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Abstract

The Conjugate Gradient (CG) method is a widely-used iterative method for solving linear systems described by

a (sparse) matrix. The method requires a large amount of Sparse-Matrix Vector (SpMV) multiplications, vector

reductions and other vector operations to be performed. We present a number of mappings for the SpMV operation

on modern programmable GPUs using the Block Compressed Sparse Row (BCSR) format. Further, we show that

reordering matrix blocks substantially improves the performance of the SpMV operation, especially when small blocks

are used, so that our method outperforms existing ones, in most cases. Due to this, the performance of our CG

method is in most cases better compared to other state-of-the-art approaches. Finally, a thorough analysis of the

performance of both SpMV and CG methods is performed, which allows us to model and estimate the expected

maximum performance for a given (unseen) problem.

Keywords: Conjugate Gradient method, Sparse-Matrix Vector multiplication, Block Compressed Sparse Row

format, performance analysis, performance estimation, multiple GPUs.

1. Introduction

The Conjugate Gradient (CG) method [21] is a widely-used iterative approach for solving linear systems. At

each iteration the method performs a Sparse-Matrix Vector multiplication (SpMV). For an M ×M Symmetric Positive

Definite (SPD) matrix, it provably converges in M iterations [21]. For non-symmetric matrices, more general iterative

methods have to be used, such as the BiConjugate Gradient (BiCG), BiConjugate Gradient Stabilized (BICGSTAB)

or other related approaches [2, 36, 34]. In practice, the number of iterations required by the CG method is smaller

than M, but the speed of convergence depends on the conditioning of the matrix [35]. However, even if the method

converges in fewer than M iterations, typically a large number of iterations is still needed. Therefore, improving the

speed of the SpMV operation is an important task, and one way of achieving this is through parallelization.

Modern programmable Graphics Processing Units (GPUs) have a highly-parallel architecture that provides a vast

amount of computing power. This, together with the large memory bandwidth of these devices, made GPUs an

important means for accelerating certain scientific computations [14, 6, 7, 24]. However, mapping a specific algorithm

on such a parallel architecture is in general non-trivial.

The CG and the related numerical methods mentioned above are in fact notoriously difficult to parallelize effi-

ciently because of their low arithmetic intensity and high memory-bandwidth demands. Since these methods perform

a large number of SpMVs, it is of paramount importance to achieve the best possible performance for such operations.

Depending on the underlying problem, different representations can be used for efficiently storing a sparse matrix

and multiplying it by a vector. Additionally, PDE discretizations based on structured grids (e.g. typically used with

the Finite Difference Method) result in a structured matrix, for which specialized storage representations can be used,

whereas discretizations based on unstructured grids (e.g. Finite Element-based on tetrahedral grids) yield unstructured

matrices. Throughout this paper we mainly focus on problems yielding sparse, unstructured matrices. General for-

mats for representing such matrices are the Compressed Sparse Row (CSR) and its extension – the Block Compressed

Sparse Row (BCSR), see Section 2.

In this paper, first we propose fast BCSR-based GPU mappings for the SpMV operation using CUDA, see

Section 3. As suggested elsewhere [4, 8] and confirmed by the results presented here, a block-based layout for

SpMV fits very well with the computational model of a GPU. Therefore, we start with a basic mapping which is
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subsequently transformed and optimized in a step-by-step fashion, so that in the end, we obtain an SpMV method

that operates close to the limits of the hardware. Then, in Section 4, we propose an efficient GPU mapping of the

CG method, based on our SpMV operation, accelerated on single- and dual-GPU setups. Further, in Section 5, we

introduce a framework for analyzing the performance of SpMVs and various vector operations performed on GPUs.

Since most of these operations are bandwidth limited, we investigate the behavior of the memory throughput with

respect to the problem size. Furthermore, we expect the performance of the CG method to be mainly driven by that

of the SpMV operation, while the scalability among multiple GPUs should be greatly influenced by the bandwidth

difference between the GPU memory and the inter-GPU throughput. Indeed, since the communication bandwidth

between multiple GPUs is an order of magnitude smaller compared to the memory bandwidth on the GPUs itself, not

all problems scale well across multiple GPUs [17]. Thus, estimating the performance of such parallel systems gives

insight into the scalability issue, and enables one to answer questions like ’How many GPUs can be used to solve the

problem efficiently ?’ or ’What performance can be expected for a given problem ?’.

Since all operations appearing in the CG method are bandwidth limited (low arithmetic intensity), the behavior

of the data throughput is studied and modeled using a mathematical model, see Section 5. First, the performance

estimates through the proposed model are compared and checked against actual (measured) performance figures, on

a number of linear systems. Comparisons are performed for different settings of the SpMV operation, using one

or two GPUs. Then, a number of maps are computed (through extrapolation), which allows one to estimate the

maximum and average performance of the CG method, given some parameters of the matrix describing an (unseen)

problem, see Section 6. Such performance estimates can be used to quickly check if the method performs well on

the given hardware, thus allowing the user the possibility of considering a different hardware setup. For instance,

the user can choose to increase/decrease the number of GPUs used, or he/she can decide to even use the CPU,

for better performance. In Section 7 we discuss additional aspects influencing the overall performance of the CG

method, such as scalability for future devices, matrix reordering schemes and performance figures for double-precision

computations.

Please note that throughout this paper we focus on the CG method, but our model can also be used for the anal-

ysis of related Krylov-subspace methods, like the BiConjugate Gradient (BiCG) or BiConjugate Gradient Stabilized

(BICGSTAB) method [2, 36, 34], or other numerical algorithms which perform SpMV and vector operations.

1.1. Previous and Related Work

The CG method and the SpMV operation have been implemented on various SIMD (multi-core) platforms. In

[38] an overview is given on the performance of the CSR-based SpMV operation for a number of modern CPU

architectures. A similar comparison is made in [37], where the CG method is implemented on Woodcrest CPUs and

NVidia 8800GTX GPUs. The authors report a speedup of about 3 times when using the CSR format on the 8800GTX

GPU.

GPU implementations of the CG and multigrid sparse solvers were presented by Bolz et al. [5]. Their methods

rely on the programmable graphics pipeline of modern GPUs and were implemented using fragment shaders. Sparse

matrices are stored in the CSR format, enhanced by an additional array for storing the main-diagonal elements. The

work of [8] is closely related to ours, in that they present CUDA-based GPU mappings of the CG and SpMV operation

using the BCSR format. However, since their methods are not optimized, e.g., by using coalesced memory accesses,

the peak performance of the underlying hardware was not reached, see Figure 9.

Bell and Garland [4] propose several methods for efficient sparse matrix-vector multiplication, which take into

account the structure of the input matrices. They implemented efficient multiplication routines for various sparse

matrix representations, such as the Diagonal format (DIA), Row-packed format (ELLPACK/ITPACK), Coordinate

list (COO), Compressed sparse row (CSR), Packet format (PKT) and a hybrid format. Their hybrid layout is most

suitable for unstructured matrices and delivers in general the best performance for such matrices. This approach stores

a part of the matrix using ELLPACK and the remaining elements using the COO format. It is known that ELLPACK

becomes inefficient if the numbers of elements per row varies greatly [4, 25, 12]. Although extensive results were

provided, a complete analysis of their methods was not performed. However, they did suggest that the use of blocks

may potentially improve the performance even further, but this was left yet to be explored. This extension was first

presented by Monakov and Avetisyan [25]. These authors introduced a hybrid SpMV operation as a combination of

the BCSR and BCOO format. Splitting the matrix and choosing the representation format is done using dynamic
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programming, but this approach has large memory requirements. According to their performance evaluation, 4 × 4

blocks seemed to yield the best efficiency, but no thorough analysis was performed to support this finding.

Cevahir et al. [11] propose an enhanced Jagged Diagonals (JDS) format, which reorders the matrix according to

the number of non-zeros per row, and stores it similar to the CSR method. In [10] a parallel implementation of the

CG method on a GPU cluster is presented. For the SpMV operation, their enhanced JDS format [11] along with the

other formats from [4] were considered. For a given problem, the best layout for the SpMV operation is found by first

benchmarking the performance of each individual format, and then selecting the one which delivered the fastest run.

This is clearly disadvantageous, since first the input sparse matrix has to be off-line converted to a number of different

layouts, which are then used to perform the SpMV operation.

In [12], the so-called BELLPACK method for SpMV multiplication is introduced. Although this method is similar

to ours, there are also some important differences. In BELLPACK, first matrix blocks are identified, created and

ordered, similar to [11]. After that, the ELLPACK method is employed on the ordered blocks. However, BELLPACK

does not initially use coalesced memory transactions when loading the blocks. To improve on that the blocks are

stored interleaved in memory, such that the memory transactions become coalesced, see [12]. As mentioned above,

ELLPACK performs poorly when the numbers of elements per row varies greatly. This problem is addressed by

sorting block rows, prior to storing them in the ELLPACK format. Since BELLPACK uses one CUDA thread to

process one row, the number of registers used varies with the block size, making an analysis of the method more

difficult. Within our method the number of registers used does not depend on the actual block size, which makes it

easier to analyze its performance.

2. Background

2.1. The Conjugate Gradient Method

The CG method [21] is used to solve linear systems of the form

b = Ax, (1)

with A a symmetric (AT = A) and positive-definite matrix (yT Ay > 0, with y , 0), and x the vector of unknowns. In

various textbooks (e.g. [33, 9, 2]), it is shown that the CG method minimizes the quadratic function

f (x) =
1

2
xT Ax − xT b, (2)

thus solving for x in Equation 1.

Algorithm 1 in Section 4 shows a parallel realization of the CG method, using a Jacobi preconditioner. Please

note that it is straightforward to extend Algorithm 1 to other related methods, such as the Biconjugate gradient or the

Biconjugate gradient stabilized methods. Further, the algorithm can easily be modified to accept other preconditioners,

such as the Incomplete Choleski [18], although such preconditioners are very difficult to parallelize efficiently, because

of data dependencies.

Due to the iterative nature of the method (see Algorithm 1), a large number of SpMV multiplications have to

be performed when solving the linear system. Therefore, it is essential to optimize the SpMV operation as much as

possible. Depending on the structure of the sparse matrix, different approaches exist to represent the matrix and to

perform SpMVs on various types of hardware. Below, we briefly describe only the Compressed Sparse Row (CSR)

and Block Compressed Sparse Row (BCSR) formats; see e.g. [4] for full details and other sparse-matrix storage

schemes.

2.2. Compressed Sparse Row (CSR)

The CSR format is a well-known, general storage scheme suitable for unstructured matrices. Each non-zero

element in a row and its column index are stored in two continuous arrays. Because of this, each row needs a pointer

to the first element in the array of data elements and indices. The number of non-zero elements in a particular row can

be determined by computing the difference between the pointer of the current and the next row. Figure 1b illustrates

the CSR storage scheme.
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(a) Sparse matrix divided in blocks of size 2 × 2.

