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ABSTRACT

Statistical analysis and pattern recognition have become a daunting endeavour in face of the enormous amount of
information in datasets that have continually been made available. In view of the infeasibility of complete manual
annotation, one seeks active learning methods for data organization, selection and prioritization that could help
the user to label the samples. These methods, however, classify and reorganize the entire dataset at each iteration,
and as the datasets grow, they become blatantly inefficient from the user’s point of view. In this work, we propose
an active learning paradigm which considerably reduces the non-annotated dataset into a small set of relevant
samples for learning. During active learning, random samples are selected from this small learning set and the
user annotates only the misclassified ones. A training set with new labelled samples increases at each iteration and
improves the classifier for the next one. When the user is satisfied, the classifier can be used to annotate the rest of
the dataset. To illustrate the effectiveness of this paradigm, we developed an instance based on the optimum path
forest (OPF) classifier, while relying on clustering and classification for the learning process. By using this method,
we were able to iteratively generate classifiers that improve quickly, to require few iterations, and to attain high
accuracy while keeping user involvement to a minimum. We also show that the method provides better accuracies
on unseen test sets with less user involvement than a baseline approach based on the OPF classifier and random
selection of training samples from the entire dataset.

Keywords: Pattern Recognition, Machine Learning, Active Learning, Semi-Automatic Dataset Annotation, Data

Mining, Optimum-Path Forest Classifiers.

1 INTRODUCTION

The amount of available information has been increas-
ing due to the advances of computing and data acquisi-
tion technologies, resulting in large datasets. Handling
and analysing such increasing volume of information
have become humanly infeasible and highly suscepti-
ble to errors, since it is extremely time consuming and
wearisome. Hence, there is an increasing demand for
the development of effective and efficient ways to an-
notate these datasets.

Active learning techniques have been explored and rea-
sonably successful. However, these methods fall in a
single paradigm which requires, at each iteration, the
classification of the entire dataset under annotation, fol-
lowed by the organization of all these samples accord-
ing to some criterion, in order to select the most in-
formative samples to be used for training the classifier.
These phases are highly interdependent and, for large
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datasets, performing them at each iteration is very inef-
ficient or even computationally infeasible.

In this paper, to overcome the aforementioned prob-
lems, we propose a new active learning paradigm which
is verifiably effective and more efficient in practice,
when dealing with large datasets, than those based on
the current state of the art. The proposed paradigm re-
lies on a significant reduction in the dataset size to cre-
ate a small representative set of samples, for the learn-
ing process. By constructing the first instance of the
classifier based on the knowledge of as many classes
as possible, as well as incorporating the best samples
at each iteration, subsequent selection and classifica-
tion phases are much more efficacious. This approach
differs from the traditional active learning methods, in
which all samples in the database have to be classified
and re-organized at each iteration.

Being a paradigm, it can be implemented using differ-
ent strategies. This paper also presents an instantiation
(Cluster-OPF-Rand) which has been developed to illus-
trate the effectiveness of this paradigm. It is based on
the Optimum Path Forest (OPF) classifier, while relying
on clustering and classification for the learning process.
Cluster-OPF-Rand prevents the user from having to an-
notate a large (and usually wasteful) number of training
samples. Moreover, it prevents poor selection of sam-
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Figure 1: Pipeline of the traditional active learning paradigm.

ples from a large learning set, since this set is reduced
so0 as to contain essentially the most representative sam-
ples. After this reduction, the proposed paradigm en-
ables the organization of the learning samples to occur
beforehand (and only once). In this particular imple-
mentation, the organization of the reduced set occurs in
a randomized fashion.

The experiments performed on three datasets show that
Cluster-OPF-Rand is interactively and iteratively effi-
cient, in addition to providing high accuracies earlier.
That is to say, the number of learning iterations is sig-
nificantly reduced with better accuracies, while requir-
ing the annotation of only a small number of sam-
ples, when compared to a baseline approach using the
OPF classifier and random selection of training samples
from the entire dataset. The results also showed impres-
sive reductions of over 90% in user effort, at the same
time providing accuracies of over 97%.

