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ABSTRACT 

This work explores an alternative approach to the problem of collision detection using images instead of 

geometry to represent complex polygonal environments and buildings derived from laser scan data, used in an 

interactive navigation scenario. In a preprocessing step, models that are not point clouds, are sampled to create 

representative point clouds. Our algorithm then creates several 2.5+D maps in a given volume that stacked 

together form a 3D section of the world. We show that our new representation allows for realistic and fast 

collision queries with complex geometry such as stairs and that the algorithm is insensitive to the size of the 

input point cloud at run-time. 
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1. INTRODUCTION 
Collision detection is normally a bottleneck in the 

visualization and interaction process, as collisions 

need to be checked at each frame. Traditionally, the 

more complicated and crowded is our scene, the 

more calculations need to be done, bringing the 

frame-rate down. Therefore the optimization of this 

process, gaining speed without losing quality in the 

simulation, is something that has been researched for 

years. Although several different techniques and 

approaches have been developed, and showed good 

performance in specific scenarios, these approaches 

rely on object topology information which is easily 

extracted from polygonal models. However with 

point cloud models, the classical approaches either 

will not work, or will have to heavily adapt to this 

specific scenario, compromising their optimizations. 

Using images as an alternative way of executing the 

task of collision detection might just be the answer. 

Image-based techniques can have their precision 

easily controlled by the resolution of the used 

images, and the algorithms are completely 

independent of the object's topology and complexity 

at run-time. It does not matter whether an object has 

sharp features, round parts, or even whether it is a 

point cloud, as all we are dealing with is the object's 

image representation. Being a scalable and promising 

technique, Image-based collision detection seems to 

be a plausible alternative to the classical approaches.  

Our approach focuses in a virtual reality navigation 

scenario, where the scene is derived from the real 

world via devices such as laser scanners, which tend 

to generate enormous point clouds. Also, the 

hardware at hand might not fit the basic requirements 

for most algorithms and techniques, a situation that 

commonly will happen in tourism hotspots, 

museums, or other places where we would like 

ordinary people to be able to interact with the system. 

The developed application enables them to control an 

avatar on a static environment, a point cloud or 

polygonal model. 

The main contribution of our research is a new 3D 

world representation for environment and buildings 

which is completely image-based with information 

that enables realistic and robust collision detection 

with underlying complex geometry such as slopes 

and stairs. Slicing a given structure along the Z axis 

(Using Cartesian coordinates as illustrated in Figure 

1); we create a discrete set of images containing 

height information about the surface, and possible 

collidable frontiers. It is a flexible format that is able 

to represent either point clouds or polygonal models. 

This representation allows us to perform collision 

detection with user chosen precision, and high 

scalability.  
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2. RELATED WORK 
The problem of collision detection is present in 

several areas of research and applications, each of 

them having different concerns, requirements and 

desired results. This necessity has prompted the 

creation of several techniques that try to deliver these 

results using varied approaches, each one fitting to 

specific problems. 

Feature based: Famous examples are the Lin-Canny 

algorithm [MLJC] and its more recent related 

algorithm, V-Clip [BMM], which keeps track of the 

closest features between two objects, deriving both 

the separation distance, and the vertices that have 

possibly already penetrated the other object. 

Bounding Volume Hierarchies: Different volumes 

have been developed to envelop the basic features, 

such as Spheres [PMH], Oriented Bounding Boxes 

(OBB) [SGMCLDM], or Axis Aligned Bounding 

boxes (AABB) [TLTAM] [MJBJ] [XZYJK], each of 

them has its advantages over the others; Spheres are 

easier to fit, OBBs have faster pruning capabilities, 

and AABBs are quicker to update, therefore being 

very popular in deformable body simulation. 

Also, different tree traversing and creation techniques 

[TLTAM] [SGMCLDM] have been developed to 

optimize these expensive operations, taking into 

account each specific kind of application. 

Stochastic algorithms: Techniques that try to give a 

faster but less exact answer have been developed, 

giving the developer the option to trade accuracy in 

collisions with computing power. The technique 

based on randomly selected primitives, selects 

random pairs of features that are probable to collide, 

and calculates the distance between them. The local 

minima is kept for the next step and calculations are 

once again made. The exact collision pairs are 

derived with Lin-Canny [MLJC] feature based 

algorithm. With a similar idea, Kimmerle et. al 

[SKMNFF] have applied BVH's with lazy hierarchy 

updates and stochastic techniques to deformable 

objects and cloth, where not every bounding box is 

verified for collision, but it has a certain probability. 

