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ABSTRACT 
In this paper, we present a method that introduces graphical models into a multi-view scenario. We focus on a 
popular Random Fields concept that many researchers use to describe context in a single image and introduce a 
new model that can transfer context directly between matched images – Multi-View Random Fields. This 
method allows sharing not only visual information between images, but also contextual information for the 
purpose of object recognition and classification. We describe the mathematical model for this method as well as 
present the application for a domain of street-side image datasets. In this application, the detection of façade 
elements has improved by up to 20% using Multi-view Random Fields. 
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1. INTRODUCTION 
In a current computer vision research input data is 
often represented as large, redundant datasets with 
hundreds or even thousands of overlapping images. 
As the volume and complexity of data increases, it is 
no longer meaningful to employ manual inputs in 
any step of the process. This constraint on the work 
automation leads to a need to utilize as much 
information from images as possible. One potential 
approach is to employ “context”. Most popular 
methods of context application are graphical models, 
specifically Random Fields. However, general 
Random Fields models are defined such that they 
allow observations only from a single image. This 
approach is limiting context as a feature of a single 
image, but the context is derived from objects in a 
real scene, from which an image is only one 
projection. How is this limiting context application 
and how can we expand the Random Fields model to 
cope with the presence of multi-view dataset is the 
topic of this paper. 
The basic element in a Random Field model is a 
“site”. This is generally a patch of image area  

 
Figure 1: The application of Multi-View Random 
Fields for labeling of the façade elements. Top left 
– set of blocks that divide building façade into a 
set of sites for a graphical model. Bottom – final 

labeling is achieved as a combination of 
information from multiple overlapping images 

(for color-coding, see Figure 7). 
ranging from a single pixel to a larger segment. In 
our application in a street-side images domain, a site 
is a rectangular area (block) of a building façade (see 
Figure 1). Each site has to be labeled according to 
visual data and a context in which it is observed. 
Context is defined as relations (spatial relations, 
similarity…) between sites. In a multi-view scenario, 
we have multiple matched images, each with its own 
set of sites. Extension of Random Fields into a multi-
view is not straightforward, as the two sets of sites 
from matched images are typically overlapping. 
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Simple merging of these two sets would cause 
double detections of same objects and unresolved 
relations between sites. To solve both problems, we 
introduce a new concept – Multi-View Random 
Fields. 
In this paper, the “Background” and “Graphical 
Models” sections are outlining a context of our work 
in a computer vision community and in a Random 
Fields models research. The “Context in Multi-View” 
section explains what type of context is relevant in 
multi-view and how it can be utilized. In the “Multi-
View Random Fields” section the new graphical 
model is introduced and the “Application of MVRF” 
section present the illustrational application of the 
model in a street-side images domain. 

2. BACKGROUND 
The last decade saw growing interest in multi-view 
methods. With the introduction of a new generation 
of high resolution digital cameras and with rapid 
improvements in storage and computing hardware, 
multi-view imagery advanced from a source for the 
computation of point clouds by two-image stereo 
methods to a broad range of vision problems 
employing thousands of overlapping images. Open 
online image hosting sites (Flickr, Picasa, 
Photobucket…) have added interesting vision 
opportunities. While the basic principles for 
matching images remain applicable to such datasets 
[Har04a] [Leo00a], new problems needed to get 
solved, such as the organization and alignment of 
images without any knowledge about camera poses 
[Sna06a]. The resulting resource need in computing 
gets addressed by means of graphical processing 
units GPUs, or with distributed approaches [Fra10a]. 
Therefore current computer vision can cope with this 
avalanche of imagery and multi-views are becoming 
a common reality.  
Extending the concept of Random Fields into such 
multi-view scenario comes from an idea that given 
more images of the same scene, more contextual 
relations can be examined. In this work, we present a 
mathematical model for Multi-View Random Fields 
that allows transferring contextual relations between 
matched images. We also present the application of 
Multi-View Random Fields in a domain of street-side 
images. This domain is useful for a demonstration, as 
there are large datasets of matched street-side images 
for the purpose of urban modeling (virtual cities, 
GIS, cultural heritage reconstruction) that establish a 
multi-view scenario. Urban scenes also exhibit strong 
contextual relations, as man-made objects adhere to 
an inherent organization. We show how façade 
elements can be classified, using both context and 
multi-view principles in one model. 