The remainder of this paper is structured as follows.
Section 2 summarizes the major active learning tech-
niques presented in the literature. Section 3 presents
the clustering approach based on optimum-path forest
used. Section 4 details the active learning paradigm and
the reduced method proposed. Section 5 discusses the
experiments and the accomplished results. Finally, Sec-
tion 6 presents the conclusions and future work.

2 BACKGROUND AND TECHNIQUES

Recent works in active learning have yielded a vari-
ety of heuristics, which are designed mostly for binary
classification and are applicable primarily to classifiers
such as Artificial Neural Network (ANN), Support Vec-
tor Machine (SVM), k-Nearest Neighbour (k-NN) and
Optimum-Path Forest (OPF).

In active learning techniques, the key idea relies on
the strategy used to select the most informative sam-
ples such that they allow for the achievement of greater
accuracies with fewer training labels annotated by the
user. Much effort has been placed in investigating

strategies for active learning. However, it is focused on
methods that classify all samples in the database, then
organize these samples according to certain criteria and
subsequently select and display the most informative
samples to be annotated by the user, at each learning
iteration. For large databases, these complete phases,
at each learning iteration, are very inefficient or even
impractical to be done computationally.

Figure 1 illustrates the execution pipeline of the tradi-
tional active learning paradigm presented in prior liter-
ature. This paradigm is comprised of a learning algo-
rithm and a selector. The selector consists of three mod-
ules (classification, organization and selection) that are
highly interdependent. At each iteration cycle, the sys-
tem presents to the user a set of samples that consists of
either non-labelled samples (from the entire database,
in the first iteration) or labelled ones (obtained through
the classifier), all chosen by the selector. As these sam-
ples are annotated by the user, they are included in the
training set to retrain the classifier for the next cycle.

Besides the aforementioned inefficiency, most of the
existing research in the traditional active learning
paradigm has focused on binary classification. Rel-
atively few approaches [12, 20, 9, 16, 11, 10] have
been proposed for multiclass active learning and are
typically based on extensions of predominantly binary
active learning methods to the multiclass scenario.

In the ANN literature, although several works [4, 1, 7]
have explored the use of active learning in the context
of efficient network training, this approach shows the
disadvantage of being computationally expensive.

Alternatively, SVM has been used in [19, 18], under the
assumption that the samples closest to the separating
hyperplane are the most informative ones. During the
iterations of relevance feedback, the method finds the
optimal hyperplane separating relevant and irrelevant
samples and presents to the user the samples closest to
this hyperplane. This hyperplane is adjusted throughout
the iterations, and after the last one, the method presents
the most relevant samples as being the farthest ones to



the hyperplane. Extensions to the multiclass scenario
are typically based on extensions of binary classifica-
tion using pairwise comparisons or 1-vs-all strategy.

In contrast, [10] introduced a probabilistic variant of
k-NN. Although, this variant was designed specifically
for multiclass problems, it involves learning a certain
number of parameters. Moreover, the performance of
the method is dependent on the similarity measure used.

A strategy, similar to the one presented in [18], was pro-
posed in [6], using a faster and more effective classi-
fier based on Optimum-Path Forest (OPF). They devel-
oped greedy (GOPF) [5] and planned (POPF) [6] active
learning strategies for CBIR systems. For a given set of
relevant and irrelevant samples, the method computes
an optimum-path forest using samples from the query
set for training the classifier.

Optimum-Path Forest (OPF) is a framework for devel-
oping pattern classifiers (supervised, semi-supervised
or unsupervised) which defines how the samples are
connected by an adjacency relation that gives rise to a
graph, and how to measure the connectivity (the cost
of a path in the graph generated by the adjacency) be-
tween them by means of a function that gives rise to an
optimum path forest.

