
Collision Detection on Point Clouds Using a 2.5+D
Image-Based Approach

Rafael Kuffner dos Anjos

Inesc-ID
Av. Prof. Dr Anibal Cavaco Silva
 Portugal 2744-016, Porto Salvo

rafaelkuffner@gmail.com

João Madeiras Pereira

IST/Inesc-ID
Rua Alves Redol, 9

Portugal 1000-029, Lisboa,

jap@inesc-id.pt

João Fradinho Oliveira

C3i/Inst. Politécnico de Portalegre
Praça do Município

Portugal 7300, Portalegre

joaofradinhooliveira@gmail.com

ABSTRACT

This work explores an alternative approach to the problem of collision detection using images instead of

geometry to represent complex polygonal environments and buildings derived from laser scan data, used in an

interactive navigation scenario. In a preprocessing step, models that are not point clouds, are sampled to create

representative point clouds. Our algorithm then creates several 2.5+D maps in a given volume that stacked

together form a 3D section of the world. We show that our new representation allows for realistic and fast

collision queries with complex geometry such as stairs and that the algorithm is insensitive to the size of the

input point cloud at run-time.

Keywords
Collision Detection, Point-based Graphics, Navigation

1. INTRODUCTION
Collision detection is normally a bottleneck in the

visualization and interaction process, as collisions

need to be checked at each frame. Traditionally, the

more complicated and crowded is our scene, the

more calculations need to be done, bringing the

frame-rate down. Therefore the optimization of this

process, gaining speed without losing quality in the

simulation, is something that has been researched for

years. Although several different techniques and

approaches have been developed, and showed good

performance in specific scenarios, these approaches

rely on object topology information which is easily

extracted from polygonal models. However with

point cloud models, the classical approaches either

will not work, or will have to heavily adapt to this

specific scenario, compromising their optimizations.

Using images as an alternative way of executing the

task of collision detection might just be the answer.

Image-based techniques can have their precision

easily controlled by the resolution of the used

images, and the algorithms are completely

independent of the object's topology and complexity

at run-time. It does not matter whether an object has

sharp features, round parts, or even whether it is a

point cloud, as all we are dealing with is the object's

image representation. Being a scalable and promising

technique, Image-based collision detection seems to

be a plausible alternative to the classical approaches.

Our approach focuses in a virtual reality navigation

scenario, where the scene is derived from the real

world via devices such as laser scanners, which tend

to generate enormous point clouds. Also, the

hardware at hand might not fit the basic requirements

for most algorithms and techniques, a situation that

commonly will happen in tourism hotspots,

museums, or other places where we would like

ordinary people to be able to interact with the system.

The developed application enables them to control an

avatar on a static environment, a point cloud or

polygonal model.

The main contribution of our research is a new 3D

world representation for environment and buildings

which is completely image-based with information

that enables realistic and robust collision detection

with underlying complex geometry such as slopes

and stairs. Slicing a given structure along the Z axis

(Using Cartesian coordinates as illustrated in Figure

1); we create a discrete set of images containing

height information about the surface, and possible

collidable frontiers. It is a flexible format that is able

to represent either point clouds or polygonal models.

This representation allows us to perform collision

detection with user chosen precision, and high

scalability.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

2. RELATED WORK
The problem of collision detection is present in

several areas of research and applications, each of

them having different concerns, requirements and

desired results. This necessity has prompted the

creation of several techniques that try to deliver these

results using varied approaches, each one fitting to

specific problems.

Feature based: Famous examples are the Lin-Canny

algorithm [MLJC] and its more recent related

algorithm, V-Clip [BMM], which keeps track of the

closest features between two objects, deriving both

the separation distance, and the vertices that have

possibly already penetrated the other object.

