A Survey of Cloud Lighting and Rendering Techniques

Roland Hufnagel
Univ. Salzburg, Salzburg, Austria
rhufna@cosy.sbg.ac.at

Martin Held
Univ. Salzburg, Salzburg, Austria
held@cosy.sbg.ac.at

ABSTRACT

The rendering of participating media still forms a big challenge for computer graphics. This remark is particularly
true for real-world clouds with their inhomogeneous density distributions, large range of spatial scales and different
forms of appearance. We survey techniques for cloud visualization and classify them relative to the type of volume
representation, lighting and rendering technique used. We also discuss global illumination techniques applicable
to the generation of the optical effects observed in real-world cloud scenes.

Keywords

cloud rendering, cloud lighting, participating media, global illumination, real-world clouds

1 INTRODUCTION

We review recent developments in the rendering of par-
ticipating media for cloud visualization. An excellent
survey on participating media rendering was presented
by Cerezo et al. [5] a few years ago. We build upon
their survey and present only recently published tech-
niques, with a focus on the rendering of real-world
cloud scenes. In addition, we discuss global illumina-
tion techniques for modeling cloud-to-cloud shadows
or inter-reflection.

We start with explaining real-world cloud phenomena,
state the graphics challenges caused by them, and move
on to optical models for participating media. In the
following sections we categorize the state-of-the-art ac-
cording to three aspects: The representation of clouds
(Section 2), rendering techniques (Section 3) and light-
ing techniques (Section 4).

1.1 Cloud Phenomenology

Clouds exhibit a huge variety of types, differing accord-
ing to the following aspects.

Size:  Clouds reside in the troposphere, which is the
layer above the Earth’s surface reaching up to heights
of 9-22 km. In the mid-latitudes clouds show a maxi-
mum vertical extension of 12—15 km. Their horizontal
extension reaches from a few hundred meters (Fig. 1.7)
to connected cloud systems spanning thousands of kilo-
meters (Figs. 1.11 and 1.12).

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 1: Clouds as seen from the ground: broken cloud
layers with fractal cloud patches (top row), clouds with
diffuse boundaries (second row), dense cloud volumes
with surface-like boundaries (third row); and clouds
viewed from a plane and from space (last two rows),
where (14) shows a zoom into the central region of (13).

Geometry: In relation to the Earth’s radius (6371 km)
the troposphere represents a shallow spherical shell.
The curvature of the Earth produces the horizon and is
directly visible when viewing clouds from space.

Clouds often develop at certain heights and form layers.
These either consist of cloud patches (Fig. 1.1 to 1.5) or
create overcast cloud sheets (Fig. 1.6 or 1.11).



Local upward motions emerging from the ground (con-
vective plumes) create clouds with a sharp cloud base
and a cauliflower-like structure above, so-called Cumu-
lus (Figs. 1.7 to 1.9). Their vertical extension reaches
up to several kilometers (Fig. 1.9).

For low clouds also mixed forms of convective and lay-
ered clouds exist, where the convective plumes are ver-
tically bound and form a layer (Fig. 1.3).

Clouds formed in connection with frontal systems usu-
ally show a large vertical extension and can span thou-
sands of kilometers (Fig. 1.12).

Boundary Appearance: The appearance of clouds
mainly depends on the cloud volume’s constituents:
droplets of different size or ice particles. While large
water droplets produce a determined, surface-like
boundary (Figs. 1.7 to 1.9), smaller droplets create a
diffuse or fractal boundary (Figs. 1.2 to 1.6). Ice parti-
cles often form hair-like or fiber-like clouds, so-called
Cirrus (Fig. 1.1), or diffuse clouds, the anvil-like tops
of convective clouds (Fig. 1.13).

The appearance of a cloud is strongly influenced by
the distance to its observer: While distant clouds often
show a distinct surface and sharp contours (Figs. 1.12
and 1.13), a closer look reveals diffuse or fractal struc-
tures (Fig. 1.14).

Optical Phenomena: Clouds consist of water droplets
and ice crystals which scatter light mostly independent
of wavelength. Clouds are therefore basically white.
Spectral colors appear only at certain angular constella-
tions but generally do not influence their overall appear-
ance. However, several optical phenomena determine
their characteristic, natural appearance:

Self-Shadowing: The attenuation of light within a
cloud creates gray tones and is proportional to the
optical depth of the volume. The self-shadowing
provides the cue to perceive clouds as volumetric
objects.

Multiple scattering slightly attenuates the effect of
self-shadowing by distributing light within the cloud
volume in a diffusion-like process; see e.g. [4, 27, 33].

Inter-Cloud Shadows: Clouds cast shadows onto other
clouds, like in Fig. 1.11, where a high cloud layer on the
right-hand side shadows a low cloud layer.

The Earth’s Shadow: Clouds can be shadowed by the
Earth; see Fig. 1.8 showing an evening scene, where the
low clouds lie in the shadow of a mountain range.

Indirect Illumination: Light inter-reflection between
different clouds or between different parts of the same
cloud brighten those regions, as, e.g., in Fig. 1.9, where
the cloud seems to gloom from the inside.

Light Traps: Light inter-reflection at a smaller scale
occurs on determined cloud surfaces (Neyret [29]) and
lets concavities appear brighter (Figs. 1.7 and 1.10).

Corona: The corona effect occurs when the cloud is
lit from behind. The strong forward scattering at the
boundary produces a bright silhouette (silver-lining).

Atmospheric Scattering: Clouds often appear in vivid
colors. This is caused by the scattering of light outside
the cloud volume on air molecules and aerosols. Clouds
are therefore often lit by yellowish to reddish sunlight
(Fig. 1.9). Different paths of light in the atmosphere let
the high clouds in Fig. 1.14 appear bright white and the
low clouds yellowish. Atmospheric scattering also cre-
ates blue skylight which in some situations represents
the main source of lighting (Fig. 1.8).

Ground Inter-Reflection: For low-level clouds the
inter-reflection with the ground creates subtle tones de-
pending on the type of the ground; see e.g. [3].

