remote servers and merges the
remote servers’ replies to a singular reply for the client.

Thus, the nontraditional display’s semantics and prag-
matics are opaque to the client. As an example for
opaque semantics, all of our predecessors tried to map
the semantics of windowing and camera setup (e.g., the
glViewport function) from their tiled display setups
to the clients’ calls.

In 2005, Ilmonen et al. [13] unveiled the potential of
non-unicast stream distribution in the context of multi-
tile rendering. They discovered, that unicast stream
distribution does not scale with the number of tiles, be-
cause shared commands that are used by n tiles have
to be sent n times. The more tiles a distributed graph-
ics application uses, the more neighboring and blended
regions share geometry data. Global state changes are
shared between all tiles. Ilmonen et al. describe an
experiment, where they use broadcast via UDP/IP for
stream distribution and a TCP/IP backchannel to add re-
liability and congestion control. Their main contribution
is an empirical proof, that broad- and multicast OpenGL
stream distribution scales with the number of tiles in a
centralized application with distributed graphics.

Lorenz et al. [16] implement a modification of
Chromium, which uses multicast for parallelizing
commands and unicast for serializing commands.
In their reasoning, serializing commands are those
commands that are unique to each remote server.
Serializing commands are different with respect to the
distinct peers, because they are adapted on the client’s
side of the network in the server fan. We argue that they
could be parallel calls – and thus be appropriate for
multicast distribution – if the adaption stage would be
shifted from the server fan to the remote peers.

Ilmonen et al. [13] already shift adaption of the re-
quests to the remote peers. In their discussion, they
point out that commands which require merged replies
from the distributed server stall the streaming. Neal et
al. [20], who advance efficiency in multicast OpenGL
stream distribution by applying compression techniques
to the distributed stream, observe the same problem.
They identify, that commands which have replies effec-
tively are network round trips and hence cause blocking
at the client. This leads us to the question: Is it really
necessary to aggregate state from the distributed server?
Neal et al. as well as Ilmonen et al. still use client-server
semantics as it is defined in the OpenGL API specifica-
tion. As an aside, they borrow a potential solution from
prior work, that round trips may be avoided by state
management [4].

Chromium [11] and Lumino [25], for example, imple-
ment state management. State management emulates
the OpenGL state machine as a component of the stream
processing framework. Stavrakakis et al. [25] claim that
state management is necessary for two reasons: late join-
ers should be able to retrieve OpenGL machine’s state;
and operation accumulation can be used for compres-
sion of transferred data (i.e., a-priori-aggregated state of



the distributed server). However, state management is
expensive. With emulation software, it is tedious to keep
track with the original implementations in functionality
and in performance. When Chromium introduced state
management, they assumed that the client may run on
a platform without graphics acceleration. Today, every
host has basic graphics hardware acceleration or at least
a good software implementation. Hence, we consider
the topic of emulated state management obsolete. Even
more, we explicitly recommend using the central appli-
cation’s local OpenGL implementation.

This yields a novel architecture for centralized ap-
plications with distributed graphics, which is depicted
in Figure 2b. Our implementation of the intercepted
OpenGL API, which we name Vanadium1, first invokes
the original local OpenGL server with unmodified com-
mands from the client and returns unmodified output to
the client. This renders Vanadium transparent in func-
tional behavior to the OpenGL client and in appearance
to the user at the host with the central application, as
well. After the trampoline function has returned and
before the decorator function returns (cf., Figure 1), the
decorator publishes the OpenGL stream. In contrast to
earlier work, the stream does not only contain opcode
and relevant input arguments (i.e., the request), but also
every output, like return values and referenced arrays
(i.e., the reply). After publishing the stream, any further
stream processing is asynchronous. Thus, there are no
round trips on the network anymore.

We agree to Stavrakakis et al. [25], that there should
be a possibility to join lately to the stream. Nevertheless,
late joining is a very infrequent event. Thus, we abne-
gate the implementation cost and runtime cost of dedi-
cated state management. In the infrequent case of a late
join, we are able to retrieve the OpenGL machine state
directly from the original driver vendor’s implementa-
tion through the glGet function and other inspection
functions; at least unless the client uses no deprecated
technique like display lists. The joined slave uses its
adaption (see Section 5) to map the master’s late state to
a consistent slave’s state. Then, the stream processing
can continue. Regarding stream compression, which
is a topic to all distributed OpenGL renderers, because
the network bandwidth bottleneck is very dominant, we
refer to Neal’s work [20] and Lorenz’ work [16].