 
Figure 2. The typical application of MRF in 
computer vision. At each node (site) i, the 

observed data is denoted as yi and the 
corresponding label as xi. For each node, only 
local observations are possible. Generally each 

node represents a pixel in an image and observed 
data pixel’s features.  

3. GRAPHICAL MODELS 
The most common non-causal graphical models in 
computer vision are Markov Random Fields (MRF). 
MRF have been used extensively in labeling 
problems for classification tasks in computer vision 
[Vac11a] and for image synthesis problems. In a 
labeling task, MRF are considered to be probabilistic 
functions of observed data in measured sites of the 
image and labels assigned to each site. Given the 
observed data y = {yi}iϵS from the image, and 
corresponding labels x = {xi}iϵS, where S is the set of 
sites, the posterior distribution over labels for MRF 
can be written as: 
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where Zm is the normalizing constant, βm is the 
interaction parameter of the MRF and Ni is the set of 
neighbors of a site i. The pairwise term βmxixj in 
MRF can be seen as a smoothing factor. Notice that 
the pairwise term in MRF uses only labels as 
variables, but not the observed data from an image. 
In this arrangement, the context in a form of MRF is 
limited to be a function of labels, thus allowing for 
semantic context (context between classes) and 
limiting geometric context to a structure of MRF 
graph (see Figure 2). This makes the MRF applicable 
mainly for simpler forms of local context.  
To cope with such limitations, the concept of 
Conditional Random Fields (CRF) was proposed by 
J. Lafferty [Laf01a] for the segmentation and 
labeling of text sequences. The CRF are 
discriminative models that represent the conditional 
distribution over labels. Using the Hammersley-
Clifford theorem [Ham71a], assuming only pairwise 
cliques potentials to be nonzero, the conditional 
distribution in CRF over all labels x given the 
observation y can be written as 
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where Z is the normalizing constant, -Ai is the unary 
and -Iij pairwise potential. The two principal 
differences between conditional model (2) and MRF 
distribution (1) are that the unary potential Ai(xi, y) is 
a function of all observations instead of only one 
observation yi in a specific site i and the pairwise 
potential in (2) is also the function of observation, 
not only labels as in MRF. In CRF, the unary 
potential Ai(xi, y) is considered to be a measure of 
how likely a site i will take label xi given the 
observation in a image y. The pairwise term is 
considered to be a measure of how the labels at 
neighboring sites i and j should interact given the 
observed image y. This concept of CRF allows for 
use of more complex context derived from larger sets 
of observations in the image and employing 
geometric context (e.g. spatial relations between 
objects). It is extended even more in a concept of 
Discriminative Random Fields [Kum06a], where an 
arbitrary discriminative classifier can be applied in a 
form of unary/pairwise potential.  
However, in all concepts of Random Fields, the set 
of sites S (and thus the observations) is limited to a 
single image. How to extend these models into a 
multi-view is explained in subsequent sections. 

4. CONTEXT IN MULTI-VIEW 
Before the definition of a new Random Field model 
in multi-view, we must consider what type of context 
can be transferred between images. The most 
common type of context applied for classification is a 
local pixel context. In general, a small neighborhood 
around an examined pixel is taken as a context area 
and a graph structure of a model is placed in this 
neighborhood (one node per pixel). However, this 
approach is not suitable for multi-views, as 
neighborhoods around matched pixels in two images 
are in general uniform and will not present much 
useful additional information. Alternatively we can 
consider global context, which examines 
relationships between all objects in the images. In 
this type of context, we can observe different 
relations in different images, thus transferring such 
context would provide additional information for 
recognition and classification (see Figure 3). If 
spatial relations between objects are examined in this 
manner, graphical models are approximating spatial 
relations between objects in a real 3D scene.  
In a standard Random Fields (RF) model, each image 
is considered a unique unit of information. Thus, we 
can consider a global context to be a specific feature 
of each image - the global context is a set of relations 
between all sites detected in a single image.  

 
Figure 3. Building façade projected in slightly 

different views. Red lines (graph edges) represent 
spatial relationships between objects detected in 
the images, indicating different context in two 

projections for the same objects. For better 
overview, only some relations are visualized. 