1.1.1  Summary

From a computer graphics point of view we identify
the following volume properties, in addition to the form
of the clouds as created by cloud modeling techniques,
which are out of the scope of this survey: thin clouds
that show no self-shadowing; cloud patches that repre-
sent a mixture of slightly dense cores and optically thin
boundaries, usually forming horizontally extensive lay-
ered clouds; and dense cloud volumes of different sizes
and extensions with a sharp or surface-like boundary.
The boundary of clouds exhibits either a fractal, dif-
fuse or sharp appearance.

1.2 Computer Graphics Challenges

A realistic visualization of clouds requires to tackle the
following challenges:

Heterogeneity: Real-world cloud scenes typically con-
sist of a very heterogeneous collection of clouds with
different appearances, sizes and forms. Different cloud
types require different volume representations, lighting
and rendering techniques.

Atmospheric Scattering: For creating a cloud’s
natural appearance the lighting model employed has to
reproduce its typical optical phenomena (see Sec. 1.1),
including atmospheric scattering which is the main
source for color in the sky. This requires the inclusion
of atmospheric models (which are not discussed in this
survey) in the lighting process of clouds.

Curved volume: The spherical atmosphere makes it
difficult to take advantage of axis-aligned volumes if
clouds are viewed on a large or even global scale, as in
Figs. 1.12 or 1.13.

Huge domain: The sheer size of the volume of real-
world cloud scene, especially when viewed from above,
like in Figs 1.11 to 1.13, requires sophisticated and ef-
ficient lighting and rendering techniques.



1.3 Participating Media

A cloud volume constitutes a participating medium ex-
hibiting light attenuation and scattering. This section
uses the terminology of [5] to provide a short introduc-
tion to the radiometry of participating media.

While light in vacuum travels along straight lines, this
is not the case for participating media. Here photons in-
teract with the medium by being scattered or absorbed.
From a macroscopic point of view light spreads in par-
ticipating media, gets blurred and attenuated, similar to
heat diffusion in matter.

Participating media are characterized by a particle den-
sity p, an absorption coefficient x,, a scattering coeffi-
cient ki, and a phase function p(®, @') which describes
the distribution of light after scattering.

Absorption is the process where radiation is trans-
formed to heat. The attenuation of a ray of light with
radiance L and direction @ at position x (within an in-
finitesimal ray segment) is described by

(@-V)L(x,®) = —K,(x)L(x, ®).

In the atmosphere absorption is mainly due to water va-
por and aerosols. Cloud droplets or ice crystals show
little absorption which means that the light distribution
in clouds is dominated by scattering.

Scattering is the process where radiance is absorbed
and re-emitted into other directions. Out-scattering
refers to the attenuation of radiance along direction @
due to scattering into other directions:

(®-V)L(x,®) = —K;(x) L(x, ®).
In-scattering refers to the scattering of light into the
direction @ from all directions (integrated over the
sphere) at a point x:

Ks ot o ,

Ks(x) / p(@,@)L(x,0")do,
An Jaz

Extinction is the net effect of light attenuation due to ab-

sorption and out-scattering described by the extinction
coefficient K, = K, + K.

(& V)L(x,®) =

Emission contributes light to a ray:
(D-V)L(x,d) = K, (x) Lo (x, ).
It is usually not relevant for cloud rendering since

clouds do not emit light. (An exception is lightning
inside a cloud.)

Radiative Transfer Equation (RTE): Putting all terms
together yields the RTE which describes the change of
radiance within a participating medium at a point x:

(@ V)L(x,®) = &u(x)Le(x,®) +

Ks(x)/ - N
—_— o,0)L(x,0)do —
i ), p(@6) L @)

Kqa(x) L(x,®) — Ks(x)L(x,®).

Figure 2: Multiple scattering (left), and the single scat-
tering approximation (right).

By using the single scattering albedo Q = x;/k; and
noting that x,, can be expressed as k, = & (1 — Q), we
can re-write the RTE as

(®-V)L(x,®) = K(x)J(x,d) — i(x)L(x,d), (1)
with the source radiance J:
(1-Q(x))L, +

Q(}C) = = =/ /
yp Anp(m,a))L(x,a))da).

J(x,®) =

The source radiance describes all contributions of ra-
diance to a ray (x,®) at a point x inside the medium.
In high-albedo media, like clouds, the source term is
mainly due to in-scattering, while the extinction is dom-
inated by out-scattering: x; /= K;.

Integrating the RTE along a ray from xg to x yields the
radiance reaching point x from direction — @ (see Fig. 2,
left):

L(x, ®) = T (x,x0)L(x0, ®) + / T 6 () I() dX,
' @)

with the transmittance T (x1,x2) = exp(— [;? K (x) dx).
The boundary condition of the integral is L(xo, @), rep-
resenting the light coming from the background, an en-
vironment map, or from scene objects.

Note that the coefficients x, depend on the wavelength.
Therefore, three versions of Eqn. 2 have to be solved
with appropriate coefficients k, ; for each wavelength
corresponding to the RGB color components.

Single Scattering Approximation: A difficulty in
solving Eqn. 2 is that L appears (implicitly through J)
on both sides of the equation. A common approxima-
tive solution is to account only for a certain number of
scattering events and apply extinction on the paths in
between. Considering only the first order of scattering
yields the single scattering approximation: The source
radiance Jgg is given by the light from the light source
L, attenuated on its way between x; and x/, see Fig. 2
(right), thus eliminating L:

Tss(x', @) = Q') T (', x;) p(x', By, @) Ly (xs, By).

The single scattering approximation simulates the self-
shadowing of a volume. Higher order scattering ac-
counts for the “more diffuse” distribution of light within
the volume.



Phase Function: A scattering phase function is a prob-
abilistic description of the directional distribution of
scattered light. Generally it depends on the wavelength,
and the form and size of the particles in a medium. Usu-
ally phase functions show a symmetry according to the
incident light direction, which reduces it to a function
of the angle 6 between incident and exitant light p(6).

Often approximations for certain types of scattering are
used, like the Henyey-Greenstein or the Schlick func-
tion. However, as noted in [4], those functions cannot
model visual effects that depend on small angular vari-
ations, like glories or fog-bows. See [4] and its refer-
ences for plots and tabular listings of phase functions.

