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Abstract

Elastically deformable models have found applications in various areas ranging from mechanical sciences and engineering to
computer graphics. The method of Finite Elements has been the tool of choice for solving the underlying PDE, when accuracy
and stability of the computations are more important than, e.g., computation time. In this paper we show that the computations
involved can be performed very efficiently on modern programmable GPUs, regarded as massively parallel co-processors
through Nvidia’s CUDA compute paradigm. The resulting global linear system is solved using a highly optimized Conjugate
Gradient method. Since the structure of the global sparse matrix does not change during the simulation, its values are updated
at each step using the efficient update method proposed in this paper. This allows our fully-fledged FEM-based simulator for
elastically deformable models to run at interactive rates. Due to the efficient sparse-matrix update and Conjugate Gradient
method, we show that its performance is on par with other state-of-the-art methods, based on e.g. multigrid methods.

Keywords: Elastically deformable models, Finite Elements, sparse-matrix update, GPU.

1 INTRODUCTION

Mathematical and physical modeling of elastically de-
formable models has been investigated for many years,
especially within the fields of material and mechanical
sciences, and engineering. In recent years, physically-
based modeling has also emerged as an important ap-
proach to computer animation and graphics modeling.
As nowadays graphics applications demand a growing
degree of realism, this poses a number of challenges for
the underlying real-time modeling and simulation al-
gorithms. Whereas in engineering applications model-
ing of deformable objects should be as accurate as pos-
sible compared to their physical counterparts, in graph-
ics applications computational efficiency and stability
of the simulation have most often the highest priority.

The Finite Element Method (FEM) constitutes
one of the most popular approaches in engineering
applications which need to solve Partial Differential
Equations (PDEs) at high accuracies on irregular
grids [PH05]. Accordingly, the (elastically) deform-
able object is viewed as a continuous connected
volume, and the laws of continuum mechanics provide
the governing PDE, which is solved using FEM.
Other popular methods are the Finite Difference
Method (FDM) [TPBF87], the Finite Volume Method
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(FVM) [TBHF03] and the Boundary Element Method
(BEM) [JP99] (see [NMK∗06, GM97]). FDM is the
easiest to implement, but as it needs regular spatial
grids, it is difficult to approximate the boundary of an
arbitrary object by a regular mesh. FVM [TBHF03]
relies on a geometrical framework, making it more in-
tuitive than FEM. However, it uses heuristics to define
the strain tensor and to calculate the force emerging
at each node. BEM performs the computations on
the surface of the model, thus achieving substantial
speedups as the size of the problem is proportional
to the area of the model’s boundary as opposed to its
volume. However, this approach only works for objects
whose interior is made of homogeneous material.
Furthermore, topological changes are more difficult to
handle than in FEM methods [NMK∗06].

In this paper we present a fully-fledged FEM-based
simulator for elastically-deformable models, running
solely on GPU hardware. We show that the involved
computations can be performed efficiently on mod-
ern programmable GPUs, regarded as massively par-
allel co-processors through Nvidia’s CUDA compute
paradigm. Our approach relies on the fast GPU Conjug-
ate Gradient (CG) method of [VJ12] to solve the result-
ing linear system. Since the topology of the deformed
mesh does not change during the simulation, the struc-
ture of the sparse-matrix describing the linear system is
reused throughout the simulation. However, during the
simulation, the matrix values have to be updated effi-
ciently. To achieve this, we propose a method that up-
dates the sparse-matrix entries respecting the ordering
of the data, as required by the CG method of [VJ12],
see Sect. 5.4. Thanks to the optimized CG method and
the efficient sparse-matrix update procedure, we ob-



Figure 1: Effect of external (stretching) forces on an ’elastic’ dragon.

tain results similar to state-of-the-art multigrid meth-
ods [DGW11].

The paper is organized as follows. Sections 3 and 4
describe the involved discretizations using FEM. Next,
Section 5 presents the non-trivial parts of our GPU
mapping, i.e., computing the local matrices, updating
the global sparse matrix and solving the linear system.
Finally, in Section 6 results are presented and analyzed.

