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Ahmet Oğuz Akyüz
Middle East Technical University, Turkey

akyuz@ceng.metu.edu.tr

ABSTRACT
We present a novel algorithm to efficiently generate high quality high dynamic range (HDR) images. Our method
is based on the idea of expanding the dynamic range of a reference image at granularity of tiles. In each tile, we
use data from a single exposure, but different tiles can comefrom different exposures. We show that this approach
is not only efficient and robust against camera and object movement, but also improves the color quality of the
resulting HDR images. We compare our method against the commonly used HDR generation algorithms.
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1 INTRODUCTION
The interest in HDR imaging has rapidly gained pop-
ularity in recent years. This has been accompanied by
the development of various methods to create HDR im-
ages. While it is believed that using dedicated HDR
capture hardware will be the de-facto way of generat-
ing HDR images in future [Rei10a], software solutions
are still commonly used in today’s systems. Among
these multiple exposure techniques (MET) are the most
dominant [Man95a, Deb97a].

In METs, several images of the same scene are captured
by varying the exposure time between the images. This
ensures that each part of the captured scene is properly
exposed in at least one image. The individual images
are then merged to obtain the HDR result. Although
variations exist, the equation below is typically used for
the merging process:

I j =
N

∑
i=1

f−1(pi j )w(pi j )

ti

/ N

∑
i=1

w(pi j ). (1)

HereN is the number of LDR images,pi j is the value
of pixel j in imagei, f is the camera response function,
ti is the exposure time of imagei, andw is a weighting
function used to attenuate the contribution of poorly ex-
posed pixels.

In Equation 1, a weighted average is computed for ev-
ery pixel. While this may be desirable for attenuating
noise, it introduces unwanted artifacts due to ghosting
and misalignment problems. In this paper, we show that
this approach also results in the desaturation of colors

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

making the HDR image less saturated than the its con-
stituent exposures.

Computing a weighted average for every pixel also re-
quires that the individual pixels are perfectly aligned.
Otherwise, pixels belonging to different regions in the
scene will be accumulated resulting ghosting and align-
ment artifacts.

In this paper, we propose a method that largely avoids
both of these problems. Our method is underpinned by
the idea that instead of computing an average for ev-
ery pixel, one can use the pixels from a single properly
exposed image. A different image can be used for dif-
ferent regions ensuring that the full dynamic range is
captured. We also introduce the concept of working in
tiles instead of pixels to make the algorithm more robust
against local object movements.

2 PREVIOUS WORK
Starting with the pioneering works of Mad-
den [Mad93a] and Mann and Picard [Man95a], various
algorithms have been developed to create HDR images.
The early work focused on recovering the camera re-
sponse function and choosing an appropriate weighting
function [Deb97a, Mit99a, Rob03a, Gro04a]. These
algorithms assumed that the exposures that are used
to create an HDR image are perfectly aligned and the
scene is static.

Ward developed a method based on median thresh-
old bitmaps (MTBs) to allow photographers use
hand-held images of static scenes in HDR image
generation [War03a]. His alignment algorithm proved
to be very successful and is used as an initial step
of more advanced alignment and ghost removal
algorithms [Gro06a, Jac08a, Lu09a].

In another alignment algorithm, Cerman and Hlaváč es-
timated the initial shift amounts by computing the cor-
relation of the images in the Fourier domain [Cer06a].
This, together with the initial rotational estimate which



was assumed to be zero, was used as a starting point for
the subsequent iterative search process.

Tomaszewska and Mantiuk employed a modified scale
invariant feature transform (SIFT) [Low04a] to extract
local features in the images to be aligned [Tom07a].
The prominent features are then selected by the
RANSAC algorithm [Fis81a]. This refined set of
features are then used to compute a homography
between the input images.