2 CLOUD REPRESENTATIONS

A cloud representation specifies the spatial distribution,
overall structure, form, and boundary appearance of
clouds in a cloud scene.

2.1 Hierarchical Space Subdivision
2.1.1 Voxel Octrees

Voxel octrees are a hierarchical data structure built upon
a regular grid by collapsing the grid cells of a2 x 2 x 2
cube (children) to a single voxel (parent).

Sparse voxel octrees reduce the tree size by account-
ing for visibility and LOD: Interior voxels are removed,
yielding a hull- or shell-like volume representation (see
Fig. 3, middle). Also hidden voxels (relative to the cur-
rent viewing point) are removed (see Fig. 3, right). Ad-
ditionally the LOD resolution can be limited according
to the screen resolution (view-dependent LOD). These
techniques require an adaptive octree representation ac-
companied with an update strategy.

Crassin et al. [7], and similarly Gobetti et al. [13], pro-
pose a dynamic octree data structure in combination
with a local regular grid representation. Each node of
the octree is associated with a brick, a regular 32 voxel
grid, which represents a filtered version of the volume
enclosed by its child nodes. The bricks are stored in
a brick pool of a fixed size. Bricks are referenced by
pointers stored in the nodes of the octree (see Fig. 4).
The octree nodes themselves are stored in a pool as well
(node pool). During the visualization brick and node
data is loaded on demand and the pools are managed by
updating least recently used data.

Figure 3: Voxel volume (left), shell-like boundary vox-
els (middle), culling invisible voxels (right).

node pool

brick pool T:I '-17;—'

Figure 4: Sketch of the GigaVoxel data structure [7].

Laine and Karras [25] store an octree data structure in
a single pool. The data is divided into blocks which
represent contiguous areas of memory allowing local
addressing and taking advantage of fast memory ac-
cess operations on the GPU (caching). The data struc-
ture is designed to compactly store mesh-based scenes
but their open-source implementation could probably
be adapted to represent cloud volumes.

Miller et al. [28] use a grid representation on the coarse
scale and nest octrees within those cells. This provides
fast grid marching on a large scale, and adaptive sam-
pling on the small scale. A fixed data structure, resem-
bling 4-level octrees, allows to directly access the oc-
tree’s nodes without requiring pointers. However, their
current implementation assumes that the whole scene
fits into the memory of the graphics device, which lim-
its the model size. A streaming-based data structure for
dynamic volumes was announced as future work.

The real-time voxelization of scene geometry, as pro-
posed by Forester et al. [12], allows to transform raster-
izable geometry to an octree representation on-the-fly
on the GPU, and thus to apply voxel-based lighting and
rendering to a surface-based geometry.

Octrees are a flexible data structure, generally capable
of representing all types of clouds and supporting effi-
cient lighting and rendering techniques. However, since
octrees usually take advantage of axis-aligned grids,
they are not directly applicable in an efficient way to
large-scale cloud scenes, but would have to be nested in
the spherical shell or used with a ray caster that takes
into account the curvature of the Earth.

2.1.2 Binary Space Partitioning (BSP)

BSP, e.g., in form of kd-trees, recursively subdivides
the space into half-spaces, concentrating at regions with
high geometric detail and removing empty space. BSP
could be used for cloud volume representation as well.

2.1.3 Bounding Volume Hierarchies (BVH)

BVH enclose scene geometry by bounding planes. Re-
cently, BVH were used for structuring particle systems
[14], which could also be employed for cloud volumes.

2.2 Implicit Representations

A common way to model and represent a cloud’s den-
sity field is the use of procedural methods. While the



[zd

SR

Figure 5: Perlin noise [31] and “fractal sum” [11] func-
tions (left). A hypertexture applied to a surface (right).

overall structure is usually specified by simple geomet-
ric primitives, like spheres or ellipsoids, the internal,
high-resolution structure is modeled by a function.

Perlin and Hoffert [31] introduce space-filling shapes,
based on procedural functions, so-called hypertextures.
Ebert et al. [11] propose many additional noise func-
tions (see Fig. 5, left), and create various natural pat-
terns applicable also for clouds.

The sampling of implicitly defined densities can be-
come expensive and harm rendering performance. Sch-
pok et al. [36] propose to evaluate the procedural func-
tions on-the-fly on the GPU during the rendering by us-
ing a fragment shader program and a 3D texture con-
taining Perlin noise.

Kniss et al. [22] use procedural functions for geomet-
ric distortion which adds a fractal appearance to regular
shapes by changing the vertex positions of the geometry
rendered. They apply this distortion during the render-
ing process by using vertex shader programs.

Bouthors et al. [4] use hypertextures in combination
with surface-bounding volumes for creating a fractal
boundary appearance; see Fig. 5, right.

Implicitly specifying a volume via procedural functions
is a compact volume representation. The computational
cost can be mitigated by employing parallel process-
ing on the GPU and taking advantage of hardware-
supported tri-linear interpolation of 3D textures. Pro-
cedural techniques are perfect for clouds with a frac-
tal boundary appearance. However, they only provide
the fine-scale volume structure while the overall cloud
shape has to be modeled by other techniques.

2.3 Particle Systems

The volume is represented by a set of particles with a
pre-defined volume. Usually spherical particles with a
radial density function are used.

Nishita et al. [30] promote the use of particles with
a Gaussian density distribution, so-called metaballs.
While the metaballs in [30] are used only to create a
volume density distribution, Dobashi et al. [10] directly
light and render the metaballs and visualize medium-
size cloud scenes of Cumulus-like clouds with a diffuse
boundary appearance.

Bouthors and Neyret [2] use particles to create a shell-
like volume representation for Cumulus-like clouds.

Their algorithm iteratively places particles at the in-
terface of a cloud volume, with smaller particles being
placed upon the interface of larger particles. This cre-
ates a hierarchy of particles with decreasing radius and
specifies the cloud’s surface, which can be transformed,
e.g., to a triangle mesh.

Efficient transformation algorithms were developed to
match the favored lighting and rendering approaches.
Cha et al. [6] transform the density distribution given
by a particle system to a regular grid by using the GPU,
while Zhou et al. [44] propose the inverse process trans-
forming a density field to radial basis function (RBF)
representation. This low-resolution particle system is
accompanied by a high-resolution grid, which stores
deviations of the particles’ density distribution from the
initial density field in a so-called residual field. Perfect
spatial hashing allows a compact storage of this field.