The supervised and the unsupervised classifiers were
described in [14, 17], respectively. Both learning ap-
proaches are fast and robust for large datasets [13, 2].
In addition, the classes/clusters may present arbitrary
shapes and have some degree of overlapping. Classi-
fiers based on OPF have been widely used in several ap-
plications and have demonstrated that OPF-based clas-
sifiers can be more effective and much faster than ANN
and SVM based ones [14].

The following Section details the OPF based clustering
approach.

3 CLUSTERING BY OPTIMUM-PATH
FOREST

The data reduction approach we implemented is based
on clustering by Optimum-Path Forest (OPF) [17]. This
is a non-parametric approach which estimates the num-
ber of natural groups in a dataset as the number of max-
ima of its probability density function (pdf). In this ap-
proach, each maximum of the pdf will define a cluster
as an optimum-path tree rooted at that maximum. It
can handle plateaux of maximum, by electing a single
root (one prototype per maximum), groups with arbi-
trary shapes, and some overlapping among clusters.

In this unsupervised learning algorithm, an unlabelled
training set is interpreted as a graph whose nodes are
samples (images, in this paper) and each node is con-
nected with its k-closest neighbours in the feature space
to form directed arcs. The pdf value at each node is
estimated from the distance between adjacent samples,

and a connectivity (path-cost) function is designed such
that the maximization of a connectivity map defines an
optimum-path forest rooted at the maxima of the pdf. In
this forest, each cluster is one optimum-path tree rooted
at one maximum (prototype). The pdf estimation also
requires multiple applications of the algorithm for dif-
ferent values of k in order to select the best clustering
result as the one that produces a minimum normalized
cut in the k-NN graph. The clusters are found by or-
dered label propagation from each maximum, as op-
posed to the mean-shift algorithm of [3] which searches
for the closest maximum by following the direction of
the gradient of the pdf — a strategy that does not guar-
antee the assignment of a single label per maximum,
and presents problems on the plateaux of the pdf.

In order to handle large datasets, this approach esti-
mates the pdf from random samples and fast propagates
the group labels to the remaining samples of the dataset.
The best k for pdf estimation is found by optimization,
but its search interval [1, kmax] may produce different
numbers of groups. The parameter kmax represents an
observation scale for the dataset. If kmax is too high,
it means that we are looking at the dataset from infinity
and so, the result will be a single cluster. As we ap-
proximate the dataset (reducing the value of kmax), the
number of clusters increases up to some high number
for kmax = 1. Still, the number of possible solutions is
low, because the method produces an identical number
of clusters for several values of kmax. This shows the
robustness of the method in finding natural groups in
the dataset for distinct observation scales. In this work,
we chose kmax so as to obtain a number of groups
higher than the number of classes known. Note that,
we do not use any knowledge on the classes of sam-
ples, but we assume that we know how many classes
are present in the dataset.

4 PROPOSED PARADIGM

We propose a new paradigm for active learning in or-
der to select, more efficiently and effectively, a small
number of the most representative samples for train-
ing a classifier. The execution pipeline of the proposed
paradigm is illustrated in Figure 2.

In the proposed paradigm, a classifier instance is gen-
erated at each iteration. After retraining the classifier
(a process that relies on user annotations), the selector
displays the most informative samples to the user. As
the classifier improves, the user is required to correct
fewer misclassified samples and progressively develops
a sense of when the learning process has reached a sat-
isfactory state.

Active learning methods presented in the literature dif-
fer from one another in their learning algorithms and in
the selection strategies employed. The main difference
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Figure 2: Pipeline of the proposed active learning paradigm.

between the proposed paradigm and previously pro-
posed ones lies within the selector. Traditional methods
make use of three modules that correspond to classifica-
tion, organization and selection of samples (Figure 1).
In these methods, the selection criterion is based solely
on a classifier that is not yet reliable. When the clas-
sification accuracy is still low, the organization phase
becomes useless, since when samples are classified, in-
formative samples may not be selected to participate in
the organization phase and therefore they will not be
shown to the user.

