
An Applied Approach for Real-Time Level-of-Detail Woven Fabric
Rendering

Wallace Yuen
The University of Auckland,

New Zealand
wyue013@aucklanduni.ac.nz

Burkhard C. Wünsche
The University of Auckland,

New Zealand
burkhard@cs.auckland.ac.nz

Nathan Holmberg
77-Pieces Ltd,
New Zealand

nathan@77-pieces.com

ABSTRACT
Photorealistic rendering of fabric is essential in many applications ranging from movie special effects to e-
commerce and fashion design. Existing techniques usually render the fabric’s microscale structure. However,
this can result in severe aliasing and is unsuitable for interactive cloth simulation and manipulation. In this pa-
per we describe a novel real-time level-of-detail fabric rendering technique. The algorithm adjusts geometry and
texture details with changing viewpoint by using a mipmapping approach, in order to obtain a perceptually con-
sistent representation on the screen. Compared to previous work we also introduce more parameters allowing the
simulation of a wider range of fabrics. Our evaluation demonstrates that the presented approach results in realis-
tic renderings, increases the shader’s run-time speed, and reduces aliasing artifacts by hiding the underlying yarn
geometry.

Keywords: fabric rendering, anisotropic materials, real-time rendering, cloth simulation, anti-aliasing, level-of-
detail methods

1 INTRODUCTION
Realistic fabric rendering addresses many different ar-
eas and industries in computer games and fashion ap-
plications. It is a challenging research field due to the
complexity of the underlying fabric structure, textures,
and materials, which results in complex light interac-
tions and aliasing problems when using a raster rep-
resentation. Fabric structures vary depending on the
manufacturing process, such as weaving and knitting,
and the desired fiber properties. Previous research in
this field has explored different aspects of this problem,
such as rendering complex weaving and knitting pat-
terns, and developing specialized lighting models that
simulate light interaction with the yarn geometry and
its microstructure.

The modeling of complex weaving patterns and yarn
geometry can result in aliasing when the screen resolu-
tion is lower than the perceived color variations on the
material (caused by the geometry, lighting and texture).
This is particularly problematic when animating the
fabric using cloth simulations, which creates conspic-
uous temporal aliasing artifacts. In recent years, many
hardware anti-aliasing techniques have been developed
for real-time applications such as computer games, but

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

are mainly used as a post-processing remedy. In this pa-
per, we describe a level-of-detail fabric rendering tech-
nique for reducing the aliasing artifacts with minimal
impact on computation time. This method can be used
in conjunction with post-processing anti-aliasing tech-
niques to further reduce the aliasing artifacts.

We want to create a parameterized fabric shaders for
fashion design and e-commerce applications. This fun-
damentally requires fast interactive speed, high mem-
ory efficiency, and high robustness to support for a wide
range of woven fabrics. We found that the model pro-
posed by Kang [Kan10] would be the most suitable for
our needs with several extensions and modifications to
the original algorithm [YW11]. We adopted this model
and implemented it in OpenGL Shading Language to
support real-time parameterization of weaving pattern
and yarn geometry.

Section 2 reviews existing fabric rendering techniques.
Section 3 introduces previously presented techniques
for modeling light interaction and rendering fabric,
which form the foundation of our fabric rendering
framework. Section 4 proposes our level-of-detail
algorithm and improvements to the existing algorithm
for real-time fabric rendering. Section 5 presents an
evaluation of our framework and Section 6 draws
conclusions and suggests directions for future work.

2 LITERATURE REVIEW
Fabric rendering techniques have been an active area
of research since the early 1990s. We classify exist-
ing techniques into two categories, example-based and



procedural-based models. Example-based models fo-
cus on capturing reflectance information of specific ma-
terial and use the captured data for rendering virtual
fabrics. Procedural-based models are empirical math-
ematical models that use various parameters to control
the appearance of fabrics.