5 EXAMPLES FOR DETACHED
PROCESSING OF THE OPENGL
STREAM

In this section, we clarify the architecture shift that we
propose in Section 4. Therefore, we describe the process-
ing chain as we implemented it with Bitmanagement’s

1 Vanadium as used in the presented experiment is provided in the
additional material. It will be open-sourced, soon.

Figure 3: VDTC’s ElbeDom driven by Vanadium. The
transparently distributed application is Bitmanagement’s
BSContact with a software visualization scene [19].

BSContact as source and VDTC’s ElbeDom as sink (cf.,
Section 1.1 and Figure 3).

Please note, that we intercept the whole OpenGL and
WGL API. In the decorator functions we first delegate
the call to the original function via the trampoline. After
the trampoline function returned with the output from
the original server, the processing described in this sec-
tion takes place. After our processing, the decorator
function returns the values from the local original server
invocation to the original client (cf., Figures 1 and 2).

First of all, we need to handle recursion. As we use
binary interception, we get each and every call of the
OpenGL API – literally. So, there are the calls actu-
ally made by the client; and there are recursive calls by
the original server implementation to itself. For exam-
ple, the wglDescribePixelFormat function calls
itself; many functions call the glFlush function in-
ternally. We distinguish client calls and recursive server
calls by tracking stack depth with a counter. When there
is no active call from the client, the counter rests at mi-
nus one. During client’s requests the counter is zero.
When the server calls itself, the counter is greater than
zero. Recursive calls are skipped in stream processing,
because they reflect internal behavior of the original
local server and thus do not matter. Now, the stream
contains every invocation actually made by the client.



Figure 4: Vertex Array Cache – The master maintains
a shadow copy of the client’s vertex arrays. The vertex
array transmission to the slave is differential.

Looking at the stream of client calls, there is a huge
amount of calls that are irrelevant to the remote dis-
play. Most commercial OpenGL software use an off-
screen rendering technique for auxiliary calculations,
like mouse pointer ray collision testing or occlusion
culling. In Bitmanagement’s BSContact, a temporary
viewport is used, that is overdrawn by visible content
before the next SwapBuffers invocation. BSContact’s
hidden viewport is easily determinable, because it is al-
ways square (e.g., 100×100 pixels) and smaller than the
window’s rendering area. We skip all calls that are made
to the finally invisible viewport. Then BSContact sets
the viewport to the whole visible area and renders the
visible content. We passthrough these calls for handling
on the nontraditional screen. As can be seen from the
invocation log, another viewport is set, that is always
86 pixels in height. Because we could not imagine a map-
ping from its two-dimensional content to the 360 degree
screen of the ElbeDom, we skip the two-dimensional
content, too. The considerations in this paragraph are
highly interdependent with the client software and thus,
have to be reconsidered for every new client.

To reduce bandwidth usage further, we apply a
caching technique to the vertex array facility (Figure 4).
To achieve this, our decorated glDrawElements
function and related vertex array draw functions
determine the array in CPU’s RAM that should be
drawn by pointer and by size. The master keeps a
shadow copy that resembles the arrays in the slave’s
cache. We introduce cache management commands
in the stream to advice the slave for modifications
of its cache. Initially the master’s shadow copy and
the slave’s cache are empty. When there is a new
array (i.e., pointer is not in shadow copy mapping),
it is added to the shadow copy and transmitted to the
slaves. When the client draws a known array (i.e.,
pointer exists in shadow copy mapping) whose content
is unchanged (i.e., client’s array equals shadow copy
array), the slave is told to use the cached array. When
the client draws a known array whose content has

changed (i.e., pointer exists in shadow copy mapping
and client’s array is not equal to shadow copy array),
the changed array is transmitted to the slave before
usage. At the slave, the modified array replaces the
respective array, because obviously the client discarded
the old content before. When distributing the arrays and
when referring to them in draw commands, the master
uses handles that are derived from its shadow copy
index. During cache management commands, the slave
maintains a mapping between the master’s handles and
the cache’s pointers. After cache synchronization the
master emits the draw command. Then the slave uses its
master’s-handle-to-slave’s-pointer mapping to invoke
the draw command with valid data. This simple caching
technique doubles the client application’s memory
consumption with respect to its vertex arrays. We do
not recommend the use of hashes, because collisions in
the index may corrupt the stream fatally [16]. For us,
usage of the memcmp function worked out by reducing
network bandwidth at negligibly increased CPU load.