2 PREVIOUS AND RELATED WORK

Bolz et al. [BFGS03], and Krüger and Wester-
mann [KW03] were among the first to implement CG
solvers on graphics hardware, using GPU program-
ming based on (fragment) shaders. These authors
had to deal with important limitations, e.g., the lack
of scatter operations, limited floating-point precision
and slow texture switching based on pixel buffers, as
exposed by the ‘rendering-based’ GPU-programming
paradigm. One of the first GPU implementations of
FEM is due to Rumpf and Strzodka [RS01], in the
context of solving linear and anisotropic diffusion
equations. Related work on GPU-accelerated FEM
simulations also include the papers by Göddeke and
collaborators [GST05, GST07, GSMY∗07]. However,
the emphasis is on improving the accuracy of scientific

FEM-based simulations. Prior related work with
respect to elastically deformable models, discretized
using FEM, can be found in [HS04, MG04, ITF06].
They proposed methods which compensate for the
rotation of the elements. Liu et al. [LJWD08] also
present a FEM-based GPU implementation. Their
results show that the involved CG method dominates
the total computation time.

Since FEM often involves a CG solver, consid-
erable research was done on efficiently mapping
the CG method and Sparse Matrix-Vector Multi-
plications (SPMV) on modern GPUs using CUDA,
see [BG08, BCL07, VJ12] and the references therein.
Other approaches for solving the resulting PDE use
multigrid methods, see e.g. [GW06]. An efficient GPU
implementation of a multigrid method, used for de-
formable models, was recently presented in [DGW11].
Although multigrid methods typically converge faster
than CG methods, implementing them efficiently on a
GPU is a much more elaborate process. For example,
invoking an iterative solver such as CG, constitutes

only one of the steps of a multigrid method, the others
being smoothing, interpolation and restriction.

3 ELASTICITY THROUGH THE

METHOD OF FINITE ELEMENTS

As common in computer graphics applications
(see [MG04] and the references therein), we employ
a linearized model based on linear elasticity the-
ory [PH05]. Further, to solve the underlying PDE
we use the Method of Finite Elements with linear

tetrahedral elements.

3.1 Continuum elasticity

In continuum elasticity, the deformation of a body, i.e.,
a continuous connected subset M of R

3, is given by
the displacement vector field uuu(xxx)= [u(xxx),v(xxx),w(xxx)]T ,
where xxx = [x,y,z]T is some point of the body at rest.
Thus, every point xxx of the undeformed body corres-
ponds to a point xxx+uuu(xxx) of the deformed one.

The equilibrium equation of the deformation is usu-
ally written in terms of the stress tensor, σσσ . However,
since it cannot be measured directly, one uses Cauchy’s
linear strain tensor, εεε , and some material parameters
to approximate the stress inside the body. Similar to
Hooke’s law for a 1D spring, in 3D one has

σσσ = DDD · εεε , (1)

for each point of the body, where DDD ∈ R
6×6 is the so-

called material stiffness matrix representing material
parameters. The elastic force fff e acting at a point of
the body is given by

fff e = KKK ·uuu =
(

PPPT DDDPPP
)

·uuu, (2)

with KKK ∈R
3×3, fff e and uuu∈R

3×1. KKK represents the local
stiffness matrix and PPP ∈ R

6×3 is a matrix of partial de-
rivative operators.

3.2 System dynamics

Having defined the elastical forces acting in a body, we
now derive the equations of motion required to simulate
the dynamic behaviour of the object. The coordinate
vectors xxx are now functions of time, i.e. xxx(t), such that
the equation of motion becomes

mẍxx+ cẋxx+ fff e = FFFext , (3)



where m is the mass of a body particle at position xxx,
c the damping coefficient, fff e the elastic force and FFFext

the vector of external forces, i.e., the gravitational force.
We approximate Eq. (3) using a semi-implicit method,
i.e.,

m

(

vvvi+1
− vvvi

)

∆t
+ cvvvi+1 +KKK ·uuui+i = FFF i

ext . (4)

xxxi+1 = xxxi +∆t vvvi+1, (5)

with uuui+1 = ∆tvvvi+1 + xxxi
− xxx0, which can be rearranged

as
(

m+∆tc+∆t2KKK
)

· vvvi+1 =

mvvvi
−∆t

(

KKK · xxxi
−KKK · xxx0

−FFF i
ext

)

. (6)