Particles systems are a compact volume representation
and directly support many cloud modeling techniques.
Spherical particles are well suited for Cumulus-like
clouds or dense cloud volumes, but less appropriate for
stratified cloud layers with a large horizontal extension
or for thin, fiber-like clouds.

2.4 Surface-Bounded Volumes

The cloud volume is represented by its enclosing hull,
usually given as a triangle mesh. Since no information
on the internal structure is available, usually a homoge-
neous volume is assumed.

Bouthors et al. [4] demonstrate the use of surface-
bounded volumes for visualizing single Cumulus
clouds. A triangle mesh is used in combination
with a hypertexture to add small-scale details at the
boundaries. A sophisticated lighting model reproduces
a realistic appearance (see Sec. 4.1.4).

Porumbescu et al. [32] propose shell maps to create a
volumetric texture space on a surface. A tetrahedral
mesh maps arbitrary volumetric textures to this shell.

Surface-bounded volumes are a very compact represen-
tation of cloud volumes, allowing for efficient rendering
and for incorporating sophisticated lighting techniques.
However, they are only applicable if a quick saturation
of a ray entering the volume may be assumed. While
this is valid for dense clouds it does not apply to thin
or layered clouds with their optically thin boundaries.
Also special rendering techniques have to be developed
for allowing perspectives from within the clouds.

2.5 Clouds as Layers

Clouds represented by a single layer, usually rendered
as a textured triangle mesh, allow fast rasterization-
based rendering and are the traditional technique to
present clouds, e.g., during weather presentations [24].



Bouthors et al. [3] visualize cloud layers viewed from
the ground or from above. They achieve a realistic
appearance of the cloud by applying a sophisticated,
viewpoint-dependent lighting model.

The 2D representation is especially predestined for thin
cloud sheets viewed from the ground, or for visualizing
the cloud tops viewed, e.g., from the perspective of a
satellite. However, this non-volumetric representation
limits the possible perspectives and generally does not
allow for animations, like transitions of the viewpoint
from space to the ground, or cloud fly-throughs.

3 CLOUD RENDERING TECHNIQUES

3.1 Rasterization-based Rendering
3.1.1

Volume slicing is a straightforward method for render-
ing regular grids. The slices are usually axis aligned
and rendered in front-to-back order (or vice-versa), ap-
plying viewing transformations and blending. While
volume slicing is not necessarily a rasterization-based
method, most algorithms exploit the highly optimized
texturing capabilities of the graphics hardware.

Volume Slicing

Schpok et al. [36] use volume slicing for cloud render-
ing and propose the use of the GPU also for adding de-
tailed cloud geometry on-the-fly by using a fragment
shader program. This reduces the amount of data which
has to be transferred onto the GPU to a low-resolution
version of the cloud volume. Harris et al. [15] create
the density volume by a CFD simulation on the GPU
for creating a 3D density and light texture which can
efficiently be rendered on the GPU. Sparing the trans-
fer of the volumetric data from the CPU, they achieve
interactive frame rates for small volumes (up to 64%),
creating soft, diffuse clouds. Hegeman et al. [17] also
use 3D textures to capture the volume density and the
pre-calculated source radiance, and evaluate a lighting
model in a CG shader program during rendering.

Zhou et al. [44] visualize smoke represented by a
low-resolution particle system accompanied by a
high-resolution density grid, stored in compressed
form (see Sec. 2.3). During the rendering process the
lighted particles are first rasterized and converted to a
3D texture by applying parallel projection rendering
along the z-axis to fill slices of the 3D texture. Thereby,
for each slice, all particles are traversed and, in case
of intersection with the slicing plane, rendered as
textured quads. During this pass also the residual
field is evaluated and stored in a separate 3D texture.
In a second step perspective rendering is applied by
slicing in back-to-front manner. Again, for each slice
all particles are traversed and bounding quads are
rendered triggering a fragment shader which composes
the light and density information from the 3D textures.
They achieve interactive frame rates under dynamic

Figure 6: Volume rendering by half-angle slicing.

lighting conditions for moderate volume sizes which
completely fit into the GPU’s memory (1283 in their
examples), based on 0.5 to 1.5 hours of pre-processing
time.

Half-Angle Slicing: Slicing the volume at planes ori-
ented halfway between the lighting and viewing direc-
tion (or its inverse, see Fig. 6) is called half-angle slic-
ing. It allows to combine the lighting and rendering of
the volume in a single process by iterating once over
all slices. During this single-volume pass two buffers
are maintained and iteratively updated: one for accumu-
lating the attenuation of radiance in the light direction,
and one for accumulating the radiance for the observer
(usually in the frame buffer). Due to the single pass
through the volume, the lighting scheme is limited to
either forward or backward scattering.

Kniss et al. [22] use half-angle slicing in combination
with geometric distortion, modifying the geometry of
shapes on-the-fly during rendering (see Sec. 2.2) by us-
ing vertex shader programs. Riley et al. [35] visualize
thunderstorm clouds, taking into account different scat-
tering properties of the volume.

For avoiding slice-like artifacts volume slicing tech-
niques have to employ small slicing intervals, resulting
in a large number of slices which can harm rendering
performance and introduce numerical problems. Inho-
mogeneous volumes, like in Figs. 1.2 or 1.14, would
also require a huge number of slices for appropriately
capturing the volume’s geometry and avoiding artifacts
in animations with a moving viewpoint. Slicing-based
methods therefore seem to favor volumes with soft or
diffuse boundaries and, thus, are applicable to clouds
with sharp boundaries only to a limited extent.

3.1.2 Splatting

Splatting became the common method for rendering
particle systems. Particles, which are usually specified
as independent of rotation, can be rendered by using a
textured quad representing the projection of the particle
onto a plane, also called splat or footprint. The particles
are rendered in back-to-front order, applying blending
for semi-transparent volumes.

Dobashi et al. [10] use metaballs for splatting cloud
volumes. Harris et al. [16] accelerate this approach
by re-using impostors, representing projections of a
set of particles, for several frames during fly-throughs.
The use of different particle textures can enhance the
clouds’ appearance [42, 18].



Since usually a single color (or luminance) is assigned
to each particle and the particles do not represent a dis-
tinct geometry, but a spherical, diffuse volume (due to
the lack of self-shadowing within a particle), the splat-
ting approach is limited to visualizing clouds with a
soft, diffuse appearance. Clouds with a distinct surface
geometry, like Cumulus clouds, cannot be reproduced
realistically.

3.1.3 Surface-Based Volume Rendering

Nowadays, rendering clouds as textured ellipsoids is
no more regarded as realistic. The same applies to the
surface-bounded clouds of [41]. A triangle mesh is cre-
ated by surface subdivision of an initial mesh, created
by a marching cubes algorithm applied on weather fore-
cast data. The rendering of the semi-transparent mesh,
however, is prone to artifacts on the silhouette.

Bouthors et al. [4] resurrected surface-based cloud ren-
dering by using fragment shader programs which cal-
culate the color for each fragment of a triangle mesh
at pixel-basis. This allows to apply a sophisticated
volume lighting scheme and the sampling of a hyper-
texture superposed onto the surface on-the-fly for each
pixel. They achieve a realistic, real-time visualization
of dense clouds with fractal and sharp boundaries.

3.2 Ray Casting-Based Rendering
3.2.1 Ray Marching

Ray marching casts rays into the scene and accumulates
the volume densities at certain intervals. For rendering
participating media volumes, like clouds, the illumina-
tion values of the volume have to be evaluated, either
by applying a volume lighting model on-the-fly or by
retrieving the illumination from a pre-computed light-
ing data structure.

Grids: Chaetal. [6] transform a particle-based volume
representation to a regular density grid for applying ray
marching. The volume density is sampled within a 3D
texture, combined with the illumination, stored in a sep-
arate 3D texture, and accumulated along the viewing
rays. Geometric detail is added to the low-resolution
volume representation on-the-fly by slightly distorting
the sampling points of the ray march according to a pre-
computed 3D procedural noise texture. For volumes fit-
ting into the memory of the GPU (around 256° in their
examples), they achieve rendering times of a few sec-
onds (including the lighting calculation).

BVHs: A particle system stored within a kd-tree
structure is proposed by Gourmel et al. [14] for fast ray
tracing. The technique could be used for cloud render-
ing, e.g., by ray marching through the particle volumes
and adding procedural noise as proposed in [4] or [6].

Octrees:  The huge amount of data caused by volu-
metric representations can be substantially reduced by
using ray-guided streaming [7, 13, 25]. The GigaVoxel
algorithm [7] is based on an octree with associated
bricks (Sec. 2.1.1) which are maintained in a pool and
streamed on demand. The bricks at different levels of
the octree represent a multi-resolution volume, similar
to a mip-map texture. Sampling densities at different
mip-map resolutions simulates cone tracing (see Fig. 4,
right). The octree is searched in a stack-less manner,
always starting the search for a sampling position at the
root node. This supports the cone-based sampling of
the volume since the brick values at all levels can be
collected during the descent. The implementation em-
ploys shader programs on the GPU, and achieves 20-90
fps, with volumetric resolutions up to 160k.

4 LIGHTING TECHNIQUES
4.1 Participating Media Lighting

We review recent volume lighting approaches and refer
to [5] for a survey of traditional, mainly off-line lighting
models.

4.1.1 Single-Scattering Approximation

Slice-Based: Schpok et al. [36] use volume slicing
for creating a low-resolution volume storing the source
radiances. This so-called light volume is oriented such
that light travels along one of the axes, which allows
a straightforward light propagation from slice to slice.
The light volume storing the source radiance is calcu-
lated on the CPU and transferred to a 3D texture on the
GPU for rendering.

In the half-angle slicing approach by Khniss et
al. [22, 23] the light is propagated from slice to slice
through the volume by employing the GPU’s texturing
and blending functionalities. A coarser resolution can
be used for the 2D light buffer (Fig. 6), thus saving
resources and accelerating the lighting process.

Particle-Based: Dobashi et al. [10] use shadow cast-
ing as a single-scattering method for lighting a particle
system. The scene is rendered from the perspective of
the light source, using the frame buffer of the GPU as
a shadow map. The particles are sorted and processed
in front-to-back manner relative to the light source. For
each particle the shadow value is read back from the
frame buffer before proceeding to the next particle and
splatting its shadow footprint. This read-back operation
forms the bottleneck of the approach which limits either
the model size or the degree of volumetric detail. Har-
ris and Lastra [16] extend this approach by simulating
multiple forward scattering and propose several lighting
passes for accumulating light contributions from differ-
ent directions including skylight.

Bernabei et al. [1] evaluate for each particle the opti-
cal depth towards the boundary of the volume for a set



of directions and store it in a spherical harmonic repre-
sentation. Each particle therefore provides an approx-
imate optical depth of the volume for all directions,
including the viewing and lighting directions (Fig. 8§,
left). The rendering process reduces to accumulating
the light contributions of all particles intersecting the
viewing ray, thus sparing a sorting of the particles, and
provides interactive frame rates for static volumes. For
the source radiance evaluation a ray marching on an in-
termediate voxel-based volume is used in an expensive
pre-process. Zhou et al. [44] accomplish this in real-
time by employing spherical harmonic exponentiation;
see Sec. 4.1.6.

4.1.2 Diffusion

Light distribution as a diffusion process is a valid ap-
proximation in optically thick media, but not in inho-
mogeneous media or on its boundary. Therefore Max et
al. [27] combine the diffusion with anisotropic scatter-
ing and account for cloudless space to reproduce, e.g.,
silver-lining. However, the computational cost is still
high and causes rendering times of several hours.

4.1.3 Path Tracing

Path tracing (PT) applies a Monte Carlo approach to
solve the rendering equation. Hundreds or even thou-
sands of rays are shot into the scene for each pixel and
traced until they reach a light source. PT produces un-
biased, physically correct results but generally suffers
from noise and low convergence rates. Only recent
acceleration techniques allow an efficient rendering of
large scenes, at least for static volumes.