Image-based algorithms: These solutions 

commonly work with the projection of the objects, in 

contrast with previous techniques that work in object 

space, meaning that they are not dependent of the 

input structure, and as such are more suitable to point 

clouds. However to our knowledge they have not yet 

been applied to point clouds. 

RECODE [GBWHS] and several other works 

[DKDP] [KMOOTK], [GBWSW] take advantage of 

the stencil buffer and perform collision detection on 

it by using object coordinates as masks, and thus 

detecting possible penetrations. 

CULLIDE [NSRMLDM] uses occlusion queries only 

to detect potentially colliding objects, and then 

triangle intersection is made on the CPU. They 

render the bounding volumes of the objects in normal 

and reverse list storage order, and remove the objects 

that are fully visible in both passes, meaning that 

these objects are not involved in any collision.  

Heidelberger et. al [BHMTMG] uses simple AABB's 

as bounding volumes for the objects in the scene. 

Potentially colliding objects are detected, and a LDI 

(Layered Depth Image [JSLR]) of the intersection 

volume between the two objects is created. That is, a 

volumetric representation of an object across a 

chosen axis. At each rendering step, as a polygon is 

projected into the LDI, the size of the intersubsection 

volume is computed. Faure et. al [FSJF] [JFHFCP] 

addresses not only collision detection, but also its 

response by using this same principle. 

On a collision avoidance scenario, we want to predict 

an upcoming collision, and use this information to 

prevent it from happening. It is used mostly in 

artificial intelligence to control intelligent agents or 

robots. Loscos et. al [CLFTYC] represent the 

environment as patches to where the agent can or 

cannot go according to its occupation. It can be 

considered a basic but robust image based approach 

since it uses a 2D map to represent the environment. 

Collision detection on point clouds: Algorithms 

using feature based techniques, bounding volumes, 

and spatial subdivision have been developed. Klein 

and Zachmann [JKGZ] create bounding volumes on 

groups of points so collision detection can be 

normally applied. Figueiredo et. al [MJBJ] uses 

spatial subdivision to group points in the same voxel, 

and BVHs to perform collision detection.  The main 

issue while dealing with point clouds is the absence 

of closed surfaces and object boundaries. Ordinary 

BVH or stochastic techniques have to heavily adapt 

to this scenario, normally leading to not so efficient 

hierarchies. Feature-based techniques that work at 

vertex level are not scalable enough to be suited to 

these scenarios, since point clouds are normally 

massive data sets. Image-based techniques have the 

Figure 1. Slices creation process, and 

camera variables. 



Figure 2. Points Coloring and Obstacle 

Detection Algorithm 

disadvantage of sometimes requiring special graphic 

card capabilities, but only for some implementations. 

Overall, their properties make them the best suited 

for the proposed scenario of the tourism kiosk. 

For further information on collision detection and 

avoidance techniques we suggest the following 

surveys: [NMAS] [SKTGKICB] [MT].  

3. IMPLEMENTATION 
Image-based algorithms that have been presented in 

the community ([NSRMLDM] [GBWHS] [DKDP] 

[NBJM] [JFHFCP] [FSJF]) perform very well in 

various kinds of scenarios, but some features of our 

set scenario (described on Section 1) make them hard 

or impossible to be applied (e.g. our data is 

unstructured, not all objects are closed or convex). 

Our work extends the idea of a 2.5D map presented 

on the work of Loscos et. al [CLFTYC] by using 

enhanced height-maps, where the pixel color not only 

represents the height on that point, but also contains 

obstacle information, while at the same time 

overcoming the limitations of only supporting single 

floor environments. We call these enhanced maps, 

2.5+D maps. Instead of having just one height map, 

we create a series of enhanced maps along intervals 

sized   on the   axis, thus enabling the storage of 

more than a single   value for each (   ) pair. 

Unlike LDI’s, our representation does not combine 

several images into a volumetric representation, but 

separates each slice into a single image so we can 

easily perform memory management, and apply 

image comparison and compression techniques to 

have a better performance. Using the color of each 

pixel as a representation of a voxel, we write height 

information on the red channel, and identify 

obstacles on the blue channel. By adding these 

variables, we can determine not only the height level 

where the avatar should be standing, but also if he is 

colliding with any obstacle in several different 

heights.  

