
Subpixel Reconstruction Antialiasing for Ray Tracing

Chiu, Y.-F
National Tsing Hua
University, Taiwan

yfchiu@ibr.cs.nthu.edu.tw

Chen, Y.-C
National Tsing Hua
University, Taiwan

louis@ibr.cs.nthu.edu.tw

Chang, C.-F
National Taiwan

Normal University,
Taiwan

chunfa@ntnu.edu.tw

Lee, R.-R
National Tsing Hua
University, Taiwan

rrlee@cs.nthu.edu.tw

ABSTRACT
We introduce a practical antialiasing approach for interactive ray tracing and path tracing. Our method is inspired
by the Subpixel Reconstruction Antialiasing (SRAA) method which separates the shading from visibility and ge-
ometry sampling to produce antialiased images at reduced cost. While SRAA is designed for GPU-based deferred
shading renderer, we extend the concept to ray-tracing based applications. We take a hybrid rendering approach
in which we add a GPU rasterization step to produce the depth and normal buffers with subpixel resolution. By
utilizing those extra buffers, we are able to produce antialiased ray traced images without incurring performance
penalty of tracing additional primary rays. Furthermore, we go beyond the primary rays and achieve antialiasing
for shadow rays and reflective rays as well.

Keywords: antialiasing, ray tracing, path tracing.

1 INTRODUCTION

With the abundance of computation power and paral-
lelism in multicore microprocessors (CPU) and graph-
ics processors (GPU), achieving interactive photoreal-
istic rendering on personal computers is no longer a
fantasy. Recently, we have seen the demonstration of
real-time ray tracing [6, 17] and the emergence of real-
time path tracing with sophisticated global illumination
[2, 20]. Though real-time path tracing can produce
rendering of photorealistic quality that include com-
plex lighting effects such as indirect lighting and soft
shadow, the illusion of a photograph-like image breaks
down quickly when jaggy edges are visible (Figure 1
shows an example).

Jaggy edges are one of the typical aliasing artifacts
in computer generated images. A straightforward an-
tialiasing technique is to increase the sampling rate by
taking multiple samples uniformly at various subpixel
positions. However this approach induces significant
performance penalty that makes it an afterthought in
real-time ray tracing. A more practical approach is
to increase subpixel samples adaptively for image pix-
els where discontinuity is detected. Although adaptive
sampling approach avoids the huge performance hit of
the multisampling approach, it still requires additional

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

subpixel samples and introduces large variation to the
estimation of rendering time.
In this work, we introduce an antialiasing approach that
works well for real-time ray tracing and path tracing.
We take a hybrid rendering approach in which we add a
GPU rasterization step to produce the depth and normal
buffers with subpixel resolution. By utilizing those ex-
tra buffers, we are able to produce antialiased ray traced
images without incurring performance penalty of trac-
ing additional primary rays. Our method is inspired by
the Subpixel Reconstruction Antialiasing (SRAA) [3]
which combines per-pixel shading with subpixel vis-
ibility to produce antialiased images. While SRAA
is designed for GPU-based deferred shading renderer,
we extend the concept to ray-tracing based applica-
tions. Furthermore, we apply our antialiasing approach
to shadow and reflection which SRAA cannot resolve
with its subpixel buffers.
Our main contributions in this work are:

• We propose an efficient antialiasing technique which
improves the perception of photorealism in interac-
tive or real-time ray tracing without sacrificing its
performance.

• Unlike adaptive sampling or subpixel sampling, our
approach does not penalize the performance of a
CPU ray tracer because no additional primary ray
needs to be traced. Our hybrid rendering approach
obtains the necessary subpixel geometric informa-
tion by leveraging the GPU rasterization pipeline.

• While SRAA works well for improving the sam-
pling on image plane, we extend its application be-
yond the primary rays and achieve antialiasing for
shadow rays and reflective rays as well.



Figure 1: Antialiasing can improve the rendering quality in interactive ray tracing. The left image is rendered with-
out applying any antialiasing method. The right image is rendered with our method using relatively inexpensive
geometric information to improve expensive shading results.