3.3 Discretization using FEM

Within FEM, the continuous displacement field uuu is
replaced by a discrete set of displacement vectors ũuu

defined only at the nodes of the elements. Within each
element e the displacement field is approximated by

uuu = ΦΦΦe · ũuu, (7)

where ΦΦΦe ∈ R
3×12 is the matrix containing the element

shape functions and ũuu = [u1,v1,w1, . . . ,u4,v4,w4]
T is

the vector of the nodal displacement approximations.
Next, Galerkin’s method of weighted residuals is ap-
plied over the whole volume V , in which the weighting

functions are equal to the shape functions. Each term
in Eq. (6) is weighted and approximated as in Eq. (7),
which results in

∫

V
ΦΦΦT

(

m+∆tc+∆t2KKK
)

ΦΦΦ · ṽvvi+1dV =
∫

V
mΦΦΦT ΦΦΦṽvvidV−

∆t

∫

V
ΦΦΦT

(

KKKΦΦΦ · x̃xxi
−KKKΦΦΦ · x̃xx0

−ΦΦΦ · F̃FF
i
ext

)

dV, (8)

with ΦΦΦT the weighting functions. The equation above
is defined for each individual element and generates
one matrix consisting of the local mass (MMMe), damp-
ing (CCCe) and element stiffness (KKKe) matrices. Addition-
ally, a local force matrix (FFFe) is generated, representing
the net external force applied to the object. These local
matrices are given by

MMMe = ρe

∫

V ΦΦΦT
e ΦΦΦe dV

CCCe = c
∫

V ΦΦΦT
e ΦΦΦe dV

KKKe =
∫

V ΦΦΦT PPPT DDDPPPΦΦΦdV

FFFe =
∫

V ΦΦΦT
e ΦΦΦe · F̃FFext dV,

(9)

with ρe the density of element e. See [PH05] for more
details on computing these matrices.

Finally, the global matrix KKK ∈ R
3n×3n (with n the

number of mesh vertices) is ‘assembled’ from indi-
vidual element matrices. This resulting system is then

solved using the Conjugate Gradient method for the
unknown velocity vvvi+1, which is then used to update
the positions of the nodes, see Eq. (5). Eq. (5) shows
a first order method for updating the positions which
can be replaced by higher order methods as described
in [ITF06].

Unfortunately, the above equations for simulating
elastic deformation only work fine as long as the model
does not undergo large rotations. This is because lin-
earized elastic forces are used, which are only ’valid’
close to the initial configuration. Therefore we use
the so-called Element-based Stiffness Warping or Coro-

tational Strain method [MG04, HS04] to compensate
for the rotation of the elements. To extract the rota-
tion part of the deformation, we use the polar decom-
position method proposed in [Hig86]. The rotation-
free element stiffness matrix KKKre then becomes KKKre =
RRReKKKeRRR−1

e , with RRRe ∈R
12×12 the rotation matrix for ele-

ment e. Note that this gives rise to an initial elastic force
fff e0 = RRReKKKe · xxx0, which replaces the term KKKΦΦΦ · x̃xx0 in the
right-hand-side of Eq. (8).

4 OVERVIEW OF THE ALGORITHM

Algorithm 1 gives an overview of the simulation of
elastically deformable models as described in Section 3.
First, a tetrahedralization of the polygonal mesh rep-
resenting the surface of the object is computed, see
Section 5.5. Each tetrahedron is considered as an ele-
ment in FEM. Then, the initial stiffness-matrices of
the elements are computed (line 3); these matrices do
not change during the simulation and thus are pre-
computed. Additionally, as the shape functions are con-
stant during the simulation, we can pre-calculate most
matrices from Eq. (9), using NNN1 = ΦΦΦT

e ΦΦΦe. This matrix
is identical for all elements and is therefore only com-
puted once.