Slices Creation 
The creation of this representation is executed in a 

pre-processing stage, which is composed of several 

steps that must be performed from the input of the 

model until the actual rendering to create the 

snapshots that will be the used as collision maps. 

These slices are created as following. The camera is 

first set up according to the previously calculated 

bounding boxes of the input model on an orthogonal 

projection. After rendering that projection, a snapshot 

sized   is created and saved into the disk for further 

use. The camera then is moved along the   axis, and 

the process is repeated until the whole extension of 

the model has been rendered into images. A visual 

representation of the described variables along with 

the slices computed on an example model can be 

seen on Figure 1 and two real slices can be seen on 

Figure 4. 

Polygonal Model Oversampling 
We aim for a solution that accepts both polygonal 

models and point clouds. However these 

representations are inherently different and cannot be 

processed initially in the same way. Hence we 

created a solution that approximates the polygon 

models with a synthetic point cloud thus enabling 

later steps to be processed in the same way. We apply 

a simple oversampling operation that operates at 

triangle level transforming a polygonal model into a 

point cloud with a user-choice level of precision. 

After oversampling and discarding the polygons, the 

rendering of the produced point cloud has exactly the 

same shape and fill as if rendering the polygonal 

representation to the height map.  

Information Processing and Encoding 
Since all of our collision information will be written 

on collision maps as colors, we must assign each 

point on the point cloud a color representing its 

collision information. This will not replace the 

original color of that point in question. When writing 

these points on the output image, each pixel will 

represent a voxel sized (     ) on object space. So 

the painted color on that pixel will represent all the 

points contained in that volume. The algorithm on 

Figure 2 performs both the operation of height map 

information encoding, and obstacle detection. We 

define   as   , so as to ensure that one has more than 

one point on each slice, to properly perform the 

obstacle detection, as will be described later. 

The first operation is executed as follows: We 

calculate the difference between the current point   

coordinate and the model's lower bounding box     , 

and apply the modulo operator with  . This 

remainder    represents the points    coordinate on an 



Figure 3. Technique for surface orientation 

detection. Red points belong to a vertical 

structure, grey points to the floor. 

 

Figure 4. Two slices of an office environment, 

where walls (white/blue) and floor (green) are 

clearly distinguished, as well as a subsection 

of a roof (green to yellow) on the entrance. 

interval      . To be used as a color value, this 

difference must belong to the interval      , so we 

calculate   ⁄  thus deriving finally the red channel 

value. The simplified formula is given by     

    
(      )     

 
 

As navigation on a real-world scenario is normally 

performed horizontally on the    plane, we classify 

an obstacle as a surface that is close to being 

perpendicular to   , parallel to   . So our obstacle 

collision technique simply estimates how parallel to 

the   axis a certain surface is. Figure 3 illustrates how 

potential obstacles and floor are classified using the 

coloring algorithm (Figure 2). Points lined up 

vertically on the same pixel most likely belong to a 

vertical surface. Diagonal structures like ramps are 

climbable up to a certain degree. The closer to a wall 

they are, the greater the probability is that its points 

are considered to be obstacles. 

In order to keep track of point information that will 

be stored in the slices we use an auxiliary structure, a 

3D array             , after processing each point, 

we keep its color value on the position of the array 

representing the voxel on object space from where it 

came from. If there is already a stored value in this 

voxel, the difference between both red values is 

calculated, and transformed into an object-space 

distance 
   (          )

 
. 

If this difference is bigger than a certain small 

percentage   (e.g. 7%) of the size   of the slice, we 

assume that the points are vertically aligned, 

belonging to a vertical surface. These points are 

marked on their blue channel with the value 1, and 

we slightly increase its   coordinate so that the point 

is not occluded when rendering the maps. Typical 

output slices produced in the pre-processing stage 

can be seen in Figure 4, an office environment, where 

the floor has been correctly labeled as green, and all 

the walls are labeled as white or light blue. 

Collision Detection 
The developed representation provides us with 

enough information to perform quick collision 

detection on the navigation scenario given on section 

1 where we consider point clouds as a viable input. In 

the accompanying video we show precise collision 

detection between rigid bodies and point clouds. 

We divide the task of collision detection into two 

steps: a first step, that we call Broad phase, where we 

verify the occurrence of collisions between any 

objects in the scene, and a second step called narrow 

phase, where we perform collision response.  