Bounding Volume Hierarchies: Different volumes

have been developed to envelop the basic features,

such as Spheres [PMH], Oriented Bounding Boxes

(OBB) [SGMCLDM], or Axis Aligned Bounding

boxes (AABB) [TLTAM] [MJBJ] [XZYJK], each of

them has its advantages over the others; Spheres are

easier to fit, OBBs have faster pruning capabilities,

and AABBs are quicker to update, therefore being

very popular in deformable body simulation.

Also, different tree traversing and creation techniques

[TLTAM] [SGMCLDM] have been developed to

optimize these expensive operations, taking into

account each specific kind of application.

Stochastic algorithms: Techniques that try to give a

faster but less exact answer have been developed,

giving the developer the option to trade accuracy in

collisions with computing power. The technique

based on randomly selected primitives, selects

random pairs of features that are probable to collide,

and calculates the distance between them. The local

minima is kept for the next step and calculations are

once again made. The exact collision pairs are

derived with Lin-Canny [MLJC] feature based

algorithm. With a similar idea, Kimmerle et. al

[SKMNFF] have applied BVH's with lazy hierarchy

updates and stochastic techniques to deformable

objects and cloth, where not every bounding box is

verified for collision, but it has a certain probability.

Image-based algorithms: These solutions

commonly work with the projection of the objects, in

contrast with previous techniques that work in object

space, meaning that they are not dependent of the

input structure, and as such are more suitable to point

clouds. However to our knowledge they have not yet

been applied to point clouds.

RECODE [GBWHS] and several other works

[DKDP] [KMOOTK], [GBWSW] take advantage of

the stencil buffer and perform collision detection on

it by using object coordinates as masks, and thus

detecting possible penetrations.

CULLIDE [NSRMLDM] uses occlusion queries only

to detect potentially colliding objects, and then

triangle intersection is made on the CPU. They

render the bounding volumes of the objects in normal

and reverse list storage order, and remove the objects

that are fully visible in both passes, meaning that

these objects are not involved in any collision.

Heidelberger et. al [BHMTMG] uses simple AABB's

as bounding volumes for the objects in the scene.

Potentially colliding objects are detected, and a LDI

(Layered Depth Image [JSLR]) of the intersection

volume between the two objects is created. That is, a

volumetric representation of an object across a

chosen axis. At each rendering step, as a polygon is

projected into the LDI, the size of the intersubsection

volume is computed. Faure et. al [FSJF] [JFHFCP]

addresses not only collision detection, but also its

response by using this same principle.

On a collision avoidance scenario, we want to predict

an upcoming collision, and use this information to

prevent it from happening. It is used mostly in

artificial intelligence to control intelligent agents or

robots. Loscos et. al [CLFTYC] represent the

environment as patches to where the agent can or

cannot go according to its occupation. It can be

considered a basic but robust image based approach

since it uses a 2D map to represent the environment.

Collision detection on point clouds: Algorithms

using feature based techniques, bounding volumes,

and spatial subdivision have been developed. Klein

and Zachmann [JKGZ] create bounding volumes on

groups of points so collision detection can be

normally applied. Figueiredo et. al [MJBJ] uses

spatial subdivision to group points in the same voxel,

and BVHs to perform collision detection. The main

issue while dealing with point clouds is the absence

of closed surfaces and object boundaries. Ordinary

BVH or stochastic techniques have to heavily adapt

to this scenario, normally leading to not so efficient

hierarchies. Feature-based techniques that work at

vertex level are not scalable enough to be suited to

these scenarios, since point clouds are normally

massive data sets. Image-based techniques have the

Figure 1. Slices creation process, and

camera variables.

Figure 2. Points Coloring and Obstacle

Detection Algorithm

disadvantage of sometimes requiring special graphic

card capabilities, but only for some implementations.

Overall, their properties make them the best suited

for the proposed scenario of the tourism kiosk.

For further information on collision detection and

avoidance techniques we suggest the following

surveys: [NMAS] [SKTGKICB] [MT].