Algorithm 1 Simulation algorithm.
1: Compute NNN1 see Eq. (9)
2: foreach element e

3: Compute KKKe see Eq. (9)
4: loop of the simulation

5: foreach element e

6: Compute volume ve

7: Compute RRRe see Section 3.3
8: Compute KKKre = RRReKKKeRRR−1

e ve

9: Compute MMMe = ρeNNN1ve

10: Compute CCCe = cNNN1ve

11: Compute fff e0 = RRReKKKe · xxx0ve

12: Compute FFFe = NNN1 · F̃FFext ve see Eq. (9)
13: Compute FFF te = MMMe · vvv

i
−∆t

(

fff e0 −KKKre · xxx
i
−FFFe

)

14: Compute KKKte = MMMe +∆tCCCe +∆t2KKKre

15: Assemble global KKK and FFF using KKKte and FFF te of elements
16: Solve KKK · vvvi+1 = FFF for vvvi+1

17: Update xxxi+1 = xxxi +∆tvvvi+1 see Section 3.2

After all local matrices have been computed and
stored (line 14), the global matrix is assembled



(line 15). The resulting linear system of equations is
solved for velocities (line 16), which are then used to
advance the position vectors (line 17).

5 GPU MAPPING USING CUDA

In this section we describe our GPU mapping of
the simulation on NVida GeForce GPUs using
CUDA [NVI]. First we shall give details about
implementing the rotation extraction through polar
decomposition. Then, we describe the computation of
the local stiffness matrices which are used to assemble
the global (sparse) stiffness matrix (matrix KKK in
Algorithm 1). The resulting system of linear equations
is solved using a Jacobi-Preconditioned CG Method.

5.1 Rotation extraction

As mentioned in subsection 3.3 we have to estimate the
rotation of each element in order to calculate displace-
ments properly. Finding the rotational part of the de-
formation matrix is done using a Polar Decomposition
as described in [MG04,HS04,Hig86]. Although a large
number of matrix inversions is involved, this can be
done efficiently because small 4× 4 matrices are used.
Since each matrix contains 16 elements, we chose to
map the computations of 16 such matrices to a single
CUDA thread-block with 256 threads.

For computing the inverse of a 4 × 4 matrix we
perform a co-factor expansion. Each thread within a
thread-block computes one co-factor of the assigned
matrix. Since the computation of a co-factor requires
almost all values of the matrix, memory accesses
have to be optimized. In order to prevent for possible
bank-conflicts during the computation of the co-factors,
each matrix is stored in one memory bank of shared
memory. Accordingly, the shared-memory segment (of
size 16×16 locations) is regarded as a matrix stored in
row-major order, where each column represents a 4×4
local matrix. Therefore, each column (local matrix)
maps exactly to one memory-bank. Since a large
number of rotation matrices are computed in parallel, a
large performance boost is obtained.

5.2 Local stiffness matrices

Solving a specific problem using FEM starts with de-
scribing the problem locally per element. Since a typ-
ical problem consists of a large number of elements, the
computations involved per element can be easily paral-
lelized. Further, since the matrices used to construct
KKKe are in R

12×12, we map the computation of each
individual local element stiffness matrix to a thread-
block containing 12 × 12 threads. The inner loop in
Algorithm 1 is implemented using one or two CUDA
kernels, depending on the architecture version. Instead
of creating kernels for each individual matrix operation,
we combine a number of them into one larger kernel.
Since data from global memory can be reused multiple

times, less global memory transactions are required,
which improves the overall performance.

5.3 Solving the linear system

Given the local element matrices and load vectors,
the global stiffness matrix of the system is assembled.
Next, the system has to be solved for the unknown
velocity vvvi+i. The (Jacobi-Preconditioned) CG method
performs a large number of sparse matrix-vector
multiplications and other vector-vector operations.
Therefore, solving a large linear system efficiently,
requires a fast and efficient implementation of sparse
matrix-vector multiplications, which is highly-
dependent on the layout used for storing the sparse
matrix. Since three unknown values (components
of the velocity vector) are associated to each mesh
vertex, a block with 3×3 elements in the global matrix
corresponds to each edge of the tetrahedral mesh.
Therefore, a Block-Compressed Sparse Row (BCSR)
format is very well suited for storing the global matrix,
and thus improving the speed of the CG method.

Furthermore, since the vertex degree of internal
nodes is constant in a regular tetrahedralization (see
sect 5.5), the variation of the number of elements per
row in the global matrix is minimal. Therefore, we use
the optimized BCSR format from [VJ12]. This method
efficiently stores a large sparse-matrix in BCSR format
and reorders the blocks in memory to improve the
efficiency of the memory transactions. This fact is
very important since the main bottleneck of the CG
method is the memory throughput. In [VJ12], through
extensive experiments, it is shown that their optimized
BCSR layout outperforms other storage formats for
efficient matrix-vector multiplication on the GPU.