2 0
0

1

1

0.2

0

0.2

1

1

2

0.2

1

0.6

2

1

3

0.6

1

0.2

3

1

5

0.2

1

0.1

4

1

6

0.1

4

0.5

5

1

6

0.5

5

0.2

6

1

7

0.2

6

0.2

7

1

3 2

3 5

3 8

3 11

3 14

3 17

2 20

P
o

in
te

r

L
en

g
th

Compressed rows

(b) CSR. Rows in (a) are com-

pressed and each non-zero ele-

ment is stored with its column

index (gray cells). For each row,

its length and pointer to the first

element are stored.
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(c) BCSR. ’Block rows’ in (a)

are compressed, and each non-

empty block is stored along with

its column index (gray cells).

For each block row, its length

and pointer to the first block are

stored.

Figure 1: Compressed Sparse Row (CSR) and Block Compressed Sparse Row (BCSR) storage schemes.

2.3. Block Compressed Sparse Row (BCSR)

BCSR constitutes a generalization of the CSR format. This scheme divides the input matrix of size M × M in

blocks of P × Q elements, and stores each non-empty block similar to the CSR method, see Figures 1a and 1c. Each

block row contains a number of non-empty blocks, and each block contains a number of non-zero elements. Note that

zero elements inside a block are stored explicitly. For each block, the column index is stored, and for each block row,

its length and pointer to the first block in the block row are represented, see Figure 1c.

Since all values of a block are consecutively stored in memory, the use of blocks reduces cache misses [19], when

employed on CPUs, and improves the efficiency of memory transactions on GPUs. Therefore, larger block sizes

should in principle lead to better performances, but they may introduce many zero elements. This usually results in

wasted computations and memory space. We choose to use square blocks with size N × N, with N a power of two.

This fits best the architecture of many SIMD CPUs, as well as the architecture of modern GPUs.

The best block size with respect to performance depends on many aspects. Apart from the block density, also the

problem size, hardware architecture and the runtime GPU configuration determine which block size gives the best

performance; in Section 7.3, we shall further discuss this issue.

2.4. CUDA Overview

With the release of NVidia’s G80 [29] and Tesla [23] series GPUs, general purpose computing was truly enabled

via the so-called Compute Unified Device Architecture (CUDA). In this section we give a short overview of the

architecture and its constraints, as exposed through CUDA; detailed information can be found in [26].

A typical modern GPU consists of a large number of unified shaders which can be used as either vertex-, pixel-

or geometry-shaders in graphics applications. Within the context of general-purpose computing, a group of unified

shaders is called a multiprocessor [26, 29, 31]. On a global scale, the multiprocessors are connected with the global

memory of the device through a number of memory controllers. On a local scale, each multiprocessor contains a

relatively small amount of memory that is shared among the scalar processors of the multiprocessor (shared memory).

The communication between the global memory and the individual scalar processors has a relatively high latency.

Between a memory request and the instance when data is available, each processor has to wait between 400 and 800

clock cycles. However, each multiprocessor is able to execute up to 1024 threads, so that this latency can be hidden

as follows. When a thread requests data from (non-cached) global memory, the scheduler activates another thread,
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whereas the thread requesting data is put to sleep. Once data becomes available, the idle thread is activated and

allowed to continue its execution. By scheduling a large amount of threads on a small number of scalar processors,

most of the memory latency can be hidden.

Within CUDA, thread scheduling is done automatically. Launching a program on the GPU (kernel) creates a grid

of thread blocks, the threads of which all execute the kernel function. Within each thread block, threads can commu-

nicate with each other through shared memory. However, threads belonging to different thread blocks cannot directly

communicate, since thread blocks can be executed on different multiprocessors and at different time intervals. Each

thread block is divided in smaller warps of 32 threads which are executed on the scalar processors. For multiproces-

sors having 8 scalar processors, each instruction is executed 4 times with different sets of threads. Depending on the

shared memory and register requirements of a kernel, a multiprocessor can run concurrently a given number of thread

blocks. The ratio between the number of active threads and the maximum number of threads per thread block (1024)

is called the occupancy of the kernel [13]. For a typical problem solved using CUDA, a large number of thread blocks

are created which are distributed over all available multiprocessors, so as to occupy all available resources. Once a

thread block has finished its computations, a new thread block is started. This process is repeated until all thread

blocks have performed their task.

Threads that belong to the same warp, execute the same instruction. If a thread within a warp follows a different

branch of a conditional statement than the other threads, thread divergence occurs, and each thread follows both

branches of the statement. If a particular thread does not need the results obtained by following one of the branches,

these results are simply discarded. Although thread divergence reduces the overall performance of a kernel, in some

cases it is unavoidable.

The architecture has several limitations also with respect to the pattern of global memory accesses. The global

memory is divided in a large number of segments with a particular size. A typical memory segment is 128 bytes wide,

depending on the version of the architecture. If all threads of a half-warp access data stored in the same segment of

the global memory, only one combined memory transaction is initiated. This is known as a coalesced memory access.

If threads access different segments, separate memory transaction must be initiated, which increases the total latency

and should be avoided if possible. With the release of the Fermi architecture [31] global memory accesses are cached,

which increases the data throughput.

Modern GPUs have a large amount of computing power compared to a single CPU. For example, a GTX570 has

15 multiprocessors each containing 32 scalar processors, which makes for a total of 480 scalar processors running at

1464 MHz. The theoretical peak performance of such a device is about 1405 GFlops, if only floating-point multiply

and add instructions are performed. The theoretical memory bandwidth is about 152 GB/sec. In order to reach the

best performance for a specific problem, some guidelines must be followed, see [26]. First, the memory transactions

should be coalesced. Second, thread divergence should be avoided. Finally, the utilization level should be maximized,

i.e., for a specific task, as much as possible computational resources should be used. In practice this means that a

problem should be solved using a large amount of threads.

3. Proposed SpMV method using CUDA

The SpMV operation can be mapped to a GPU using different strategies, each with its own advantages and disad-

vantages. In general, mapping a certain problem to a GPU starts with identifying those parts of the algorithm that can

run independently from other parts. Within the SpMV operation this is clearly the computation of a single element in

the result vector. Throughout this section we shall seek for a GPU mapping of the SpMV operation which gives the

best overall performance.

Thread blocks offer the lowest level of parallelism on GPUs, so they are used to compute one or multiple elements

of the result vector. Figure 3 shows how a sparse matrix, stored using the BCSR format with N × N blocks, can be

mapped to a GPU using CUDA. The actual mapping depends on the number By of block rows processed by each

thread block, and the number Bx of matrix blocks processed collectively per block row, see Table 1. The total amount

of thread blocks executed concurrently on a GPU depends on the number of multiprocessors and the number of active

thread blocks, and represents the occupancy of a kernel [13]. Table 1 defines and describes each parameter appearing

in Figure 3 for each different strategy. Since the warp size is 32, we use square blocks of dimension N, where N is

a power of 2. This choice results in easy-to-implement kernels and reduces the amount of inactive threads. For each
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different mapping, each matrix block is processed by threads with consecutive thread indices. For an N × N matrix

block with index i, threads i × N × N till (i + 1) × N × N − 1 perform the computations and data lookup.

The following subsections describe the three proposed basic strategies presented in Table 1: block row mapping,

warp mapping and multiple block-row mapping. Each strategy maps the computations differently among the available

threads of one thread block. On top of the best basic strategy, we apply a few optimizations which further increase the

performance, see Section 3.4, Section 3.5 and Section 3.6.

To estimate the efficiency of each mapping with varying block sizes, we compute what we call the ’raw-performance’,

defined as the number of GFlops achieved if each matrix block had a density of 100% , i.e., each block contained N×N

non-zero elements. Figure 2 shows the raw-performance of each mapping for the set of matrices in Table 4. We pre-

fer to use raw-performances instead of actual (measured) performances, because they better reflect the differences

between each mapping.
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non-existing (empty) blocks used for padding. Each individual cell

represents one matrix block with size N × N. Br indicates the number

of blocks in the largest block row assigned to a particular thread block.

Each thread block (T Bi) performs a number of steps (proportional to

Br/Bx), to cover all assigned matrix blocks. During each step, each

thread block processes collectively Bx × By matrix blocks containing

N × N elements. Block rows were first sorted by length as described

in Section 3.5. For thread block T B0, the initial indices of the matrix

blocks, stored in the BCSR format, are shown. The matrix blocks as-

signed to thread block T B2 are reordered as described in Section 3.4.

3.1. Block-row Mapping

’Block-row mapping’ assigns one block row to one thread block. In each step, each thread within a thread block

loads one matrix element and its corresponding vector element from global memory. Each vector element is loaded

by first computing its index using the column index of the matrix block and the thread index. Once both matrix- and

vector-elements are loaded, they are multiplied and added to a per-thread intermediate value. When all matrix blocks

of the current block row are processed, the intermediate values are reduced (addition operation) to a column vector of
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Table 1: Parameter definitions for each mapping strategy, see Figure 3.

Parameter Description Block row Warp Multiple block-rows

Bx Number of collectively processed ma-

trix blocks per block row.

T
N×N

>∗
W

N×N
>∗∗ 1

By Number of collectively processed block

rows per thread block.

1 <∗
T
W

<∗∗
T

N×N

BT =
M

By×N
Total number of thread blocks needed

to cover the sparse matrix.

M
N

>∗
M×W
N×T

>∗∗
M×N

T

Steps = Br

Bx
Total number of steps needed to pro-

cess all matrix blocks per block row.

Br×N×N

T
<∗

Br×N×N

W
<∗∗ Br

N Dimension of one matrix block, which is a power of 2. Usually 1, 2, 4 or 8.

T Number of threads per thread block, usually 128 or 256. Remarks

W Warp size = 32. ∗ Holds if T > W.

M Matrix dimension. ∗∗ Holds if N < 4.

Br Largest number of matrix blocks per block row per thread block.

size N. Finally, after reducing N row vectors, the result is stored in global memory. Note that By = 1 for this strategy,

i.e., one block row is processed by one thread block.

The number of collectively-processed matrix blocks per block row, Bx, is computed using the formulas in Table 1.

Since each thread block processes exactly one block row, a large number of thread blocks (BT ) are needed to cover

the whole matrix. Since in each step a large number of matrix blocks are processed together, the number of steps

performed by each thread block is small. Thus, computations can be wasted if Br is not a multiple of Bx. For example,

if N = 1, then Bx = T , which implies that a number T of 1 × 1 matrix blocks are processed together. In general

T equals 128 or 256, which means that Br must be a multiple of 128 or 256 in order to minimize the number of

wasted computations. Clearly, this is impractical in most situations. Note that increasing N gives in general better

performances, since the amount of wasted computations is reduced, and the memory transactions for vector elements

become more efficient.

3.2. Warp mapping

’Warp mapping’ assigns one block row to one warp of threads. The computation of the individual elements is

similar to the block-row mapping. The difference between both methods lies in the configuration parameters, see

Table 1.