3.1.1 Broad Phase and Collision Detection 
This task consists on identifying possible collisions 

between all objects on the scene. By representing the 

avatar that will be navigating on the environment by 

an Axis Aligned Bounding Box (AABB), we first 

calculate its size in pixels by calculating    
 
       

 
 

and       
     

 
, where threshold   is calculated as 

the pixel size. This will be the number of pixels 

checked for collision on each slice, around the center 

of the avatar. If any checked pixel is not black, we 

mark the object as colliding, and they will be further 

processed in a narrow phase.  

The only images we will need to load into the 

memory at the same time in order to perform 

collision detection between the given avatar and the 

environment are the ones located between        
              

 
 and                      

 
, where    

represents the z coordinate of the avatar. These slices 

contain collision detection information about the 

location where the pawn currently is.  

New slices that are needed, are loaded into memory 

until a user defined constant of number of slices 

(       ) is reached. New slices beyond this point, 

replace an already loaded slice that has the furthest   

value from the avatar's own   value, meaning it is not 

needed at this point of the execution.  In practice we 

found that six slices covered well the avatar's 



potential waist, shoulders, head, knees, and feet 

collisions with the scene. 

3.1.2 Narrow Phase and Collision Response 
In our current version, the sole purpose of our 

collision response algorithm was to simply avoid 

objects from overlapping, and provide a basic 

navigation experience on the given environment. Any 

other more complex technique could be applied here, 

but this simple solution fulfills the requirements for 

our navigation scenario. We focused on an efficient 

broad phase algorithm, and a flexible representation 

so we could apply any chosen image-based technique 

on the narrow phase. This was achieved with a 

straightforward extension of our broad-phase 

algorithm, by applying the concepts of collision 

response from height maps, and collision avoidance 

[CLFTYC]. Instead of simply returning true when we 

find pixels that are not black, we gather information 

for collision response each time we find colored 

pixels. Pixels with the blue channel set to   always 

represent an obstacle, except on applications where 

we want to enable the avatar to climb small 

obstacles, as the agents from Loscos et.al [CLFTYC]. 

On these situations, we may ignore these pixels up 

until the height we want to be considered as 

climbable. As our avatar moves on fixed length steps, 

and each time it collides we correct it to the place it 

was on the previous check, we thus ensure that the 

avatar is always on a valid position. We apply this 

(   ) correction each time an obstacle pixel is found 

until all the pixels representing the avatar's bounding 

box are verified. 

Height is defined exactly as it is when precomputing 

height maps. By multiplying the coded height 

information on the red channel by   and adding the   

base coordinate of the given slice, we have precise 

information about a given point's height. Collision 

response can be made by setting the final height to 

the average height of the points on the base of the 

bounding box, or by the adopted strategy, the 

maximum value. Here we also check for surface 

height values from the first slice until the height we 

want to consider as climbable.  

The complexity of this operation is exactly  (     
      ) where       and       are the number of 

pixels ocuppied by the base of the avatar and   is the 

number of slices encompassed by the avatar's height. 

We point however, that these checks are already 

performed in the broad phase, and hence can be re-

used in the narrow phase without adding any extra 

operations. 

4. EXPERIMENTAL RESULTS 
We have implemented the whole algorithm using 

OpenGL 2.1.2, C and the OpenGL Utility Toolkit  

 (GLUT) to deal with user input and the base 

application loop management. The platform used for 

tests was a computer with an Intel core 2 Duo CPU at 

2 GHz with 2GB of RAM, a NVIDIA GeForce 9400 

adapter, running Microsoft Windows Seven x86.  

Table 2 shows the time taken on the whole 

preprocessing stage for each model and 

configuration. Polygon sampling during the 

preprocessing of polygonal models is clearly the 

most computationally intensive task in the pipeline, 

as the two higher complexity point cloud models 

(Entrance and Room as seen on Table 1 and Figure 

7) that did not require sampling had a faster 

performance. In the preprocessing phase the increase 

on processing time with point clouds is linear to point 

complexity. This linear growth is expected since each 

point must be checked for coloring once, and also for 

common input processing tasks such as file reading 

and display list creation.  

Regarding the results of the overall memory cost 

specifically in the preprocessing phase, Table 2 

shows that memory scales almost linearly according 

to the input size of the point cloud (Entrance versus 

Room in Table 1). This memory is needed 

temporarily for allocating the auxiliary 3D array for 

obstacle detection in the slice creation phase. 