5.4 Global matrix update

Each local matrix represents a set of equations for each
individual tetrahedron. To obtain the global system of
equations, each component of each local matrix is ad-
ded to the corresponding location of the global matrix.
The location is obtained using the indices of the ver-
tices for that specific element. Since the structure of
the underlying mesh does not change during the sim-
ulation, also the structure of the global matrix remains
unchanged. Therefore we assemble the global matrix
only once and updates its values every time step. In this
section, we propose an extension of [VJ12] which al-
lows us to efficiently update a sparse matrix stored in
the BCSR format.

For updating the global matrix, two approaches are
possible. Within the first approach (scatter), all values
of a local matrix are added to their corresponding values
in the global matrix. When the local matrices are pro-
cessed on the GPU, many of them are processed in par-
allel. Therefore, multiple threads can update the same
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(d) Updating matrix blocks (green), requires the
associated local values. The indices of these val-
ues are stored in index blocks (gray), in the same
order as the matrix blocks. Within each sub-step,
a set of continuous index-blocks are loaded and
used to fetch the corresponding values from the
local matrices. The dark-gray blocks are used for
padding and contain −1’s. i, j,k represent (start-
ing) offsets in memory.

Figure 2: Updating the sparse matrix: the initial sparse matrix is created, stored and processed, (a), (b) and (c).
Updating the matrix is done by collecting the corresponding values from the local matrices, (d).

value in the global matrix at the same time, which res-
ults in race conditions. In order to prevent race condi-
tions from appearing, access to the values of the global
matrix would have to be serialized.

The second approach is to gather per element in the
global matrix, the corresponding values from the local
matrices. To do so, the indices of all associated local
values are stored per element in the global matrix. Each
index represents the position of the local value in an
array A, which stores the values of all local matrices.
Given these indices per global element value, the local
values are looked-up and used to update the correspond-
ing value in the global matrix.

Within the optimized BCSR implementation
of [VJ12], the global sparse-matrix is divided in
N × N-sized blocks, Fig. 2(a). Next, block rows are
compressed and sorted by length, Fig. 2(b). Finally,
a number of consecutive block rows are grouped and
mapped to a CUDA thread block. Within each group
of block rows, the blocks are reordered in memory,
such that accessing these blocks is performed as
optimal as possible. Accessing the blocks (for e.g. a
multiplication) is done as follows. First, all threads
of a thread-block (T B0) are used to access the blocks
mapped to it in the first step (step 0), see Fig. 2(c).
Each thread computes an index pointing to these
blocks. Next, blocks 0− 7 are loaded from the global
memory. Note that these are the same blocks appearing
in the first column of Fig. 2(b). For the next step, each
thread increases its current index, such that the next set
of blocks (8−15) can be loaded (step 1). Note that all

block rows must have the same length, and therefore,
empty blocks must be padded (blocks 16 and 17).

To actually update the data blocks of the global mat-
rix, we use a gather approach. Accordingly, N × N-
sized index blocks are used for each matrix block, see
Fig. 2(d). Since the matrix blocks have a specific or-
dering, the same ordering is used for the index-blocks.
For each step, a number of sub-steps is performed.
Within each sub-step a set of index-blocks is loaded
from memory, given a start offset (i, j or k in Fig. 2(d)).
Then, for each index-block, its N ×N values (indices)
are used to fetch the corresponding N ×N data values
from local matrices, stored in global memory. Please
note that the N×N data values fetched using one N×N

index-block, do not come, in general, from the same
local matrices. To accumulate the local contributions,
an array (stored in shared memory) is used. If an in-
dex has value −1, no update is performed. For the next
sub-step, the indices pointing to the index blocks are
increased. Therefore, per step, the number of index
blocks for each processed matrix block must be equal,
which requires padding with ’−1’ index blocks. The
advantage of this approach is that loading the indices
and writing the updated values always result in an op-
timal throughput. Loading the actual local-element val-
ues is in general not optimal.