For networking, we use ØMQ [10], which provides
us with superior inter-thread, inter-process, cluster-wide,
and world-wide messaging. One command is one mes-
sage. For each command in OpenGL’s API specification,
we derive a struct, which contains the opcode, any value
arguments, and the return value if applicable. Array
arguments are packed into submessages. Because Ze-
roMQ takes care of message sizes robustly, therewith
we significantly reduce any risk associated with wrong
array sizes in C/C++. As an optimization, we exploit
that call-by-value arguments already are packed in the
stack. Thus, we only need to copy a slice from the stack
into the corresponding slice of the message buffer struct.
ZeroMQ offers various reliable multicast protocols for
data distribution. After message transmission through
ZeroMQ to the slaves, the commands are dispatched to
handler functions based on their opcode. The slave’s de-
fault handler implementation directly mimics the client
node’s invocation. Some handler functions are modified
to implement adaption of the stream at slave side.

Comparable to the mapping of array pointers the
slave implements a mapping of OpenGL names. In
OpenGL’s terminology, names are numeric identifiers
for objects in the OpenGL state machine. For example,
the glGenTextures function outputs integers to the
client, which the client should use to identify and re-
fer textures unambiguously. Usually, equally replayed
commands should yield equal names. However, we can-
not guarantee that for heterogeneous environments, for
late joiners, and when splicing command streams. The
mapping mechanism is simple. There are functions that
generate (i.e., output) names and there are functions that
use (i.e., input) names. The slave maintains an asso-
ciative array with the master’s names as keys and the
slave’s names as values. Please remember, that the mas-
ter includes invocations’ outputs in the stream. When



Figure 5: If lighting is calculated relative to the camera
and the camera has different poses on different tiles then
the light’s pose is different on each tile (left). Repos-
ing light sources with respect to the tiles’ camera pose
differences compensates the visual inconsistency (right).

a command that generates names is called, the slave
extracts the master’s names from the arrived message. It
replays the command, which yields the slave’s names.
Then the pair is added to the map. When a name is used,
the message refers the master’s name. The slave decodes
the master’s name to its local name using the map. We
call this mechanism name mapping.

The ElbeDom is an exemplary virtual environment.
The cylindrical, surrounding screen has little potential
for two-dimensional WIMP semantics. Hence, we do
not even try to map the client’s WIMP semantics to the
system’s VE semantics. The filtering stage at the master
yields a singular stream with visually relevant content
only. Therefore, calls to the glViewport function,
which refer to the whole visible window area at the
master, are mapped to fullscreen rendering at the slaves.
This leaves us to adapt the camera pose. The appropriate
place in the stream to achieve camera adaption is client-
software-specific. With Bitmanagement’s BSContact,
the most robust solution is to modify invocations of the
glLoadIdentity function and the glLoadMatrix
function where the model view matrix is selected. There
we premultiply the tile’s camera orientation. This gives
us the basic adaption to the ElbeDom’s 360 degree view.
Additionally, the ElbeDom’s warping and blending fa-
cility specifies asymmetric frusta for each tile. At the
glFrustum function we discard the client’s inputs for
a symmetric view into the window and overwrite with
the tile’s asymmetric frustum configuration. This com-
pletes camera adaption to the ElbeDom’s interleaved
frustum configuration.

The adaption pipeline is completed by a pragmatic
adaption of lighting. Like most other OpenGL software,
BSContact uses lighting to give three-dimensional im-
pression. BSContact’s lighting is designed relative to
the camera. Because we rotate the world to adapt the
camera position, the lighting is inconsistent between
the tiles (cf., Figure 5). Hence, we install a filter on
the glLight function family, which applies the tile’s
camera pose to the position and direction lighting pa-

rameters. Thus, the lighting is consistent through all of
the ElbeDom’s six tiles.