Similarly, tests have shown that this memory 

consumption also grows linearly with the number of 

points produced in the polygon sampling phase. 

During the application runtime, the average memory 

consumption varies according to the number of 

loaded slices into RAM, and according to the size of 

the loaded model used for rendering (Figure 5 and 

Table 1). On a 700x700 resolution, the peak minimal 

value found in any model we experimented was 

50,07MB (Office) and the peak maximum 168,08MB 

(Street), with 6 slices loaded in memory. Table 2 

shows how much memory the application consumes 

when only rendering the models and the total 

memory with collision detection, while having 6 

slices loaded in memory. By controlling         we 

can avoid this value from going over the memory we 

wish the 
Figure 5. Memory load at a given moment 

during runtime on a 700x700 configuration, 6 

slices, with and without collision detection. 

 



application to consume, since all other memory 

required for the application is for tasks unrelated to 

collision detection. 

We were interested in studying the direct behavior of 

our algorithm and did not wish to mask performance 

with asynchronous I/O threads. Results on collision 

detection have been verified through establishing a 

fixed route to navigate with the pawn avatar where it 

goes through different situations and scenarios, such 

as "climbing" single steps, "traversing" planar areas, 

going "near" cylindrical or square shaped columns 

and "falling" from a height. Whilst the number of 

created collision maps for a scene can affect collision 

results, the actual number of buffer slices         will 

only affect potentially the performance, as the system 

checks all slices at the avatar´s current height. Tests 

on Cathedral 700x700 with 130 slices and         set 

to 10 have showed us that reading from the disk at 

runtime has a bigger impact on efficiency than 

storing a higher number of images on commodity 

RAM. For instance, when using a maximum buffer 

of 10 slices and reading a high resolution image from 

the disk, we notice a sudden drop in frame-rate 

(Figure 6), and this can also be noticed when the 

pawn falls from a higher structure, and needs to 

rapidly load a series of maps on his way to the 

ground. By increasing         to 16 on this scenario, 

we ensure the storage of enough slices to represent 

the ground floor and the platform on top of the steps 

(Experiment B in the accompanying video). Little 

difference was noticed on memory load (5,33MB), 

and the interaction was much smoother.  

Results also show that our algorithm did not affect in 

any way the rendering speed of the interactive 

application. Figure 6 shows that the frame-rate was 

nearly identical in the same scenario with and 

without collision detection using 16 slices.  

Although we did not aim for high precision on 

collision response, our technique has presented 

precise results on different resolutions. We note that 

point clouds are themselves approximations to 

surfaces, and as such a collision amongst points is an 

unlikely event, Figueiredo et. al use the average 

closest point to point distance divided by two to 

establish a conservative bounding box around each 

point, which can generate false collisions when close. 

With our approach, instead of a box, we use the 

pixels of a zoomed out view which is also 

conservative. Precision results with the different 

algorithms were verified empirically by changing the 

Model Type 
Original 

Complexity 
Details 

Office Polygonal 17.353 pts. Office environment with cubicles and hallways 

Church Polygonal 26.721 pts. Simple church with stairs and columns 

Sibenik Polygonal 47.658 pts. Cathedral of St. James on Sibenik, Croatia 

Columns Polygonal 143.591 pts. Big environment with localized complexity. 

Room 3D laser scan 271.731 pts. 3D Scan of a room with chairs and several objects. 

Street Polygonal 281.169 pts. 
Outside street environment with an irregular floor, 

houses, and several objects 

Entrance 3D laser scan 580.062 pts. Entrance of the Batalha monastery in Portugal. 

Model Time 

(s) 

Total 

Complexity 

Memory 

Office 41,23  9.349.585 pts 610,3 MB 

Church 58,14  6.475.125 pts 536,58 MB 

Sibenik 78,87  5.199.093 pts 532,48 MB 

Columns 42,92  2.612.303 pts 241,66 MB 

Street 114,75  7.142.361 pts 598,02 MB 

Entrance 13,9  580.062 pts. 122,88 MB 

Room 6,96  271.731 pts. 67,58 MB 

Table 1. Features of the models used for evaluation 

. 

Table 2. Time, Total complexity (with 

generated points) and Memory consumption 

on the pre-processing stage for a 700x700 

resolution. 