The proposed paradigm is based on a priori data re-
duction and organization of the reduced dataset. It fo-
cuses on reversing the process adopted by traditional
paradigms where an classification phase occurs before
the organization phase. In the proposed paradigm, the
selector consists of only one module of selection and
classification. A major advantage presented by the pro-
posed paradigm is that the reduction and organization
of samples can be performed only once, unlike tradi-
tional methods.

Thus, the selector becomes faster, especially consider-
ing large databases, since the improvement of the clas-
sifier at each iteration does not require rearranging all
samples; only the selection and classification phases are
required. Moreover, a remarkably faster selection phase
is completed by the choice of a small subset of samples
and the classification of only these.

The strategy to be developed in order to select the
most informative samples itself occurs as preprocess-
ing in the module of reduction and organization (Fig-
ure 2). This strategy should not be based on a classi-
fier, because it is still unreliable, but rather based on an
absolute criterion previously established (for instance,
exploring the organization of the data in the feature
space). The classification phase is performed a pos-
teriori, supporting the choice of the most informative
samples by the selector, which follows a predetermined
order in the reduction and organization module. In
this module, different methods can be applied in our

paradigm. In Subsection 4.1, we develop and present
an effective method for the learning process.

4.1 Instantiation of the proposed
paradigm

As it was mentioned, any method can be incorporated
into the proposed paradigm in order to reduce the
learning set and later to organize the reduced one. In
this section, we present an effective method called
Cluster-OPF-Rand. Figure 3 illustrates an example of
the pipeline of Cluster-OPF-Rand.

The proposed method is divided into two modules: (1)
reduction and organization, (2) selection and classifica-
tion. The reduction and organization module is com-
prised of two steps: clustering and reduction of the data
(steps 1 and 2 of Figure 3, respectively). The selection
and classification module choose and label (steps 3 and
4 of Figure 3, respectively) the most informative sam-
ples of the reduced set chosen in a randomized fashion.
Each sample is represented by a pair (id, Ibl), where id
corresponds to the identifier of the sample and /bl cor-
responds to the label given by the classifier. Note that it
does not classify all samples in the dataset, but only the
selected subset.

Initially, clusters are computed in order to obtain sam-
ples of all classes, as described in Section 3. One or
more clusters represent samples of all classes in the
non-labelled set, so that each cluster comprises mostly
samples of a single class. Then, their roots (highlighted
after step 1) cover samples of all classes and are defined
as an initial training set for manual annotation. This is
fundamental to be able to train the classifier with sam-
ples of all classes, since the first iteration. This clas-
sifier should be as good as possible because it is used
in the classification of samples, providing an initial la-
belling, in which the user is not required to annotate all
samples shown but only to correct a small number of
misclassified ones.

Besides knowing which samples are roots of clusters,
it is possible to identify those that are boundary sam-
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Figure 3: An example of pipeline of the proposed method.

ples between different clusters. A sample s is consid-
ered a boundary sample if there exists, among its k-NN
adjacent samples, at least one whose label (given by
the clustering) is different from that of s. The clus-
ter boundary samples are expected to correspond to
the boundary between classes. This identification of
boundary samples allows for the reduction of the learn-
ing set to a small relevant set (consisting of boundary
samples), since these can be considered as the most rep-
resentative samples for improving the classifier.

In the first iteration of the learning phase, the roots of
the clusters are displayed to the user, who annotates
their labels. These samples constitute the training set
for the first instance of the classifier. For all other itera-
tions, among the samples of the reduced set (boundary
samples of the clusters) a few randomly chosen ones are
selected for classification. Once classified, these sam-
ples are submitted to the user for confirmation of the
labels assigned by the current classifier. Since only a
small number of misclassified samples require annota-
tion, the user’s time and effort are lessened. In fact, as
the classifier improves throughout the iterations the ac-
tions required from the user are increasingly reduced.
After the labels are confirmed/corrected by the user, the
samples are incorporated into the training set and a new
instance of the classifier is generated. This entire cycle
is repeated until the user is pleased with the accuracy of
the classification.

Moreover, it is important to emphasize that different
clustering techniques (such as k-means or k-medoids)
can be used in the data reduction phase. Similarly, dif-
ferent supervised classifiers can be used in the classifi-
cation and selection phases of the proposed paradigm.
We choose OPF-based clustering since it offers many
advantages, as mentioned in Section 2.

S EXPERIMENTS

For evaluation, we developed a baseline approach
(OPF-Rand) using the OPF-classifier and random se-
lection of samples. At each learning iteration, the same
number of random samples is selected from the entire
dataset for OPF-Rand and, from the reduced dataset,
for the Cluster-OPF-Rand. This number of samples is
equal to the number suggested by Cluster-OPF-Rand
based on the clustering results — a fair choice. These
samples are classified and presented to the user for
annotation. The user annotates the misclassified sam-
ples and they are added to the training set to improve
the OPF classifiers used in each method for the next

iteration. Thus, one can easily note the gain obtained
by using clustering for dataset reduction, which induces
the knowledge of a large number of classes, resulting
in an early increase in accuracy. Moreover, clustering
also allows for the choice of random samples from the
reduced set comprised of good representative samples,
instead of a much larger set of data (as in OPF-Rand).

The reported results were compiled from the average
of experiments run 10 times, with randomly generated
learning sets and unseen test sets for accuracy mea-
sures. For all datasets used, we chose 80% of the avail-
able samples for learning, and 20% for testing.

5.1 The Dataset Description

To perform the experiments we have used real-world
datasets from very diverse domains. Due to space lim-
itations, in the present paper there are only results ob-
tained from three datasets.

The first dataset was obtained from the University of
Notre Dame [8]. It was originally designed to study the
effect of time on face recognition. The images were
acquired in several weekly sessions with the participa-
tion of distinct individuals. In these sessions, different
expressions (neutral, smiling, sad) were captured. In
this work, we concentrated on a subset containing 1,864
samples with 162 features and 54 classes. Figure 4 dis-
plays specimens from this dataset.

@f%
w$u aehEhs

Figure 4: Examples of images from the Faces dataset.

The second dataset is composed of images of parasites,
provided by a research laboratory at the University of
Campinas, where faecal parasitological examination is
performed for diagnosis of enteroparasitosis present in
humans. We used a dataset consisting of 1,660 faecal
samples with 262 features and 15 classes. A particu-
larity of this set is that each class contains a different
number of images varying from 33 to 163 depending on
the parasite species found on microscope slides. Figure
5 displays samples from this dataset.

The third one is the Pen-Based Recognition of Hand-
written Digits dataset obtained from the UCI Machine



Faces Accuracy (%) Total Annotated Images (%)
Iteration || Cluster-OPF-Rand | OPF-Rand || Cluster-OPF-Rand | OPF-Rand
1 94.85 85.11 6.51 6.51
2 97.27 94.21 7.59 8.51
3 98.06 97.35 8.11 9.40
4 98.57 98.35 8.41 9.78
5 98.85 98.78 8.68 9.98

Table 1: Accuracies and total annotated images for Cluster-OPF-Rand and OPF-Rand on the Faces dataset.

Figure 5: Examples of images from each class of the
structures of intestinal parasites in the Parasites dataset.

Learning Repository [15], that consists of 10,992 ob-
jects in 16 dimensions, distributed in 10 classes corre-
sponding to the digits [0...9]. The 16 dimensions are
drawn by re-sampling from handwritten digits. This
digits database was built from a collection of 250 sam-
ples from 44 writers.

5.2 Results

To compare the effectiveness of each method (Cluster-
OPF-Rand and OPF-Rand), Tables 1-3 present the
mean accuracy and the total annotated images using the
datasets Faces, Parasites and Pendigits, respectively. It
is important to emphasize that comparisons were not
performed between Cluster-OPF-Rand and methods
that require classifying and organizing all samples in
the database, at each learning iteration, due to this
process being infeasible in practice.

Notice that the proposed method creates a new classi-
fier instance at each iteration. We would like to verify
the ability of Cluster-OPF-Rand in choosing the most
representative samples from a reduced set, as well as,
in which iteration, whether the user might be pleased
with the classification accuracy. Therefore, we monitor
the mean accuracy of each instance on the unseen sam-
ples of the test set. Furthermore, for each sample set
selected at each iteration, we simulate the user interac-
tion by correcting the misclassified labels given by the
current classifier instance. Tables 1-3 help compare the
total number of annotated images used to increase the
training set.

In summary, Cluster-OPF-Rand started off with a bet-
ter performance than OPF-Rand, for all datasets anal-
ysed. Moreover, it achieves high accuracies sooner.
To reach the same accuracies, the randomized method
(OPF-Rand) required more samples annotated by the
user as well as more learning iterations than Cluster-
OPF-Rand.

Using the Faces dataset (Table 1), both methods achieve
similar accuracies and both can be improved with more
user annotations and more learning iterations. How-
ever, Cluster-OPF-Rand allows the learning process to
stop earlier in comparison with OPF-Rand. Further-
more, it is important to highlight that, out of 1,469 sam-
ples only 132.94 (about 9.05%) had to be annotated for
the proposed method to achieve accuracy above 99%, in
its last (9'") iteration using all samples on the reduced
set. These results are similar to those for the remaining
datasets (Tables 2 and 3). This shows that our method
can outperform OPF-Rand in effectiveness.

Considering the Parasites dataset (Table 2), in the first
iteration, Cluster-OPF-Rand achieves accuracies above
92% with less than 2% of the learning samples anno-
tated by the user, while the randomized method OPF-
Rand reaches similar accuracies only from the fourth
iteration on and requiring the user to annotate more
than 3% of the learning samples. Furthermore, out of
1,323 samples only 77.7 (about 5.87%) had to be an-
notated for Cluster-OPF-Rand to achieve an accuracy
above 97%, in its last (25") iteration using all samples
in the reduced set.

For the Pendigits dataset (Table 3), our method obtains
high accuracies in all learning iterations. In the first
one, it presents an accuracy of 88.80%. In the remain-
ing iterations, the accuracies tend to increase continu-
ously, reaching over 99%. Furthermore, out of 8,791
samples only 79.9 (about 0.90%) had to be annotated
for the proposed method to achieve accuracy above
97% in the 30™ iteration. In a practical situation, a user
would be very pleased at this point, mainly considering
that the randomized method (OPF-Rand) learning pro-
cess consists of 440 iterations, when using all available
learning samples.

Figure 6a-b illustrates the mean accuracies and the
number of samples annotated by the user at each
iteration for each dataset using Cluster-OPF-Rand,



Parasites Accuracy (%) Total Annotated Images (%)
Iteration || Cluster-OPF-Rand | OPF-Rand || Cluster-OPF-Rand | OPF-Rand
1 92.68 79.44 1.98 1.98
2 94.12 88.50 2.54 2.66
3 94.94 91.60 2.91 3.06
4 95.30 92.67 3.12 3.29
5 95.21 93.64 3.36 3.54

Table 2: Accuracies and total annotated images for Cluster-OPF-Rand and OPF-Rand on the Parasites dataset.

Pendigits Accuracy (%) Total Annotated Images (%)
Iteration || Cluster-OPF-Rand | OPF-Rand || Cluster-OPF-Rand | OPF-Rand
1 88.80 70.36 0.13 0.13
2 90.96 82.97 0.22 0.25
3 91.99 87.49 0.29 0.30
4 92.89 89.72 0.35 0.35
5 93.70 91.25 0.40 0.40

Table 3: Accuracies and total annotated images for Cluster-OPF-Rand and OPF-Rand on the Pendigits dataset.

respectively. We used logarithmic scales, due to the
size of these datasets. Our method requires a greater
effort by the user in the first few iterations, since the
selected samples are the most difficult to classify.
However, looking at the end of the learning phase,
one can observe that the proposed method demands
less effort from the user, who annotates much fewer
samples after some iterations (reaching almost no
annotations at all).