2 RELATED WORK
2.1 Real-time Ray Tracing
With the rapid improvement of computation power and
parallelism in multicore microprocessors (CPU) and
graphics processors (GPU), various works have been
published on speeding up the ray tracing, either on
CPUs [1, 19], GPUs [5], or special-purpose platforms
[21]. Recently, we have seen the demonstration of real-
time ray tracing with Whitted-style reflection and re-
fraction (a.k.a. specular rays) [6, 17] and the emergence
of real-time path tracing with sophisticated global illu-
mination [2, 20]. The NVIDIA OptiX acceleration en-
gine [12] elevates rendering applications to a new level
of interactive realism by greatly increasing ray tracing
speeds with GPU solutions. While real-time ray tracing
is now feasible, most renderers still rely on Monte Carlo
path tracing to obtain more sophisticated global illumi-
nation effects such as soft shadow and indirect light-
ing. Noisy preview images are usually produced first
at interactive rates and then gradually converge to high
quality images. Therefore, antialiasing often becomes
an afterthought as it further slows down the rendering.

2.2 Adaptive Sampling
The ray tracing algorithm is basically a loop over all
screen pixels to find the nearest visible object in the
scene. We can consider ray tracing as a point sampling
based rendering method in signal processing view.
However, point sampling makes an all-or-nothing
choice in each pixel and thus leads to jaggies. An-
tialiasing of ray-traced images could be achieved by
supersampling the image. However the supersam-
pling approach demands significantly larger amount
of computation resource. Therefore antialiasing by
supersampling is rarely adopted by software renderers.
Adaptive sampling [10, 11] reduces the overhead
by casting additional rays only if significant color
variation across image samples is detected. Variations

of the adaptive sampling techniques have also been
proposed in [8].

2.3 Post Filter Antialiasing
A small disadvantage of adaptive sampling is that some
image pixels still need additional subpixel samples to be
fully shaded or traced. It would be desirable if expen-
sive shading could be avoided at additional subpixel lo-
cations. Reshetov [16] proposes an image filtering ap-
proach, Morphological antialiasing (MLAA) to recover
edges from input image with per-pixel color informa-
tion. However, this sort of color-only information could
fail to identify some geometry edges, especially those
edges without high contrast. Geometric Post-process
Anti-Aliasing (GPAA) [13] and Geometry Buffer Anti-
Aliasing (GBAA) [14] extend the MLAA ideas and use
extra edge information explicitly to eliminate the jaggy
edges. Normal Filter Anti-Aliasing (NFAA) [18] re-
duces aliasing by searching for contrasting luminosity
changes in the final rendering image. It builds a nor-
mal displacement map to apply a per-pixel blur filter in
highly contrast aliased areas. However, it softens the
image due to the filtering of textures. More filter-based
approaches are discussed in [7].

2.4 Shading Reconstruction Filter
Decoupled sampling [9, 15] presents an approach to
generate shading and visibility samples at different
rates in GPU pipelines to speed up the rendering in
applications with stochastic supersampling, depth of
field, and motion blur. Yang et al. [22] present a
geometry-aware framebuffer level of detail (LOD) ap-
proach for controlling the pixel workload by rendering
a subsampled image and using edge-preserving upsam-
pling to the final resolution. Subpixel Reconstruction
Antialiasing (SRAA) [3] takes a similar decoupled
sampling approach and applies a cross-bilateral filter
(as in the geometry-aware framebuffer LOD method) to



upscale shading information using subpixel geometric
information that is obtained from the GPU rasterization
pipeline. It is based on the assumption that the subpixel
geometric information could be obtained much more
easily without fully going through the expensive shad-
ing stage. SRAA can produce good edge antialiasing
but it cannot resolve shading edges in texture, shadow,
reflection and refraction. Our work follows the same
assumption by avoiding emitting subpixel samples for
the primary rays. This maintains the advantage over
adaptive sampling because no subpixel ray needs to be
traced.