Since each block row is mapped to one warp, the number of collectively-processed matrix blocks per block row is

smaller than with the block-row mapping strategy. This implies that the number By of block rows processed per thread

block is larger. Since Bx is smaller, the amount of wasted computation is in general smaller compared to block-row

mapping. Furthermore, the number of steps required to process one block row is increased, which results in less

additional overhead and thus a higher memory throughput. Figure 2 clearly shows the performance improvement of

this mapping compared to the single block-row case, except for matrix ’Dense’.

3.3. Multiple block-row mapping

’Multiple block-row’ mapping (MBR) is the opposite of the block-row strategy. Instead of processing multiple

blocks belonging to one block row, the mapping is transposed such that in each i-th step, each i-th block of the block

rows is processed together. For each block row, exactly one block is processed, together with blocks belonging to

other block rows. The actual computation of the result vector is similar to the previously described mappings, while

the layout is different.

Within the MBR mapping, the number Bx of matrix blocks processed together per block row is exactly one. This

implies that By should be as large as possible. Because Bx = 1, the number of steps required becomes exactly Br.

Furthermore, the number of necessary thread blocks decreases. Since the number of steps is maximized and the

number of thread blocks is minimized (while the total amount of work remains constant), the work per thread is

maximized. The main advantages of this approach are that the additional overhead is reduced and less space and

computations are wasted. However, if the variation of row lengths of block rows (assigned to the same thread block)

is large, a large number of threads can become idle. Another potential drawback is that matrix elements are loaded

in a different order than they are initially stored, which results in un-coalesced memory accesses for specific block
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sizes. Figure 2 shows that (for all matrices) the performance when N = 1, 2 is smaller compared to warp-mapping,

due to non-coalesced memory transfers in these cases. However when N > 2, the performance is similar to that of the

warp-mapping.

To overcome these problems when N = 1, 2, we use two reordering steps described below.

3.4. Block reordering

For each mapping strategy, each matrix block is processed by consecutive threads. Furthermore, blocks are stored

at memory locations given by their indices. (The top-most thread block of Figure 3 shows these block indices.)

Because of this, memory transactions are coalesced (when loading the matrix blocks) if Bx × N2 ≥ 16. For the MBR

mapping, coalescing becomes problematic if N < 4, since Bx = 1. Note that for other strategies this can never happen,

because T ≥ W. Figure 2 shows this effect happening when N < 4. For example, if N = 2 and Bx = 1, each half-warp

loads data from 4 different blocks that are clearly not stored in the same memory segment. The first half-warp of the

top-most thread block in Figure 3 loads blocks 0, 14, 27 and 39, where indices represent memory locations.

To overcome this problem, the order of the matrix blocks in memory must be changed, such that each thread

within a half-warp reads from the same memory segment. In Figure 3 matrix block with index 14 of thread block T B0

is moved to position 4, block 4 to position 16, so that the final configuration is similar to that shown for thread block

T B2. By reordering matrix blocks such that those blocks processed within the same step of the same thread block are

consecutive in memory, all memory transactions (required for loading matrix blocks) become coalesced. In Figure 3,

all blocks within T B2 are reordered such that all threads read from consecutive memory locations, while all threads

assigned to T B0 read from non-consecutive memory locations. However, if N = 4, this problem is solved, since each

half-warp reads exactly one matrix block from memory. Since blocks now are stored at different memory locations,

all blocks that are loaded within each step are consecutive in memory, for any size of N. This reordering strategy

boosts significantly the performance of the SpMV operation for matrix blocks with N < 4, as shown in Figure 2.

If block rows within one thread block have different lengths, or if Br is not a multiple of Bx, empty matrix blocks

must be added until each block row assigned to the same thread block has the same amount of matrix blocks. This

ensures that each block row, processed by the same thread block, has a length which is a multiple of Bx (the dark-gray

blocks in Figure 3). Further, since after padding, each block row processed by a thread block has the same length, we

do not have to check the length of each individual block row. This eliminates the possibility that thread divergence

occurs at this stage.

If the block rows are sorted by their length, described in Section 3.5, the number of additional empty blocks

is reduced since block rows with similar lengths are processed together, see Figure 3. Furthermore, reordering the

matrix blocks does not affect the structure of the matrix. Blocks are only stored at different memory locations, but the

structure of the matrix remains untouched.

For looking-up vector elements used to multiply with one matrix block, the column index of the matrix block is

required, see Figure 1c. These indices are stored in the same order as described previously. All threads that are used

to load one particular matrix block, also load the column index for that block. Since each thread accesses the same

memory location, and because column indices are stored consecutively in memory, this transfer is always coalesced.

Using the column index, block-size and thread index, the index of the vector element is computed and used for

looking-up the vector element. This lookup is only coalesced if N ≥ 4. For smaller block-sizes, threads within a half-

warp can read data from multiple memory segments. In this case, multiple transactions (one per memory segment)

are needed.

3.5. Block-row sorting

Sorting block rows by their lengths results in an ordering so that block rows with similar lengths are spatially close

to each other. Thus, sorting reduces the variation of block-row lengths for block rows assigned to the same thread

block, as shown in Figure 3. This in turn results in a more balanced computation within one thread block, leading to an

improved performance. Furthermore, the amount of empty matrix blocks used for padding (required after reordering

the matrix blocks) is reduced. As shown in Figure 2, sorting improves the performance in most cases. Additionally, for

matrices with a large variation in row-lengths (e.g. ’Circuit’ and ’Webbase’), an even larger improvement is obtained,

since the amount of added empty blocks is significantly reduced. Note that sorting block-rows does not influence the

performance of matrix ’Dense’. This matrix has homogeneous row lengths, so sorting does not change the order of

the rows.
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Since in general, the order of the block rows is changed, one extra index per block row has to be used, such that the

result is stored at the right position in the result vector. This ensures that sorting the block rows does not change the

result of an SpMV operation. Since only one extra value is transferred per block row, the added overhead is negligible

while the improvement can be significant. Note that sorting block rows improves the performance only if By > 1. If

By = 1, no sorting is required since only one block row is processed per thread block.

3.6. Fine tuning

The MBR mapping yields in most cases the best performance. One drawback of this mapping is that the amount

of thread blocks is relatively low compared to the block-row mapping strategy, while the number of computations per

thread is high. For example, using the MBR mapping, matrix ’Dense’ with M = 2000, 256 threads per thread block

and N = 1, each thread block maps to 256 rows in the matrix. So, in total 8 thread blocks are used for the multiplication

operation. Clearly, this number is too low to reach a good utilization of the GPU. However, by setting Bx = 2, twice

the amount of thread blocks are created because By is halved, leading to better performance. Note that another way

of increasing the amount of thread blocks is by increasing N, see Table 1. Additionally, for matrices having a high

variation in row length, increasing Bx further reduces the number of empty blocks required for block-row padding,

which also results in better performance figures, see Section 6.1.

3.7. Final SpMV mapping

Throughout this paper we use the MBR mapping combined with block-row sorting and block reordering. Because

the number of thread blocks is the smallest, and the number of steps is the largest (Table 1), the amount of work per

thread is the largest among our mapping strategies. In general, this results in a higher memory throughput, as shown

in Figure 2. Finally, in a few cases it is worthwhile to increase Bx (see ’Best’ performance in Figure 9), however for

our performance analysis from Section 5 we have used Bx = 1.

Further, textures are used to enable cached memory accesses, and thus to improve the memory throughput when

fetching vector values, similar to [4]. The effects of cached memory accesses is significant if N < 4. For N ≥ 4,

the improvements are minimal, since the memory transactions are already close to optimal. Finally, the results in

Section 6 show that this method delivers the best performance in most of the test cases. However, if M is small, also

BT will be small. In these cases Bx should be increased, see above.

4. Parallel (Multi-GPU) Conjugate Gradient

Algorithm 1 shows the pseudo-code of our parallel (multi-GPU) Jacobi-preconditioned CG method, the steps of

which will be explained throughout this section.

4.1. Parallel SpMV

Since the computation of one element in the result vector is independent from the computation of other elements

in the result vector, the SpMV operation is parallelized by distributing the computation of the elements in the result

vector over the available GPUs.

Because the BCSR format represents a sparse matrix by a collection of block rows, the matrix is divided in a

certain number of segments of consecutive block rows, where each segment has a similar amount of matrix blocks.

Each segment is then mapped to one GPU. Sorting the block rows as described in Section 3.5 is preferably done after

the segments are created. If sorting is performed prior to segmentation, this results in an unbalanced GPU load, i.e.,

the block rows assigned to the first GPU will generally be longer than the block rows assigned to the other GPUs. Note

that in order to perform an SpMV operation, vector x must be available to each individual GPU. Accordingly, sub-

matrix Ai of (global) matrix A, stored on GPU i, is multiplied by x, see Figure 4. The result of the SpMV operation

on GPU i, is bi = Aix, where bi is a vector which size corresponds with the number of rows of sub-matrix Ai, lines 1

and 14 of Algorithm 1.
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Figure 4: Block distribution over two GPUs. Each GPU is

assigned a similar amount of matrix blocks: here, each GPU

processes 19, 4 × 4 matrix blocks, distributed over a (differ-

ent) number of block-rows.

4.2. Vector operations

Standard vector operations, like addition, subtraction, scalar multiplication or element-wise multiplication, can

easily be parallelized. Figure 4 shows the distribution of vector b over two GPUs, where each part, bi, matches the

number of rows of the sub-matrix assigned to GPU i, i = 1, ..., n, with n the number of GPUs. Other vectors appearing

within the CG method are distributed similarly among the available GPUs, see Algorithm 1.

Since standard vector operations need to access vector elements with the same indices, no dependencies exist

between the data segment of GPU i and the data of other GPUs, i.e., all required data is stored in the memory of

GPU i. This means that it is possible to group such vector operations in one CUDA kernel, and thus perform a larger

number of vector operations sequentially, without the need to synchronize the GPUs. For example, in Algorithm 1,

all vector operations in lines 2 to 6 are performed by one CUDA kernel – CG1. This is advantageous, as shown in

Section 5.2.

4.3. Vector reductions

A parallel vector reduction [20] using multiple GPUs requires more effort. Since each GPU contains only a part of

a complete vector to be reduced, a final reduction needs to be performed among these parts to yield the final result, see

function parallel_reduction. Before the final reduction can be computed (line 3), each GPU must have finished

computing its (partial) reduction and must have stored its result in the host memory, line 1. By synchronizing among

the GPUs, one can assure that each GPU has finished its work. Finally, each host thread (initiating computations

on one GPU) computes the final reduction result, by collecting and reducing the results of all GPUs, which were

previously stored in the host memory.

In order to prevent race conditions, a synchronization barrier among GPUs would also be required, after computing

the final reduction per host thread. If this synchronization is omitted, a thread can for example perform a subsequent

reduction and overwrite the previous reduction result. Preventing overwriting previously stored values, without using

a synchronization point, can only be guaranteed if two successive parallel reductions use different storage locations.