2.1 Example-Based Models
Example-based cloth rendering techniques require
the capturing of reflectance information of materials.
This usually requires modification of the lightings,
sensors, and planar examples of the corresponding
materials. The reflectance properties of a material
for different viewpoints and light directions can be
encoded in a Bidirectional Reflectance Distribution
Function (BRDF), which is often obtained with a
gonioreflectometer [War92].
Daubert et al. [DLH01] proposed a Spatially-Varying
Bi-directional Reflection Distribution Function
(SVBRDF) specifically for cloth rendering using
the Lafortune reflection model. It is designed to
render clothes with repeating patterns such as knitting
and weaving patterns. A texture map is used as a
look-up table, for storing precomputed parameters of
the Lafortune reflection model. This method works
for both knitted and woven clothes by modeling the
structure explicitly through the generation of new
triangle meshes, but the computation consists of
several rendering passes. Even though many methods
have been proposed to obtain a SVBRDF using only a
single view of a material sample [WZT+08], SVBRDF
is generally very memory intensive, which makes it
impractical for real-time applications where material
parameters are interactively changed.
Another popular example-based model is the Bidirec-
tional Texture Function (BTF), which captures a ma-
terial’s light interaction for varying light source and
camera positions. The BTF captures more effects than
the SVBRDF including self-shadowing, occlusion, and
inter-reflection effects, and is used for many surface re-
flectance data measurements. The actual textures of the
cloth samples are used and stored as texture maps, and
they are used at render time with different parameters
such as the illumination, camera position, and the tex-
ture coordinates of the object. Due to the higher num-
ber of parameters, the BTF suffers from high memory
requirements and acquisition costs. Kautz [Kau05] in-
troduced a compression method for the BTFs. He ac-
quires a lower number of images and interpolates be-
tween them. Despite these compression approaches,
example-based methods still require an over-abundant
storage capacity for practical use, and they do not of-
fer enough flexibility for rendering different types of
clothes with different weaving patterns.
A volumetric approach that uses the microflake model
was proposed by Zhao et al. [ZJMB11]. The ap-

proach acquires a volume model of the material that
needs to be rendered using a X-ray computed tomog-
raphy (CT) scanner. The volumetric data acquired is
post-processed for orientation extraction and noise re-
moval, and is matched to a photograph of the same ma-
terial captured to obtain the optical properties for fab-
ric rendering [ZJMB11]. This approach suffers from
high memory requirements, due to the size of volumet-
ric data, where each fabric sample takes approximately
7.26GB [ZJMB11]. It is also difficult to acquire equip-
ments for this approach, due to the cost of CT scanners,
thus making it difficult to capture different fabrics.

2.2 Procedural-Based Models
Procedural-based cloth rendering techniques are mod-
els that are designed based on the analysis of fabric
structure. Yasuda et al. [YYTI92] developed shading
models for woven cloth by analyzing fiber properties
and weaving patterns. The authors proposed a tiny facet
model for fabric materials taking into consideration re-
flection and refraction of multiple fabric layers. Using
a multiple layer model, they simulated the scattering ef-
fects of fabrics by calculating the light refraction at dif-
ferent layers [YYTI92]. The reflection model assumes
a simple percentage of warp and weft yarns in woven
clothes and used a non yarn-based reflection. The light
interaction with a small area of fabric is calculated by
obtaining the total reflections [YYTI92]. Hence, this
approach does not explicitly model the weaving pat-
terns, but simulates the appearance of the fabric at a
higher level where the weaving patterns are not visible.
Ashikhmin et al. [AS00] developed a microfacet-based
anisotropic model that can be used for general materi-
als, and was tested by simulating satin and velvet. The
authors take into account the weaving pattern of satin
and velvet. For example, satin is modeled by weight-
ing the BRDF values of weft and warp yarns [AS00].
Due to a lack of self-shadowing and light interaction
at the yarn-level, this microfacet anisotropic model is
too generic to be used directly for fabric rendering, but
it formed the foundation for many subsequently devel-
oped techniques.
Adabala et al. [AMTF03] use a weaving pattern input
defined by the user, and generate a corresponding
Anisotropic BRDF, texture, and horizon map for
the clothing material. The authors render the fabric
based on the weaving pattern input provided by the
user to generate the overall appearance of the cloth
[AMTF03]. This approach extends previous fabric
models and allows more complicated weaving patterns
to be defined. However, the authors applied the
Ashikhmin-Shirley BRDF [AS00] on the object-level
rather than the yarn-level, thus the modeling of light
interaction with the fabric lacks realism compared to
techniques which calculate light interaction based on
yarn material and weaving patterns.



