Error Metrics for Smart Image Refinement

Julian Amann

Matthdus G. Chajdas

Rudiger Westermann

CG/Vis Group, CS Departement
Technische Universitat Minchen
Boltzmannstrasse 3
85748 Garching, Germany

amannj@in.tum.de

chajdas@tum.de

westermann@tum.de

ABSTRACT

Scanline rasterization is still the dominating approach in real-time rendering. For performance reasons, real-
time ray tracing is only used in special applications. However, ray tracing computes better shadows, reflections,
refractions, depth-of-field and various other visual effects, which are hard to achieve with a scanline rasterizer.
A hybrid rendering approach benefits from the high performance of a rasterizer and the quality of a ray tracer.
In this work, a GPU-based hybrid rasterization and ray tracing system that supports reflections, depth-of-field
and shadows is introduced. The system estimates the quality improvement that a ray tracer could achieve in
comparison to a rasterization based approach. Afterwards, regions of the rasterized image with a high estimated

quality improvement index are refined by ray tracing.

Keywords

hybrid rendering, reflection error metric, depth-of-field error metric

1 INTRODUCTION

Nowadays, rasterization based graphic pipelines domi-
nate real-time 3D computer graphics, because graphics
hardware is highly optimized for this rendering algo-
rithm. Many years of research have been spent on de-
veloping massive parallel processing units that are able
to process complete pixel quads in a fast way by ex-
ploiting frame buffer locality and coherence [KMS10].

Even though rasterization has a lot of advantages, it also
has some limitations. It performs well evaluating local
illumination models, however there are problems with
global effects like reflections. Because rasterization is
limited to local illumination models, it is hard to com-
pute physically correct reflections of the environment.
For that reason, approximations like environment maps
[Gre86] are used, which can result in visually plausible
reflections.

Shadows are also a very challenging problem for
rasterization. Although there are numerous shadow
mapping and shadow volume techniques, they all have
some inherent problems that arise from the local view
of shading in the rasterization process. For example,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

most shadow mapping techniques suffer from the
well-known biasing problems or have shadow mapping
artifacts due to a too small shadow map resolution
[ESAW11]. The number of annually appearing publi-
cations to shadow topics proves that the generation of
shadows is still a challenging subject.

Besides reflections and shadows, it is also hard to simu-
late a correct thin-lens camera with rasterization. Most
depth-of-field techniques which are rasterization based
compute the circle of confusion and then just blur the
image with the computed radius, which results in an in-
correct depth-of-field effect [Pot81].

Secondary effects, like shadows or reflections are hard
to achieve with a rasterization approach. A ray tracer
can natively handle shadows and multiple reflections
just by sending additional secondary rays. With a ray
tracer it is not hard to simulate these effects. A thin-
lens camera model can also be easily implemented in a
ray tracer to get a nice depth-of-field effect.

2 MOTIVATION

Because ray tracing is computationally very expensive,
rasterization is still used for games today. Another rea-
son is that under some circumstances a rasterizer can
produce exactly the same image as a ray tracer could.
Figure 1 compares a scene rendered with ray tracing to
a scene rendered with rasterization.

Remarkable is the fact that the rasterized image took
about 7 ms to render with precomputed environment
maps on commodity hardware (NVIDIA GeForce GTX

4

(b) Ray traced image (c) Difference image

Figure 1: A difference image of scene (a) that has been rendered with rasterization (b) and ray tracing (c). The
temperature scale on the left shows how to interpret the colors of the difference image. Blue colors mean a low
difference and red colors mean a high difference. For example high differences can be seen in the reflecting object
in the center of scene.

460) at a resolution of 762 x 538 pixels with no scene be used to find out where it is most appropriate to refine
graph optimizations. However, the ray traced image the rasterized image by ray tracing.