6 HANDLING CODE COMPLEXITY
The functionality that we describe in this paper handles
several hundred functions from the OpenGL API. More-
over, we talk about variant functionality. During analysis
of the application’s OpenGL stream, we need a variant
that logs the OpenGL stream to disk. The sender is a
variant that implements serialization. The receivers have
to implement deserialization. Processing of the OpenGL
streams yields building blocks (i.e., filters, adapters),
that ideally should be individually and independently
reusable with a broad variety of virtual reality software
and virtual environments. Nevertheless, we expect that
processing nodes need to be tailored with respect to
functional and non-functional behavior (cf., Siegmund
et. al. [24]) as soon as more than one application will
be supported. At a first glance, this requires a codebase
of several thousand repetitive functions. At the second
glance, we see two core problems: repetitiveness and
variability.

Under the bottom line, we deal with a component
oriented system, where the components stem from a
software system family. Such a family includes a num-
ber of systems that are similar enough from an archi-
tectural point of view to be assembled from a common
set of components. We achieve development efficiency
through Generative Programming (GP) [6]. The main
goal of GP is to generate a partial or an entire software
system automatically from such implementation com-
ponents. The requirements for the desired result, i.e.
the generate, are defined in a domain specific language
(DSL). A DSL is a specialized and problem-oriented
language for domain experts to specify concrete mem-
bers of a system family. This specification is processed
by a generator, which automatically builds the system
by combining components according to configuration
knowledge. The Generative Domain Model (GDM) in
Fig. 6 illustrates the concept of this paradigm estab-
lishing a relationship between the basic terms of GP. It
consists of the problem space, the solution space, and
the configuration knowledge mapping both spaces. The
problem space includes domain specific concepts and
features to specify requirements by means of one or
more DSL(s). The solution space offers elementary
and reusable implementation components correspond-
ing to the system family architecture. The configuration
knowledge comprises illegal feature combinations, de-
fault settings, construction rules, and optimizations as
well as related information. In order to instantiate this
theoretical concept, we perform a technology projec-
tion. Therefore, we identify concrete techniques for the
elements of the GDM.

In particular, we enhanced Microsoft Visual C++ at
Visual Studio 2010’s prebuild stage. First, our Python
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Figure 6: Generative Domain Model [6]

script parses the OpenGL API’s formal specification.
At the time of our experiment, the OpenGL specifica-
tion (revision 12819) defines 2269 functions. Microsoft
Windows’ OpenGL windowing system (WGL) (revi-
sion 10796) adds 131 function definitions. Thus, an
OpenGL application on Windows has access to a repos-
itory of 2400 functions. Secondly, within our Python-
based domain specific language, a feature configuration
is modeled. Both models together are applied to a tem-
plate engine, which generates C++ source code. Then,
the prebuild step, or code generation step respectively,
terminates and the Visual C++ tool chain builds the ex-
ecutable software artifacts. Applying the means of the
generative paradigm, repetitive development tasks are
automated and the high variability of the virtual reality
domain is made manageable.

7 CONCLUSION AND FUTURE
WORK

We presented an architecture for node-based OpenGL
stream processing. It is highly interoperable with pro-
prietary and legacy software, because we use a robust
technique for function interception, and especially be-
cause we adapt from OpenGL’s client-server pattern to a
master-slave pattern, which is more feasible for stream
processing. The adaption is as transparent as possible to
the client. Thereby, the proposed architecture removes
any interdependencies between rendering software and
rendering clusters. We show that there is no source code
access to the application required. The reduced inter-
dependency promotes to use scalable multicast, and re-
moves network roundtrips. The architecture is tested by
a reproducible experiment, which we comprehensively
described in Section 5.

For sake of clarity, we focused on the combination of
one virtual reality software with one nontraditional dis-
play. We want to generalize our approach of course. At
the time of this writing, we are experimenting with other
rendering software, and we are experimenting with other
nontraditional displays, which have different pragmatics
than the ElbeDom. One open question we are research-
ing is how to deal with frustum culling and occlusion

culling in legacy software. These techniques are highly
optimized towards traditional displays. With BSContact,
we could switch them off through its ActiveX interface.
If culling was not disengageable, further investigation
would be necessary. In the long term we are curious, if
fully programmable pipelines may yield new rendering
pipeline semantics, will our approach scale?

With our proposed rigorous master-slave design, the
nodes of an OpenGL stream processor are coupled more
loosely than in competing frameworks. Therefore, our
architecture supports development and recombination
of OpenGL stream processor nodes. For example, we
would be glad to see an effect processing engine (e.g.,
Haringer and Beckaus [9], or Brennecke et al. [3]) ap-
plied to our OpenGL stream processing approach. In
summary, we see great potential for innovative use cases
in entertainment and engineering.
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