Kang [Kan10] proposed a procedural method that mod-
els the reflectance properties of woven fabric using al-
ternating anisotropy and deformed microfacet distribu-
tion function. The proposed method is based on the
microfacet distribution function (MDF) along with the
Ashikhmin-Shirley [AS00] anisotropic shading model.
Each sample point on the cloth is classified as a weft
or warp yarn, and a corresponding distribution function
is used accordingly to calculate the reflectance of that
point [Kan10]. The alternating anisotropy approach al-
lows the lighting to be defined for weft and warp thread
by rotating the microfacet distribution function. Fur-
ther deformation of the MDF enables the elaboration of
yarn geometries and twisted appearances on the surface
of each yarn. This approach enables not only the ren-
dering of anisotropic clothes, but also the rendering of
bumpy surfaces created by the weaving structure of the
fabrics [Kan10].

Irawan [Ira08] developed a reflectance model and a tex-
ture model for rendering fabric suitable for distant and
close-up views. The reflectance model is defined by the
scattering effect of the fabric, while the texture model
incorporates highlights calculated from the reflectance
model. The texture model (BTF) is generated on the fly
using parameters to control the types of yarn (i.e. staple
or filament), and the appropriate weave pattern, and the
yarn geometry is captured by using the fiber twisting
angle to render the highlight on each yarn. A downside
of this approach is the lack of shadowing and the mask-
ing effects to render some types of fabrics realistically,
such as denim. However, the results look convincing
and the approach is fully procedural, with intuitive vari-
ables at the fiber level, the yarn level, and the weaving
pattern level.

3 FABRIC RENDERING MODEL
This section explains two techniques adopted by us in
more detail: Kang’s fabric rendering model [Kan10]
and the Ashikhmin-Shirley anisotropic shading model
[AS00] for capturing anisotropic reflections.

3.1 Ashikhmin-Shirley BRDF
The Ashikhmin-Shirley BRDF [AS00] is given by the
following equation:

ρ(k1,k2) =
p(h)P(k1,k2,h)F(k1h)

4(k1n)(k2n)(nh)
(1)

This equation represents the illumination of a point
with the incoming light vector k1 and outgoing light
vector k2 where additional functions explained below
describe the effect of the microfacet structure. The
vector n represents the surface normal at a point, and
the vector h describes the half vector obtained from
the incoming and outgoing light vector. The func-
tion P(k1,k2,h)F((kh)) captures the shadowing effects

caused by microfacets. The function F(kh) is the Fres-
nel reflectance that describes the amount of incoming
light that is reflected off the surface specularly. The
function p(h) is the MDF given by Equation 2. It de-
scribes the illumination effects of weaving patterns in
Kang’s model [Kan10].

3.2 Microfacet Distribution Function
The microfacet distribution function characterizes a
surface’s distribution of microfacets, by encoding their
normal direction relative to the underlying surface.

p(h) =

√
(x+1)(y+1)

2π
(h ·n)xcos2φ+ysin2φ (2)

The microfacet distribution function in Equation 2 is
used to generate the BRDF. The function captures the
visual effects of microgeometry, where the reflected
specular light on the surface is proportional to the
probability of the microfacet surface normals that are
aligned to the half vector. Variables x and y controls
the shape of the specular highlight and the intensity in
anisotropic reflection.

Figure 1: Our generated images using the Ashikhmin-
Shirley BRDF [AS00] for visualizing the difference in
specular highlights with varying parameters x and y.
Top row: x = 10, 30, 50, while y stays constant equal to
1. Bottom row: y = 10, 30, 50, while x stays constant
equal to 1.

A visualization of the microfacet distribution is shown
in Figure 1. When the x and y values are close to each
other, then the distribution of microfacets aligning to h
is spread more evenly across the surface. The top row
of the diagram demonstrates that if the x-value in the
MDF increases from 10 to 50, then the distribution of
microfacets becomes denser in the center, thus resulting
in a less spread specular lobe on the object surface. This
results in an increasingly narrow highlight stretched in
y-direction.

3.3 Weaving Pattern Rendering
Kang [Kan10] proposed an alternating anisotropy so-
lution to render weaving patterns by using Equation 2



to generate the specular highlight that can be seen on
weaving pattern [Kan10]. Using the fact that weaving
patterns are only made of weft and warp yarns, the spec-
ular highlight of weft yarns must therefore be obtained
by rotating the microfacet distribution by 90◦. This is
again shown in Figure 1. The rotated microfacet dis-
tribution is seen on the second row, and is done by ex-
changing the values of x and y to create such rotation.

Figure 2: Weave pattern generated by using the alter-
nating anisotropy method showing the closer view (left)
and distant view (right).

An example of a weaving pattern generated using the
alternating anisotropy method is shown in Figure 2.
Without the yarn geometry the weaving pattern looks
like a checkerboard pattern, thus the yarn geometry has
to be defined for close-up viewpoints.

3.4 Yarn Geometry
The yarn geometry is generated after the weaving pat-
tern by normal perturbation at run-time. Kang [Kan10]
proposed that the yarn geometry can be specified by
several parameters including: number of threads for
each strand of yarn Nξ, fiber curvature of each strand
c f , and the yarn curvature cy. Therefore, the normal
of each point is altered using these parameters and its
sampling position on the weft or warp yarn [Kan10].

weft:(δx,δy) = (c f (2fract(Nξ(uw− s f σ
u))−1,cyσ

v)
(3)

warp:(δx,δy) = (cyσ
u,c f (2fract(Nξ(vw− s f σ

v))−1)
(4)

Equations 3 and 4 show the changes made to the x-
and y-coordinates of the normal. The z-coordinate
of the perturbed normal is generated by calculating√

1.0−δx−δy. This achieves yarn based lighting by
taking into account different user-defined parameters
including: fiber curvature (c f ), yarn curvature (cy),
slope of fibers (s f ), offsets in yarn space (σu and σv),
and number of fiber strands (Nξ) used to make up each
yarn. The variables uv and vw are texture coordinates of
the model, and the function fract() calculates the frac-
tion component of a floating point.

Figure 3 shows a fabric model with weaving pattern and
yarn geometry. The image on the left of Figure 3 shows

a rendering of the fabric seen from a distance, with the
microscale details well below an individual pixel size.
The results are not significantly different to the version
of rendering without yarn geometry as shown in Fig-
ure 2. The difference between the two fabric models
becomes more visible when rendering a close-up view.
The image on the right of Figure 3 illustrates that each
yarn is constructed by several threads, as specified by
the variable Nξ, with a high yarn curvature resulting in
large shaded areas on the sides of the yarns.

4 DESIGN
Fabric rendering techniques often suffer from strong
aliasing effects if the resolution of the fabric mi-
crostructure is higher than the screen resolution it is
displayed on. While post-processing can soften these
effects, the solution is inefficient and artifacts can
remain, especially for interactive applications such as
cloth simulations. Some solutions use large weave
sizes to reduce aliasing effects, but this is not suitable
for fashion applications where realism is essential.
We analyzed existing cloth rendering techniques and
found that the method from Kang [Kan10] is the most
promising one [YW11]. A major advantage of this
algorithm is its speed, which was shown to be only
1.846 time more expensive than Gouraud shading
[Kan10]. The approach also displays a high level of
realism, as the results of rendered woven fabrics look
realistic in close-up. However, this approach lacks a
coloring scheme at the yarn level to render fabrics such
as denim, and it also displays blatant aliasing artifacts
on the fabric surface.

4.1 Level-of-detail Fabric Rendering
We propose a level-of-detail design for the fabric model
proposed by Kang [Kan10], which removes unneces-
sary detail, and only renders the detailed fabric struc-
ture in close-up views.

Our design consists of two levels of visually perceiv-
able fabric details: weave structure and yarn geome-
try. The visibility of yarn geometry is determined by
the mipmap level, which is calculated with the use of
derivative functions on texture coordinates. We explic-
itly render two mipmap levels for the general weave
structure and the underlying yarn geometry. We limit
the mipmap levels to between 0 and 1, and uses it as
an alpha value for blending between the two layers of
mipmap. This concept is shown in Figure 4, for those
fragments that are highlighted in lighter colors, they
are rendered with the general weave structure, whereas
for those that are highlighted in darker colors, they
are rendered with more detailed yarn geometry. This
means that if the texture coordinates between neighbor-
ing fragments are changing quickly, then a higher level



Figure 3: Rendering of weave pattern with yarn geometry seen from distance (left), and from close-up (right).

mipmap (less detail) is used, thus avoiding the render-
ing of unnecessary detail when the fabric is observed in
a larger distance.

Figure 4: Visualization of mipmap level selection from
far view point to close view point (left to right).

In essence, two MDFs are calculated, one using the pre-
perturbed normals for weaving pattern rendering, and
the other using the perturbed normals for yarn geome-
try rendering. The yarn geometry is obtained from the
normal perturbation using Equations 3 and 4, which is
then used as an input to the MDF. In practice, however,
only the dot product between the halfway vector h and
the normal vector n has to be recalculated two times for
each values, with the rest of the calculations in Equation
2 only calculated once. Equation 5 shows the calcula-
tion of the final MDF, which is done by using the two
previously mentioned MDFs, and weighting them with
the α value obtained from the mipmap calculation that
determines which level of mipmap should be used for
rendering.

p(h) = (1.0−α)p(h1)+αp(h2) (5)

4.2 Extensions for Real-time applications
We also extend the model developed by Kang [Kan10]
to support more types of fabrics.

4.2.1 Extended Fabric Coloring Scheme

For our system, we require the visualization of fabrics
such as denim. Denim is often constructed from fiber
using the twill-weaved weaving pattern. In contrast to
ordinary cotton twill, denim uses different colors for the
weft and warp yarn, with the most popular combination
being white for the warp yarn and blue for the weft yarn.

We define extra parameters to specify the base color of
individual weft and warp yarns, both in terms of diffuse
and specular colors. Using these base colors, we apply
Kang’s algorithm [Kan10] to generate the procedural
textures with weaving patterns and yarns to simulate the
virtual fabrics.

4.2.2 Ambient Occlusion

The original method by Kang [Kan10] introduced an
ambient occlusion term defined by the z value of the
perturbed normal. Since the perturbed normal is gen-
erated to define the yarn geometry at the micro-level,
the ambient occlusion term only works for scaling
the anisotropic reflection at the yarn level to create a
shadow effect on the reflection.

The self-shadowing effects at a higher level are not cap-
tured due to the lack of indirect lighting involved in cal-
culating the overall reflectance of the fabric. However,
self-shadowing is common in practice, e.g. when cloth
is folded. Hence, we use Screen-Space Ambient Occlu-
sion (SSAO) [Mit07] as a real-time ambient occlusion
method to introduce self-shadowing effects to the exist-
ing fabric rendering method.

In the initial pass, we render our fabric at the same time
as normal buffer and position buffer to avoid render-
ing the same object in multiple passes. We store fabric
rendering results in a color buffer, and the color buffer
is referred to for scaling its values using the calculated



ambient occlusion from the normal buffer and position
buffer.

ao = max(0.0,
dot(N,V )

1.0+d
) (6)

Equation 6 describes the calculation of the ambient oc-
clusion of a pixel. A point (occluder) occludes another
point (occludee) if the dot product between the normal
of the ocludee and the vector from the ocludee to oc-
cluder is greater than zero, i.e if the point is located at
the front face of the occludee, then it contributes some
amount of occlusion scaled by the dot product and the
distance between two points. In order to calculate the
ambient occlusion at each pixel of the screen, neighbor-
ing pixels are sampled randomly using a noise function
and the ambient occlusion value is averaged according
to the number of sample points [Mit07].

4.2.3 Anti-Aliasing
The original implementation of the renderer produced
clearly visible aliasing effects and moire patterns due to
high frequency textures. These artifacts are caused by
the microscopic details of the procedural textures gen-
erated in real-time. When the object is in motion, the
aliasing artifacts become even more visible to temporal
aliasing.

Figure 5: Aliasing of weave patterns. Comparison of
fabric being viewed from a distance (left) and from
close-up (right). The fabric was rendered with the orig-
inal implementation by Kang [Kan10] without any anti-
aliasing or level-of-detail algorithm

The left image of Figure 5 displays the distortion of
weaving patterns when the viewpoint is located far
away from the object. The moire patterns on the sur-
face of the fabric are clearly visible as distorted curve
lines. The fabric on the right in Figure 5 shows the
weaving pattern when the viewpoint is at a closer dis-
tance to the object - no moire pattern is visible. Another
example is given by Figure 6, which shows a denim fab-
ric rendered without any underlying textures, but using
blue colored weft yarns and white colored warp yarns.
When the fabric is viewed from a distance (left image
of Figure 6), the aliasing artifacts are more visible with
this fabric due to the highly contrasted yarn colors be-
tween weft and warp yarns, also causing moire patterns
to appear on the surface of the fabric. Furthermore, the

twill-weave on the denim fabric is clearly distorted and
unrecognizable from this distance. The aliasing arti-
facts are significantly reduced on the right of Figure 6,
but still exist in high frequency areas such as regions
where the fabric is bent around the underlying cuboid
object.

Figure 6: Aliasing of weave patterns of denim fab-
ric. Comparison of distant viewpoint in magnified view
(left) and close viewpoint (right)

An anti-aliasing method is required to reduce the moire
effects on the surface of the fabric. While a level-of-
detail scheme was proposed in Section 4.1, the size of
the weaving patterns still introduces a high level of tex-
ture frequency on the fabric surface.
Traditionally, oversampling methods such as su-
persampling anti-aliasing (SSAA) and its variation,
multisampling anti-aliasing (MSAA) were used to
handle aliasing for graphics applications and computer
games. SSAA is known to incur large bandwidth and
shading cost, due to multiple numbers of samples being
taken inside each pixel [HA90, Mam89], while MSAA
improves on SSAA’s performance by only evaluating
each fragment value once and only supersampling
depth and stencil values [Ake93].
Recently, post-processing anti-aliasing methods have
become more popular for reducing aliasing artifacts.
Methods such as morphological anti-aliasing (MLAA)
[Res09] and fast approximation anti-aliasing (FXAA)
[Lot09] have the advantage that they are independent to
the rendering pipeline. The methods are applied at the
last stage as an image-based post-processing technique.
While MLAA resolves many edge aliasing problems,
it is unable to handle pixel-sized features, and fails to
reduce the moire-effects from high frequency textures
[Res09]. FXAA employs a similar anti-aliasing pro-
cedure, where the image is used to detect edges using
highly contrasting areas of each pixel, with an addi-
tional sub-pixel offset from the detected edge for low-
pass filtering to achieve anti-aliasing in the sub-pixel
level [Lot09]. Therefore, FXAA can be considered as
a sub-pixel anti-aliasing technique and is hence poten-
tially useful for our fabric shader. However, MSAA is
the preferred choice due to its proven anti-aliasing per-
formance over the entire object surface.
Despite the popularity of these methods, we found that
they did not alleviate the high frequency aliasing prob-



lem we faced with texture aliasing from our imple-
mentations. Therefore, we decided to simply use an
adaptive prefiltering approach [Ros05] inside our GLSL
shader for averaging the pixel with its neighbors. The
filter is adaptive such that the number of surrounding
colors it calculates depends on the degree of similar-
ity in each iteration. This algorithm is shown in Al-
gorithm 1, which shows an overview of the algorithm
for each fragment in calculating its final color. Essen-
tially, the final color is iterated until its difference with
other colors between neighboring fragments is less than
a threshold, defined by the inverse distance of the frag-
ment from the view point.

Algorithm 1 Prefiltering for fabric shader
count← 1
ddx← dFdx(worldPos)∗0.5
ddy← dFdy(worldPos)∗0.5
while true do

lastColor← color
color← color + calcFragmentColor(worldPos

+ ddx∗ rand()+ddy∗ rand())
count← count +1
if count > 5 then

δcolor← lastColor− color
if length(δcolor)< (1 / viewDistance) then

break
end if

end if
end while
f inalColor← color/count

5 RESULTS
This section evaluates the effectiveness and efficiency
of the improvements proposed by us. The following
tests were performed:

• LOD fabric rendering quality test

• LOD fabric rendering performance test

• Denim Rendering

With rendering quality, we compare and contrast the
quality of several images with real fabrics. To com-
pare the effects of using level-of-detail rendering, we
compare rendering results with and without the im-
provements, and we also compare their effects on alias-
ing artifacts. For rendering performance we compare
the frame rates achieved with the different implemen-
tations. All tests were performed on a PC with In-
tel Core i7 2600k,12 GB memory at 1600 MHz with
an AMD Radeon HD 6950 graphics card with 2GByte
GPU memory.

5.1 Level-of-Detail Rendering
5.1.1 Rendering Quality
The level-of-detail rendering of woven fabric was tested
by comparing the rendering quality of fabrics with and
without our level-of-detail fabric rendering algorithm.
Figure 7 shows that without level-of-detail rendering
(left) many aliasing artifacts are seen, which they are
not visible using level-of-detail rendering (right). The
observations are confirmed by a second example shown
in Figure 8, which represents a red twill-weaved woven
fabric.

Figure 7: Level-of-detail rendering, without LOD (left)
and with LOD (right).

Figure 8: Level-of-detail rendering, without LOD (top)
and with LOD (bottom).

The denim fabric still displays some aliasing artifacts
with high frequency weaving pattern that is rendered
on polygons facing away from the screen. This is due
to the high contrast in color in the underlying weaving
construct, coupled with the projection of weaving pat-
tern to a much smaller projected area, thus making it
difficult to smooth the high frequency changes in color
at the micro-level. An example of this problem is shown
in Figure 9, where the left image is a magnification
of the small rectangle section in the right image. The
left image illustrates some aliasing artifacts close to the
edge of the fabric, with white lines going against the
flow of the twill-weaved weaving pattern. These arti-
facts are not clearly noticeable in static images, but they



Implementation Performance (ms) Std. dev (ms)
Original 5.9302 0.0346
LOD 4.4037 0.04115

Table 1: Table comparing performance and standard de-
viation of the two algorithms in milliseconds per frame.

become very conspicuous in temporal aliasing when the
fabric is in motion.

Figure 9: An example of aliasing problem due to texture
projection. The left image is a magnification of the red
square in the right image.

5.1.2 Performance Analysis
The performance of the two algorithms (the original
algorithm and the LOD algorithm) was analyzed us-
ing an identical camera position and view, cloth model,
texture, and input parameters for the rendering model.
Both algorithms were tested along with the prefiltering
approach, as we have decided to incorporate it to reduce
the procedural texture aliasing.

Table 1 shows the results of the two algorithms, per-
formed with a 3D model as shown in Figures 7 and 8,
which contains 18892 vertices and 37566 triangles. Our
level-of-detail fabric rendering algorithm is faster than
the original algorithm. Given the improved rendering
quality and reduced artifacts our new approach is hence
preferable.

5.2 Denim Rendering
By extending the model to allow the specification of
coloring of yarns, we managed to procedurally generate
fabrics such as denim using the twill-weaved weaving
pattern coupled with blue colored weft yarns and white
colored warp yarns. Figure 10 provides a comparison
between our results and a close-up of real worn denim
fabric. The rendering results look realistic in terms of
fabric structure, but more randomness and tear and wear
needs to be incorporated into our model in the future.

We adopted the noise function proposed by Kang
[Kan10]. The noise function generates random illumi-
nation at different yarns, which enhances the realism of
our rendering. Note that some white warp yarns look
brighter than others as is the case for real denim. So far
our framework does not simulate washed denim fabric

Figure 10: Denim fabric rendered with our framework
(left) and a photo of real denim (right).

and hence we cannot replicate the random whitish
patches in the image of real denim fabric.