Several methods have been proposed to deal with ghost-
ing artifacts. These algorithms usually pre-align the in-
put exposures using MTB or other algorithms to sim-
plify the ghost detection process. Some of these algo-
rithms avoid merging suspicious regions where there is
high variance [Kha06a, Gal09a, Ram11a]. Other algo-
rithms try to detect the movement of pixels and perform
pixel-wise alignment [Zim11a]. A recent review of
HDR ghost removal algorithms can be found in Srikan-
tha and Sidibé [Sri12a].

There are also existing algorithms that attempt to
combine data from multiple exposures for the purpose
of generating a single low dynamic range (LDR)
image. Among these, Goshtasby first partitions the
images into tiles [Gos05a]. For each tile, he then
selects the image that has the highest entropy. The
tiles are blended using smooth blending functions to
prevent seams. Mertens et al., on the other hand, do
not use tiles but utilize three metrics namely contrast,
saturation, and well-exposedness to choose the best
image for each pixel [Mer07a]. Similar to Goshtasby,
Várkonyi-Kóczy et al. propose a tile based algorithm
where tiles are selected to maximize detail using image
gradients [Var08a]. In another tile based algorithm,
Vavilin and Jo use three metrics; mean intensity,
intensity deviation, and entropy to choose the best
exposure for each tile [Vav08a]. In contrast to previous
tile based studies, they choose tile size adaptively
based on local contrast. Finally, Jo and Vavilin propose
a segmentation based algorithm which allows choosing
different exposures for different clusters [Jo11a].
Unlike previous methods they use bilateral filtering
during the blending stage.

It is important to note that existing tile-based algorithms
attempt to generate LDR images with more details and
enhanced texture information, whereas our goal is to
generate HDR images with natural colors. Our ap-
proach alleviates the need for explicit ghost detection
and removal procedures. If the dynamic parts of a scene
do not span across regions with significantly different
luminance levels, no ghost effects will occur in the out-
put. Also, we avoid redundant blending of pixels that
can result in reduced color saturation.
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Figure 1: We partition the images into tiles and deter-
mine which exposure to use for each tile.

3 ALGORITHM

The first step of our algorithm is to align the input expo-
sures using the MTB algorithm [War03a]. In this part,
both the original MTB or the MTB with the rotation
support can be used.

Once the images are aligned, we partition each expo-
sure into tiles. Our goal then becomes to choose the
best image that represents the area covered by each tile.
A sample image is shown in Figure 1 to illustrate this
idea. In this image, the under-exposed tiles are marked
with L indicating that these tiles should come from a
longer exposure. Similarly, over-exposed regions are
marked byS suggesting that shorter exposures should
be used for these tiles. Unmarked tiles can come from
the middle exposures.

To make these decisions, we need to define a quality
metric that indicates whether a tile is well-exposed. To
this end, we experimented with the mean intensity as
well as the number of under- and over-exposed pixels
within a tile as potential metrics. Our results suggested
that using the mean intensity gives better results. There-
fore, we marked a tile as agoodtile if its mean intensity
is in the range[Imin, Imax]. Imin andImax are user param-
eters, but we found thatImin= 50 andImax= 200 can be
used as reasonable defaults.

Based on this criteria, we compute the number of good
tiles for each exposure. We choose the exposure with
the maximum number of good tiles as the reference ex-
posure. This exposure serves as thedonor which pro-
vides data for all tiles whose mean intensity stays in
the aforementioned limits. This leniency allows us to
use the same image as much as possible and provides
greater spatial coherency. For the remaining tiles, we
choose the second reference exposure and fill in the
tiles which are valid in this exposure. This process is



(a) Standard MET (b) LDR reference (c) Our result

Figure 2: (a) HDR image created by using the standard MET. (b)Selected individual exposure from the bracketed
sequence. (c) HDR image created using our algorithm. The toprow shows the full images. The middle row shows
the close-up view of a selected region. The bottom row shows the color of a single pixel from the region indicated
in the middle row. Both HDR images are tone mapped using the photographic tone mapping operator [Rei02a].
As can be seen in the zoomed views, the color quality of our result is closer to the selected reference image.

recursively executed until a source image is found for
all tiles1. This process can be represented as:

I j =
N

∑
i=1

f−1(pi j )Wi j

ti
, (2)

Wi j =

{

1 if pixel j comes from imagei,

0 otherwise.
(3)

Note that we no longer have thew(pi j ) term from Equa-
tion 1 as we do not compute a weighted average.