with the same image quality and resolution and a highly T paper also presents a scheduling strategy that de-
optimized scene graph took roughly 976 ms to render ermines in which order the parts of the image are get-
(the performance measurements were made with the ting refined via ray tracing, so the scene converges
render system described in section 7). quickly. This means that parts of the scene with high
Being given the choice of those techniques, one has to error get ray traced first and more often than parts of the
weigh the speed up against the high image quality. In scene with a low error. This helps to prevent wasting a
order to profit from the advantages of rasterization and lot of computation time on parts of the image where no
ray tracing, a hybrid approach is preferable. For ex- difference or only a slight difference between the ray
ample, a hybrid technique can just use ray tracing to traced and the rasterized version is observable.
compute reflections while the rest of the scene can be Furthermore, the implementation of a hybrid raster-
conservatively rasterized. This helps to get high quality jzation and ray tracing framework that is based on
reflections at the cost of only ray tracing the parts of the Microsoft Direct3D 11, NVIDIA CUDA Toolkit and
scene that have reflecting materials. NVIDIA OptiX 2.5! ray tracing engine is described,
Ideally, one would estimate beforehand how big the dif- ~ Which demonstrates the feasibility of the described
ference between the rasterized and ray traced image is. ~ smart image refinement system. The system is called
This difference (see Figure Ic) could be used as a hint ~ smart, because it refines the image according to the
to find out where it is most appropriate to send some ~ ©Iror estimate.

rays to improve the image quality. 4 RELATED WORK

3 CONTRIBUTIONS In the following section related work is briefly pre-
sented. Contributions made by other researchers reach

from simple hybrid rendering systems to sophisticated
perceptually-based techniques.

This paper describes an error metric for reflections,
shadow mapping and depth-of-field, which estimates
the expected pixel error between the rasterized and the
ray traced scene. The error metric is a heuristic one,
which yields an expected but not an absolutely correct

—_

NVIDIA OptiX is a freely available low level ray tracing
- e engine that runs entirely on the GPU. Currently OpitX is
error value. During the rasterization of the scene, the only supported by NVIDIA GPUs. Similar as Direct3D or
error value is calculated and stored in an additional ren- OpenGL provides an interface to an abstract rasterizer which
der target. After a first approximation of the current can be used to implement various rasterization-based algo-
scene by rasterization, the error value of each pixel can rithms, OptiX provides an interface to an abstract ray tracer.

Perceptually-based techniques try to shortcut the render
process by computing a perceptually indistinguishable
solution instead of a fully converged one. In [YPGO1],
a perceptually-based technique is described that calcu-
lates a spatio—temporal error tolerance map. The com-
putation of the error map takes a few seconds and is
targeted at offline renderers. Each pixel of the error
map indicates how much effort should be spent on the
respective pixel. The error value is determined by har-
nessing knowledge about the human visual system and
a model which predicts visual attention. For example,
the eye is less sensitive to areas with high spatial fre-
quency patterns or movements. Alongside with a pre-
diction on where the viewer directs his or her attention,
an estimate is computed that describes how important
a pixel will be. This estimate is saved in the error map
and is used during the render process to spend more
time on important regions of the image. The paper’s
authors achieved on their test rendering system a 6x to
8x speedup.

[Cab10] uses a simple error metric. The metric consists
of only a binary decision if ray tracing or rasterization
is to be used. If the rasterizer renders a triangle with
a transparent or reflecting material, a flag is set in a
ray casting buffer. Afterwards all pixels marked with
the flag get ray traced and combined with the rasterized
image. They use a CPU-based ray tracer.

In [KBM10], a hybrid approach is shown that combines
shadow mapping and ray tracing to render shadows. In
a direct render pass and from a small number of shadow
maps that are used to approximate an area light source
by several point lights, a shadow refinement mask is de-
rived. The mask is used to identify the penumbra region
of an area light source. A pixel is classified as inside the
penumbra when it cannot be seen from all point lights.
Afterwards, the penumbra pixels are dilated by a 5 x 5
structuring element. The dilated region is then rendered
by a CPU-based ray tracer to compute accurate shad-
OowS.

5 ERROR METRICS

This section describes different error metrics for reflec-
tions, depth-of-field and soft shadows. The presented
error metrics are used by the smart image refinement
system to find out in which regions refinement by ray
tracing is most appropriate. An error value is estimated
for each pixel and is stored in an additional render tar-
get. The error metric is used as a heuristic that indicates
how likely the calculated pixel is wrong in comparison
to a pure ray traced version of the scene.

A high error value indicates that the approximation by
the rasterizer contains a high error, whereas a small er-
ror value indicates low errors in the approximation by
the rasterizer. The error value is just based on heuris-
tics, which means that in certain circumstances, a high

error value refers to a pixel that has only a small real or
no approximation error at all compared to the ray traced
scene. Conservative error metrics were chosen, so no
pixels get estimated as correctly approximated, even if
they are not correct.

