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ABSTRACT 

It is shown that on the example of the mentioned problem 3d-computer geometrical models allow in full to solve 
and investigate applied problems of geometrical simulation. 
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1. INTRODUCTION 
A peculiar feature of most applied problems of geo-
metric simulation is that we can’t obtain an explicit 
and theoretically exact projection or analytical solu-
tion to these problems. However, if the solution is 
found, as a rule it is connected with a number of as-
sumptions, it is complicated and cumbersome, has a 
low clearness and therefore, doesn’t allow us to carry 
out the necessary analysis of the model without fur-
ther graphic explanation. 

The existence of graphical editors, which allow us to 
create virtual realistic 3D geometric models, highly 
expands the possibilities of geometric simulation. On 
this basis a new method of 3D geometric simulation 
has appeared, combining with computer and software 
it allows us to study the model and obtain visual tar-
get characteristics without analytical and structural 
(projection) design. 
The object of this article is to show the application of 
3D method and its possibilities on the example of 
combination of a quadric and conic. The choice of 
this problem as an example is due to the availability 
of its solutions in particular cases [1-3].  

The author has complicated the problem by consider-
ing the combination of all types of conic and select-
able quadric [4, 5]. A variant of this problem is given 
in this article: let us combine the given hyperbola 
with the given one-sheet elliptic hyperboloid (OH) if 
the hyperbola must pass through a selectable and 
given point on the surface of the hyperboloid. 

Defining the point as a parameter of the problem 
hasn’t allowed us to obtain accurate geometric or 
analytical solution. Being a theoretical one, a consid-
ered problem demonstrates the possibility of new 3D 
methods to study and solve similar complicated ap-
plied problems. 

2. METHOD OF STUDY  
“Black box” method which is peculiar to experimen-
tal research is used to study the objects, internal 
structure of which is unknown. Algorithm of the solu-
tion (fig. 1) is to get a range of hyperbolae, located on 
the surface of OH and passing through the given 
point and to find hyperbola with the required metrics 
among them. 

We shall build the model of OH (fig. 2) on the 
framework of two hyperbolae in the planes of sym-
metry and 10…20 cross-cut ellipsis. We will get hy-
perbolae to the framework as sections of elliptical 
cone [4].  We shall set out check point B on the sur-
face of OH. 

To create a range of hyperbolae we shall introduce a 
cutting plane ψ (fig. 3), performing a rotation around 
two axes passing through the given point B. The first 
rotation is around axis i1, which is parellel to axis i of 
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OH. The second rotation is around contour curve i2, 
which belongs to the plane ψ and rotating round i1 
with it. The position of plane ψ is set with the angle u 
and angle w. 

Taking into consideration the symmetry of the model, 
we shall set the interval of each rotation at 0…180°. 

The rotary steps which are step_u (at position u) and 
step_w (at position w) are taken as 0.5…1° 
considering the required accuracy of the solution. In 
this case the range of conics is 20…50 thousand. This 

range is successfully proceeded on a personal 
computer. 

The range of hyperbolae shall be defined at 
asymptotic cone (AC). To build (fig. 4, a) it we shall 
draw tangent m to ellipsis e of the neck of OH from 
arbitary point 1of ellipsis e of OH. Tangent point 2 is 
determined by the object snap. Let us place m to the 
center 3 of ellipsis e. From the center 4 through point 
6 we shall draw the segment till its intersection with 
ellipsis e at point 5. Let us scale ellipsis e so that it 
passes through point 6, thus we obtain ellipsis e′. We 
shall build AC at its base e′ and appex 3. 

For each value of u-coordinate we shall project AC to 
the plane (fig. 4, b) which is perpendicular to the 
current position of axis i2, and find sector ∆. For 
hyperbolae cutting plane ψ shall pass within sector ∆. 

Hyperbola of the section h of plane ψ obtained as 
spline curve is characterised by metrics d, α (fig. 4, 
c). We shall define center C by the method of chords. 
Let us draw axis i through the middle point c, then we 
shall define apex of hyperbola, defining metric d. 
Angle α between asymptotes of hyperbola is 
determined by section AC with plane Ψ′ Ψ. 

Metrics of every hyperbolae α, d, as well as their 
angle coordinates u, w, angles of inclination of the 
planes of hyperbolae to the planes of symmetry of 
OH, and other parameters which are necessary for the 
study of the model, are placed into database (DB). 