In [39, 43], the volume sampling process of PT is accel-
erated by estimating the free path length of a medium
in advance and by using this information for a sparse
sampling of the volume (“woodcock tracking”). While
Yue et al. [43] use a kd-tree for partitioning the volume,
Szirmay-Kalos et al. [39] use a regular grid.

4.1.4  Path Integration

Path integration (PI) is based on the idea of following
the path with the highest energy contribution and esti-
mates the spatial and angular spreading of light along
this so-called most probable path (MPP). PI favors
high-order scattering with small scattering angles, and
tends to underestimate short paths, diffusive paths and
backward scattering.

The initial calculation model of Premoze et al. [33] is
based on deriving a point spread function which de-
scribes the blurring of incident radiance. Hegeman et
al. [17] proposed the evaluation of this lighting model
using a shader program executed on the GPU. They
visualize dynamic smoke (at resolutions up to 1283)
within a surface-based scene at interactive frame rates.

Bouthors et al. [4] use PI in combination with pre-
computed tables which are independent of the cloud
volume. In an exhaustive pre-computation process the
impulse response along the MPP at certain points in
a slab is calculated and stored as spherical harmon-
ics (SH) coefficients (Fig. 7, left). During the ren-
dering process the slabs are adjusted to the cloud vol-
ume (Fig. 7, right), and used for looking up the pre-
computed light attenuation values. Multiplying it with
the incident radiance at the cloud surface around the so-
called collector area yields the resulting illumination.
The model is implemented as a shader program which
evaluates the lighting model pixel-wise in real-time.

4.1.5 Photon Mapping

Photon mapping (PM) traces photons based on Monte
Carlo methods through a scene or volume and stores
them in a spatial data structure that allows a fast nearest-
neighborhood evaluation (usually a kd-tree). However,
when applied to volumes the computational and mem-
ory costs are significant.

Cha et al. [6] combine photon tracing with irradiance
caching, accumulating the in-scattered radiances at
voxels of a regular grid. The gathering process reduces
to a simple ray marching in the light volume executed
on the GPU. This provides rendering times of a few
seconds for medium-size volumes.

Progressive photon mapping as proposed by Knaus
and Zwicker [21] improves traditional static photon
mapping (PM) by reducing the memory cost and can
also be applied to participating media. Photons are ran-
domly traced through the scene, but instead of storing
them in a photon map, they are discarded and the ra-
diances left by the photons are accumulated in image
space. Jarosz et al. [20] combine progressive PM with
an improved sampling method of photon beams.

4.1.6 Mixed Lighting Models

Lighting techniques can be combined by evaluating dif-
ferent components of the resulting light separately.

Particle-Based: Zhou et al. [44] evaluate the source
radiances at the particles’ centers by accumulating the
light attenuation of all particles onto each particle.
Thereto a convolution of the background illumination
function with the light attenuation function of the
particles (spherical occluders) is applied (Fig. 8,

*
* Fo X

Figure 7: Pre-computed light in a slab (left), fitting
slabs to a cloud surface (right).



Figure 8: Pre-computed optical density at a particle
center (left). Convolution of background illumination
with the light attenuation by spherical occluders (right).

right). The functions are represented by low-order
spherical harmonics (SH) and the convolution is done
in logarithmic space where the accumulation reduces
to summing SH coefficients; a technique called SH
exponentiation (SHEXP), introduced by Ren et al. [34]
for a shadow calculation. For multiple scattering an
iterative diffusion equation solver is used on the basis
of the source radiance distribution. This includes
solving linear systems of dimension n, with n being
the number of particles. The approximation of the
smoke density field by a small number of particles
(around 600 in their examples) allows interactive frame
rates under dynamic lighting conditions. However,
the super-quadratic complexity in terms of the particle
number prohibits the application to large volumes.

Surface-Based: Bouthors et al. [3] separately cal-
culate the single and multiple-scattering components
of light at the surface of a cloud layer. The single-
scattering model reproduces silver lining at the silhou-
ettes of clouds and back-scattering effects (glories and
fog-bows). Multiple-scattering is evaluated by using a
BRDF function, pre-calculated by means of path trac-
ing. Inter-reflection of the cloud layer with the ground
and sky is taken into account by a radiosity model. They
achieve real-time rendering rates by executing the light-
ing model on the GPU as a shader program.

4.1.7 Heuristic Lighting Models

Neyret [29] avoids costly physical simulations when
a-priori knowledge can be used to simulate well-
known lighting effects. He presents a surface-based
shading model for Cumulus clouds that simulates
inter-reflection in concave regions (light traps) and the
corona at the silhouette.

Wang [42] does not employ a lighting model at all, but
lets an artist associate the cloud’s color to its height.

4.1.8 Acceleration Techniques

Pre-Computed Radiance Transfer:  The lighting
distribution for static volumes under changing lighting
conditions can be accelerated by pre-computing the ra-
diance transfer through the model.

Lensch et al. [26] pre-compute the impulse response to
incoming light for a mesh-based model. Local lighting
effects are simulated by a filter function applied to a

light texture. Looking up the pre-computed vertex-to-
vertex throughput yields global lighting effects.

Sloan et al. [38] use SH as emitters, simulate their dis-
tribution inside the volume and store them as transfer
vectors for each voxel. The volume can be rendered ef-
ficiently in combination with a shader-based local light-
ing model under changing light conditions.

Radiance Caching: Jarosz et al. [19] use radiance
caching to speed up ray marching rendering process.
Radiance values and radiance gradients are stored as SH
coefficients within the volume and re-used.

4.2 Global Illumination

Inter-cloud shadowing and indirect illumination cannot
be efficiently simulated by participating media lighting
models. These effects require global illumination tech-
niques, usually applied in surface-based scenes.

4.2.1 Shadows

Sphere-based scene representations allow a fast shadow
calculation, either, e.g., by using SH for representing
the distribution of blocking geometries [34] (Fig. 8,
right), or by accumulating shadows in image space [37].
The CUDA implementation of the GigaVoxel algorithm
[8] allows to render semi-transparent voxels and to cast
shadow rays. Employing the inherent cone tracing ca-
pability produces soft shadows.