Finally, we use a blending strategy to prevent the visi-
bility of seams at tile boundaries. For this purpose, we
create Gaussian pyramids of weights (Wi j ) and Lapla-
cian pyramids of source images. We then merge the
images by using Equation 2 at each level of the pyra-
mid and collapse the pyramid to obtain the final HDR
image. We refer the reader to Burt and Adelson’s orig-
inal paper for the details of this process [Bur83a].

Since the tiles are not overlapping our algorithm en-
sures that within each tile data from only a single source
image is used. As we demonstrate in the next section,
this improves the color saturation of the resulting HDR
images. A second observation is that each tile is spa-
tially coherent. This means that motion related artifacts

1 It is possible that the a tile is under- or over-exposed in all
input images. In this case, we choose the longest exposure if
the tile is under-exposed and shortest exposure otherwise.

will not occur within tiles. However, such artifacts can
still occur across tiles. Thus our algorithm reduces the
effect of motion artifacts but does not completely elim-
inate them.

4 RESULTS AND ANALYSIS

We present the results of our color preserving HDR fu-
sion algorithm under three categories namely: (1) Fixed
camera & static scene, (2) hand-held camera & static
scene, and (3) hand-held camera & dynamic scene. For
the first configuration, we illustrate that the color qual-
ity of the HDR image created by our method is supe-
rior to the output of the standard HDR fusion algorithm
shown in Equation 1. A sample result for this case is
depicted in Figure 2 where the output of the standard
MET is shown on the left and our result is shown on the
right. A selected exposure from the bracketed sequence
is shown in the middle for reference.

For the image on the left, we used the tent weight-
ing function proposed by Debevec and Malik [Deb97a].
We used the sRGB camera response function for both
images, and a tile size of 64×64 for our result. It can be
seen that, due to the pixel-wise averaging process, the
output of the standard MET has a washed-out appear-
ance. Our result, on the other hand, is colorimetrically
closer to the selected exposure. This is a consequence
of avoiding unnecessary blending between images.



Figure 3: The colors show the correspondence between the tiles in the HDR image and the source images that
they were selected from. We can see that most tiles were selected from the fourth image. Figure courtesy of Erik
Reinhard [Rei10a].

Figure 3 shows which tiles in the output HDR image
came from which images in the exposure sequence. The
correspondence is shown by color coding the individual
exposures. As we can see from this figure, the major-
ity of the tiles were selected from the fourth exposure.
The tiles that correspond to the highlights on the plants
came from the darker exposures. On the other hand, the
tiles that correspond to the crevices on the rock and the
shadow of the lizard came from the lighter exposures.
We can also see that the last three exposures were not
used at all.

At this point, it would be worthwhile to discuss why
the standard MET gives rise to a washed-out appear-
ance and our algorithm does not. We would not ex-
pect to see this problem if all exposures were perfect
representations of the actual scene. However, in real-
ity, there are slight differences between exposures that
are not only due to changing the exposure time. Slight
camera movements, noise, and inaccuracies in the cam-
era response curve can all cause variations between the
actual observations. The combined effect of these vari-
ations result in reduced color saturation. By avoiding
unnecessary blending, we also avoid this artifact.