5.5 Tetrahedralization and rendering

The quality of the tetrahedral mesh is essential for effi-
ciently simulating a deforming elastic object represen-
ted by a polygonal mesh. We have experimented with
tetrahedralizations in which the surface mesh forms the
outer boundary of the tetrahedral mesh. Since the tri-



angles of the surface mesh can have a high variety in
size, the generated tetrahedralization also contains tet-
rahedral elements with a high variation in size and con-
figuration. This can have a negative effect on the quality
of the tetrahedralization. Therefore, we chose to create
a tetrahedral mesh, using equi-sized elements, which
however, may result in a rather rough approximation of
the original surface mesh. We tackle this problem by
coupling the input polygonal mesh to the (deforming)
tetrahedral mesh, as follows.

First, a regular 3D grid of N3 voxels is created, in
which each voxel containing a part of the surface is
marked as important; typical values for N are 32,64 or
128. Next, a regular tetrahedralization of the grid is
created using equi-sized tetrahedral elements, and each
element containing at least one important vertex of the
grid, is stored. Further, the inner volume of the object
is tetrahedralized using the same equi-sized tetrahedral
elements. Next, in order to reduce the amount of ele-
ments, those elements belonging to the inner volume
are merged together into fewer larger ones. This re-
duces the total amount of elements and thus the total
computation time. Note however that this approach
is most useful with models which have large internal
volumes, similar to the bunny in Figure 5. Finally, the
original surface mesh is coupled with the tetrahedral
one similar to [MG04]: each vertex in the original sur-
face mesh is mapped to exactly one tetrahedron, and
its barycentric coordinates in that tetrahedron are stored
along with the vertex coordinates.

When the new positions of the tetrahedra are com-
puted, the surface mesh is also updated. To compute
new positions of the deformed surface mesh, for each
vertex of the input mesh, the positions of the four ver-
tices of the corresponding tetrahedron are looked-up
and interpolated using the barycentric coordinates of
the original vertex.

6 RESULTS

All experiments have been performed on a machine
equipped with an Intel Q6600 quad-core processor and
a GeForce GTX 570 with 1.2 Gb of memory.

Figure 3 shows the performances obtained for com-
puting the local element matrices (Matrix), the rota-
tion matrices (Rotation), solving the resulting linear
system (CG), performing a single SpMV (SpMV), and
the total performance (Total) as a function of the num-
ber of elements. Steps/sec is the corresponding num-
ber of simulation steps performed per second. Simil-
arly, Figure 4 shows the computation time per simula-
tion time-step. For each model, we have used the fol-
lowing material parameters: Young’s modulus of elasti-
city, E = 5×105N/m2; Poisson’s ratio, µ = 0.2; dens-
ity, ρ = 1000KG/m3. Furthermore, the time step of
the simulation ∆t = 0.001 and the volume of each ini-
tial element ve = 1.65× 10−6m3. Each model used in
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element matrices, Rotation – the time of the rotation
extraction procedure; Total represents the total elapsed
time per time-step.

this paper is scaled such that each dimension is at most
66 cm and is tetrahedralized as described in Section 5.5.
With these settings, the CG solver found a solution for
each model in 5 to 18 iterations. In order to obtain a
generic performance picture, we have fixed the number
of iterations to 18, which resulted in the performances
from Fig. 3.

Within Figure 3 a number of interesting patterns can
be seen. First, the performance for computing the
local element matrices reaches its maximum very soon.
Since each matrix is mapped to exactly one thread-



block, a large amount of thread-blocks is created, res-
ulting in a ’constant’ performance. Second, the per-
formance figures for computing the rotation matrices
show a larger variation. Since 16 rotation matrices are
processed by one thread-block, a significantly smal-
ler amount of thread-blocks is used. Finally, the per-
formance of the CG method seems to be low compared
to the other operations. The CG method operates on
a global sparse-matrix and performs a large number
of sparse-matrix vector multiplications (SPMVs) and
vector-vector operations, for which the performances
are mainly bound by the memory throughput. However,
the CG performances from Figure 3 agree with those
from [VJ12], given the dimensions of the problem.

The measured, effective throughput for updating the
global matrix was about 50 GB/sec, in all cases with
more than 5k elements. Since this operation transfers
a large amount of data, the memory bus is saturated
very soon, resulting in a good throughput. However,
since not all transactions can be coalesced, the max-
imum throughput is not reached. This operation is very
similar to an SPMV with 1× 1 blocks, but now for a
matrix containing d× more elements, with d the degree
of internal nodes in the model. This observation shows
that the measured throughput is close to the expected
one, according to the results in [VJ12].

As expected, the total performance increases with the
number of elements. This shows that the computational
resources are used efficiently for larger models. The
number of elements, for which the maximum perform-
ance is reached, depends on the actual GPU mapping
of the computations. For example, the CG solver does
not reach its maximum performance for 100k elements,
while the computation of the local element matrices
reaches its peak at 5k elements. Due to this, one can
expect better performances for the CG method when
larger models are used. Furthermore, for models having
less than 30k elements, the total computation is domin-
ated by the time spent by the CG solver. For larger mod-
els, more time is spent on computing the local matrices,
see Figure 4.

The measured overall performance is based on the
total time needed per simulation step, which includes
all operations performed, except the rendering of the
model. Figure 3 also shows the number of simulation
steps performed per second, given the number of ele-
ments; these numbers are based on the total compu-
tation time. Accordingly, even for large models, in-
teractive frame rates can be reached. A rough com-
parison of the obtained performance and frame rate
with other state-of-the-art multigrid GPU implement-
ations [DGW11] shows that, even if in theory the CG
method converges slower than multigrid, comparable
results can be obtained for similar models. We assume
that memory transactions in our method are more effi-
cient, despite of transferring more data. However, more

research is required to get a full understanding of the
differences between both methods performed on mod-
ern GPUs, with respect to performance figures. Finally,
Figures 1, 5, 6, 7, 8 and 9 show example results from
our simulations.

Figure 5: Material properties and collision handling.
Left: flexible material (E = 5×104). Right: stiffer ma-
terial (E = 5× 105). Simulation rate: 120 frames per
second.

Figure 6: Left: stretching and deforming a model using
external forces. Right: deformation after releasing ex-
ternal forces. Simulation rate: 118 frames per second.

Figure 7: Bunny bouncing on the floor. Simulation rate:
120 frames per second.

7 CONCLUSIONS

We have presented an efficient method for simulat-
ing elastically deformable models for graphics applica-
tions, accelerated on modern GPUs using CUDA. Our
method relies on a fast Conjugate Gradient solver and
an efficient mapping of the SPMV operation on modern
GPUs [VJ12]. Since the topology of the underlying grid



Figure 9: Other simulation results. Simulation rate: 160 frames per second.

Figure 8: Left: applying external forces on the wings.
Right: after releasing the external forces. Simulation
rate: 116 frames per second.

does not change during the simulation, data structures
are reused for higher efficiency. To further improve the
performance, we proposed a scheme which allows to
efficiently update the sparse matrix, during the simula-
tion.

In future work we will investigate the performance of
this method when multiple GPUs are used. Further-
more, we will investigate the performance difference
between traditional CG methods and multigrid methods
performed on modern GPUs. Also, we plan to enhance
the simulation to allow for plastic behaviour as well as
brittle and fracture of stiff materials.

REFERENCES

[BCL07] BUATOIS L., CAUMON G., LÉVY B.:
Concurrent Number Cruncher: An Effi-
cient Sparse Linear Solver on the GPU. In
High Perf. Comp. Conf. (HPCC) (2007).
2

[BFGS03] BOLZ J., FARMER I., GRINSPUN E.,
SCHRÖDER P.: Sparse matrix solvers on
the GPU: Conjugate gradients and multi-
grid. In Proc. SIGGRAPH’03 (2003). 2

[BG08] BELL N., GARLAND M.: Efficient

Sparse Matrix-Vector Multiplication on

CUDA. Tech. Rep. NVR-2008-004,
NVidia, 2008. 2

[DGW11] DICK C., GEORGII J., WESTERMANN

R.: A real-time multigrid finite hexa-
hedra method for elasticity simulation us-