In Algorithm 1, function parallel_reduction uses the latter approach, which explains the need for three temporary

vectors tji, with j = 1, 2, 3. Although additional storage is required, the reduction in the number of synchronization

points among GPUs results in improved overall performance.

4.4. Parallel CG

The CG method is parallelized by replacing each vector operation, reduction and SpMV operation, by their parallel

equivalent, see Algorithm 1. Since the parallel SpMV operation requires a complete vector v, and each GPU stores

just a part vi of the complete vector, that vector has to be reconstructed and updated at each iteration on each GPU.

First, each vector part, vi, is copied to the host memory by host thread i; this is denoted by vhost,i ← vi in line 11.

Synchronizing among the GPUs (line 12) ensures that after the synchronization point, each individual part of v is

available in the host memory. Then, each host thread copies the other parts of v to their assigned GPU, denoted by

v ← vhost,j in line 13. Once v is reconstructed on a GPU, that GPU can start immediately performing the SpMV

(line 14), followed by an element wise multiplication in line 15, which is denoted by ’·∗’.
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When vector vi is computed on a GPU, the corresponding part of the complete vector v, stored on the same GPU,

is also updated. This is denoted by v← vi in line 29, and is combined with other vector operations in order to increase

the memory throughput.

Algorithm 1: Parallel CG on multiple GPUs.

Input : Matrix A and vector b, c: preconditioner, n: number of GPUs, i: index of GPU i, TOL: tolerance, and

niter: maximum number of iterations.

Output: Vector x, with Ax = b.

1 ri = Aix /* SpMV */;

2 ri = bi − ri /* CG1 */;

3 wi = ci · ∗ri /* CG1 */;

4 vi = ci · ∗wi /* CG1 */;

5 t1i = wi · ∗wi /* CG1 */;

6 t2i = vi · ∗vi /* CG1 */;

7 v← vi /* CG1 */;

8 α = parallel reduction (t1i, n, i);

9 r = sqrt (parallel reduction (t2i, n, i));

10 for ki ← 0 to niter ∧ r < TOL do

11 vhost,i ← vi;

12 SyncGPUs();

13 foreach 0 ≤ j < n ∧ j , i do v← vhost,j;

14 ui = Aiv /* SpMV */;

15 t1i = ui · ∗vi /* CG3 */;

16 t = α/ parallel reduction (t1i, n, i);

17 xi = xi + tvi /* CG4 */;

18 ri = ri − tui /* CG4 */;

19 wi = ci · ∗ri /* CG4 */;

20 t2i = wi · ∗wi /* CG4 */;

21 β = parallel reduction (t2i, n, i);

22 s = β/α;α = β;

23 if β < TOL then

24 t1i = ri · ∗ri /* CG2 */;

25 if parallel reduction (t1i, n, i) < TOL then

26 return x;

27 vi = ci · ∗wi + svi /* CG5 */;

28 t3i = vi · ∗vi /* CG5 */;

29 v← vi /* CG5 */;

30 r = sqrt (parallel reduction (t3i, n, i));

31 ki = ki + 1;

Algorithm 2: parallel reduction(xi, n, i)

Input : Vector xi, n: number of GPUs, and i: index of current GPU.

Output:
∑

xi

1 ri =
∑#xi

j=1
xi, j; /* Parallel reduction */;

2 SyncGPUs();

3 return
∑n

j=0 r j; /* Collect and return */;

11



5. Performance analysis

In this section we analyze the performance of the CG method described in Section 4. Since the operations ap-

pearing in the CG method are bandwidth limited, the best performance is reached when the memory throughput is

maximized. Thus, here we focus on analyzing the memory throughput of our method. First, the pure memory through-

put is obtained for different kernel configurations. Next, the actual performance and scalability of the operations are

estimated, which leads to the (maximum and average) performance estimate of the complete CG method. When

multiple GPUs are used, also the memory throughput between the devices plays an important role. All observations

are combined into a model, which is then used to estimate the theoretical maximum performance and the average

performance of the CG method, given the properties of both the matrix and hardware. Furthermore, this model is also

used to determine the scalability of the CG method, given an unseen linear system.

The analysis and performance estimations are performed on a machine equipped with an Intel Q6600 quad-core

CPU and two NVidia GTX280 GPUs managed by an NVidia nForce 790i SLI chipset.

5.1. Memory throughput estimation

The CG method consists of two different types of operations: vector operations and the SpMV multiplication.

Each kernel implementing these operations requires a suitable run-time configuration, in which the thread block and

grid dimensions are specified. The thread block dimensions are in general fixed, while the grid dimensions can either

be fixed or variable. To reveal the behavior of each configuration, we have performed a simple benchmark, in which

a number of n vectors of a given size m are loaded from (global) memory. The results presented in Figure 5 were

obtained by repeating this test for different vector sizes m and different numbers n of vectors. For each configuration

the same amount of data is transferred.

For fixed grids, the minimum number of thread blocks BT needed to fully occupy the device is given by BT =

1024 P/T , with 1024 the maximum number of threads per multiprocessor, P the number of multiprocessors and T the

number of threads per thread block. In this case, each thread executes a loop, and in each step n vector elements are

loaded.

With variable grids, BT = ⌈m/T ⌉, so that the number of thread blocks directly depends on the problem size and

the number T of threads per block. In this case, each thread loads exactly n vector elements. Therefore, the total

number of thread blocks needed to cover the complete computation is much larger than with fixed grids. Since the

amount of work per thread block is independent of m, the kernel start-up cost (overhead) per thread block is relatively

high compared to the total time used by one thread block, which results in a lower memory throughput.

The variation in throughput with the number of memory transactions can be approximated using a sigmoid func-

tion, see Figure 5. For vector operations, fixed grids deliver in general the best performance, while variable grids also

give satisfactory results, if each thread loads more than one vector, i.e., n ≥ 2. Therefore, all vector operations are

implemented using a fixed-grid approach.

If a fixed-grid approach is used for the SpMV operation, an extra loop would be needed in the CUDA kernel,

which would result in a larger amount of registers being used. This would negatively affect the occupancy of the

SpMV kernel, and so its performance. Thus, the SpMV operation (Section 3) uses a variable-grid approach. Since the

SpMV kernel transfers a large amount of data in a loop, a high throughput is obtained, thus justifying the choice of a

variable-grid.

Figure 5 shows the graph of the memory throughput versus the total number of transferred elements. We use the

following scaled and shifted sigmoid function to model the memory throughput

B(x, µ, σ, ν) = ν

(

1 + e−
(

log2 x−µ

σ

)
)−1

, (3)

with x the total number of transferred elements, and µ, ν and σ, model parameters. Further, the Levenberg-Marquardt

algorithm [33] was used to fit the sigmoid curve, leading to the (hardware-specific) parameters given in Figure 5. Note

that all graphs below, in which Equation 3 is used, are plotted using a logarithmic scale.

In order to reach the best memory throughput, each multiprocessor must be fully occupied, i.e., each multiproces-

sor should have at least the maximum number of threads running. Also, each multiprocessor must initiate as many as

possible memory transactions. For example, the NVidia GTX280 GPU can handle up to 1024 threads per multipro-

cessor and contains 30 multiprocessors, hence a minimum number of 30, 720 threads must be active to fully occupy
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the GPU. If each thread initiates exactly one memory transaction, each kernel launch introduces a relatively large

amount of overhead compared to the memory latency, hence the relatively low throughput in this case, see Figure 5.

Further, to saturate the memory bus, each thread needs to initiate a large number of memory transactions, such that

latencies can be hidden. If each multiprocessor is fully occupied, and each thread performs approximately 8 memory

transactions, about 50% of the maximum throughput ν is used. According to Equation 3, this happens if log2 x−µ = 0.

Therefore,

µ ≈ log2(P × 1024 × 8). (4)

Multiplying the total number of memory transactions again by 8, corresponds to 83% of maximum throughput ν. The

maximum throughput, ν, is reached when the total number of memory transactions is multiplied again by 8, which

corresponds to a total of 16 × 106 memory transactions.

Parameter σ represents the ’width’ of the range in Figure 5, where the throughput increases the most. In Figure 5

this range starts where the GPU is fully occupied, with one memory transaction per thread, and ends where 83% of

the maximum throughput is reached. The center of this range is clearly 2µ, so that σ can be approximated by

σ ≈
µ − log2(P × 1024)

2
≈

log2(P × 1024 × 64) − µ

2
, (5)

and will be about 1.5 for the GTX280 GPU. On other GPUs similar figures are expected, with the exception that the

number of multiprocessors does affect parameters µ, σ and ν.

Equation 3 approximates the memory throughput for a specific GPU. If a particular kernel is bandwidth limited

(similar to those implementing the SpMV and vector operations), one can use this approximation to estimate the total

execution time of the kernel, given the problem size. However, the computations performed by a kernel do change

slightly the estimation parameters.
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Figure 5: Measured and estimated (’Est’) memory throughput for

fixed grids (solid), with µ = 17.9, σ = 1.5, ν = 119, and variable grids

(dashed), µ = 17.9, σ = 1.5, ν = 109, using an increasing amount

n = 1, 2, 4, 8 of loaded vectors.

5.2. Analysis of vector operations

A number of vector operations, within the CG algorithm, can be combined into a few larger kernels. This allows

better hiding of memory latencies, so that the performance is improved. Figure 6a shows the measured throughput for

each combined vector operation and vector reduction (’Red.’), whereas Table 2 shows the number of floating point

operations and transferred elements for each kernel. Further, Algorithm 1 shows which operations are executed by

which kernel listed in Table 2. The data is obtained from both single and dual GPU benchmarks of the CG method,

using a large set of test matrices[16]. The numbers of transferred elements and flops in Table 2, are obtained by

counting the number of vectors loaded or saved by the kernel and by counting the number of floating point operations

performed by that kernel. This information is obtained via Algorithm algorithm 1. For example, kernel CG1 load

vectors ri,bi and ci, and writes vectors ri,wi, vi, v, t1i and t2i, which makes for a total of x × 9 memory transactions,

with x the vector size. Furthermore, 5 floating point operations can be identified for kernel CG1. The other numbers

in Algorithm algorithm 1 are derived similarly.

These results show trends similar to those in Figure 5. Note that these kernels actually perform a number of

computations, so that slightly more time is consumed, which affects the maximum throughput. Furthermore, one

must be aware that Figure 6a shows the performance versus the number of transferred elements. Figure 6b shows the

performance as a function of the vector size x, in which large differences are visible between each kernel. A kernel
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processing multiple vectors of size x, initiates more memory transactions. Such kernels will reach the maximum

performance for smaller vector sizes, while kernels processing only one vector, reach the maximum performance for

larger vectors. Therefore we have decided to combine as much as possible vector operations, such that the performance

of these kernels is increased.
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Figure 6: Measured throughput per combined CG vector operation as a function of the number of memory transactions (a) and as a function of the

vector size (b). Lines represent performance estimates using the parameters in Table 2; the dots are the actual measurements. The graph contains

results from both single and dual GPU setups. In the dual-GPU case, individual results of both GPUs are plotted.