The second test group consists of images of a static
scene captured by a hand-held camera (Figure 4). In
this figure, the left column shows the unaligned result
created by directly merging five bracketed exposures.
The middle column shows the tone mapped HDR out-
put after the exposures are aligned by using the MTB al-
gorithm. The right column shows our result obtained by
first aligning the exposures using the MTB algorithm,
and then merging them using our tile-based technique.
As can be seen from the fence and the sign in the in-
sets, our result is significantly sharper than that of the
MTB algorithm. However, we also note that small ar-
tifacts are visible in our result on the letters “R” and
“E”. Further examination reveals that these artifacts are
due to using tiles from different exposures that are not
perfectly aligned.

As the color map indicates, the majority of the final
HDR image is retrieved from the exposure coded by
red (exposures not shown). The darker regions retrieved
data from the lighter (gray) exposure. The highlights at
the top left corner received data from the darker (green)
exposure. In fact, in this example, all five exposures
contributed to the final image but the majority of the
contribution came from these three exposures.

In the final category, we demonstrate the performance
of our algorithm using scenes that have both global and
local movement. To this end, we used the hdrgen soft-
ware2 which implements the MTB alignment algorithm
and a variance based ghost removal method explained
in Reinhard et al. [Rei10a]. In Figure 5, the left column
shows the output obtained by only image alignment but
without ghost removal. The middle column shows the
result of alignment and ghost removal. Although the
majority of the ghosts are removed, some artifacts are
still visible on the flag as shown in the close-ups. The
right column shows our result where these artifacts are
eliminated. The color map indicates the source images
for different regions of the HDR image.

We also demonstrate a case where our algorithm intro-
duces some unwanted artifacts in high contrast and high
frequency image regions as the window example in Fig-
ure 6. The bright back light and window grates cause
high contrast. If the tile size is large, blending tiles from
different exposures produces sub-par results. A reduced
tile size eliminates these artifacts.

Our choice of prioritizing the reference image increases
success in image sets where ghosting effects would nor-
mally occur. If the object movements are located in
regions with similar lighting conditions, our algorithm
prefers the image closer to reference image while con-
structing tiles, preventing ghosting effects. It is possi-
ble that an object moves between regions of different
lighting conditions, and our algorithm may choose tiles

2 http://www.anyhere.com



Figure 4: Left: Unaligned HDR image created from hand-held exposures. Middle: Exposures aligned using the
MTB algorithm. Right: Our result. The close-ups demonstrate that our algorithm produces sharper images. The
color map shows the source exposures for different regions of the HDR image.

(a) Alignment (b) Alignment and ghost removal (c) Our result

Figure 5: Left: Aligned HDR image created from hand-held exposures using the MTB algorithm. Middle: Aligned
and ghost removed HDR image. Right: Our result. The insets demonstrate that ghosting artifacts are eliminated in
our result. The color map shows the source exposures for different regions of the HDR image.

from different images where the moving object can be
seen. In this case different copies of the object may be
present in multiple locations in the output image.

Finally, we report the running times of our algorithm.
An unoptimized C++ implementation of our algorithm
was able to create high resolution (18 MPs) HDR im-
ages from 9 exposures within 30 seconds including all
disk read and write times. We conducted all of our
test on an Intel Core i7 CPU running at 3.20 GHz and
equipped with 6 GBs of memory. This suggests that our
algorithm is practical and can easily be integrated into
existing HDRI workflows.

5 CONCLUSIONS

We presented a simple and efficient algorithm that im-
proves the quality of HDR images created by using
multiple exposures techniques. By not redundantly av-
eraging pixels in low dynamic regions, our algorithm

preserves the color saturation of the original exposures,
and reduces the effect of ghosting and alignment arti-
facts. As future work, we are planning to make the
tiling process adaptive instead of using a uniform grid.
This would prevent artifacts that can be caused by
sudden illumination changes between neighboring tiles
coming from different exposures. We are also planning
to perform blending using edge-aware Laplacian pyra-
mid [Par11a] to avoid blending across sharp edges. Im-
proved quality of our results can also be validated by a
user study.
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