Further study of the model is in the extraction of hy-
perbolae with the given values of metrics α, d from 
DB. We shall introduce the allowance of the search 
(error) del =0.5 (del1 + del2), where del1 is the error 
to metric d, del2 is the error to metric α. Originally 
having determined del = 5…10%, we shall extract a 

Fig. 1. Block-diagram 
of an algorithm 
 

Fig. 2. Parameters of a model 
 

Fig. 3. A diagram of formation of a range of 
hyperbolae 
 



group of hyperbolae from DB. The number of groups 
is the number of solutions. In each group we shall 
find the hyperbola with a minimum value del, 
which is one of the variant of solution. 

AutoCAD is used to perform simulation, algo-
rithms and their metrics, analysis of database is 
performed by means of list-processing of Auto-
Lisp. 

3. THE RANGE OF POSSIBLE 
SOLUTIONS  
Let us display a database in the coordinates α, d 
(fig. 5, a). Each hyperbola is marked with the 
point. About ≈36000 points are displayed all in 
all. We have two areas C and D. Tests show that 
area C are the hyperbolae with the exterior 
center (see fig. 8, b). Area D (fig. 5, b) is the 
hyperbolae with the inner center (see fig. 9, b). 

4. HYPERBOLAE OF A PAR-
TICULAR CASE 
Defining the angles of inclination of the plane of 
hyperbola to the planes of symmetry of OH, we 
shall get the curves 1…6. The curves 1, 5 are front-
projecting hyperbolae (their planes are perpendicular 
to the frontal plane of symmetry of OH including 
minor axis of ellipsis); hyperbolae 1 and 5 differ from 
each other by the sign of the angle of inclination to 
the frontal plane of symmetry of OH. Hyperbola 2 
and 4 are equally inclined to the planes of symmetry 
of OH in a number of ways. The curves 3 and 6 are 
front-projecting hyperbolae with different angles of 
inclination to the frontal plane of symmetry. 

Provided α → 0 asymptotes of hyperbolae are com-
bined, distance 2d between the apexes increases 

without restrictions, hyperbola degenerates into the 
straight line. Provided α = 180°, hyperbola is degen-
erated into two parallel lines tangent to the neck. One 
of the lines of each pair passes through point B. Pro-
vided d = 0 (points of axis α), the apexes of hyperbo-
lae coincide with the center, hyperbolae degenerate 
into their asymptotes, that is into two intersection 
lines. 

Fig. 5. The range of possible solutions 
a) 

b) 

b) 

a) 

Fig. 4. Elements of solution algorithm: a – asymptotic cone; b - determination of the range 
of hyperbolae; c – determination of metrics of hyperbolae 
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5. THE NUMBER OF POSSIBLE SO-
LUTIONS  
We shall build lines m and n passing through point B, 
which are tangent to the ellipsis e of the neck of OH 
(fig. 6). We shall take point 1 to the tangent m, and 
build tangent n′ to the ellipsis e from this point. We 
will obtain lines m ∩ n′ which can be considered as a 
degenerated hyperbola with angle α1 between asymp-
totes and d = 0. The move of point 1 leads to the 
change of angle α1 according to the experimentally 
defined curve 1 (fig. 7). Curve 2 reflects the same 
dependence while moving point 2 along tangent n. 

Let us assume that for a group of hyperbolae with the 
same value of the angle between asymptotes the 
number of possible solutions is equal to the number 
of degenerated hyperbolae of this group and doesn’t 
depend on the distance d between the apex and cen-
ter. This assumption is proved by the experimental 
testing (see below). 

If we put the horizontal straight line on the level α 
(see fig. 7), we shall define the number of solutions of 
this group with the given value of the angle α. If α > 
84.6°, there is no solution. Value α = 84.6° refers to 
the point E (see fig. 5, b), in which there is the only 

solution. If 60.3° < α < 84.6° there are two solutions. 
If α < 60.3° there are four solutions. And among them 
there are coinciding solutions. If α = 51.6° and 60.3° 
two planes coincide among them and that is why 
among four solutions we see only three solutions. If α 

= 39.2° there are four solutions, two of which have 
equal angles between the asymptotes of hyperbolae 
(but their planes do not coincide). 

For the circular OH the curves 1 and 2 coincide, that 
is the reason of existence of maximum two solutions. 

6. GROUPS OF HYPERBOLAE 
Let us consider the formation of hyperbolae with the 
given angle α between the asymptotes. Let α = 65°. 
Let us draw the sample of hyperbolae with α = 65 ±1° 
from database. We shall extract angular coordinates 
u, w of the planes of hyperbola and build dependency 
of their changes on metric d (fig. 8, a). 