Kernel transactions m FLOPS µ σ ν

CG1 x × 9 x × 5 19.2 1.45 94

CG2 x × 2 x × 1 19 1.45 117

CG3 x × 3 x × 1 19 1.45 120

CG4 x × 9 x × 6 19.3 1.45 116

CG5 x × 6 x × 4 19.2 1.45 106

Red x × 1 x × 1 19.7 1.4 120

Table 2: Number of memory transactions and FLOPS for each

kernel used in Algorithm 1. Here x is the vector size, and

parameters µ, σ and ν are used to approximate the memory

throughput of that specific kernel.

The performance of the vector reduction kernel, Figure 6b, is significantly lower compared to other vector oper-

ations. Since the reduction kernel performs only x × 1 memory transactions, with x the vector size, this kernel only

performs well for large vectors. Furthermore, parameter µ has a slightly higher value, because a complete vector

reduction launches at least two kernels. For the dual-GPU cases, also some time is spent on synchronization among

the devices explains why the estimations do not agree with the measurements, see ’Red. 2 GPU’ in Figure 6a. Given

these observations one can conclude that vector reductions can be problematic for the (parallel) CG method, even

though an efficient algorithm [20] was used to implement them.

5.3. Analysis of the SpMV operation

Estimating the performance of the SpMV operation is more difficult because additional aspects of the matrix affect

it, like the average density of the matrix blocks. By estimating raw performances, the block density is neglected, i.e.,

we consider that each matrix block contains 100% non-zeros, which artificially increases the number of non-zeros.

By doing so, we get more insight in the behavior of the SpMV operation on the used hardware and the different kernel

mappings, since the measurements are not affected by the average block density. However, variations between row

lengths still influence the distribution of the computations, and thus the efficiency of SpMV. Figure 7 shows the raw

memory throughput versus the number of memory transactions (per block size), which gives an estimate for the upper

limit or maximum throughput for a particular block size and the average throughput. Note that Figure 7 contains

measurements from both a single and dual GPU setup for the set of matrices in [16]. For the dual-GPU results,

each measurement of each individual GPU is presented. The upper limit and average throughput are estimated using

Equation 3 and the parameters are given in Table 3. Note that this behavior agrees with the observations in Figures 5

and 6. The ’average’ throughput parameters were obtained by fitting the non-linear sigmoidal curve in the measured

data using the Levenberg-Marquardt algorithm. The ’maximum’ throughput parameters were obtained by adapting

the average parameters such that the envelope of the measurements fits the sigmoidal function.
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(a) 1 × 1 blocks.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 100
 1000

 10000
 100000

 1e+06
 1e+07

 1e+08
 1e+09

R
aw

 t
h
ro

u
g
h
p
u
t 

(G
B

y
te

/s
ec

)

Memory transactions

2x2
Max
Avg

(b) 2 × 2 blocks.
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(c) 4 × 4 blocks.
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(d) 8 × 8 blocks.

Figure 7: Measured raw throughput versus total number of memory transactions for the SpMV operation. The graph contains results from both

single and dual GPU setups. In the dual-GPU case, individual results of both GPUs are plotted.

Table 3: The number of transactions and FLOPS for our SpMV operation using N × N blocks, where e is the total number of stored elements.

Parameters µ, ν and σ are used to approximate the maximum raw memory throughput (performance) of that specific SpMV operation.

Block-size transactions m flops µmax σmax νmax µavg σavg νavg

1 × 1 2 × e 2 × e 19 1.2 85 19.08 1.35 52.12

2 × 2 2 × e 2 × e 19.6 1.4 135 19.65 1.15 80.92

4 × 4 2 × e 2 × e 19.9 1.4 140 20.39 1.28 117.70

8 × 8 2 × e 2 × e 20.11 1.5 145 20.81 1.51 132.39

The difference between the measured throughput and its estimated upper limit is mainly caused by the variation

of the row lengths. Further, if most rows contain less than 16 blocks, the expected throughput and performance is

usually lower than the upper limit. 4×4 and 8×8 blocks usually deliver the best raw performances, whereas 2×2 and

1× 1 blocks also have less efficient vector lookups. Thus, in general, the larger the blocks, the less the extra overhead,

yet larger blocks can result in a lower block density, which degrades the overall performance. Furthermore, as noted

in Section 3.7, if N ≥ 4, the lookup of the vector elements are coalesced by default. This is also clearly visible in

the results presented in Figure 7. For N = 1 and N = 2, this effect is visible as the variation of the measurements

compared with the average throughput, i.e., the difference between the maximum and the average throughput. The

measurements for N = 4 and N = 8 show that the maximum and average throughput are much more closer to each

other compared to the smaller block sizes, as expected.

5.4. Scalability

The scalability of the CG method on a single GPU depends on the scalability of each individual operation. Vector

operations scale well if the maximum memory throughput is reached. If the total number of memory transactions

is larger than 5 million, these operations scale well, see Figure 6a. By combining multiple vector operations in

a single kernel, the total number of memory transactions is increased for that kernel, which eventually increases
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the performance, see Figure 6b. Unfortunately, vector reductions are problematic, because the amount of memory

transactions is low and the operation itself cannot be combined with other vector operations. This results in a low

memory throughput and a poor scalability. Furthermore, a vector reduction using multiple GPUs requires some

additional synchronization among the devices, which further degrades the performance and scalability of the method.

The SpMV operation scales also well, if the maximum throughput is reached, i.e., when about 5 million memory

transactions are initiated. For each element in the sparse matrix, roughly two values are looked up. One matrix block

value, and one corresponding vector value. This implies that sparse matrices with more than 2.5 million elements can

achieve a good scalability.

When the CG method is executed on multiple GPUs, vectors and matrices are divided in parts (segments), such

that each individual GPU processes a part of the vector or matrix, see Section 4. This division also means that the total

number of memory transactions per GPU is distributed among all available GPUs. Recalling Figure 5, a performance

drop can be expected if the throughput does not reach the maximum. If the number of memory transactions is

larger than 5 million, this performance drop is relatively small. Therefore, the individual operations scale well if

the problem is large enough, although the communication between the devices does affect the scalability of the CG

method significantly. Furthermore, when the CG method is executed using multiple GPUs, extra synchronizations are

needed: one for updating vectors on each GPU, and one synchronization within each vector reduction. However, the

time spent on each synchronization is constant.

5.5. Inter-device communication

When the CG method, or other similar methods, is executed on multiple GPUs, the GPUs need to communicate

with each other in order to update their current result vector. Since on our test system, GPUs cannot directly exchange

data with each other, each GPU transfers data via the PCI Express bus and the system memory. Because the bandwidth

between the GPU and the system memory is limited, and in general, an order of magnitude lower than the bandwidth

of the memory bus on the graphics card, this communication negatively and significantly affects the total performance,

see Figure 8. The effective throughput between the GPUs is also estimated using Equation 3. On our test system we

found the following parameters, µ = 16.7, σ = 1.4 and ν = 10 GByte/sec, indicating that the maximum throughput

is reached when more then one million elements are transferred. Given this approximation, the total time for this

operation can be estimated for different data sizes.

First generation GPUs were not able to directly communicate with each other. However, by involving the host

memory, GPUs could indirectly exchange data, see above. Current generation GPUs (Fermi) and motherboard

chipsets support direct communication between GPUs via the PCIe bus. With the release of CUDA 4.0, a large

single address space can be created using Unified Virtual Addressing (UVA), which encompasses the memory of

each individual GPU and the host memory. Therefore, by interchanging GPU pointers, GPU data can directly be

exchanged. This simplifies the communication mechanism and improves the memory throughput, thus increasing the

performance of the parallel CG method, see [32, 30, 26, 31].

5.6. Performance of the CG method

In order to evaluate the performance of the CG method, as shown in Algorithm algorithm 1, and given the prop-

erties of a specific problem, the maximum and average performances are estimated. Since all operations appearing in

the CG method are bandwidth limited, the memory throughput is used to estimate the total running time. Given the

number of transferred elements and the corresponding estimated memory throughput, the time per iteration T (x, e) is

obtained as follows,

T (x, e) = Tspmv(e) + TCG2(x) + TCG3(x) + TCG4(x) + TCG5(x) + 3Tred(x), (6)

where Tspmv denotes the time spent for the SpMV operation, TCGi on vector operations of kernel CGi, and Tred is the

vector-reduction timing, e the total number of elements stored in the matrix (including the stored zeros) and x the

dimension of the matrix and vectors. Note that kernel CG1 is executed exactly once and does not contribute to the

time per iteration. Each individual timing in Equation 6 is given by

T (x) =
4m

B(m, µ, σ, ν)
, (7)
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with m the amount of transferred elements (which is a function of x or e) and µ, ν and σ the fitting parameters;

each timing can be estimated using the parameters and functions in Tables 2 and 3. Since Algorithm 1 executes

approximately 3 vector reductions per iteration, the corresponding timing Tred is multiplied by a factor of 3.

The total number of floating point operations per iteration can be computed by

F(x, e) = 2e + 15x, (8)

with x the dimension of the problem and e the total number of elements stored in the matrix, including the zeros stored

in non-empty blocks. The raw performance is then given by

P(x, e) =
F(x, e)

T (x, e)
, (9)

were T end F are given by Equations 7 and 8.

Figure 8a shows the estimated raw performance, P(x, e), of the CG method on one GPU. In order to estimate

the real performance, the raw performance of the SpMV operation is multiplied by the average density of the matrix

blocks, i.e.,

F(x, e, dN) = 2edN + 15x, (10)

with dN the average matrix-block density for a N × N block. Furthermore, if the matrix contains rows with uneven

lengths, a large number of computations are not contributing, due to the added empty blocks (Section 3.5). Note that

it is difficult to quantify this lost performance, because it requires a lot more information about the input matrix and

the used hardware.

5.7. Performance of the parallel CG method

The parallel performance of the CG method is estimated similarly, but two GPUs run in parallel with approx-

imately 50% of the data. In this case, the communication between the devices and the synchronization time also

affects the performance of the parallel CG method. In general, the total time per iteration using n GPUs becomes

Tp (x, e) = max

(

T1

(

x

n
,

e

n

)

,T2

(

x

n
,

e

n

)

, . . . ,Tn

(

x

n
,

e

n

))

+ Tidc(x n) + 4Tsync, (11)

where Ti is the computation time of GPU i, for the sub-matrix (segment) stored on that GPU, Tidc is the time spent

on communication (Section 5.5) and Tsync is the average time spent for synchronization (35µs on our test system).

Each GPU has to copy an x/n-sized vector to the main memory, then (n− 1), x/n-sized vectors are copied to n GPUs,

which yields a total data transfer of x n elements. If GPUs are able to communicate directly using the Unified Virtual

Addressing, each GPU transfers x/n elements, hence Tidc(x n) becomes Tidc(x).

Figure 8a shows the maximum raw performance of the CG method, executed on one GTX280 GPU. In general,

the more elements a matrix has and the denser it is, the better the performance becomes. If the density of a sparse

matrix is relatively high, the relative time spent on vector operations is quite small, such that the SpMV operation

dominates the computation. If the dimension of the matrix is larger, or the matrix is sparser, the relative time of

the SpMV operation becomes smaller, so that vector operations influence more the total performance. Further, if

the matrix is large and very sparse, also the communication time becomes important when multiple GPUs are used.

This behavior is shown in Figure 8b. For example, having a relatively dense matrix containing approximately 105

elements, a performance of a few GFlops is to be expected at most. If the dimension increases, while the number

of elements remains the same (i.e. the matrix becomes sparser), the performance will increase. In that case the

performance of the vector operations dominate the total computation time. Increasing the dimension, results in better

performances for the vector kernels. Contrary, having a relatively dense matrix containing 5 million elements, results

in a maximum raw performance of about 20 GFlops. Increasing the dimension, thus making the matrix sparser,

results in a decrease of the raw performance. In this case the SpMV operation dominates the total computation time.

By increasing the dimension, more time is spent on vector operations. But at that scale, they do not yet reach the

maximum performance, see Figure 6b. For a matrix containing about 2.5 million elements, the SpMV and vector

operations seem to be balanced.

Finally, Figure 8c illustrates the speedup S = T/Tp of the CG method on the two GTX280 GPUs, given the

parameters of the problem. The thick black line represents the region where the speedup S ≈ 1. For problems falling
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below that line, a slowdown can be expected, while for cases above that line, a speedup should normally be obtained.

For different systems and GPUs the exact location of this line may vary. This ’map’ quickly shows if it is worthwhile

to use multiple GPUs for a particular problem.

Figures 8d - 8f show the average raw performance using one and two GPUs and the speedup when two GPUs are

used. For these plots the average parameters in Table 3 were used. Section 6.2 compares the timing results for a large

set of test matrices with the average estimated time derived by applying the method described in this section.

The density of the matrix blocks dN , does not have a significant influence on the speedup, i.e., on the blocks stored

on each GPU, the average densities are similar, such that the performances on each GPU are similar. Hence, the

speedup will not be affected significantly.
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(b) Dual-GPU maximum performance.
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(c) Maximum speedup of the CG method on two

GPUs.
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(d) Single-GPU average performance.
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(e) Dual-GPU average performance.
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(f) Average speedup of the CG method on two

GPUs.

Figure 8: Estimated maximum (a)-(b) and average (d)-(e) raw-performances and speedup ((c) and (f)) for the CG method using 4 × 4 matrix

blocks. Black lines depict dense and diagonal matrices, whereas the region between them represents sparse matrices. The black curve in (c) and (f)

represents the area in which the speedup is approximately one.

6. Results

In this section the results of our SpMV implementation and (parallel) CG method are presented. Both our SpMV

and CG methods were benchmarked using different collections of test matrices/problems. The machine used for

benchmarking was equipped with an Intel Q6600 quad-core CPU and two NVidia GTX280 GPUs managed by an

NVidia nForce 790i SLI chipset. Additionally, Sections 6.1 and 6.4 also present results using an NVidia GTX570

GPU.

First, the results of our SpMV implementation are compared to those in [4, 8, 28]. Next, the actual and estimated

performances of our CG method using one and two GPUs are used to verify the model presented in Section 5. Finally,

we compare the performance of our CG implementation to a similar implementation using the CUSP library[3], on

different GPUs and with different precision settings.
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Name Dim (×103) nz (×106) max avg d2 d4 d8

Dense 2 × 2 4 2000 2000 1.00 1.00 1.00

Protein 36 × 36 4.3 204 119 0.86 0.66 0.48

FEM/Spheres 83 × 83 6 81 72 0.77 0.55 0.34

FEM/Cantilever 62 × 62 4 78 64 0.75 0.54 0.35

Wind tunnel 217 × 217 11 180 53 0.82 0.70 0.51

FEM/Harbour 46 × 46 2.3 145 50 0.77 0.55 0.37

QCD 49 × 49 1.9 39 39 0.64 0.47 0.28

FEM/Ship 140 × 140 7.8 102 55 1.00 0.63 0.34

Economics 206 × 206 1.2 44 6 0.29 0.10 0.04

Epidemology 525 × 525 2.1 4 4 0.41 0.20 0.05

FEM/Accelerator 121 × 121 2.6 81 21 0.64 0.23 0.08

Circuit 170 × 170 0.95 353 6 0.40 0.15 0.06

Webbase 1000 × 1000 3.1 4700 3 0.47 0.21 0.09

Rail 1092 × 4 11279 56181 3 0.48 0.20 0.03

Table 4: Properties of the test matrices from [38].

Dim is the dimension of the matrix, nz the total num-

ber of non-zeros, max the largest number of non-

zeros in a row and avg is the average number of non-

zeros per row; dN is the average block density when

the matrix is represented using N ×N blocks. d1 = 1

for all matrices.

6.1. SpMV: performance comparison

Figure 9 shows the results of our SpMV approach as described in Section 3.7 for varying block sizes. ’Best’

denotes our best result after increasing parameter Bx as described in Section 3.6. ’NV Hyb’ denotes the hybrid method

of Bell and Garland [4] (implemented in CUSP 0.2, [3]), ’Best CNC’ shows the best result obtained by Buatois et al.

[8] and finally, ’CUSPARSE’ denotes the result of the CUSPARSE library [28] from CUDA 4.0 in which the CSR

storage was used. The test set used in this benchmark was introduced in [38] to evaluate the performance of the SpMV

operations on various multi-core platforms; some of the properties of the test matrices are given in Table 4. Finally,

we have performed this benchmark on both a GTX280 and a GTX570 GPUs, in single and double precision.

The results in Figure 9 show that our method gives the best performance in most cases, except for matrices that

have very few non-zero elements per row. Since such matrices have in general a low average block density (dN in

Table 4) for larger blocks, they generally cannot benefit from the BCSR storage format. For example, in the worst

case scenario, the usage of 2×2 blocks means that 75% of the computations and memory throughput are useless since

blocks contain only one non-zero element. In fact, matrix ’Economics’ represents just such an example: it has on

average a block density of 29% for 2 × 2 blocks.

Matrices ’Circuit’, ’Webbase’ and ’Rail’ also exhibit poor performance figures. Table 4 shows that the number of

non-zeros per row is highly unbalanced. Matrix ’Webbase’ has on average 3 elements per row, yet a few rows contain

several thousands elements. In such cases, a lot of threads become idle, while others are busy with processing very

large block rows. Combining this with the low number of non-zeros per row, makes that these matrices are difficult to

process on GPUs using BCSR. By changing the layout of the mapping as discussed in Section 3.6, the performance

is improved, see ’Best’ performance.

Matrix ’FEM/Ship’ shows a large performance boost for 2 × 2 blocks compared to 1 × 1 blocks. Table 4 shows

that d2 = 1, which means that each block contains 4 non-zero elements. Hence, no computing resources are wasted.

This clearly shows the benefit of the BCSR layout compared to the others, if blocks have high densities dN .

Since the test set in [38] is small, we have also benchmarked the implementations of Buatois et al. [8], Bell and

Garland [4] and ours on a substantially larger set of matrices. This large set contains all matrices from Harwell-Boeing,

SPARSKIT, the sample collection of The University of Florida [16], Williams et al. [38] and the matrices described

in Table 5, making for a total of 486 matrices. We have benchmarked each implementation on a GTX570 GPU.

We found that in 95% of the cases our method performs better than the hybrid implementation of Bell and Garland.

Further, we measured a median speedup of about 8× and a total speedup, with respect to the total computation time

(wall-clock time), of about 1.25×. Because of the large difference between the median and total speedups, after

careful inspection of the results, we found that our method performed in 3 cases substantially worse than the method

of Bell and Garland. It turned out that these matrices have highly unbalanced row lengths, which made our method to

perform poorly, see discussion in Section 3. After neglecting these outliers, the speedup becomes 2.5× in favor of our

method. The method of Buatois et al. [8] performed in 33% of the cases better than ours and significantly better than

the hybrid method of Bell and Garland [4]. This happened for most of the matrices contained in the Harwell-Boeing

set. However, in all these cases it turns out that a parallel CPU implementation of Algorithm 1 (using 4 threads on our

quad-core CPU) was still faster than any of the GPU methods. Finally, comparing the total computation time for the
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(a) Single-precision SpMV performance on a GTX280
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(b) Double-precision SpMV performance on a GTX280
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(c) Single-precision SpMV performance on a GTX570
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(d) Double-precision SpMV performance on a GTX570

Figure 9: Single and double precision performances for the SpMV operation using various storage formats performed on a GTX280 and a GTX570

GPUs. Numbers in the legend indicate block sizes for our method, ’Best’ indicates our best results after increasing parameter Bx as in Section 3.6,

’NV Hyb’ represents the hybrid format of [4, 3], ’Best CNC’ – the best result obtained by the method in [8] and ’CUSPARSE’ – [26] the CSR

implementation from the CUSPARSE library in CUDA 4.0.

complete set showed that our method was about 3.7× faster than the best implementation of Buatois et al. Note that

by neglecting the three outliers mentioned above, our method performed 6.1× better than their method.

Dense matrix-vector multiplication

The very good results obtained by our method for matrix ’Dense’ inspired us to use our representations for sparse

matrices to perform matrix-vector multiplications for dense matrices. We gradually increased the dimensions of a

square and dense matrix from 10 to about 8000, and measured the time taken to perform the multiplication by our

methods and function cublasSgemv from NVidia’s CUBLAS library, [27]. Our multiple-block-row mapping using

2 × 2 blocks yields exactly the same performance as the CUBLAS function, whereas using 1 × 1 blocks performed

poorly compared to CUBLAS. All other combinations, except Single-Block-Row with 1 × 1 blocks, perform better

than CUBLAS: the maximum performance is about 15% higher. More importantly, Single-Block-Row with 8 × 8

blocks reaches the peak performance at problem sizes 10 times smaller than when using the CUBLAS function. We

chose to use the Single-Block-Row mapping since the Multiple-Block-Row mapping is not efficient if the dimension
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is too small.

6.2. Performance of our Conjugate Gradient method
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(a) Performance and estimation using 1 × 1 blocks.
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(b) Performance and estimation using 2 × 2 blocks.
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(c) Performance and estimation using 4 × 4 blocks.
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(d) Performance and estimation using 8 × 8 blocks.