3. IMPLEMENTATION
Image-based algorithms that have been presented in

the community ([NSRMLDM] [GBWHS] [DKDP]

[NBJM] [JFHFCP] [FSJF]) perform very well in

various kinds of scenarios, but some features of our

set scenario (described on Section 1) make them hard

or impossible to be applied (e.g. our data is

unstructured, not all objects are closed or convex).

Our work extends the idea of a 2.5D map presented

on the work of Loscos et. al [CLFTYC] by using

enhanced height-maps, where the pixel color not only

represents the height on that point, but also contains

obstacle information, while at the same time

overcoming the limitations of only supporting single

floor environments. We call these enhanced maps,

2.5+D maps. Instead of having just one height map,

we create a series of enhanced maps along intervals

sized on the axis, thus enabling the storage of

more than a single value for each () pair.

Unlike LDI’s, our representation does not combine

several images into a volumetric representation, but

separates each slice into a single image so we can

easily perform memory management, and apply

image comparison and compression techniques to

have a better performance. Using the color of each

pixel as a representation of a voxel, we write height

information on the red channel, and identify

obstacles on the blue channel. By adding these

variables, we can determine not only the height level

where the avatar should be standing, but also if he is

colliding with any obstacle in several different

heights.

Slices Creation
The creation of this representation is executed in a

pre-processing stage, which is composed of several

steps that must be performed from the input of the

model until the actual rendering to create the

snapshots that will be the used as collision maps.

These slices are created as following. The camera is

first set up according to the previously calculated

bounding boxes of the input model on an orthogonal

projection. After rendering that projection, a snapshot

sized is created and saved into the disk for further

use. The camera then is moved along the axis, and

the process is repeated until the whole extension of

the model has been rendered into images. A visual

representation of the described variables along with

the slices computed on an example model can be

seen on Figure 1 and two real slices can be seen on

Figure 4.

Polygonal Model Oversampling
We aim for a solution that accepts both polygonal

models and point clouds. However these

representations are inherently different and cannot be

processed initially in the same way. Hence we

created a solution that approximates the polygon

models with a synthetic point cloud thus enabling

later steps to be processed in the same way. We apply

a simple oversampling operation that operates at

triangle level transforming a polygonal model into a

point cloud with a user-choice level of precision.

After oversampling and discarding the polygons, the

rendering of the produced point cloud has exactly the

same shape and fill as if rendering the polygonal

representation to the height map.

Information Processing and Encoding
Since all of our collision information will be written

on collision maps as colors, we must assign each

point on the point cloud a color representing its

collision information. This will not replace the

original color of that point in question. When writing

these points on the output image, each pixel will

represent a voxel sized () on object space. So

the painted color on that pixel will represent all the

points contained in that volume. The algorithm on

Figure 2 performs both the operation of height map

information encoding, and obstacle detection. We

define as , so as to ensure that one has more than

one point on each slice, to properly perform the

obstacle detection, as will be described later.

The first operation is executed as follows: We

calculate the difference between the current point

coordinate and the model's lower bounding box ,

and apply the modulo operator with . This

remainder represents the points coordinate on an

Figure 3. Technique for surface orientation

detection. Red points belong to a vertical

structure, grey points to the floor.

Figure 4. Two slices of an office environment,

where walls (white/blue) and floor (green) are

clearly distinguished, as well as a subsection

of a roof (green to yellow) on the entrance.

interval . To be used as a color value, this

difference must belong to the interval , so we

calculate ⁄ thus deriving finally the red channel

value. The simplified formula is given by

()

As navigation on a real-world scenario is normally

performed horizontally on the plane, we classify

an obstacle as a surface that is close to being

perpendicular to , parallel to . So our obstacle

collision technique simply estimates how parallel to

the axis a certain surface is. Figure 3 illustrates how

potential obstacles and floor are classified using the

coloring algorithm (Figure 2). Points lined up

vertically on the same pixel most likely belong to a

vertical surface. Diagonal structures like ramps are

climbable up to a certain degree. The closer to a wall

they are, the greater the probability is that its points

are considered to be obstacles.