3 ANTIALIASING
SRAA [3] relies on the fact that shading often changes
more slowly than geometry in screen space and gen-
erates shading and visibility at different rates. SRAA
performs high-quality antialiasing in a deferred render-
ing framework by sampling geometry at higher reso-
lution than the shaded pixels. It makes three modifi-
cations to a standard rendering pipeline. First, it must
produce normal and depth information at subpixel res-
olution. Second, it needs to reconstruct the shading val-
ues of sampled geometric subpixel from neighboring
shaded samples with bilateral filter using the subpixel
geometric (normal and depth) information. Finally, the
subpixel shading values are filtered into an antialiased
screen-resolution image.

SRAA detects the geometric edges with geometric in-
formation to resolve aliasing problem. However, the
edges of shadow and reflection/refraction could not be
detected by the subpixel geometric information gener-
ated from the eye position. For example, the shadow
edges mostly fall on other continuous surfaces that have
slowly changing subpixel depths and normals. To ex-
tend the SRAA concept to ray-tracing based applica-
tions, we perform antialiasing separately for primary
rays, shadow rays and secondary rays to resolve this
issue. The following subsections offer the detail.

3.1 Primary Ray
Like SRAA, our goal is to avoid the performance
penalty of shading subpixel samples. In Figure 2,
geometric information and shading are generated at
different rates. Each pixel has 4 geometric samples
on a 4× 4 grid and one of those geometric samples
is also a shaded sample. The shading value at each
geometric sample is reconstructed by interpolating all
shaded neighbors in a fixed radius using the bilateral
weights. We take both depth and normal change into
account when compute the bilateral weight. A neigh-
boring sample with significantly different geometry is
probably across a geometric edge and hence receives a
low weight.

wi j = G(σz(z j− zi))G(σn(1− sat(n j ·ni))) (1)

In Equation 1, G(x) is the Gaussian function of the form
exp(−x2). zi and ni are the depth and normal of the ith

subpixel sample. σz and σn are the scaling factors for
controlling how quickly the weights fall off and allow-
ing us to increase the importance of the bilateral filter.
We set σz to 10 and σn to 0.25 in all our testing. The
sat(x) function is implemented as max(0,min(1,x)).
The result wi j is the weight associated with the jth sub-
pixel sample while performing shading reconstruction
for the ith subpixel sample.

For tracing the primary rays that are emitted from the
eye position, we use a hybrid rendering approach that
utilizes the GPU to generate the subpixel geometric in-
formation including position, normal and depth. We
create 3 auxiliary geometric buffers to store position,
normal and depth by GPU rasterization with the same
resolution as the shaded buffer. Each geometric buffer
is rendered with a subpixel offset applied to the pro-
jection matrix. The subpixel offset is applied not only
to form a 4× rotated-grid but also to do pixel align-
ment between rasterization and ray tracing rendering.
Since the GPU rasterization pipeline produces the sub-
pixel geometric information very efficiently, this over-
head is insignificant when compared to the ray tracing
stage.

3.2 Shadow Ray
As mentioned above in Section 3, the shadow edges
cannot be detected by the geometric information that
is generated from the eye position alone. What we need
is subpixel information that is more meaningful to the
shadow edges. The naive solution for shadow antialias-
ing is through a shadow map drawn at a higher reso-
lution. However, this approach is inefficient because
the increased resolution of the shadow map (from the
light’s view) does not contribute directly to the subpix-
els at the screen space. Therefore, we generate subpixel
shadow information by ray casting and combine this
shadow value with the bilateral filter weighting equa-
tion as shown in Equation 2. The subpixel shadow rays
are generated by utilizing the position information in
the geometric buffer as mentioned in Section 3.1.

Figure 2 shows our algorithm reconstructs the color
value of a geometric sample in a non-shadowed area
not only by taking the Euclidean distance and the nor-
mal change between the source and the target samples
but also under the influence of shadow boundaries to ex-
clude the neighboring samples in shadowed area. This
is the reason why the original SRAA adds excessive
blur to the shadow boundaries, yet our method achieves
a better quality that is comparable to 16× supersam-
pling.



wi j =

{
G(σz(z j− zi))G(σn(1− sat(n j ·ni))), if si = s j

0, if si 6= s j

(2)

In Equation 2, si is the shadow value of the ith subpixel
sample and is equal to 1 if it is in shadowed area. Oth-
erwise it is equal to 0. If s j is different from si, then the
jth subpixel falls on the other side of a shadow edge.
Therefore we set the weight wi j associated with the jth

subpixel to 0 to exclude it from the shading reconstruc-
tion for the ith subpixel sample.