Figure 6. Average frame rate and memory 

consumption comparison between different 

𝒏𝒔𝒍𝒊𝒄𝒆𝒔 configurations with 700x700 images, 

and no collision detection scenario. 

(Experiment B, Cathedral) 



color of the avatar when a collision occurs. We found 

that using collision maps with a resolution of 

700x700 enabled one to lower the number of false 

collisions from other methods when close to 

obstacles. 

Floor collision has been performed perfectly in all 

resolutions, since its precision is defined by the rgb 

value of the point. Collisions with obstacles are more 

affected by resolution as is to be expected, since we 

rely on pixel finesse to precisely know the position of 

a given surface. Tests on office and street (Figure 7) 

have showed the same errors of small object 

interference or fake collisions due to diffuse 

information about object boundaries. These are more 

noticeable on the interactions with round objects on 

Street (Figure 7) where we can notice the aliasing 

creating invisible square barriers around a perfectly 

round object.  

Table 3 compares our technique with the work from 

Figueiredo et. al [MJBJ], which has been tested on 

one of our experimental scenarios (Figure 7), the 

walkthrough in the point cloud of the Batalha 

Monastery (Experiment A in the accompanying 

video, 700x700 resolution        set to 10), on a 

machine with a slightly faster processing speed and 

RAM than the one used for our walkthroughs. We 

compared our results with their best performance 

alternative, that bases the surface partition on 4096 

cells of the octree. 

Frame-rate was disturbed during the collision 

detection process on the R-tree approach, while it 

remained steady at the 30 fps during the whole 

execution of our application. Also, the image-based 

technique has required much less memory to be 

executed, even with a significantly high number of 

slices loaded in memory. The biggest difference is in 

the pre-processing times. Our approach was executed 

107 times faster than the BVH approach. The pre-

processing stage must only be performed once for 

each configuration, since the representation is written 

and loaded to the hard-drive for further interactions. 

As stated in section 2 the research on point cloud 

collision detection is recent, and non-existent 

regarding image-based techniques. Our pioneer 

solution has presented excellent results, not only 

performing better than other works on point clouds 

published in the scientific community, but also being 

flexible enough to be applied on models from CAD, 

or combined with precise collision response 

techniques. Our technique can be performed with our 

representation on any computer that can render the 

input model at an acceptable frame-rate, without 

requiring much processing from the CPU or GPUs.  

5. CONCLUSION AND FUTURE 

WORK 
A new image-based environment representation for 

collision detection has been presented, using 2.5+D 

slices of an environment or buildings across the   

axis. These images contain at each pixel, information 

about a given voxel, representing i's contents with 

colors. Height map information is stored on the red 

channel, and obstacles are indicated on the blue 

channel. This allows us to have a Broad phase 

collision detection stage that is performed with high 

efficiency and scalability, where the user can choose 

the precision according to the computing power at 

hand by simply adjusting the resolution of the 

produced images. Point clouds and polygonal models 

are ubiquitously processed, making our approach 

currently the best suited for fast interaction with 

massive laser-scan data. This work fills a gap in the 

area of collision detection, exploring a scenario that 

has been receiving more attention recently. 

Future Work 
Using graphic card capabilities such as the stencil 

buffer for broad-phase collision detection and vertex 

shaders for point coloring could greatly speed up 

these operations, and also, calculations would be 

moved to the GPU, taking away some work from the 

CPU. Applying this representation of environments 

also on objects of the scene, or even applying it to the 

avatars we're using on the interaction, could present 

interesting results. Using non-uniform resolution 

images on environments where we do not have a 

uniform complexity, would also help us achieve 

more precision on our narrow phase, or on these 

presented situations. 

Image comparison techniques and compression can 

also be applied to the generated images in order to 

decrease the number of times we need to load a slice, 

and also the number of collision detection checks we 

must do. In several man-made structures such as 

buildings, many slices tend to be identical; intra-slice 

compression also presents itself as an interesting 

avenue of research. 
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 Image-based 

(700x700) 

BVH Oct 4096 

Frame-rate 30 fps 16 to 30 fps 

Total 

Memory 

143.36 MB 225,44 MB 

Pre. proc. 

time 

13.9 s 1500 s 

Table 3. Comparison between point-cloud 

techniques (Experiment A) 
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Figure 7.  Pictures of all the tested input 

polygonal models and point clouds. Environments 

with different topologies were chosen for this 

purpose. 

 