Typically, sites are either pixels or segments. 
Construction of a global model with node in each 
pixel would significantly increase the complexity of 
computation; therefore we consider segments as the 
representation of sites in our model. 
Subsequently a site is represented by a specific area 
(segment) in a digital image. Such area represents an 
object (or part of object) and areas from two sites are 
not overlapping. In a general RF model, a set of all 
sites in one graph is denoted as S. In a local model, 
one set S include sites from a small patch of the 
image, however in a global model, S includes all 
sites from the entire image. Visual features of the 
area assigned to a specific site are denoted as image 
observation ys from site sϵS. In a graphical model, if 
there is an edge between nodes assigned to sites s1 
and s2, let’s denote this relation as Φ(s1, s2) = 1 and 
consequently if there is no edge between s1 and s2, 
denote this as Φ(s1, s2) = 0.  

Transferable Sites 
Consider one image from the dataset as “examined 
image” to which we would like to transfer context 
from other matched images. Let’s call any site sϵS 
from an examined image a “native site”. If the image 
matching is established in a dataset (we have a set of 
corresponding points that link images), we can look 
for any sites from other images that are 
corresponding to native sites. In most cases, sparse 
point cloud of matched points is enough to establish 
correspondence between site. Relative poses between 
images and camera parameters are not required. 
Definition of corresponding sites can vary in 
different applications. In general, corresponding sites 
are two sites from different images that share some 
subset of corresponding points;  



 
Figure 4. Transfer of sites from the image lϵ I to 
the image kϵI, as presented in Definition 1. Only 

sites from l that are not corresponding to any sites 
from k are transferred. This figure demonstrates 

only transfer between two images. 
each site from matched images can have only one 
corresponding site in the examined image – the 
example of this relation is provided in the application 
section of this paper. 
Given that corresponding sites usually represent the 
same objects, transferring such information between 
images would be redundant. Therefore we transfer 
sites that have no correspondences in the examined 
images to provide new information. We denote such 
sites as “transferable sites”. For a single, examined 
image from the image stack, let’s define the set of 
transferable sites as: 

Definition 1: If Sk = {s1, s2, … , sn} is the set of sites 
for single image kϵ I, where I is the set of images and 
correspondences have been established between the 
images from I such that ϵS'

is l is a site from image   
lϵ I-{k} corresponding to a site si. Than the Rk = {r1, 
r2, … , rm} is the set of transferable sites for the 
image k if  and ( ) 1SR =∈∃∈∀ ',Φ| ijkikj srsr

kjkj rr SR ∈¬∃∈∀ ' . Rk is constructed such that 

kji rr R∈∀ , , ri and rj are not correspondent to each 
other in any two images from I 
Thus the Rk is the set of sites from other images than 
k, that are in the relationship in graphical model with 
some corresponding site to sites from Sk, but 
themselves have no correspondences in Sk (see 
Figure 4). The set of transferable sites can be seen as 
a context information, that is available in the image 
stack, but not in the examined image. If sites are the 
representations of objects, than in a transferable set, 
there are objects in context with the scene of the 
image that are currently not located in the projection, 

thus are occluded, out of the view or in different 
timeframe. This also means that the visual 
information from the sites in Rk are not present in the 
image k. If the sites from Rk are included in the 
vision process, they can provide additional context 
and visual information that is not originally present 
in the examined image. 
Note that a transferable site is not equivalent to a 
native site in an examined image. Even though 
transferable sites have the same set of visual features 
as sites native to the image and they can be assigned 
the same set of spatial and contextual relations in a 
graphical model, transferable sites lost all original 
contextual relationships except the relationships to 
the sites they are connected within the examined 
image. This makes them harder to label. But the 
labeling of transferable sites is not the aim in the case 
of examined image (the goal is to label only native 
sites), thus transferable sites can contribute 
information for image labeling, but the labeling of 
themselves is usually irrelevant. 

5. MULTI-VIEW RANDOM FIELDS 
Given a non-equality of transferable sites to native 
sites, standard RF models are not compatible with 
this extended set. For this reason, we introduce a new 
model denoted as Multi-View Random Fields 
(MVRF). This model is derived from a CRF, 
described in Section 2; however we extend the 
posterior probability distribution into MVRF model 
framework as follows: 

Given the observed data y = {yi}iϵS from the image, 
corresponding labels x = {xi}iϵS, where S is the set of 
native sites from the image and observations from 
transferable set z = {zi}iϵR  with corresponding labels 

{ } R∈= iix~~x , where R is the set of transferable sites, 
the posterior distribution over labels is defined as: 

,(3) 
 
where Z is the normalizing constant, Ni is the set of 
native sites neighboring site i and Ki is the set of 
transferable sites neighboring site i. - Ai and - are 

unary potentials, - I

'
iA

ij and -  are pairwise potentials 
(for native sites and transferable sites respectively). 
The differences between potentials for transferable 
sites and for native sites are as follows: 

'
ijI

- In the unary potential for a transferable site, 
only observations from the site itself are 



considered, instead of observation from the 
entire image for native sites. This is due to 
the fact, that a transferable site does not 
have any connections to the image except 
for the site it is neighboring. Even if other 
connections exist (with other sites in the 
image), it is a hard task to establish 
relationships. For native site, there are no 
changes to a standard conditional model. 

- In the pairwise potential, in addition to 
observation from the image, local 
observation from the transferable site is 
considered, when relations are examined 
between a native site and transferable site. 
The inclusion of all image observation grant 
at least the same level of information in 
pairwise computation as in a standard CRF 
model and the additional observation form 
transferable site represent extended context 
for native image observation. The pairwise 
potential for two native sites is the same as 
in a standard CRF model. 

This model has some additional unique 
characteristics. For example, no pairwise relations 
are considered between two transferable sites. This is 
based on the construction of transferable sites set. A 
site from such set can be neighboring several native 
sites, but not any other transferable site. This can be 
seen as a limitation for the model, however without 
additional high frequency information about the 
scene (as a prior knowledge), it is virtually 
impossible to establish relationships for transferable 
sites.  
The computational complexity of the model is not 
increased significantly. Pairwise potentials are 
computed only for native sites, as it is in the standard 
CRF model. The difference is in the number of 
neighbors for each site, however even this number 
should not increase significantly. When considering 
a global model, each new neighbor (transferable site 
in relation to the native site) represents a new object 
in the projection. This is dependent on the 
differences between projection parameters – camera 
positions, optical axes…, but even for very different 
parameters, the number of objects should not differ 
significantly for the same scene. From the general 
observation, the number of neighboring transferable 
sites is notably lower than the number of neighboring 
native sites.  

Potentials Modifications 
Unary potential for native image sites, similar to a 
standard CRF is a measure of how likely a site i will 
take label xi given the observations in image y. A 
standard approach described in a work of S. Kumar 
is to apply Generalized Linear Models (GLM) as 

local class conditional [Kum06]. In that case, given 
the model parameter w and a transformed feature 
vector at each site hi(y), the unary potential can be 
written as: 

( ) ( )( )( )ywy i
T

iii xxA hlog, σ=         ,(4) 

For the transferable sites, the feature vector is limited 
to the observations from single site. This limitation 
defines a new expression for unary potential, 
exclusive to transferable sites as 

( ) ( ( ))( )ii
T
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The feature vector hi(zi) at the transferable site i is 
defined as a nonlinear mapping of site feature vectors 
into high dimensional space. The model parameter w 
= {w0, w1} is composed of bias parameter w0 and 
model vector w1. σ(.) is a local class conditional, that 
can be any probabilistic discriminative classifier. 
The pairwise potential for two native sites from the 
image remains the same as in CRF model, given the 
GLM are applied to compute the class conditional: 
( ) ( ) ( )( )( )( )121 −−+= yvy ij

T
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,(6) 
where 0 ≤ K ≤ 1, v and β are the model parameters 
and µij(y) is a feature vector. For transferable sites, 
we introduce the additional feature vector in a form 
of observations from specific site: 

( ) ( ) ( )( )( )( )121 −−+= jij
T
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,(7) 
where µij(y,zi) is a feature vector defined in a domain 

such that observations are 
mapped from the image/sites related to site s into a 
feature vector with dimension γ. Note that the 
smoothing term  is the same as in a standard 
CRF definition. Thus if K = 1, the pairwise potential 
still performs the same function as in a MRF model, 
however given new transferable sites, the smoothing 
function will depend also on their classification . 
In this case, visual information from transferable 
sites is not involved in the pairwise term and is only 
applied in the unary term. If K<1 the data-dependent 
term 

qµ ℜ→ℜ×ℜ γγ:

ji xKx ~

jx~

( )( ) 12 −jij
T

ji xx zyv ,µ~σ  is included in a 
pairwise potential. Observations from the image 
related to the examined native site and observation 
from transferable site are transformed into feature 
vector and involved in computation. 