3.3 Secondary Ray
In the original SRAA framework, it uses geometric in-
formation to detect geometric edges in the subpixel re-
construction process. However, the edge of secondary
shading (such as those from the reflection) cannot be
detected by this geometric information generated from
the eye position. Take the reflection rays for an exam-
ple as shown in Figure 5 (c), if we perform subpixel
shading reconstruction as shown in Equation 1 with the
geometric information generated from the eye position,
it will not be able to detect the edges of the reflected
objects, and in consequence add excessive blur to the
reflected colors.

Therefore we must take geometric information that is
generated from the hit points of primary rays to perform
subpixel-level bilateral filer when computing the shad-
ing value of the secondary rays that originate from the
primary hit point. The subpixel secondary rays for hit
points are generated by utilizing the position and nor-
mal information in the geometric buffer. Our method
which performs subpixel reconstruction separately for
primary and secondary shading achieves better quality
than the original SRAA approach. Please see our re-
sults in Section 4 and Figure 5.

4 RESULT
Our algorithm is implemented using NVIDIA CUDA
4.0, the raytracer is built with OptiX 2.0 and rasteriza-
tion with OpenGL. All results shown in this paper were
obtained using an Intel Xeon E5504 processor and an
NVIDIA Geforce GTX 570 GPU.

4.1 Quality
Figure 4 shows the quality comparison between our
method and other antialiasing techniques in a Cornell
box scene. The original SRAA adds excessive blur to
the shadow, yet our method achieves similar quality to
16× supersampling.

Figure 5 highlights some interesting cases for primary
shading, shadow and secondary shading in the Sponza
scene. For the shading from primary rays, both our

Figure 2: Here we add shadow edge into consideration
to perform subpixel shading reconstruction. Each pixel
has 4 geometric samples on a 4× 4 grid. One of those
geometric samples is also a shaded sample. Shading
value for each geometric sample in non-shadowed area
is reconstructed from nearby shaded samples except the
shaded samples in shadowed area and weighted by their
distance and the normal change between the source and
the target sample.

method and SRAA use the geometric information to
improve image quality and the results are almost iden-
tical between ours and SRAA. For the shadow, our
method uses both the geometry and the shadow edge in-
formation to perform subpixel reconstruction, thus pro-
duces better shadow line in the highlighted area than
SRAA. For secondary shading, we perform subpixel
reconstruction separately for primary and secondary
shading, while SRAA uses only the final color of each
sampled subpixel for this purpose. This results in over
blurring for secondary shading in SRAA.

To summarize, we observe that antialiasing with geo-
metric information from primary rays could be prob-
lematic in some difficult cases and our method offers a
solution to the highlighted cases in Figure 5.

Our method does have a limitation in handling mate-
rial variation or textured surfaces. Figure 6 shows such
an example where the floor contains patches of differ-
ent colors. Since the extra subpixel depth and normal
information does not help us detect the edges between
patches of different colors, jagged edges could still ap-
pear on the floor.

4.2 Performance
There are two rendering passes in our current imple-
mentation. The first pass is the geometric information
generation step and the second pass is the antialiasing
process. Table 1 shows that the geometric information
generation step with raytracer solution takes about 70
percent of the total processing time for rendering the
Sponza scene [4] in Figure 5. This overhead to generate
geometric information for primary rays can be reduced
with a GPU hybrid solution. Figure 3 shows that our
method maintains the interactive rate while rendering
the Sponza scene in Figure 5 with a GPU hybrid solu-



Rendering Pass
Resolution 1st 2nd Total
256x256 18 5 23
512x512 35 14 49
768x768 69 28 97

1024x1024 116 49 165
unit: millisecond

Table 1: Time measurement of our method for render-
ing the Sponza scene in Figure 5.The first pass is ge-
ometric information generation and the second pass is
antialiasing process. Note that the time shown in first
pass is measured with raytracer solution.