ing CUDA. Simulation Modelling Prac-

tice and Theory 19, 2 (2011), 801–816. 2,
7

[GM97] GIBSON S., MIRTICH B.: A Survey

of Deformable Modeling in Computer

Graphics. Tech. Rep. TR-97-19, MERL,
Cambridge, MA, 1997. 1

[GSMY∗07] GÖDDEKE D., STRZODKA R., MOHD-
YUSOF J., MCCORMICK P., BUIJSSEN

S. H., GRAJEWSKI M., TUREK S.: Ex-
ploring weak scalability for FEM calcula-
tions on a GPU-enhanced cluster. Parallel

Computing 33, 10–11 (2007), 685–699. 2

[GST05] GÖDDEKE D., STRZODKA R., TUREK

S.: Accelerating double precision FEM
simulations with GPUs. In Proc. ASIM

2005 - 18th Symp. on Simul. Technique

(2005). 2

[GST07] GÖDDEKE D., STRZODKA R., TUREK

S.: Performance and accuracy of
hardware-oriented native-, emulated- and
mixed-precision solvers in FEM simula-
tions. Int. Journal of Parallel, Emergent

and Distributed Systems 22, 4 (2007),
221–256. 2

[GW06] GEORGII J., WESTERMANN R.: A
multigrid framework for real-time simu-
lation of deformable bodies. Computers

& Graphics 30, 3 (2006), 408–415. 2

[Hig86] HIGHAM N. J.: Computing the polar de-
composition – with applications. SIAM

Journal of Scientific and Statistical Com-

puting 7 (1986), 1160–1174. 3, 4

[HS04] HAUTH M., STRASSER W.: Corota-
tional simulation of deformable solids. In
WSCG (2004), pp. 137–144. 2, 3, 4

[ITF06] IRVING G., TERAN J., FEDKIW R.: Tet-
rahedral and hexahedral invertible finite
elements. Graph. Models 68, 2 (2006),
66–89. 2, 3

[JP99] JAMES D. L., PAI D. K.: ArtDefo: ac-
curate real time deformable objects. In
Proc. SIGGRAPH’99 (1999), pp. 65–72.



1

[KW03] KRÜGER J., WESTERMANN R.: Linear
algebra operators for gpu implementation
of numerical algorithms. In Proc. SIG-

GRAPH’03 (2003), pp. 908–916. 2

[LJWD08] LIU Y., JIAO S., WU W., DE S.: Gpu
accelerated fast fem deformation simula-
tion. In Circuits and Systems, 2008. AP-

CCAS 2008. IEEE Asia Pacific Confer-

ence on (30 2008-dec. 3 2008), pp. 606
–609. 2

[MG04] MÜLLER M., GROSS M.: Interactive vir-
tual materials. In Proc. Graphics Inter-

face 2004 (2004), pp. 239–246. 2, 3, 4,
6

[NMK∗06] NEALEN A., MÜLLER M., KEISER R.,
BOXERMANN E., CARLSON M.: Phys-
ically based deformable models in com-
puter graphics. Computer Graphics

Forum 25 (2006), 809–836. 1

[NVI] NVIDIA CORPORATION: Compute

Unified Device Architecture program-

ming guide. Available at http://

developer.nvidia.com/cuda. 4

[PH05] PEPPER D. W., HEINRICH J. C.: The

Finite Element Method: Basic Concepts

and Applications. Taylor and Francis,
2005. 1, 2, 3

[RS01] RUMPF M., STRZODKA R.: Using
graphics cards for quantized FEM com-
putations. In Proc. IASTED Vis., Imaging

and Image Proc. (2001), pp. 193–202. 2

[TBHF03] TERAN J., BLEMKER S., HING V. N. T.,
FEDKIW R.: Finite volume methods for
the simulation of skeletal muscle. In In

SIGGRAPH/Eurographics symposium on

Computer Animation (2003), pp. 68–74.
1

[TPBF87] TERZOPOULOS D., PLATT J., BARR A.,
FLEISCHER K.: Elastically deformable
models. In Proc. SIGGRAPH’87 (1987),
pp. 205–214. 1

[VJ12] VERSCHOOR M., JALBA A. C.: Ana-
lysis and performance estimation of the
conjugate gradient method on multiple
gpus. Parallel Computing (2012). (in
press). 1, 2, 4, 5, 7

http://developer.nvidia.com/cuda
http://developer.nvidia.com/cuda

	Introduction
	Previous and related work
	Elasticity through the Method of Finite Elements
	Continuum elasticity
	System dynamics
	Discretization using FEM

	Overview of the algorithm
	GPU mapping using CUDA
	Rotation extraction
	Local stiffness matrices
	Solving the linear system
	Global matrix update
	Tetrahedralization and rendering

	Results
	Conclusions