Each error metric is normalized, which means it gener-
ates an error value in the range of [0, 1].

Reflections

Reflections can be approximated by environment maps
in a rasterization based environment. Figure 2 com-
pares reflections rendered by rasterization to reflections
rendered by a recursive ray tracer.

i N ! v St
(b) Ray traced (c) Difference
Figure 2: The rasterized image (a) approximates reflec-
tion with an environment of the scene. Figure (b) shows
the same scene rendered with a recursive ray tracer. The
difference image (c) visualizes the difference between
Figure a and b. A red value indicates a high difference
and a blue value a small difference.

As can be seen from the difference image, the approx-
imated rasterized image is far from perfect. It contains
several regions with wrong reflections.

The simplest to think of error heuristic is one that just
makes a binary decision, depending on the criterion if
a fragment is part of a reflection object or not [Cab10].
Assuming it is part of the reflecting material, the error
metric returns 1, in all other cases it returns 0:

1 : reflecting material
Erefleczionl = 0 - else

The previous classification is a very simple one. A more
sophisticated error metric can be derived, if we try to
understand why the approximation of an environment
is wrong. Figure 3 shows two major problems of envi-
ronment mapping.

Put the case that we want to rasterize a reflecting sphere
with the help of environment mapping. For a point P

on the sphere (see Figure 3) we need to look up the cur-
rent reflection from the environment map. For the look
up in the environment texture, we first need to com-
pute the reflection vector. The look up vector is then
transformed to texture coordinates which are afterwards
used to access the reflection map. The problem with
this approach is that the environment map has usually
been rendered from the center of the reflecting object.
This means, we get the color that is seen from the cen-
ter of the environment map towards the direction of the
reflected vector. Instead of this color, the correct color
would be the color that can be seen from the point P
towards the direction of the reflected vector. Figure 3
illustrates this. From point P, the reflection direction
points toward the colored sphere (r;). So we expect to
see a colored sphere in the reflection of P. But in fact,
the environment map technique uses the center of the
environment map to look up the color of the reflected
object. Looking from the center of the environment
map into the direction of the reflection vector, a yellow
cube can be seen instead of a colored sphere.

center of
environment map

eye

Figure 3: Environment mapping has two major prob-
lems: First of all each reflection is computed as if the
reflecting point (P) would lie in the center of the en-
vironment map. Also it cannot handle self-reflections,
which leads to incorrect shading results at point A.

The environment map technique would result in a cor-
rect shading, if the shaded point is located directly in
the environment map center. For points that only have
a very small distance to the environment map center,
this approximation works as well. But for points with
a further distance to the environment map center, the
approximation by an environment map gets worse.

From this observation, a simple heuristic can be de-
rived: The further a point is away from the environ-
ment map center, the more likely an environment map
technique results in an incorrect approximation. This
means that the distance between a point (p) of a reflect-
ing object and the environment map center (c¢) needs to

incorporate in the approximating environment map er-
ror metric:

distance(p.c)
maxDistance

0 : else

: reflecting material
Ereflecti()nz =

Another error metric can be deduced from the incident
vector and reflection vector, as Figure 4 illustrates. As-
suming that there is a scene with a reflecting sphere
where the center of the environment map has been
placed at the center of the sphere, this would mean that
the environment map has been rendered from the cen-
ter of the sphere. Looking at the reflecting sphere in a
way that the incident ray (the ray from the eye point to
a point in the scene) is hitting directly the center of the
sphere, as this is the case for the incident vector I, the
look up in the environment map will yield the correct
reflection color.

Figure 4: Incident and corresponding reflected vectors

The returned reflection color is correct because the
given incident vector /; leads to the reflection vector rq,
which means we want to know what can be seen from
the intersection point P into the direction ry. But this
is exactly the same question as what can be seen from
the center of the environment map into the direction of
r1. If we look from the eye point into the direction of a
point that is near to P; like point P, the incident vector
narrowly misses a hit with the center of the environment
map, but the looked up direction in the corresponding
environment map is approximately not too far from be-
ing correct.

It seems that for small angles between the incident and
the reflection vector, the approximated reflection vector
is almost correct, but for bigger angles like the angle be-
tween incident vector I, and r; it gets worse. From this
property, the following error heuristic can be derived:

<_i7 }’>

0 : else

: reflecting material
Ereflection3 =

It is assumed the reflection vector r and the incident
vector (vector from eye point to shaded point) 7 in the

above equation are normalized. The angle between the
vector r and —i is always in the range [0°,90°]. Since
the angle can be in the range [0°,180°) the dot product
fails for greater than 90° angles. To circumvent this
problem instead of considering the reflected vector the
normal can be considered which leads to the following
equation:

<_ian>

: reflecting material
Ereflectimu = 0

: else

This works because the angle between the incident and
reflected vector is directly proportional to angle be-
tween the reflected and the incident vector. The angle
between the negative incident vector and the normal can
never exceed 90°.

E reflection,

E reflection 4

Ereflection 5

Figure 5: Displays the different reflection error metrics
applied to a scene with sphere (left) and a scene with a
more complex shape (right)

Another not yet considered problem of the error met-
ric that is also related with environment maps are self-
reflections. Concave objects are displayed incorrectly
by an environment map technique. Figure 3 shows the
reason for this. Assuming we want to compute the re-
flection of the point A in Figure 3 given the reflection
vector r. In a look up in the environment, the yel-
low color from the yellow cube is returned. However
in fact the reflection ray intersects the reflecting object
itself (a so-called self-reflection) in point B and despite
of this, the yellow color from the environment map is
nonsense. Self-reflections can probably not be handled
by environment maps. We can take care of this in our
error metric by using an ambient occlusion map. The
ambient occlusion map can be interpreted as a descrip-
tion of the curvature of the reflecting object. This infor-
mation can be directly used in a heuristic that estimates
the possibility of self-reflections:

k,
Ereflecri0n5 = {Oa (p)

kq(p) refers here to the ambient occlusion term.

: reflecting material

: else

Figure 5 shows the different error metrics applied to two
sample scenes.

Depth-of-Field

Most rasterization based depth-of-field techniques are
image based and use only the depth buffer and color
buffer to compute a depth-of-field effect. Thereby, the
information about the scene is lost. In a ray tracer, the
lens is sampled at different locations. Each sample on
the lens has a different view of the current scene. In the
rasterizer approach, we have only one view at the scene
from the center of the lens. This can lead to missing
objects, because in some cases from some points on the
lens, objects can be seen that cannot be seen from the
center of the lens.

Another problem of most depth-of-field techniques is
color leaking. Color leaking can be seen around sharp
edges that are in focus in which other blurry objects
from the background bleed into [LUOS8]. The other way
around, objects in the foreground can bleed into objects
in the background. Figure 6 shows this effect.

As demonstrated in Figure 7, rasterization based depth-
of-field have problems in regions with high depth dis-
continuities. This knowledge can be exploited to con-
struct an error metric for the depth-of-field.

To find depth discontinuities, an edge filter, like the So-
bel filter, can be applied. A problem with this approach
is that the founded edges have to be dilated by a struc-
turing element, since the artifacts do not only occur at
the identified edge pixels, but also in the neighborhood
of the edge pixel according the circle of confusion. The

>

(a) ‘Rars:cerized» (b) Ray'&acéd -

Figure 6: A blurry foreground object bleeds into the
focused background object.

(b) Rasterized

(a) Difference

Figure 7: Difference image of scene (with applied depth
of field effect) (a) that has been rendered with rasteri-
zation (b) and ray tracing (c). Regions with high depth
discontinuities are problematic for rasterization based
rendering techniques.

(c) Ray traced

maximal radius of the circle of confusion C,,,, for the
dilation can be determined for a point p by the follow-
ing equation with image distance Vp, focal length F" and
aperture number 7 (2, is the distance between the point
p and the image plane):

meC(P) = max(C(zp),Cm)
T —F_v. |1
Co = im C(2) = [F =V, [

For simplicity reasons, we use a quad shape structuring
element in our implementation to approximate the cir-
cle of confusion. Figure 8 shows the error metric for
depth-of-field.

The Error metric for depth of field can be expressed as:

1
Edaf = 0

The described error metric is not absolutely conserva-
tive, which means that errors can also occur in regions

: Vicinity of a depth discontinuity
: else

(a) Rasterized

(b) Dilated

Figure 8: After the depth discontinues have been
marked, they need to be dilated according to the circle
of confusion.

that were not classified with an error value of 0. How-
ever, it can give a smart image refinement system a good
hint where to start the refinement process.

Shadows

In [GBPO6], an algorithm has been described that can
be modified to estimate where the penumbra of a given
area source light will be projected onto the scene. In
Figure 9, the estimated penumbra region is shown in
green color.

t

=

Figure 9: The estimated penumbra region is shown in
green color.

The algorithm described in [GBP06] makes a conserva-
tive estimation of the penumbra region, and is therefore
perfectly appropriate to be used as an error metric. The
difference between the shadow generated by the ras-
terization system and the ray tracer is only notable in
the penumbra region. In umbra regions and in regions
where the area light source is not occluded by other ob-
jects (so that the scene is fully lit by the light source) no
difference between the rasterizer and ray tracer is no-
ticeable (see Figure 1 - only the penumbra region needs
to be refined).

In [Mic07], an improved algorithm is presented which
can estimate a tighter, conservative penumbra estima-
tion than the algorithm described by [GBP06]. Even
though it requires more memory, the tighter estimation
reduces the amount of pixels that have to be refined,
resulting in an overall improved performance.

The corresponding error metric for soft shadow is there-
fore quite simple:

: Pixel resides in penumbra region

1
Eshagow = {0 - else

Combination of Error Metrics

The different error metrics can be combined in multiple
ways. A naive idea is to calculate an averaged sum:

L Eip)
Ec()mhinedl == lnl

Figure 10 shows the quality of the average sum metric.

(a)
Figure 10: Quality of averaged sum metric. (a) shows
the real error, (b) the estimated error and (c) the differ-
ence image.

For a better estimation, a more complex combination
is required. A simple, yet effective approach is to
use a linear combination of the different error metrics
(i.e. Ereflection;» Edofs Eshadow) and let the smart image
refinement system automatically determine the coeffi-
cients A; by rendering multiple views of a scene with
the goal of minimizing the difference between the esti-
mated and the real error:

Ecambinedz = Z?:l }LiEi(p)

The determination of the factors A; is done as a pre-
process for each different scene. In this pre-process a
certain number of screenshots from the scene is taken
(with pure rasterization and pure ray tracing). Then a
random tuple of A; coefficients is chosen and the com-
bined metric E;ompined, 15 then compared with the real
error. We repeat this step multiple times and choose the
A; coefficients which result in the best approximation
for all test images.

6 SCHEDULING STRATEGY

This section describes how the error value is used to
direct the rendering process of the smart image refine-
ment system.

First the scene is rasterized by the rasterization system.
During rasterization, an error value is also computed
as described in the previous section about error met-
rics. After the rasterization pass, the color buffer and
the error color buffer are filled. Now post-processing
effects are applied to the previously rendered scenery.
The post-processing result is written to the post-process
color buffer; after this, the post-process error buffer is

computed. Then the error buffer and the post-process
error buffer get composed in a combined error buffer.
For each pixel, an error value is computed and stored
in the combined error buffer. After composing the er-
ror buffers, the next step is to sort the pixels. The error
buffer also stores, besides the error value, the position
for each pixel. The position is needed to find out to
which pixel a corresponding error value belongs to af-
ter reordering them according their error values. After
sorting the error pixels, they are gathered in the request
buffer. Additionally to the position, a sample count
value is also stored in the request buffer for each pixel
that determines how many rays should be traced for the
corresponding pixel. The sample count is determined
by an estimation pass that fills the request buffer. Af-
ter the request buffer is filled, it is handed over to the
ray tracing system. The ray tracing system reads the
first entry from the request buffer and samples the cor-
responding pixel according to the sample count. The
ray tracer proceeds this process for a user-defined max-
imum number of pixels. After the maximum number
is reached, the ray tracing process stops and the smart
image refinement system continues with blending the
current ray traced image with the computed rasterized
image. The blending factor of each pixel depends on
the total number of samples that were computed for the
corresponding pixel by this time. Figure 11 gives an
overview of this process. This process is repeated until
the whole image is refined.

7 IMPLEMENTATION

For the implementation of the smart image refine-
ment system Direct3D 11, CUDA 4.1 and OptiX 2.5
([Ste10]) have been used. Direct3D is used for the
rasterization part and analogously OptiX is used for the
ray tracing part. Thus all rendering is done on the GPU.
Optionally the system can perform pure rasterization
with Direct3D or pure ray tracing with OptiX. In
the case of pure ray tracing Direct3D is needed only
to show the generated OptiX output buffer. Pure
ray tracing and rasterization is used for comparison
purposes like the time measurements in section 2 or in
table 1.

The ray tracing subsystem uses a SBVH acceleration
structure [SFD09] provided by OptiX to accelerate ray-
triangle intersections. The rasterizer subsystem renders
without any scene graph optimizations in a brute force
manner.

A pixel shader is used to write the error values dur-
ing rasterization to an additional render target (the error
buffer). Some error values can be only determined af-
ter post-processing so there is an additional error buffer
(post-process error buffer) which stores the error values
determined during applying post-processing effects like
depth-of-field. The combined error buffer which con-
tains the unsorted error values is shared with CUDA.

rasterize scene V
Color Buffer

Error Buffer

post-processing +
Post-Process Color Buffer

combine
error buffers

sort

ray trace pixels +

>@ composite

+ Back Buffer

Figure 11: Overview of the smart image refinement sys-
tem. During rasterization an error buffer is generated.
The error buffer is sorted to give the ray tracing subsys-
tem information where refinement makes most sense.

Thrust [HB10], a CUDA library is then used to sort all
error values. The error values are encoded in such a
way that the radix sort algorithm of Thrust can be used.
After sorting the pixel values according their error val-
ues a full screen quad is drawn with the size of the
sorted error buffer. In this step all pixel are gathered
in a request buffer which is implemented as an struc-
tured buffer. The request buffer is list with the pixels
that need to be refined. Since the error buffer has been
sorted the list is also sorted according to the error value.

8 RESULTS

Table 1 shows a performance comparison of pure ray
tracing and the prototypically implemented smart im-
age refinement system.

Resolution PRT inms | SIRinms | Error pixel (%)
800 x 600 440 406 188023 (39)
800 x 600 312 230 100934 (21)
800 x 600 203 79 20158 (0.4)
800 x 600 145 45 4181 (0.01)
1024 x 768 | 640 587 290542 (36)
1024 x 768 | 305 185 88063 (11)
1024 x 768 | 238 84 32889 (4)
1024 x 768 | 201 52 32889 (1)
1920 x 1080 | 1510 1463 805368 (39)
1920 x 1080 | 1107 901 499369 (24)
1920 x 1080 | 639 243 145239 (7)
1920 x 1080 | 484 113 44140 (2)

Table 1: Performance comparison of pure ray tracing
(PRT) and smart image refinement (SIR). In the SIR
implementation, one primary ray is traced for each error
pixel. Also a shadow and reflection ray is cast per in-
tersection. This is done recursively for reflections three
times.

As can be seen from Table 1 smart image refinement is
faster than pure ray tracing and at the same time it has
the same image quality, provided that conservative er-
ror metrics are used. All measurements in this section
were made with a NVIDIA GeForce GTX 560 Ti. As
a test scene, the extended Atrium Sponza Palace scene
that was originally created by Marko Dabrovic and ex-
tended by Frank Meinl has been chosen.

The sorting only has to be performed when the scene
or camera orientation/position changes. In the imple-
mentation of the smart image refinement system a user-
defined number of rays are always traced. For instance,
the tracing of 8192 rays and the composition of the ray
traced and rasterized image takes about 30 ms, depend-
ing on the current scene on camera view. This makes it
possible to show the user first results after a short render
time. Something that has be taken into consideration as
well is the fact that in a pure ray traced based approach,
the same number of samples is computed for each pixel,
no matter if refinement makes sense for the correspond-
ing pixel.

The performance of the smart image refinement sys-
tem drops with higher error pixel rates. The major
reason for this is that resources (e.g. error buffer,
request buffer) have to be copied between Direct3D
11, CUDA and OptiX because they cannot be directly
shared (some API extensions to improve the interop-
erability between OptiX, CUDA and Direct3D could
avoid these copying steps). For example to hand over
the error pixels that should be refined by OptiX, a re-
quest buffer has to be filled with the sorted data from
a CUDA buffer. The CUDA buffer cannot be directly
accessed by OptiX. The data has to be copied first.

9 CONCLUSIONS AND FUTURE
WORK

In this work, a GPU-based hybrid rasterization and ray
tracing system was presented that is able to direct the
render processes to regions with high relevance. Re-
gions with a high error are getting refined first and more
often than regions with a small error value. This helps
to converge fast to a stable image and avoids at the same
time the waste of computing time in regions that do not
need any refinement.

There is some scope for improvements of the described
error metrics.

Besides reflections, shadows and depth-of-field, it
would also be interesting to see how other effects like
ambient occlusion (AO) or refractions can be integrated
into a smart image refinement system. In the case
of AO, a screen based ambient occlusion technique
can be employed in the rasterizer to compute a fast
approximation of an occlusion term.

Another interesting aspect that has not been considered
in this work is global illumination. Global illumination
could be approximated with light propagation volumes
and refined with a more sophisticated ray tracing tech-
nique like path tracing.

There are several real-time perceptually based ap-
proaches like [CKCO03] which try to cut down
rendering time by focusing on important parts. These
ideas can be combined with our approach.

10 REFERENCES

[Cabl0] Cabeleira Jodao. Combining Rasteriza-
tion and Ray Tracing Techniques to Ap-
proximate Global Illumination in Real-Time.
http://www.voltaico.net/files/article.pdf, 2010.

[CKCO03] Cater, K., Chalmers, A., and Ward, G. Detail
to attention: exploiting visual tasks for selective
rendering. Proceedings of the 14th Eurographics
workshop on Rendering, Eurographics Associa-
tion, 270-280, 2003.

[ESAW11] Eisemann, E.; Schwarz, M.; Assarsson, U.
& Wimmer, M., Real-Time Shadows A. K. Peters,
Ltd., 2011.

[GBP06] Gaél Guennebaud, Loic Barthe, and Math-
ias Paulin. Real-time soft shadow mapping by
backprojection. In Eurographics Symposium on
Rendering (EGSR), Nicosia, Cyprus, 26/06/2006-
28/06/2006, pages 227-234. Eurographics, 2006.

[Gre86] Ned Greene. Environment mapping and other
applications of world projections. IEEE Comput.
Graph. Appl., 6:21-29, November 1986.

[HB10] Jared Hoberock and Nathan Bell. Thrust:
A parallel template library, Version 1.3.0.
http://www.meganewtons.com/, 2010.

[KBM10] Erik Knauer, Jakob Birz, and Stefan Miiller.
A hybrid approach to interactive global illumina-
tion and soft shadows. Vis. Comput., 26(6-8):565-
574, 2010.

[KMS10] Jan Kautz Kenny Mitchell, Christian Ober-
holzer and Peter-Pike Sloan. Bridging Ray and
Raster Processing on GPUs. High-Performance
Graphics 2010 Poster, 2010.

[LUO8] Per Lonroth and Mattias Unger. Advanced
Real-time Post-Processing using GPGPU tech-
niques, Technical Report, No. 2008-06-11,
Linkoping University, 2008.

[Mic07] Michael Schwarz and Marc Stamminger. Bit-
mask soft shadows. Computer Graphics Forum,
Vol. 26, No. 3, pages 515-524, 2007.

[Pot81] Potmesil, Michael and Chakravarty, Indranil.
A lens and aperture camera model for synthetic
image generation. In SIGGRAPH 81: Proceed-
ings of the 8th annual conference on Computer

graphics and interactive techniques, pages 297-
305, New York, NY, USA, 1981. ACM.

[SFD09] Martin Stich, Heiko Friedrich, and Andreas
Dietrich. Spatial splits in bounding volume hierar-
chies. In Proceedings of the Conference on High
Performance Graphics 2009, HPG 09, pages 7-13,
New York, NY, USA, 2009. ACM.

[Ste10] Steven G. Parker, James Bigler, Andreas Di-
etrich, Heiko Friedrich, Jared Hoberock, David
Luebke, David McAllister, Morgan McGuire,
Keith Morley, Austin Robison and Martin Stich.
OptiX: A General Purpose Ray Tracing Engine.
ACM Transactions on Graphics, August 2010.

[YPGO1] Hector Yee, Sumanita Pattanaik, and Donald
P. Greenberg. Spatiotemporal sensitivity and vi-
sual attention for efficient rendering of dynamic
environments. ACM Trans. Graph., 20:39-65,
January 2001.