Figure 11: Close-up view of denim fabric rendered with
our framework.

Figure 11 shows a close-up view of our rendering re-
sults. Our model renders the twill-weave too uniformly,
lacking the natural imperfection found in real denim.
When the denim is being viewed from a larger distance,
the yarn geometry and weaving pattern gets aggregated
and only the dominating color in the weaving pattern is
visible to the user.

Figure 12 shows another close-up appearance of the
denim fabric using a model of a pair of jeans.. The
weaving pattern is defined to closely simulate the struc-
ture of a pair of real jeans. In order to render jeans re-
alistically, we modified our fabric shader so that it sup-
ports the input of wash maps. Wash maps are used to
define the patterns of washes for a pair of jeans, where
washes are patterns of white patches on the jeans as
shown in Figure 12. In Figure 12, a pair of rendered
jeans is shown on the left with a pair of real jeans on the
right. This close-up view demonstrates that the weav-
ing pattern of the rendered jeans closely resembles the
weaving pattern of the real jeans, as they are both sim-
ilar in structure and size relative to the jeans model.
Furthermore, at this viewing distance, the appearance
of both jeans is very similar to each other.

A comparison of an entire pair of real jeans and our ren-
dered jeans using a distance view is shown in Figure 13.



Figure 12: Jeans comparison when viewed from close-up: rendered jeans (left) and real jeans (right).

The rendered jeans (left) in Figure 13 closely resembles
the real jeans (right) in Figure 13. From this distance,
the weaving pattern is completely invisible to the ob-
server, and aliasing artifacts are also unrecognizable on
the fabric surface with the use of our LOD algorithm
and prefiltering approach.

Figure 13: Jeans comparison when viewed from a dis-
tance: rendered jeans (left) and real jeans (right).

In our results, we found that that the use of direct light-
ing often makes the resulting rendered object too bright
in areas that are occluded by the object itself. An ex-
ample is shown in Figure 14, where the left image is

Figure 14: Effect of ambient occlusion, before ambient
occlusion (left), and after ambient occlusion (right)

the rendered jeans without ambient occlusion, and the
right image is the rendered jeans with ambient occlu-
sion. In this scene, the light is positioned to the left of
the jeans, hence the inner thigh area should be dark as
it is not directly illuminated by the light source. How-
ever, without ambient occlusion the rendered jeans still
seems to be too bright around this area, and we found
that the SSAO approach results in a more natural ap-
pearance of occluded areas.

6 CONCLUSION
In this paper, we analyzed several existing fabric ren-
dering techniques. We chose to use the method pro-
posed by Kang [Kan10] as a basis for our fabric shader,
due to its rendering quality and performance. Several
extensions were proposed to improve the robustness of
the model and for supporting fabrics such as denim, and



ambient occlusion for enhancing the realism of self-
occlusion of the cloth model. Furthermore, we pro-
posed a level-of-detail approach in visualizing the ag-
gregation of details with the use of a mipmap LOD se-
lection mechanism, to help reduce aliasing artifacts re-
sulting from high frequency textures. Overall, our ex-
tension to the model enabled us to successfully render
denim fabric with an unwashed look and it significantly
reduced aliasing problems. With the incorporation of
wash maps to specify areas of washes, we have success-
fully replicated the overall and close-up appearance of
actual jeans.

7 FUTURE WORK
The weave-based level-of-detail algorithm only reduces
parts of the aliasing caused by high frequency textures.
It still suffers from aliasing from small scaled weav-
ing pattern and highly contrasting weft and warp yarns’
colors, such as for denim fabric, depending on the size
of weft and warp segments. Our approach rectified the
aliasing problem that is often seen in weave-based fab-
ric rendering approaches, but a better algorithm can be
investigated in the future to reconstruct the appearance
of high-detail level from lower levels, rather than filter-
ing these details away.

8 REFERENCES
[Ake93] Kurt Akeley. Reality engine graphics. In

Proceedings of the 20th annual confer-
ence on Computer graphics and interactive
techniques, SIGGRAPH ’93, pages 109–
116, New York, NY, USA, 1993. ACM.

[AMTF03] N. