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ABSTRACT 
Given n point coordinates and their various labels’ length, our algorithm places a rotated collision-free label for 
each point. Using a combination of genetic algorithms and simulated annealing as an evolutionary algorithm, 
with qualification function consuming just ܱ(݈݊݊݃) time, we achieve a fast near-optimal algorithm. 
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1. INTRODUCTION 
Map-Labeling is a crucial step in map generation and 
usage. Automated label placement, in its simple form 
is to automatically attach labels to special features of 
maps i.e. points, lines and areas. Point Feature Label 
Placement (PFLP) is one of the remarkable sub-
problems of automated label placement that has 
received good attention. In a valid label placement, 
labels should be located adjacent to their feature 
points (could be attached to or parted with a defined 
space) and they must be pairwise disjoint. Moreover, 
map clarity is an optional parameter argued in some 
documents on account of its emotional and human-
based nature in maps. The first approach towards 
automated map-labeling belongs to Edward Imhof in 
[Imh75a] who tried to distinguish different steps of 
labeling and gave a systematic solution for all 
features of maps. After proving time complexity of 
map-labeling problem which is NP-complete in 
[For91a], heuristic approaches to solve the problem 
arose significantly. The first heuristic-based map-
labeling solution was published in 1984 by Noma in 
[Nom84a] which placed labels according to an 
abridged algorithm in non-colliding space. Wagner 
and Wolf in [Wag95a] implemented a heuristic 
approach with a quality guaranty of 50 percent of the 
optimal solution and running time ܱ(݈݊݊݃) in all 
situations. As PFLP evolved, innovative map-

labeling techniques were proposed in order to fulfill 
unwonted targets. Zhu and Poon heuristic Map-
Labeling solution in [Zhu99a] which placed a non-
intersecting pair of circular or rectangular labels for 
each point on the map, is one of the obvious 
illustrations of this concept. Evolutionary Algorithms 
(EA) are widely employed in complicated 
optimization problems. However, Genetic 
Algorithms (GA) as a sub-category of EA’s became 
prominent due to their power in optimization and 
parallel processing. The first GA approach to map-
labeling was represented by Djouadi in [Djo94a] 
which was comprised of procedures to calculate 
overlap and aesthetic constraints on maps to place 
labels. There are distinct versions of GA-based 
solutions that are argued in [Dij00a, Bae10a]. One of 
the main reasons which make fast automated map-
labeling seem less perspicuous than the human-made 
one is restricted candidate space to place labels in the 
automated technique. Consequently, map-labeling in 
slider model, which allocates an approximate 
continuous candidate space to labels, was introduced 
by Strijk in [Str02a]. Labels’ intersection detection is 
the main part of the evaluation function of map-
labeling heuristic approaches, undoubtedly. In this 
paper, the collision detection procedure originates 
from Bentley_ Ottmann algorithm that was proposed 
in [Ben79a].  
Applications for this problem can be found in 
computer graphics, GIS, Navigation systems, 
Computer games, flight animation and in other 
related fields. 
The remainder of the article contains a complete 
description of the problem, including search space 
and cost function, the explanation of different parts 
of the algorithm and the results that were 
experimented to show the efficiency of the algorithm. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 
and/or a fee. 
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3. THE ALGORITHM 
The algorithm designed to solve the previously 
described map-labeling problem is an evolutionary 
algorithm that utilizes a mixture of GA and SA ideas 
to offer a near-optimal map labeling solution. In this 
section, the basic principles of suggested genetic 
algorithm will be stated. 

3.1. GA 
In this paper, we adapt a GA to solve map-labeling 
problem. The algorithm consists of different parts 
that are described as follows: 

3.1.1 Chromosome Structure 
In map-labeling problem, there are many variables 
which have the capability to be placed inside 
chromosomes. However, in order to prevent extra 
complexity, we endeavor to design chromosomes as 
plainly as possible. Figure 3 illustrates the 
chromosome design of GA algorithm. In this 
structure, each pair of ܴ and ܮ relates with a label. 

 Figure 3. Presentation of chromosome structure 

Note that ܴ belongs to the degree of rotation of each 
label and  ܮ is described as follows: ܮ = ℎݐ݃݊݁ܮ݁ݑ݈ܸܽ݊݅ݐ݈ܽݏ݊ܽݎܶ  

Where ݐ݃݊݁ܮℎ is the label’s length that could vary 
for each point. By this structure, utilizing additional 
techniques like masking to avoid chromosome 
disruption after operation is not required. The 
chromosome size equals to 2. (݉ݑ݊	ݐ݊݅) + 1 
where the addition of one unit pertains to the 
chromosome fitness value. 

3.1.2 Genetic Operators 

In this paper, we use two different GA operators 
which are called after fitness calculation of each 
generation. 
Crossover: It generates two offspring from two 
parents by swapping the information beyond random 
points. Owing to the large size of chromosomes in 
dense maps, we use a two-point crossover operator to 
function more drastically. 
Mutation: It evolves chromosomes by transmuting 
some bits identified in a random manner. Provided 
that the selected bit belongs to the degrees of 
rotation, the offspring mutated bit is calculated as ܴ∗ଷ = 360 − ܴଷ. 
And if the selected location contains information of a 
transformation displacement, the mutated bit is 
computed as ܮ∗ଵ = 1 −  .ଵܮ
The amount of altered bits in a chromosome by 
mutation operation is defined as the number of genes 

divided by 10. In other words, each 10 genes in a 
single chromosome include one mutation. After 
calling GA operators, the offspring and parents are 
saved in a chromosome pool to launch the selection 
procedure. 

3.1.3 Selection Methods 

We use four different selection methods to compare 
their proficiency in this special GA solution. The 
methods are: 
• Rank selection 
• Roulette wheel selection 
• Elitist Roulette wheel selection 
• Elitist Rank selection 

In which elitist methods perform selection procedure 
by taking advantage of the former generation 
directly. Note that running time and selection 
accuracy are two criteria to measure the competence 
of the selection methods that will be discussed later. 

3.1.4 Fitness Method 

We have benefited from Bentley-Ottman algorithm 
as the basis of GA evaluation function due to its 
distinct advantages and have adjusted it to the 
specification of the problem. If ݊ represents the 
number of lines and ܭ	is the number of overlaps in 
the map, the time complexity of Bentley-Ottman 
algorithm equals  ܱ((݊ + ݇).  The labels in a .(݈݊݃
map are rectangles with expected diverse sizes 
clearly. If Bentley-Ottman runs on a map with 
rectangular labels, the vertices of labels are added to 
the intersection points undesirably owing to the fact 
that they should not be considered overlaps between 
the labels. To make an adjustment, the following 
definition is assumed. 

Definition 1 reduced rectangle is described as a 
rectangle which contains sides decreased by ɛ and it 
is denoted as ܴɛ.  
Lemma 1 Overlap detection by Bentley-Ottman 
algorithm in a map which contains ܴɛ labels has 
lower time complexity than that one in a map with 
rectangular labels. 

Proof The number of intersections between lines in 
the plane affects running time in Bentley-Ottman 
algorithm undoubtedly. If ݇ is the number of 
overlaps between lines,  is the quantity of points in 
the map and ݅ is the number of intersections between 
labels, rectangular label map has the following 
equation:  ݇ = 4.  + ݅ 
On the other hand, number of overlaps between lines 
in the map which contains ܴɛ labels is defined as: ݇ = ݅ 
Thus, time complexity with ܴɛ labels is calculated as  ܱ((݊ + ݅).  .resulting in lower running time (݈݊݃
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