Figure 10: Performance and estimations for our CG methods using one and two GPUs. The x-axis represents the indices of the used matrices, as

found in Table 5. Table 6 shows the average relative-error and variance of the estimation compared with the actual results for each configuration.

Figure 10 shows the performances of our CG method using the SpMV approach from Section 3 (performed using

different block sizes), and the corresponding performance estimations, as described in Section 5. Since the estimations

are made for a single GTX280 GPU, we use the same GPU for comparing the results with the estimation. The

results in Figure 10 are ordered with respect to the dimensions of the matrices. The test set (see Table 5 for some

properties) represents a subset of the entire University of Florida sparse matrix collection [16], in which all matrices

are Symmetric Positive Definite.

The best performances were obtained for matrices ’Bone010’, ’af shell3’, ’nd24k’, ’nd12k’ and ’nd6k’ for each

block size. As shown in Table 5, these matrices have several millions of elements and have relatively high block

densities. Also the maximum and average numbers of non-zeros per row are close to each other. This implies that

each row has a similar amount of elements, and thus, a more balanced computation. Contrary, matrices ’F1’ and

’inline 1’, which have also a high number of elements, show a large deviation between the maximum and the average

number of non-zeros per row. This implies that computations are unbalanced, which is reflected in the performances

of these matrices.

In general, poor performances are obtained if (i) there is a large difference between the maximum and average

number of non-zeros per row, (ii) the dimension of the problem is too small or (iii) the number of non-zeros is small.

Increasing the block size increases the raw performance in general, but also the average block density can decrease,

which can result in a lower actual performance.

Within Figure 10 the dashed lines represent the estimated performance for the corresponding matrices. We have

analyzed the average relative error and the corresponding variance of the relative error, as shown in Table 6. From this
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Id Name Dim nz max avg d2 d4 d8

1 Trefethen 20 20 158 9 4.93 0.65 0.47 0.27

2 mesh1e1 48 306 8 6.37 0.36 0.20 0.17

3 Trefethen 150 150 2040 15 12.75 0.58 0.34 0.21

4 Trefethen 200 200 2890 16 13.89 0.57 0.34 0.21

5 bcsstk34 588 21418 47 36.17 0.76 0.52 0.34

6 msc00726 726 34518 88 46.89 0.55 0.38 0.26

7 msc01050 1050 29156 128 27.60 0.60 0.41 0.23

8 plbuckle 1282 30644 44 23.64 0.54 0.36 0.27

9 msc01440 1440 46270 45 32.13 0.62 0.42 0.24

10 nasa1824 1824 39208 42 21.49 0.52 0.35 0.23

11 Trefethen 2000 2000 41906 22 20.95 0.55 0.30 0.17

12 nasa2146 2146 72250 36 33.44 0.76 0.60 0.44

13 Chem97ZtZ 2541 7361 101 2.89 0.49 0.24 0.12

14 nasa2910 2910 174296 175 59.85 0.70 0.53 0.37

15 sts4098 4098 72356 784 17.59 0.43 0.22 0.13

16 nasa4704 4704 104756 42 22.26 0.53 0.33 0.22

17 crystm01 4875 105339 27 21.58 0.32 0.22 0.14

18 Kuu 7102 340200 98 47.88 0.99 0.71 0.45

19 Muu 7102 170134 49 23.94 0.5 0.35 0.22

20 bcsstk38 8032 355460 614 44.25 0.75 0.53 0.34

21 aft01 8205 125567 21 15.29 0.63 0.35 0.18

22 nd3k 9000 3279690 515 364.08 0.85 0.74 0.60

23 fv1 9604 85264 9 8.86 0.50 0.32 0.16

24 ted B 10605 144579 49 13.62 0.55 0.40 0.30

25 ted B unscaled 10605 144579 49 13.62 0.55 0.40 0.30

26 msc10848 10848 1229778 723 113.36 0.80 0.56 0.34

27 cbuckle 13681 676515 600 49.39 0.94 0.77 0.56

28 crystm02 13965 322905 27 23.11 0.32 0.22 0.12

29 Pres Poisson 14822 715804 50 48.26 0.73 0.47 0.31

30 Dubcova1 16129 253009 25 15.67 0.37 0.15 0.07

31 olafu 16146 1015156 89 62.81 0.89 0.69 0.50

32 bodyy4 17546 121938 9 6.94 0.49 0.24 0.12

33 nd6k 18000 6897316 514 383.18 0.84 0.73 0.59

34 bodyy5 18589 129281 9 6.95 0.49 0.24 0.12

35 bodyy6 19366 134748 9 6.95 0.49 0.24 0.12

36 Trefethen 20000b 19999 554435 29 27.72 0.53 0.29 0.15

37 Trefethen 20000 20000 554466 29 27.72 0.53 0.29 0.15

38 smt 25710 3753184 414 145.97 0.74 0.45 0.27

39 nd12k 36000 14220946 519 395.02 0.84 0.73 0.59

40 jnlbrng1 40000 199200 5 4.98 0.50 0.25 0.12

41 bcsstm39 46772 46772 1 0.99 0.50 0.25 0.124

42 gridgena 48962 512084 17 10.45 0.75 0.37 0.18

43 cvxbqp1 50000 349968 9 6.99 0.26 0.10 0.04

44 ct20stif 52329 2698463 207 51.56 0.82 0.57 0.36

45 nasasrb 54870 2677324 276 48.78 0.90 0.58 0.39

46 Dubcova2 65025 1030225 25 15.83 0.37 0.15 0.06

47 qa8fm 66127 1660579 27 25.11 0.51 0.29 0.16

48 cfd1 70656 1828364 33 25.87 0.46 0.24 0.13

49 nd24k 72000 28715634 520 398.82 0.84 0.73 0.58

50 finan512 74752 596992 55 7.98 0.40 0.14 0.06

51 apache1 80800 542184 7 6.71 0.39 0.19 0.09

52 thermal1 82654 574458 11 6.94 0.35 0.13 0.05

53 2cubes sphere 101492 1647264 31 16.22 0.28 0.09 0.03

54 cfd2 123440 3087898 30 25.01 0.55 0.30 0.17

55 Dubcova3 146689 3636649 49 24.78 0.42 0.22 0.11

56 bmwcra 1 148770 10644002 351 71.53 0.75 0.49 0.28

57 G2 circuit 150102 726674 6 4.84 0.45 0.16 0.06

58 F1 343791 26837113 435 78.06 0.68 0.38 0.18

59 inline 1 503712 36816342 843 73.09 0.69 0.39 0.21

60 af shell3 504855 17588875 40 34.83 0.84 0.65 0.46

61 parabolic fem 525825 3674625 7 6.98 0.33 0.13 0.05

62 apache2 715176 4817870 8 6.73 0.39 0.19 0.09

63 tmt sym 726713 5080961 9 6.99 0.50 0.25 0.12

64 bone010 986703 71666325 81 72.63 0.80 0.58 0.37

65 ecology2 999999 4995991 5 4.99 0.49 0.25 0.12

66 thermal2 1228045 8580313 11 6.98 0.34 0.12 0.04

67 G3 circuit 1585478 7660826 6 4.83 0.36 0.15 0.06

Table 5: Properties of the test matrices used for estimating the performance of our GPU mapping of the CG method. Dim is the dimension of the

matrix, nz the total number of non-zeros, max the largest number of non-zeros in a row and avg is the average number of non-zeros per row; dN is

the average block density when the matrix is represented using N × N blocks. d1 = 1 for all matrices.
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analysis and Figure 10 we can conclude that the estimated performance comes closer to the measured performance,

when the block size increases. According to Figure 7, this behavior is to be expected since the variation between the

maximum and average performances for the SpMV operation is larger if N < 4. Since the estimated performances are

closed to the measured ones, our estimation method from Section 5 can be used to compute a first indication of the

expected maximum and average raw performances, on unseen problems.

Block size #GPUs Average rel. error Variance

1 × 1 1 0.18 0.108

2 × 2 1 0.12 0.037

4 × 4 1 0.07 0.008

8 × 8 1 0.06 0.004

1 × 1 2 0.16 0.042

2 × 2 2 0.14 0.023

4 × 4 2 0.11 0.012

8 × 8 2 0.07 0.006

Table 6: Average relative-error, and the variance, of the estimated performance with respect to the measured performance.

6.3. Performance of our parallel CG method

Figure 10 also shows the performance results and the estimated performances for our CG method accelerated using

two GTX280 GPUs. The solid lines show the measured performance, whereas the dashed lines show the estimated

performance for the corresponding matrices. Table 6 shows the average relative error of the estimation.

The largest speedup and performance is obtained for matrix ’nd24k’. This matrix is relatively dense, i.e., about 400

elements per row on average, with a dimension of 72, 000 and a total of 28× 106 non-zeros. According to Figure 8b a

maximum raw performance of 42 GFlops/sec can be expected. Given the density d2 = 84%, the maximum expected

performance is about 35 GFlops, which agrees with the results in Figure 10 for 2 GPUs. The measured speedup is

about 1.7, which also agrees with the observations in Figure 8c. The dimension of the problem is relatively small,

which means that the vector operations do not perform optimal, see Section 5. However, most of the computation

time is spent on the SpMV operation, which is much larger than the time spent on the vector operations. This results

in a relatively large speedup of about 1.7. Note that according to our analysis, reaching a speedup of 2 is practically

impossible, see Section 5.

Figure 10 shows that in most test-cases the parallel performance is similar to the performance of the single GPU

case. For these problems it is not worthwhile to use extra computational resources. However, in a small number of

cases, the performance is significantly increased when two GPUs are used. Our model also reports similar perfor-

mances and speedups in those cases. This means that our approach can be used to determine the number of GPUs that

would solve a problem efficiently, given some properties of the corresponding matrix.

6.4. Performance comparison for the CG method

In this section we compare our GPU mapping of the CG method with a similar one using the CUSP library [3].

For a fair comparison, we have re-implemented Algorithm 1 (with the same preconditioner and an absolute tolerance

of 1e− 08) using CUSP. We performed a large number of benchmarks on both a GTX280 and a GTX570 GPUs using

single- and double-precision arithmetic. For each combination we measured the total time to solve a particular linear

system. The set of matrices used for benchmarking is a subset of the University of Florida Sparse matrix collection

[16], obtained as follows. We selected all matrices that were Symmetric Positive Definite and could fit in the system

(and GPU) memory. Furthermore, we selected all matrices that converged using single-precision arithmetic. Finally,

we obtained a set of 200 matrices originating from various problems. Table 7 shows a summary of our findings.

As can be seen from Table 7, our CG implementation performs significantly better than the CUSP-based one. For

each possible combination of precision and hardware, our implementation performed in about 98 % of the cases better

than the one using CUSP. Note that a comparable percentage was also found in Section 6.1, in which we compared

our SpMV operation using a larger set of matrices.

Since this test set contains matrices coming from various problems and with very different sizes, the time required

to solve a linear system varies a lot. Therefore, the average speedup is not completely reflected in the total speedup,

since a number of large matrices dominate the total computation time (wall-clock time).
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Method

GTX280 GTX570

Single-precision Double-precision Single-precision Double-precision

Time Speedup Med. Time Speedup Med. Time Speedup Med. Time Speedup Med.

CUSP 3108 1.00 1.00 2500 1.00 1.00 2031 1.00 1.00 1675 1.00 1.00

Ours 1285 2.41 5.73 1388 1.80 5.20 895 2.26 5.95 1058 1.58 5.69

Table 7: Performance comparison for the CG method using our implementation and CUSP [3]. ’Time’ represents the total time in seconds needed

to solve the complete set of linear systems, ’Speedup’ represents the speedup of the total time relative to the CUSP-based implementation, ’Med.’

denotes the median speedup of the individual test-cases relative to the CUSP-based implementation.

Switching from single to double precision yields similar average speedups, but the total computation time changes

slightly. For our implementation, the total time increases on both GPUs, while the total time for CUSP decreases.

Recalling the results presented in Figure 9, one can see that the performance difference between our method and

CUSP/Hyb is smaller for double precision than with single precision. However, our double-precision version is not at

all optimized.

Finally, we should point out that using double-precision arithmetic usually decreases the number of iterations

needed for convergence, which in turn influences the total computation time. In section Section 7.4 we further discuss

the differences between single- and double-precision performances.

7. Discussion

The analysis performed in Section 5 enables us to estimate the maximum and average performance of the CG

method, accelerated using modern GPUs. One can conclude that these estimates are close to the measured perfor-

mances (Section 6), provided that some conditions are met. First, the number of blocks per block row must not vary

greatly. If the variation in row lengths is large, threads may become idle, so that the overall performance drops. Sec-

ond, if the number of blocks per block row is very low, a larger error between the estimation and the real performance

can be expected. If these conditions are met, the average or maximum (raw) performance can properly be estimated by

considering the memory throughput. Furthermore, the larger the blocks, the smaller the variance (Figure 7, Table 6),

and the better the estimation becomes.

When using two GPUs, a speedup can be expected for matrices with more than 2.5 million elements, see Figure 8.

As reported by others [17] and also found by us, a good scalability of the CG method using GPUs can be achieved

when the problem size is large enough to fully occupy the GPU. Moreover, the bandwidth between the devices plays

an important role, see below.

7.1. Scalability for future devices

The current trend with GPU development is to increase the number of streamprocessors, raster output units and

the amount of memory per GPU. Clearly, this increase will lead to a higher total performance. However, in order to

reach the peak performance, the problem size should grow accordingly. For example, if the number of streampro-

cessors is doubled, the maximum performance is reached for problems that are twice as large. If multiple GPUs are

used, the bandwidth between the GPUs becomes critical. If the available bandwidth on GPUs becomes larger, the

bandwidth between the devices will represent even a larger bottleneck. This makes it even more difficult, especially

for bandwidth-limited problems, to achieve a good scalability using multiple GPUs. Note that such changes can be

accommodated by our analysis framework, by adjusting the value of parameter ν for the inter-device communication

time.

Current-generation GPUs support Unified Virtual Addressing [31], such that data stored on the GPUs can be

accessed by other GPUs via the PCIe bus. This clearly improves the total memory throughput when, e.g., broadcasting

the result vector to all GPUs. Furthermore, the communication time in Equation 11 will be reduced from xn to x,

regardless the number n of GPUs connected over the PCIe bus.

7.2. Matrix reordering

The differences between the raw and actual performance are caused by the density of the matrix blocks. If ma-

trix blocks are completely filled with non-zero elements, no computations are wasted. Therefore it is important to
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maximize the average density of the matrix blocks. Reordering matrices using the (Reversed) Cuthill-McKee [15],

Approximate Minimum Degree (AMD) [1] and King [22] matrix reordering schemes, does not usually improve the

density of the matrix blocks significantly (results not shown). However, we expect that specific reordering methods,

tailored for the BCSR layout, will lead to better performance figures.

7.3. Best block size

To answer the question about which block-size performs the best, we carefully studied the results presented in

Section 6. First, we have found that for a large amount of matrices in the Harwell-Boeing set, the dimensions and the

number of non-zeros are too small to fully utilize a GPU. The results showed that in 58% of the cases, blocks with

N = 8 give the best results, even if the average density of the blocks is very low. For the multiple block-row mapping,

increasing N automatically increases the amount of thread blocks, see Section 3. This in turn results in a higher

utilization of the GPU. For the remaining cases we have found that 23% of the cases reported the best performance

for N = 1, and in 11% of the cases the best performance was obtained for N = 4.

Inspecting the results obtained using the test set of Williams et al. [38] using a single GTX570 showed that in 50%

of the cases, N = 2 yields the best performance. Contrary, the same test on a GTX280 gives in 35% of the cases the

best performance when N = 4, while in 25% of the cases the best performance was reported when N = 1 and N = 2.

In order to find which configuration yields the best performance, we selected all test cases (from all benchmarks

performed on a GTX570) in which the GPU was faster than the CPU. We found that in 42% of the cases N = 1 yields

the best performance, followed by 25% of the cases when N = 2.

Since the dimension of the problem, the GPU mapping and the sparsity pattern of the matrices influence the

performance, it is difficult in general to indicate which block size leads to the best results. However, one can compute

the amount of needed thread blocks, given the dimensions of the problem and the block size. If this number is too

small to fully utilize a GPU, increasing N and/or Bx will result in a mapping which has a higher utilization and

therefore a better performance.

7.4. Double precision

In this paper we have used both single (32-bit wide) and double (64-bit wide) precision representations within our

matrix and vector operations.

If the multiple block-row mapping is used in combination with block reordering and block-row sorting, all matrix

blocks are loaded in a coalesced fashion, also if double precision is used, but in this case two memory transactions are

needed. Loading the corresponding vector values also results in coalesced memory transfers if N ≥ 4, similar to the

single-precision case, but with twice the amount of transactions. When N < 4, memory transactions are not coalesced

anymore and require more transactions for loading the corresponding vector values. In the case of double precision,

this does not automatically lead to twice the amount of memory transaction, since the second part of the 64-bit value

is stored in the same memory segment as the first 32 bits. This gives a small improvement in these cases. Furthermore,

depending on the version of the architecture, bank-conflicts [26] can occur. For the GTX280 bank-conflicts happen if

threads access 64-bit values in shared memory; for the GTX570 (Fermi) such conflicts do not happen.

We have computed the relative slow-down if one uses double precision, see Figure 9. The differences between

the block-sizes is especially visible on the GTX280. When N ≥ 4, the slow-down was approximately 2×, while for

N < 4 it was between 1.25× and 1.75×. A similar slow-down was measured for the hybrid implementation of [4]. The

figures for a GTX570 GPU were slightly different. For any N we have measured a slow-down between 1.4× and 1.6×,

which was smaller than on the GTX280. According to the architectural differences between the GPUs, we assume

that besides the absence of bank-conflicts, also cached accesses improve the performance when 64-bit data is fetched

from the global memory.

Finally, using double precision for solving large linear systems can improve the total computation time, although

the operations become roughly two times slower. On both GTX280 and GTX570 we have found that for the CG

benchmark described in Section 6.4, about 50% of the cases were faster using double precision. Since the accuracy is

higher, the CG method converges faster to the solution, especially for stiff problems. This finding is also reflected in

Table 7, since the total computation time for double precision is not the twice the time for single precision.
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7.5. Textures

To improve the memory throughput of random memory accesses on the GTX280 and older devices, textures

are used frequently. The texture units provide a caching mechanism, which improves the throughput if the memory

transactions are not coalesced and highly random.

Current generation GPUs [31, 26] now provide a cache mechanism for global memory. This might imply that

the used of textures (for caching) now is deprecated. To test this possibility, the benchmark described in Section 6.1

was performed with and without texture cache on the newer GTX570 GPU. We found that the use of textures still

improves the performance significantly on the newer hardware. When N = 1 and N = 2, the improvement is up to

25 − 50%, while for larger blocks it is minimal and sometimes slightly negative. Also the implementation of Bell and

Garland [4] benefits from the use of textures. Therefore, it is still worthwhile to use textures if memory accesses are

highly random.

8. Conclusions

In this paper we have investigated a number of mappings for block-based SpMV operations on GPUs, using

CUDA. Block row mapping maps one complete block row (a row containing a number of N × N matrix blocks) to

one thread block. This method is straightforward to implement, but not very efficient, since a lot of computational

resources are wasted. Within this mapping one thread block processes a large number of matrix blocks. By transposing

the block row mapping, the multiple block-row mapping is obtained. This mapping assigns multiple block rows to

one thread block. One thread block processes a large number of matrix blocks, which belong to different block

rows. This has positive implications on the performance, i.e., less thread blocks are needed and the amount of wasted

computational resources is decreased. Furthermore, since each thread block processes a larger number of matrix

blocks, better memory throughputs were obtained and thus a better performance. This is in general only the case if

N ≥ 4. If N < 4 the data must be reordered to obtain efficient (coalesced) memory transactions for loading the matrix

blocks. This block reordering significantly improves the performance of the SpMV operation for matrices stored using

the BCSR layout with blocks of size N < 4, if the MBR mapping is used. Sorting the block rows such that block rows

with similar lengths are processed by the same thread block, increases the performance significantly.

By mapping the computations differently on the GPU, and by applying row sorting and block reordering, the

best performances for the SpMV operation were obtained. Experimental results showed that our SpMV mapping

outperforms existing methods in most cases, and performs close to the limits of the hardware. Our optimized SpMV

operation was used to accelerate the CG method, given one or multiple GPUs. Together with the optimized vector

operations, this makes (in most cases) our CG mapping about 5 times faster than existing methods.

We have also provided a recipe for estimating the maximum achievable performance and the average performance

of a (parallel) CG method, given the properties of the problem. This method can be applied to similar numerical

algorithms. Analyzing the memory throughput revealed a clear trend between the number of memory transactions

and the performance. This analysis has been done for each kernel performing vector operations, as well as for the

SpMV kernel. The resulting trends were modeled by a particular sigmoid function, which was then used to estimate the

memory throughput of each individual operation appearing in the CG method. This finally leaded to an approximation

of the maximum or average performance of the method. We further extended our performance-estimation framework

such that also multiple GPU setups can be modeled. The results showed that our performance estimates were very

close to the measured performance, and in general, the estimates became more accurate when larger blocks are used.

In future work, we plan to investigate methods for matrix reordering, suitable for the BCSR format. Existing

matrix reordering methods optimize, e.g., the bandwidth of the matrix, which does not necessarily result in increased

block densities. Further, our analysis may be improved by taking into account the variations in GPU load, due to

block-row padding by empty blocks. Finally, our method performs very well on matrices for which the variation in

row lenghts is not too large. To let our implementation also perform well on matrices with highly unbalanced rows,

we are planning to extend our method.
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