4.2.2 Indirect [llumination

Voxel cone tracing applied to a sparse octree on the
GPU is used by Crassin et al. [9] for estimating indi-
rect illumination. The illumination at a surface point is
evaluated by sampling the neighborhood along a small
number of directions along cones.

A fast ray-voxel intersection test for an octree-based
scene representation is used in Thiedemann et al. [40]
for estimating near-field global illumination.

S SUMMARY AND OUTLOOK

In the following table we summarize efficient lighting
and rendering techniques for clouds with different types
of volume (rows) and boundary appearances (columns).

diffuse fractal sharp
dense | [6,7, 10, 15] [4,7,11] [4, 42]
[16, 35, 44] [17,22]
thin [22, 36,44] | [11,17,36] | do not exist
layer [3]

The approaches surveyed represent a set of impres-
sive but specialized solutions that employ fairly diverse
techniques. However, all known approaches cover only
some of the phenomena found in nature (see Sec. 1.1).
Extensive memory usage or the algorithm’s complexity
often limit the size of a cloud volume. Thus, the realis-
tic visualization of real-world cloud scenes still is and
will remain widely open for future research for years to
come.



Major future challenges to be tackled include the
efficient handling of

e heterogeneous cloud scene rendering, i.e., the simul-
taneous visualization of different cloud types, each
favoring a specific cloud representation, lighting and
rendering technique;

e large-scale cloud scenes, e.g., clouds over Europe;

e cloud-to-cloud shadows and cloud inter-reflection,
i.e., the combination of global illumination tech-
niques with participating media rendering;

e the inclusion of atmospheric scattering models for
lighting clouds;

e cloud rendering at different scales, i.e., views of
clouds from close and far, and seamless transitions
in between, requiring continuous LOD techniques;

e temporal cloud animations implying dynamic vol-
umes and employing cloud simulation models.

ACKNOWLEDGEMENTS
Work supported by Austrian FFG Grant #830029.

6 REFERENCES

[1] D. Bernabei, F. Ganovelli, N. Pietroni, P. Cignoni,
S. Pattanaik, and R. Scopigno. Real-time single scat-
tering inside inhomogeneous materials. The Visual
Computer, 26(6-8):583-593, 2010.

[2] A. Bouthors and F. Neyret. Modeling clouds shape. In
Eurographics, Short Presentations, 2004.

[3] A. Bouthors, F. Neyret, and S. Lefebvre. Real-time re-
alistic illumination and shading of stratiform clouds. In
EG Workshop on Natural Phenomena, Vienna, Austria,
2006. Eurographics.

[4] A. Bouthors, F. Neyret, N. Max, E. Bruneton, and
C. Crassin. Interactive multiple anisotropic scatter-
ing in clouds. In Proc. ACM Symp. on Interactive 3D
Graph. and Games, 2008.

[5] E. Cerezo, F. Perez-Cazorla, X. Pueyo, F. Seron, and
F. X. Sillion. A survey on participating media rendering
techniques. The Visual Computer, 2005.

[6] D. Cha, S. Son, and I. ]hm. GPU-assisted high quality
particle rendering. Comp. Graph. Forum, 28(4):1247—
1255, 2009.

[7]1 C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann.
GigaVoxels: Ray-guided streaming for efficient and de-
tailed voxel rendering. In Proc. ACM SIGGRAPH Symp.
on Interactive 3D Graph. and Games (13D), Boston,
MA, Etats-Unis, February 2009. ACM, ACM Press.

[8] C. Crassin, F. Neyret, M. Sainz, and E. Eisemann. GPU
Pro, chapter X.3: Efficient Rendering of Highly De-
tailed Volumetric Scenes with GigaVoxels, pages 643—
676. AK Peters, 2010.

[9] C. Crassin, F. Neyret, M. Sainz, S. Green, and E. Eise-
mann. Interactive indirect illumination using voxel cone
tracing. Comp. Graph. Forum (Proc. Pacific Graph.
2011),30(7), 2011.

[10]

(11]

[12]

[13]

[14]

[15]

(16]

(7]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and
T. Nishita. A simple, efficient method for realistic ani-
mation of clouds. In Comp. Graphics (SIGGRAPH 00
Proc.), pages 19-28, 2000.

D. S. Ebert, F. Musgrave, P. Peachey, K. Perlin, and
S. Worley. Texturing & Modeling: A Procedural Ap-
proach. Morgan Kaufmann, 3rd edition, 2003.

V. Forest, L. Barthe, and M. Paulin. Real-time hierar-
chical binary-scene voxelization. Journal of Graphics,
GPU, & Game Tools, 14(3):21-34, 2009.

E. Gobbetti, F. Marton, and J. A. Iglesias Guitidn. A
single-pass GPU ray casting framework for interactive
out-of-core rendering of massive volumetric datasets.
The Visual Computer, 24(7-9):797-806, 2008. Proc.
CGI 2008.

O. Gourmel, A. Pajot, M. Paulin, L. Barthe, and
P. Poulin. Fitted BVH for fast raytracing of metaballs.
Comp. Graph. Forum, 29(2):281-288, May 2010.

M. J. Harris, W. V. Baxter, Th. Scheuermann, and
A. Lastra. Simulation of cloud dynamics on graph-
ics hardware. In Proc. SIGGRAPH/Eurographics '03
Conference on Graph. Hardware, pages 92—-101. Euro-
graphics Association, 2003.

M. J. Harris and A. Lastra. Real-time cloud rendering.
Comput. Graph. Forum (Proc. IEEE Eurographics *01),
20(3):76-84, 2001.

K. Hegeman, M. Ashikhmin, and S. PremoZe. A light-
ing model for general participating media. In Proc.
Symp. on Interactive 3D Graph. and Games (I3D ’05),
pages 117-124, New York, NY, USA, 2005. ACM.

R. Hufnagel, M. Held, and F. Schroder. Large-scale,
realistic cloud visualization based on weather forecast
data. In Proc. IASTED Int. Conf. Comput. Graph. and
Imaging (CGIM’07), pages 54-59, February 2007.

W. Jarosz, C. Donner, M. Zwicker, and H. W. Jensen.
Radiance caching for participating media. ACM Trans.
Graph., 27(1):1-11, 2008.

W. Jarosz, D. Nowrouzezahrai, R. Thomas, P. P. Sloan,
and M. Zwicker. Progressive photon beams. ACM
Trans. Graph. (SIGGRAPH Asia 2011), 30(6):181:1—
181:12, December 2011.

C. Knaus and M. Zwicker. Progressive photon map-
ping: A probabilistic approach. ACM Trans. Graph.,
30(3):25:1-25:13, May 2011.

J. M. Kniss, S. Premoze, Ch. D. Hansen, and D. S.

Ebert. Interactive translucent volume rendering and

procedural modeling. In Proc. IEEE Visualization 02,
pages 109-116. IEEE Comput. Society Press, 2002.

J. M. Kniss, S. PremoZe, Ch. D. Hansen, P. Shirley, and
A. McPherson. A model for volume lighting and mod-
eling. IEEE Trans. Visualiz. Comput. Graph., 9(2):150-
162, 2003.

H.-J. Koppert, F. Schroder, E. Hergenrother, M. Lux,
and A. Trembilski. 3d visualization in daily operation
at the dwd. In Proc. ECMWF Worksh. on Meteorolog.
Operat. Syst., 1998.

S. Laine and T. Karras. Efficient sparse voxel octrees.



[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

In Proc. ACM SIGGRAPH Symp.on Interactive 3D
Graph.and Games (13D ’10), pages 55-63, New York,
NY, USA, 2010. ACM.

H. P. A. Lensch, M. Goesele, Ph. Bekaert, J. Kautz,
M. A. Magnor, J. Lang, and H.-P. Seidel. Interactive
rendering of translucent objects. In Proc. Pacific Conf.
on Comp. Graph. and Appl. (PG ’02), pages 214—. IEEE
Computer Society, 2002.

N. Max, G. Schussman, R. Miyazaki, and K. Iwasaki.
Diffusion and multiple anisotropic scattering for global
illumination in clouds. Journal of WSCG 2004,
12(2):pp. 277, 2004.

A. Miller, V. Jain, and J. L. Mundy. Real-time rendering
and dynamic updating of 3-d volumetric data. In Proc.
Worksh. on General Purpose Process. on Graph. Pro-
cess. Units (GPGPU-4), pages 8:1-8:8, New York, NY,
USA, 2011. ACM.

F. Neyret. A phenomenological shader for the rendering
of cumulus clouds. Technical Report RR-3947, INRIA,
May 2000.

T. Nishita, Y. Dobashi, and E. Nakamae. Display of
clouds taking into account multiple anisotropic scatter-
ing and skylight. Comput. Graphics (SIGGRAPH 96
Proc.), pages 379-386, 1996.

K. Perlin and E. M. Hoffert. Hypertexture. In Comp.
Graph. (SIGGRAPH 89 Proc.), volume 23 (3), pages
253-262, July 1989.

S. D. Porumbescu, B. Budge, L. Feng, and K. I. Joy.
Shell maps. ACM Trans. Graph., 24:626-633, July
2005.

S. Premoze, M. Ashikhmin, R. Ramamoorthi, and
Sh. K. Nayar. Practical rendering of multiple scattering
effects in participating media. In Proc. Eurographics
Worksh. on Render. Tech., pages 363-373. Eurographics
Association, June 2004.

Z. Ren, R. Wang, J. Snyder, K. Zhou, X. Liu, B. Sun,

P. P. Sloan, H. Bao, Q. Peng, and B. Guo. Real-time soft
shadows in dynamic scenes using spherical harmonic

exponentiation. In ACM Trans. Graph. (SIGGRAPH

’06 Proc.), pages 977-986, 2006.

K. Riley, D. S. Ebert, Ch. D. Hansen, and J. Levit. Visu-
ally accurate multi-field weather visualization. In Proc.
IEEE Visualization (VIS’03), pages 37—, Washington,
DC, USA, 2003. IEEE Computer Society.

J. Schpok, J. Simons, D. S. Ebert, and Ch. D. Hansen.
A real-time cloud modeling, rendering, and animation
system. In Proc. SIGGRAPH/Eurographics '03 Symp.
Computer Anim., pages 160-166. Eurographics Associ-
ation, July 2003.

P. P. Sloan, N. K. Govindaraju, D. Nowrouzezahrai, and
J. Snyder. Image-based proxy accumulation for real-
time soft global illumination. In Proc. Pacific Conf. on
Comp. Graph. and Appl., pages 97-105, Washington,
DC, USA, 2007. IEEE Computer Society.

P. P. Sloan, J. Kautz, and J. Snyder. Precomputed radi-
ance transfer for real-time rendering in dynamic, low-
frequency lighting environments. In ACM Trans. Graph.

(39]

[40]

(41]

[42]

[43]

[44]

(SIGGRAPH °02 Proc.), pages 527-536, July 2002.

L. Szirmay-Kalos, B. T6th, and M Magdics. Free path
sampling in high resolution inhomogeneous participat-
ing media. Comp. Graph. Forum, 30(1):85-97, 2011.

S. Thiedemann, N. Henrich, Th. Grosch, and St.
Mueller. Voxel-based global illumination. In ACM
Symp. on Interactive 3D Graph. and Games (I13D),
2011.

A. Trembilski and A. BroBler. Surface-based efficient
cloud visualisation for animation applications. Journal
of WSCG, 10(1-3), 2002.

N. Wang. Realistic and fast cloud rendering in com-

puter games. In SIGGRAPH '03: ACM SIGGRAPH

2003 Sketches & Applications, pages 1-1, New York,

NY, USA, 2003. ACM.

Y. Yue, K. Iwasaki, B. Y. Chen, Y. Dobashi, and
T. Nishita. Unbiased, adaptive stochastic sampling for
rendering inhomogeneous participating media. ACM
Trans. Graph. (SIGGRAPH Asia 2010), 29:177:1-
177:8, December 2010.

K. Zhou, Z. Ren, St. Lin, H. Bao, B. Guo, and H. Y.
Shum. Real-time smoke rendering using compensated
ray marching. ACM Trans. Graph., 27(3):36:1-36:12,
August 2008.