In order to keep track of point information that will

be stored in the slices we use an auxiliary structure, a

3D array , after processing each point,

we keep its color value on the position of the array

representing the voxel on object space from where it

came from. If there is already a stored value in this

voxel, the difference between both red values is

calculated, and transformed into an object-space

distance
 ()

.

If this difference is bigger than a certain small

percentage (e.g. 7%) of the size of the slice, we

assume that the points are vertically aligned,

belonging to a vertical surface. These points are

marked on their blue channel with the value 1, and

we slightly increase its coordinate so that the point

is not occluded when rendering the maps. Typical

output slices produced in the pre-processing stage

can be seen in Figure 4, an office environment, where

the floor has been correctly labeled as green, and all

the walls are labeled as white or light blue.

Collision Detection
The developed representation provides us with

enough information to perform quick collision

detection on the navigation scenario given on section

1 where we consider point clouds as a viable input. In

the accompanying video we show precise collision

detection between rigid bodies and point clouds.

We divide the task of collision detection into two

steps: a first step, that we call Broad phase, where we

verify the occurrence of collisions between any

objects in the scene, and a second step called narrow

phase, where we perform collision response.

3.1.1 Broad Phase and Collision Detection
This task consists on identifying possible collisions

between all objects on the scene. By representing the

avatar that will be navigating on the environment by

an Axis Aligned Bounding Box (AABB), we first

calculate its size in pixels by calculating

and

, where threshold is calculated as

the pixel size. This will be the number of pixels

checked for collision on each slice, around the center

of the avatar. If any checked pixel is not black, we

mark the object as colliding, and they will be further

processed in a narrow phase.

The only images we will need to load into the

memory at the same time in order to perform

collision detection between the given avatar and the

environment are the ones located between

 and

, where

represents the z coordinate of the avatar. These slices

contain collision detection information about the

location where the pawn currently is.

New slices that are needed, are loaded into memory

until a user defined constant of number of slices

() is reached. New slices beyond this point,

replace an already loaded slice that has the furthest

value from the avatar's own value, meaning it is not

needed at this point of the execution. In practice we

found that six slices covered well the avatar's

potential waist, shoulders, head, knees, and feet

collisions with the scene.

3.1.2 Narrow Phase and Collision Response
In our current version, the sole purpose of our

collision response algorithm was to simply avoid

objects from overlapping, and provide a basic

navigation experience on the given environment. Any

other more complex technique could be applied here,

but this simple solution fulfills the requirements for

our navigation scenario. We focused on an efficient

broad phase algorithm, and a flexible representation

so we could apply any chosen image-based technique

on the narrow phase. This was achieved with a

straightforward extension of our broad-phase

algorithm, by applying the concepts of collision

response from height maps, and collision avoidance

[CLFTYC]. Instead of simply returning true when we

find pixels that are not black, we gather information

for collision response each time we find colored

pixels. Pixels with the blue channel set to always

represent an obstacle, except on applications where

we want to enable the avatar to climb small

obstacles, as the agents from Loscos et.al [CLFTYC].

On these situations, we may ignore these pixels up

until the height we want to be considered as

climbable. As our avatar moves on fixed length steps,

and each time it collides we correct it to the place it

was on the previous check, we thus ensure that the

avatar is always on a valid position. We apply this

() correction each time an obstacle pixel is found

until all the pixels representing the avatar's bounding

box are verified.

Height is defined exactly as it is when precomputing

height maps. By multiplying the coded height

information on the red channel by and adding the

base coordinate of the given slice, we have precise

information about a given point's height. Collision

response can be made by setting the final height to

the average height of the points on the base of the

bounding box, or by the adopted strategy, the

maximum value. Here we also check for surface

height values from the first slice until the height we

want to consider as climbable.