We see that if d = 0 there are two degenerate hyper-
bolae. This corresponds to fig. 7, according to which 
if α = 65° there are two solutions. To the first degen-
erate hyperbola there are coordinates u1=29.2°, w1= 
103.6° (see fig. 8, a), to the second hyperbola the 
coordinates are u2 = –8.8°, w2 = 71.6°. Having 
planes with the given coordinates u,v, in sections we 
will get two pairs of concurrent straight lines, the 
angle between the straight lines of which is 65°. The 
increase of metric d requires the rotation of sectional 
plane ψ toward axes u and v in accordance with the 
dependence u1(d), w1(d) to the first hyperbola. To 
the second hyperbola the dependence is u2(d), w2(d). 
In the interval 0 < d < dmax ≈ 78 the original number 
of hyperbolae is kept. The value of dmax corresponds 
to the upper value of the area C (see fig. 5, a).  At 
d=dmax  hyperbolae coincide and their coordinates 
take the values u ≈ –5°, w ≈ 106°. 

Metrics α = 65° and d = 15 are set as an example. 
Two hyperbolae h1, h2 are found in database (fig. 8, 
b). The values of u, v coordinates of these hyperbolae 
correspond to fig. 8, a. For h1 the error of del is 
(0.26:15 + 0.15:65)⋅50 = 0.98%. For h2 the value of 
del = 0.58%. 

Obtuse angle between the asymptotes leads to the 
hyperbolae with inner center (see fig. 5, area D). As 
the tangent planes for the angles α and (180 – α) are 

Fig. 7. Dependence of the angle 
between the tangents on the 
inclination of the point of tangency 
 

Fig. 6. The tangent planes to the 
surface of OH passing through point B 
 



equal, than the number of solutions for obtuse angle 
can be determined in accordance with fig. 7 for addi-
tional arris. For example, the number of solutions for 
α = 115° and α = 65° is the same and equals two. 
Limiting point E has a responsive point E′ (see fig. 
5). 

Let us draw a sample to α = 115±1° (fig. 9). The 
number and coordinates of degenerated hyperbolae 

are the same (see the values of u, v  if d = 0) as for 
the angle α = 65° (see fig. 8, a above). However the 
cinematics of movement of a sectional plane is con-
siderably different (fig. 9, a). Throughout the whole 
interval 0 ≤ d < dmax ≈13.5 two solutions are kept. At 
dmax two combined hyperbolae are obtained. 

As an example of hyperbola with inner center from 
database we shall get hyperbolae h1, h2 if d = 10 (fig. 

a) b) 

Fig. 8. Hyperbolae with exterior center for α = 65°°°°: а – is the change of angular 
coordinates of a sectional plane; b – hyperbolae for d =15 (two solutions) 
 

Fig. 9. Hyperbolae with inner center: a – angular coordinates of a sectional plane;  
b – hyperbolae α =115°°°° and d =10 (two solutions) 
 

a) b) 



9, b). We see that real axes of these hyperbolae m1, 
m2 are perpendicular to the axis of OH. The errors 
del of hyperbolae h1, h2 are 0.55% and 0.30% corre-
spondingly. Hyperbola h2 is front-projecting (for it 
u2 ≈ 0, see fig. 9, a). 

Having taken metrics α = 27°, d =30 we will get the 
solution with four hyperbolae with inner center (fig. 
10). This corresponds to fig. 7, where the horizontal 
straight line α = 27° crosses the curves 1, 2 summa-
rily in 4 points. Only one half-hyperbola is on the bay 
of OH of each hyperbolae h1… h4. The second half-
hyperbola is built on the basis of five points of the 
first half-hyperbola [4]. Because of insufficient den-
sity of database in this area the found hyperbolae 
have serious errors which are having del = 2.3, 4.6, 
3.4 and 4.2% for hyperbolae h1… h4 correspond-
ingly. 

Improved accuracy of solution to any desired value is 
achieved by creating the DB higher density, the use of 
interpolation or the transition to straight line skeleton 
from OG [6]. 

SUMMARY 

1. 3D method of computer geometric simulation al-
lows us to find the solution of the problem under con-
sideration with the required accuracy and studying its 
mechanism including the sphere and number of solu-
tions. 

2. 3D method in a combination with the model of a 
“black box” and programming can be recommended 
for practical problems of geometric simulation, in 
which the construction of analytical and geometric 
models is complicated or unreasonable due to their 
difficulty. 

3. 3D method doesn’t require projection and analyti-
cal constructions and can be considered as an inde-
pendent method of geometric simulation.  
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Fig. 10. Four solutions of hyperbola 
with α = 27°°°°, d = 30  

 