The reduction strategy becomes very important in a pro-
cess where a goal is to limit the number of iterations to
as few as possible. In this context, selecting samples
that speed up the improvement of the classifier through
the iterations becomes critical. The more difficult to
classify the selected samples in the current iteration are,
the more useful they are to improve the classifier for the
next iteration. Therefore, the selection of hard to clas-
sify samples coupled with the early knowledge of all
classes allow for higher accuracy sooner.

Note that, in the first iteration with all datasets (Ta-
bles 1-3), Cluster-OPF-Rand provides higher accura-
cies than OPF-Rand. Using roots of each cluster for the
first classifier instance becomes really important due
to its use in the next iteration. This reduces the time
and effort by the user who mainly has only to confirm
the labels of the samples that have already been classi-
fied. Hence, this first instance of the classifier should
be based on the knowledge of as many classes as pos-
sible (ideally, all of them). In later learning iterations,
the performance gain depends on the choice of good
samples. With the proposed method, it is possible to
improve these choices by reducing a large dataset to a
small subset consisting of boundary cluster samples for
the training of the subsequent classifiers.

It is clear that Cluster-OPF-Rand, in addition to pro-
viding high accuracies, requires fewer learning itera-

tions than those demanded by OPF-Rand. Addition-
ally, it relies on fewer interactions with the user whose
effort is reduced to almost none after a few iterations.
Therefore, clustering improves the knowledge of sam-
ples from most/all classes. From the results presented,
we can see that clustering roots allow us to obtain high
accuracy since the first iteration. In the remaining it-
erations, the growth of accuracy is faster for Cluster-
OPF-Rand, which also proves beneficial for the reduc-
tion strategy proposed.

6 CONCLUSION AND FUTURE
WORK

In this work, we introduced an efficient active learning
paradigm which enables the reduction and organization
of the learning set a priori. A first instantiation, Cluster-
OPF-Rand, of the proposed paradigm was developed in
order to illustrate its effectiveness. The data reduction
is based on clustering and the organization uses a ran-
domized choice of samples of the reduced set, which
contains the most representative (boundary) ones for
the learning process. Cluster-OPF-Rand enables us to
achieve the desired results, by using the knowledge of
both user and classifier, at each learning iteration, along
with the reduction strategy developed.

We concluded that our paradigm is more suitable to
handle large datasets than the traditional one where
methods require, at each learning iteration, the clas-
sification of all samples in the database, followed by
their organization, and, finally selection. The proposed
paradigm enables the reduction and organization phases
to occur only once, as pre-processing. In addition, clas-
sification does not occur for all samples in the database,
but to a small set of samples.

Experiments with datasets from distinct applications
showed that Cluster-OPF-Rand, in addition to achiev-
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Figure 6: Comparison of Cluster-OPF-Rand on the three

annotated samples in each iteration (in percentage).

ing higher accuracy sooner, requires fewer learning it-
erations than those presented by OPF-Rand. Moreover,
it is important to highlight that the user’s time and ef-
fort are reduced to almost none after just a few itera-
tions. Furthermore, experiments also demonstrated that
it is possible to reduce the user’s effort by over 90%,
obtaining a classification accuracy above 97%.

Considering that new technologies have provided large
datasets for many applications and that he traditional
paradigms for active learning present unacceptable
training times, we conclude that the proposed paradigm
is an important contribution to active machine learning.
Future works include developing other ways to explore
the reduction and organization of data, for instance, a
strategy that relies on an absolute criterion established
a priori which explores the organization of the data in
the feature space.
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