Parameter Learning and Inference 
In this work, we constructed an MVRF model to be 
as compatible with other RF models as possible. This 
approach is observed also in a parameter learning 
process, as any standard method used for learning of 



CRF model can be also used for MRVF model. To 
further simplify the process, we observed that 
learning from single (un-matched) images is feasible 
without the loss of strength of the model. This is due 
to the construction of potentials - in a unary 
potential, visual features do not change for 
transferable sites, therefore they can be learned 
directly from single images in training dataset. The 
spatial relations defined for a pairwise potential also 
do not change significantly for the pair native-
transferable site. For such reasons, we can assume 
that the MVRF model can be learned even directly 
from single images without dataset matching. 
Therefore, methods such as pseudo-likelihood can be 
applied for learning. 
Similarly, parameter inference can be performed, 
using any standard method applied in CRF. In our 
application, we use Belief Propagation, but other 
possible methods are Tree-Based Reparameterization 
or Expectation Propagation for example. 

6. APPLICATION OF MVRF 
In this section we present the application of MVRF 
in the building façades dataset for the purpose of 
façade elements detection and classification. This 
application is based on the dataset provided by a 
vehicle-based urban mapping platform. Sparse image 
matching is applied (see Figure 5), using the 
Structure-from-Motion method [Irs07a].  We 
selected the left camera subset, since it provides a 
clear view of the building façades, not distorted by 
the perspective (which, however, is easy to rectify) 
and with good visual cues. This setting will 
demonstrate the advantages of MVRF in cases when 
a site was misdetected and presents lost contextual 
information in standard models. In most images, the 
building façade is not projected in its entirety and 
parts are located in other images. Therefore in such 
cases, the MVRF will also provide new contextual 
and visual information in a form of transferable sites 
based on the objects that are not located in the 
original image.  
In each image, separate facades are detected. This 
can be achieved when the wire-frame models of the 
scene are available, or using visual cues, such as 
repetitive patterns [Rec11a]. Subsequently, a 
modified gradient projection is applied to segment 
each façade into a set of blocks. This method is based 
on a standard gradient projection approach [Lee04a] 
designed for the detection of windows with 
following modifications:  
First, we vertically project gradients to establish a 
horizontal division of the façade into levels (level 
borders are located at the spikes of the projection). 
Subsequently, we compute horizontal gradient 
projections in each level separately.  

 
Figure 5. Top row: two examples of the same 

façade, matched with a sparse point cloud (red 
dots). Middle row: set of blocks located in each 
façade (left image show façade detail for better 

overview, right image entire facade). Bottom row: 
set of blocks from the first image projected into a 

second image and a set of transferable sites 
(highlighted blocks) that is derived from the 

projection (as sites that have no correspondence 
in second set). 

This process will yield a set of blocks bordered by 
level borders horizontally and spikes in projection 
vertically (see Figure 5). Second, we consider each 
block as a site for a graphical model, thus we 
compute visual features for each block and consider 
spatial relationships between blocks. Visual features, 
such as texture covariance, or clustering in a color 
space are used for classification [Rec10a]. For 
example, clusters in a CIE-Lab color space are 
computed for each block and are compared to class 
descriptors. 
When the segmentation of a façade into a set of 
block is established, we can define a global graphical 
model in this structure. Each block is considered a 
site, thus each node of the graph is placed in a 
separate block. We define neighborhood relation 
such that for each block, its neighbors are all blocks 
located in areas above, below, left and right from 
itself (see Figure 6). This definition allows 
considering all objects at the same level and column 
to be involved in contextual relations, accounting for 
relations, such as rows and columns of windows, or 
window-arch. An edge of a graphical model is placed 
between each two neighboring blocks. In this 
approach, a separate graph is created for each façade 
in the image.   



 
Figure 6. Example of site neighborhood, as 

defined in this application. Green block is the 
examined site and highlighted blocks are defined 

as its neighborhood. 

Multi-View Scenario 
To establish a multi-view, we use a sparse point 
cloud. We match blocks between images such that 
we interpolate between detected corresponding 
points to achieve rough point-to-point matching. If 
two blocks in different images share at least 2/3 of 
matched points (detected and interpolated), we define 
these as corresponding blocks. Given one image as 
“examined”, we can label all blocks from the same 
façade in other images as either corresponding or 
non-corresponding. Subsequently, transferable sites 
are blocks that are from the same façade as in an 
examined image, but are non-corresponding to any 
block from the examined set (see Figure 5). 
Establishing the relations between native and 
transferable sites is straightforward, as we can still 
consider up, down, left, right directions. With these 
definitions, we can construct the MVRF model from 
our dataset. 