The complexity of this operation is exactly (
) where and are the number of

pixels ocuppied by the base of the avatar and is the

number of slices encompassed by the avatar's height.

We point however, that these checks are already

performed in the broad phase, and hence can be re-

used in the narrow phase without adding any extra

operations.

4. EXPERIMENTAL RESULTS
We have implemented the whole algorithm using

OpenGL 2.1.2, C and the OpenGL Utility Toolkit

 (GLUT) to deal with user input and the base

application loop management. The platform used for

tests was a computer with an Intel core 2 Duo CPU at

2 GHz with 2GB of RAM, a NVIDIA GeForce 9400

adapter, running Microsoft Windows Seven x86.

Table 2 shows the time taken on the whole

preprocessing stage for each model and

configuration. Polygon sampling during the

preprocessing of polygonal models is clearly the

most computationally intensive task in the pipeline,

as the two higher complexity point cloud models

(Entrance and Room as seen on Table 1 and Figure

7) that did not require sampling had a faster

performance. In the preprocessing phase the increase

on processing time with point clouds is linear to point

complexity. This linear growth is expected since each

point must be checked for coloring once, and also for

common input processing tasks such as file reading

and display list creation.

Regarding the results of the overall memory cost

specifically in the preprocessing phase, Table 2

shows that memory scales almost linearly according

to the input size of the point cloud (Entrance versus

Room in Table 1). This memory is needed

temporarily for allocating the auxiliary 3D array for

obstacle detection in the slice creation phase.

Similarly, tests have shown that this memory

consumption also grows linearly with the number of

points produced in the polygon sampling phase.

During the application runtime, the average memory

consumption varies according to the number of

loaded slices into RAM, and according to the size of

the loaded model used for rendering (Figure 5 and

Table 1). On a 700x700 resolution, the peak minimal

value found in any model we experimented was

50,07MB (Office) and the peak maximum 168,08MB

(Street), with 6 slices loaded in memory. Table 2

shows how much memory the application consumes

when only rendering the models and the total

memory with collision detection, while having 6

slices loaded in memory. By controlling we

can avoid this value from going over the memory we

wish the
Figure 5. Memory load at a given moment

during runtime on a 700x700 configuration, 6

slices, with and without collision detection.

application to consume, since all other memory

required for the application is for tasks unrelated to

collision detection.

We were interested in studying the direct behavior of

our algorithm and did not wish to mask performance

with asynchronous I/O threads. Results on collision

detection have been verified through establishing a

fixed route to navigate with the pawn avatar where it

goes through different situations and scenarios, such

as "climbing" single steps, "traversing" planar areas,

going "near" cylindrical or square shaped columns

and "falling" from a height. Whilst the number of

created collision maps for a scene can affect collision

results, the actual number of buffer slices will

only affect potentially the performance, as the system

checks all slices at the avatar´s current height. Tests

on Cathedral 700x700 with 130 slices and set

to 10 have showed us that reading from the disk at

runtime has a bigger impact on efficiency than

storing a higher number of images on commodity

RAM. For instance, when using a maximum buffer

of 10 slices and reading a high resolution image from

the disk, we notice a sudden drop in frame-rate

(Figure 6), and this can also be noticed when the

pawn falls from a higher structure, and needs to

rapidly load a series of maps on his way to the

ground. By increasing to 16 on this scenario,

we ensure the storage of enough slices to represent

the ground floor and the platform on top of the steps

(Experiment B in the accompanying video). Little

difference was noticed on memory load (5,33MB),

and the interaction was much smoother.

Results also show that our algorithm did not affect in

any way the rendering speed of the interactive

application. Figure 6 shows that the frame-rate was

nearly identical in the same scenario with and

without collision detection using 16 slices.

Although we did not aim for high precision on

collision response, our technique has presented

precise results on different resolutions. We note that

point clouds are themselves approximations to

surfaces, and as such a collision amongst points is an

unlikely event, Figueiredo et. al use the average

closest point to point distance divided by two to

establish a conservative bounding box around each

point, which can generate false collisions when close.

With our approach, instead of a box, we use the

pixels of a zoomed out view which is also

conservative. Precision results with the different

algorithms were verified empirically by changing the

Model Type
Original

Complexity
Details

Office Polygonal 17.353 pts. Office environment with cubicles and hallways

Church Polygonal 26.721 pts. Simple church with stairs and columns

Sibenik Polygonal 47.658 pts. Cathedral of St. James on Sibenik, Croatia

Columns Polygonal 143.591 pts. Big environment with localized complexity.

Room 3D laser scan 271.731 pts. 3D Scan of a room with chairs and several objects.

Street Polygonal 281.169 pts.
Outside street environment with an irregular floor,

houses, and several objects

Entrance 3D laser scan 580.062 pts. Entrance of the Batalha monastery in Portugal.

Model Time

(s)

Total

Complexity

Memory

Office 41,23 9.349.585 pts 610,3 MB

Church 58,14 6.475.125 pts 536,58 MB

Sibenik 78,87 5.199.093 pts 532,48 MB

Columns 42,92 2.612.303 pts 241,66 MB

Street 114,75 7.142.361 pts 598,02 MB

Entrance 13,9 580.062 pts. 122,88 MB

Room 6,96 271.731 pts. 67,58 MB

Table 1. Features of the models used for evaluation

.

Table 2. Time, Total complexity (with

generated points) and Memory consumption

on the pre-processing stage for a 700x700

resolution.

Figure 6. Average frame rate and memory

consumption comparison between different

𝒏𝒔𝒍𝒊𝒄𝒆𝒔 configurations with 700x700 images,

and no collision detection scenario.

(Experiment B, Cathedral)

color of the avatar when a collision occurs. We found

that using collision maps with a resolution of

700x700 enabled one to lower the number of false

collisions from other methods when close to

obstacles.

Floor collision has been performed perfectly in all

resolutions, since its precision is defined by the rgb

value of the point. Collisions with obstacles are more

affected by resolution as is to be expected, since we

rely on pixel finesse to precisely know the position of

a given surface. Tests on office and street (Figure 7)

have showed the same errors of small object

interference or fake collisions due to diffuse

information about object boundaries. These are more

noticeable on the interactions with round objects on

Street (Figure 7) where we can notice the aliasing

creating invisible square barriers around a perfectly

round object.

Table 3 compares our technique with the work from

Figueiredo et. al [MJBJ], which has been tested on

one of our experimental scenarios (Figure 7), the

walkthrough in the point cloud of the Batalha

Monastery (Experiment A in the accompanying

video, 700x700 resolution set to 10), on a

machine with a slightly faster processing speed and

RAM than the one used for our walkthroughs. We

compared our results with their best performance

alternative, that bases the surface partition on 4096

cells of the octree.

Frame-rate was disturbed during the collision

detection process on the R-tree approach, while it

remained steady at the 30 fps during the whole

execution of our application. Also, the image-based

technique has required much less memory to be

executed, even with a significantly high number of

slices loaded in memory. The biggest difference is in

the pre-processing times. Our approach was executed

107 times faster than the BVH approach. The pre-

processing stage must only be performed once for

each configuration, since the representation is written

and loaded to the hard-drive for further interactions.

As stated in section 2 the research on point cloud

collision detection is recent, and non-existent

regarding image-based techniques. Our pioneer

solution has presented excellent results, not only

performing better than other works on point clouds

published in the scientific community, but also being

flexible enough to be applied on models from CAD,

or combined with precise collision response

techniques. Our technique can be performed with our

representation on any computer that can render the

input model at an acceptable frame-rate, without

requiring much processing from the CPU or GPUs.

5. CONCLUSION AND FUTURE

WORK
A new image-based environment representation for

collision detection has been presented, using 2.5+D

slices of an environment or buildings across the

axis. These images contain at each pixel, information

about a given voxel, representing i's contents with

colors. Height map information is stored on the red

channel, and obstacles are indicated on the blue

channel. This allows us to have a Broad phase

collision detection stage that is performed with high

efficiency and scalability, where the user can choose

the precision according to the computing power at

hand by simply adjusting the resolution of the

produced images. Point clouds and polygonal models

are ubiquitously processed, making our approach

currently the best suited for fast interaction with

massive laser-scan data. This work fills a gap in the

area of collision detection, exploring a scenario that

has been receiving more attention recently.

Future Work
Using graphic card capabilities such as the stencil

buffer for broad-phase collision detection and vertex

shaders for point coloring could greatly speed up

these operations, and also, calculations would be

moved to the GPU, taking away some work from the

CPU. Applying this representation of environments

also on objects of the scene, or even applying it to the

avatars we're using on the interaction, could present

interesting results. Using non-uniform resolution

images on environments where we do not have a

uniform complexity, would also help us achieve

more precision on our narrow phase, or on these

presented situations.

Image comparison techniques and compression can

also be applied to the generated images in order to

decrease the number of times we need to load a slice,

and also the number of collision detection checks we

must do. In several man-made structures such as

buildings, many slices tend to be identical; intra-slice

compression also presents itself as an interesting

avenue of research.

6. ACKNOWLEDGMENTS
We would like to thank Artescan for the point clouds

provided.

 Image-based

(700x700)

BVH Oct 4096

Frame-rate 30 fps 16 to 30 fps

Total

Memory

143.36 MB 225,44 MB

Pre. proc.

time

13.9 s 1500 s

Table 3. Comparison between point-cloud

techniques (Experiment A)

7. REFERENCES
 [BHMTMG] Bruno Heidelberger, Matthias

Teschner, and Markus Gross, Real-Time

Volumetric Intersections of Deforming Objects,

Proceedings of Vision, Modeling, and

Visualization 2003,461-468,2003

[BMM] Brian Mirtich, V-clip: fast and robust

polyhedral collision detection, ACM Trans.

Graph., 17:177--208, July 1998.

[CLFTYC] Céline Loscos, Franco Tecchia, and

Yiorgos Chrysanthou, Real-time shadows for

animated crowds in virtual cities, In Proceedings

of the ACM symposium on Virtual reality

software and technology, VRST '01, pages 85--

92, New York, NY, USA, 2001. ACM.

[DKDP] Dave Knott and Dinesh K. Pai, Cinder -

collision and interference detection in real-time

using graphics hardware, Proceedings of Graphics

Interface, pages 73--80, 2003.

[FSJF] François Faure, Sébastien Barbier, Jérémie

Allard, and Florent Falipou, Image-based

collision detection and response between arbitrary

volume objects, In Proceedings of the 2008

ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, SCA '08, pages 155--162,

Aire-la-Ville, Switzerland, Switzerland, 2008.

Eurographics Association.

[GBWHS] G. Baciu, Wingo Sai-Keung Wong, and

Hanqiu Sun, Recode: an image-based collision

detection algorithm, In Computer Graphics and

Applications, 1998. Pacific Graphics '98. Sixth

Pacific Conference on, pages 125 --133, oct 1998.

[GBWSW] George Baciu and Wingo Sai-Keung

Wong, Hardware-assisted self collision for

deformable surfaces, Proceedings of the ACM

symposium on Virtual reality software and

technology, 2002.

[JFHFCP] Jérémie Allard, François Faure, Hadrien

Courtecuisse, Florent Falipou, Christian Duriez,

and Paul G. Kry, Volume contact constraints at

arbitrary resolution, ACM Trans. Graph.,

29:82:1--82:10, July 2010.

[JKGZ] Jan Klein and Gabriel Zachmann, Point

cloud collision detection, Computer Graphics

Forum, 23(3):567--576, 2004.

[JSLR] Jonathan Shade, Steven Gortler, Li wei He,

and Richard Szeliski, Layered depth images,

Proceedings of the 25th annual conference on

Computer graphics and interactive techniques,

1998.

[KMOOTK] Karol Myszokowski, Oleg G. Okunev,

and Tosiyasu L. kunii, Fast collision detection

between complex solids using rasterizing

graphics hardware, The Visual Computer,

11(9):497 -- 512, 1995.

[MJBJ] Mauro Figueiredo, João Oliveira, Bruno

Araújo, and João Pereira, An efficient collision

detection algorithm for point cloud models, 20th

International conference on Computer Graphics

and Vision, 2010.

[MLJC] M.C. Lin and J.F. Canny, A fast algorithm

for incremental distance calculation, In Robotics

and Automation, 1991. Proceedings., 1991 IEEE

International Conference on, pages 1008 --1014

vol.2, apr 1991.

[MT] M. Teschner, S. Kimmerle, G. Zachmann, B.

Heidelberger, Laks Raghupathi, A. Fuhrmann,

Marie-Paule Cani, François Faure, N. Magnetat-

Thalmann, and W. Strasser, Collision detection

for deformable objects, Computer Graphics

Forum,24(1):61--81,2005

[NBJM] Niels Boldt and Jonas Meyer, Self-

intersections with cullide, Eurographics, 23(3),

2005.

 [NMAS] Noralizatul Azma Bt Mustapha Abdullah,

Abdullah Bin Bade, and Sarudin Kari, A review

of collision avoidance technique for crowd

simulation, 2009 International Conference on

Information and Multimedia Technology,

(2004):388--392, 2009.

[NSRMLDM] Naga K. Govindaraju, Stephane

Redon, Ming C. Lin, and Dinesh Manocha,

Cullide: interactive collision detection between

complex models in large environments using

graphics hardware, In Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS conference on

Graphics hardware, HWWS '03, pages 25--32,

Aire-la-Ville, Switzerland, Switzerland, 2003.

Eurographics Association.

[PMH] Philip M. Hubbard, Approximating polyhedra

with spheres for time-critical collision detection,

ACM Transactions on Graphics, 15(3):179--210,

July 1996.

 [SGMCLDM] S. Gottschalk, M. C. Lin, and D.

Manocha. 1996. OBBTree: a hierarchical

structure for rapid interference detection. In

Proceedings of the 23rd annual conference on

Computer graphics and interactive techniques

(SIGGRAPH '96). ACM, New York, NY, USA,

171-180.

[SKMNFF] Stephan Kimmerle, Matthieu Nesme, and

François Faure, Hierarchy Accelerated Stochastic

Collision Detection, In 9th International

Workshop on Vision, Modeling, and

Visualization, VMV 2004, pages 307-312,

Stanford, California, États-Unis, November 2004.

(a) Church

[SKTGKICB] S. Kockara, T. Halic, K. Iqbal, C.

Bayrak, and Richard Rowe, Collision detection:

A survey, In Systems, Man and Cybernetics,

2007. ISIC. IEEE International Conference on,

pages 4046 --4051, oct. 2007.

[TLTAM] Thomas Larsson and Tomas Akenine-

Möller, Collision detection for continuously

deforming bodies, Eurographics 2001.

 [XZYJK] Xinyu Zhang and Y.J. Kim, Interactive

collision detection for deformable models using

streaming aabbs, Visualization and Computer

Graphics, IEEE Transactions on, 13(2):318 --329,

march-april 2007.

(b) Street

(c) Sibenik (d) Room

(e) Columns (f) Office

(e) Batalha

Figure 7. Pictures of all the tested input

polygonal models and point clouds. Environments

with different topologies were chosen for this

purpose.