Figure 3: Performance comparison between NoAA (no
antialiasing applied ), our method with GPU hybrid ap-
proach, and SSAA (16× supersampling antialiasing)
for rendering the Sponza scene under various output
resolutions. The vertical axis is the rendering time
in millisecond. The overall rendering performance of
our method with a GPU hybrid approach is about 6×
speedup in average compared to the 16× supersampling
approach.

tion and achieves about 6× speedup in average com-
pared to the 16× supersampling approach.

5 CONCLUSION

We introduce the concept in SRAA to path-tracing
based rendering methods for antialiasing. Our method
extends the subpixel geometric sampling concept
beyond the primary rays and achieves antialiasing for
shadow rays and reflective rays as well. By adopting
a hybrid approach, our method improves the image
quality without incurring performance penalty of
tracing additional primary rays. We hope our method
encourages the adoption of antialiasing even for the
computationally constrained real-time ray tracing or
path tracing.

6 ACKNOWLEDGEMENTS
This work is supported in part under the “Embedded
software and living service platform and technology de-
velopment project” of the Institute for Information In-
dustry which is subsidized by the Ministry of Econ-
omy Affairs (Taiwan), and by National Science Council
(Taiwan) under grant NSC 100-2219-E-003-002.

7 REFERENCES
[1] Carsten Benthin. Realtime Ray Tracing on Cur-

rent CPU Architectures. PhD thesis, Saarland
University, 2006.

[2] Jacco Bikker. Arauna real-time ray tracer and
Brigade real-time path tracer.

[3] Matthäus G. Chajdas, Morgan McGuire, and
David Luebke. Subpixel reconstruction antialias-
ing for deferred shading. In Symposium on Inter-
active 3D Graphics and Games, I3D ’11, pages
15–22, 2011.

[4] Marko Dabrovic. Sponza atrium,
http://hdri.cgtechniques.com/ sponza/files/, 2002.

[5] Johannes Gunther, Stefan Popov, Hans-Peter Sei-
del, and Philipp Slusallek. Realtime ray tracing on
gpu with bvh-based packet traversal. In Proceed-
ings of the 2007 IEEE Symposium on Interactive
Ray Tracing, pages 113–118, 2007.

[6] Daniel Reiter Horn, Jeremy Sugerman, Mike
Houston, and Pat Hanrahan. Interactive k-d tree
gpu raytracing. In Proceedings of the 2007 sym-
posium on Interactive 3D graphics and games,
I3D ’07, pages 167–174, 2007.

[7] Jorge Jimenez, Diego Gutierrez, Jason Yang,
Alexander Reshetov, Pete Demoreuille, Tobias
Berghoff, Cedric Perthuis, Henry Yu, Morgan
McGuire, Timothy Lottes, Hugh Malan, Emil
Persson, Dmitry Andreev, and Tiago Sousa. Fil-
tering approaches for real-time anti-aliasing. In
ACM SIGGRAPH Courses, 2011.

[8] Bongjun Jin, Insung Ihm, Byungjoon Chang,
Chanmin Park, Wonjong Lee, and Seokyoon Jung.
Selective and adaptive supersampling for real-
time ray tracing. In Proceedings of the Confer-
ence on High Performance Graphics 2009, HPG
’09, pages 117–125, 2009.

[9] Gábor Liktor and Carsten Dachsbacher. Decou-
pled deferred shading for hardware rasterization.
In Proceedings of the ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games, I3D
’12, pages 143–150, New York, NY, USA, 2012.
ACM.

[10] Don P. Mitchell. Generating antialiased images
at low sampling densities. In Proceedings of
the 14th annual conference on Computer graph-



Figure 4: The leftmost image shows the Cornell box generated with our method. The smaller images to its
right show the 8× zoom-in of the marked region under various antialiasing techniques. (a) is the result without
any antialiasing. (b) is from SRAA. (c) is from our method. (d) is the reference image (16× supersampling
antialiasing). (e)(f)(g) show the difference between (a)(b)(c) and the reference image (d) respectively. The original
SRAA often adds excessive blur to the shadow and secondary shading, yet our method achieves similar quality to
16× supersampling.

ics and interactive techniques, SIGGRAPH ’87,
pages 65–72, 1987.

[11] J. Painter and K. Sloan. Antialiased ray tracing
by adaptive progressive refinement. In Proceed-
ings of the 16th annual conference on Computer
graphics and interactive techniques, SIGGRAPH
’89, pages 281–288, 1989.

[12] Steven G. Parker, James Bigler, Andreas Dietrich,
Heiko Friedrich, Jared Hoberock, David Luebke,
David McAllister, Morgan McGuire, Keith Mor-
ley, Austin Robison, and Martin Stich. Optix: a
general purpose ray tracing engine. ACM Trans.
Graph., 29:66:1–66:13, July 2010.

[13] Emil "Humus" Persson. Geometric post-
process anti-aliasing (GPAA), march 2011,
http://www.humus.name/index.php?page=3d&id=86.

[14] Emil "Humus" Persson. Geometry
buffer anti-aliasing (GBAA), july 2011,
http://www.humus.name/index.php?page=3d&id=87.

[15] Jonathan Ragan-Kelley, Jaakko Lehtinen, Jiawen
Chen, Michael Doggett, and Frédo Durand. De-
coupled sampling for graphics pipelines. ACM
Trans. Graph., 30(3):17:1–17:17, May 2011.

[16] Alexander Reshetov. Morphological antialiasing.
In Proceedings of the Conference on High Perfor-
mance Graphics 2009, HPG ’09, pages 109–116,
2009.

[17] Min Shih, Yung-Feng Chiu, Ying-Chieh Chen,
and Chun-Fa Chang. Real-time ray tracing with
CUDA. In Proceedings of the 9th International
Conference on Algorithms and Architectures for
Parallel Processing, ICA3PP ’09, pages 327–337,
2009.

[18] Styves. Normal filter anti-aliasing,
http://www.gamedev.net/topic/580517-nfaa—
a-post-process-anti-aliasing-filter-results-
implementation-details, 2010.

[19] Ingo Wald. Realtime Ray Tracing and Interac-
tive Global Illumination. PhD thesis, Saarland
University, 2004.

[20] Sven Woop and Manfred Ernst. Em-
bree - photo-realistic ray tracing kernels,
http://software.intel.com/en-us/articles/embree-
highly-optimized-visibility-algorithms-for-
monte-carlo-ray-tracing/, June 2011.

[21] Sven Woop, Jörg Schmittler, and Philipp
Slusallek. RPU: a programmable ray process-
ing unit for realtime ray tracing. ACM Trans.
Graph., 24:434–444, July 2005.

[22] Lei Yang, Pedro V. Sander, and Jason Lawrence.
Geometry-aware framebuffer level of detail. Com-
puter Graphics Forum (Proc. of Eurographics
Symposium on Rendering 2008), 27(4):1183–
1188, 2008.



In
pu

t

N
o

A
A

O
ut

pu
t SR

A
A

O
ur

s

R
ef

er
en

ce

16
sa

m
pl

es

(a) Primary Shading (b) Shadow (c) Reflection (d) Reflected Shadow

Figure 5: Quality comparison between our method and the other antialiasing techniques in highlighted areas of
primary shading, shadow, reflection, and reflected shadow. (Row 1) No antialiasing, (Row 2) SRAA: one subpixel
with shading value and 4 subpixels with primary geometric information, (Row 3) Ours: one subpixel with shading
value and 4 subpixels with geometric information for primary, shadow and secondary rays, (Row 4) Reference
image: 16× supersampling.



Figure 6: The scene in this figure shows a limitation of our method in handling material variation or textured
surfaces. The floor contains patches of different colors. Since the extra subpixel depth and normal information
does not help us detect the edges between patches of different colors, jagged edges still appear on the floor in the
middle image that is rendered by our antialiasing method. For comparison, the top image shows the result without
antialiasing and the bottom image is produced with 16× supersampling.