Experiments 
We use the described model for the purpose of 
façade elements detection and classification. The set 
of classes with corresponding color coding is 
displayed in Figure 7. Our testing dataset consists of 
44 matched images. This dataset covers three full 
building façades and one half façade. A sparse point 
cloud of 1429 3D points is used to match images. 
Approximately 800 points are projected into each 
image. In the testing process, we compare the 
number of façade elements to the number of detected 
elements with the applied method. We counted 
overall numbers of elements through the entire 
dataset, as displayed in Table 1. For example, total 
number of 536 “window centre” elements can be 
observed in all images, that is approximately 12 
“window centers” per image.  

 
Figure 7. Set of classes: a) clear façade; b) brick 

façade; c) window centre; d) window top; e) 
window bottom; f) window margins; g) arch top; 
h) arch bottom; i) basement window; j) door; k) 
ledge; l) ledge ornament; On the right side, color 

representation of each class is displayed. 
Each façade was processed separately, that is if there 
were two façades in one image, such image was 
processed two times (each time for different façade). 
After running the algorithm, a number of detected 
elements is counted visually. The façade element is 
defined as detected, if at least 2/3 of its area is 
labeled with the corresponding class. For the training 
purpose, we used the subset of 3 images from the 
dataset and other 5 unrelated images as labeled 
ground truth. This proved to be sufficient, as the 
spatial relations between classes are in general stable 
through different facades and a certain visual 
features variability  

Class # el single multi 
/native 

multi
/trans

clear façade 61 61 61 61 
brick façade 54 54 54 54 
win. centre 536 485 531 531 
window top 311 270 303 308 
win. bottom 300 227 273 288 
win. margin 683 572 618 654 

Arch top 199 176 189 192 
Arch bottom 199 184 194 194 
Basem. win 121 98 115 117 

Door 34 32 33 33 
Ledge 90 90 90 90 

Ledge orna. 34 32 34 34 
Table 1. The Results for the MVRF application. 
“# el” displays the overall number of each class 
for entire dataset (44 images). “single” displays 

detected elements in MVRF single image scenario 
(equivalent to CRF), “multi/native” displays 

results for multi-view scenario with only native 
sites in results and “multi/trans” display results 
for multi-view scenario with transferable sites 
labels in results. Numbers displayed are the 

detected façade elements in all images of dataset. 



 
Figure 8. Two examples of classification results. 
Classes are labeled according to color scheme 

explained in Figure 7. Colors are superimposed 
over original images in the bottom row. 

was allowed by the use of descriptors (e.g. 
clustering). We trained on single images without the 
use of matching. For the parameter inference, we 
used a Belief Propagation method. Initial 
classification was performed based on only visual 
features and in each iterative step of the method, it 
was refined by pairwise relations and site features 
described in a model. In each step, we also refined 
visual descriptors for each class to better 
approximate features in each unique façade. Results 
can be observed in the Table 1. We included results 
for scenarios, where no transferable sites were used 
(single), and the MVRF model is equivalent to CRF 
in this case, results when only labels of native sites 
were considered and results were labels of 
transferable sites were included. Notice a significant 
improvement in detection for classes that are visually 
ambiguous, but have strong contextual relations (e.g. 
window margins, window tops). For a “win. bottom” 
class, the correct detection rate improved from 76% 
in a single-view to a 96% in a multi-view with 
transferable sites projected, thus achieving a 20% 
improvement. Results illustrated in Figure 8. 

7. CONCLUSION 
In this paper, we addressed a common problem in a 
current research – how to work with context 
information in matched datasets and to alleviate an 
artificial limitation of graphical models to single 
images. We introduced a new MVRF model directly 
applicable in a multi-view scenario. We extended the 
standard CRF model such that it can work with 
overall context of the scene present in the multi-view 
dataset, but it still retains the same properties for 
processing visual and contextual information in a 
single image. Validity of this model is subsequently 

demonstrated in the application in street-side image 
domain – detection of façade elements. However the 
new MVRF model is applicable in same situations as 
a standard CRF model, provided that appropriate 
image matching is available. For example, the 
MVRF model was also used for a super-pixel based 
semantic segmentation of outdoor images in our 
other work. 
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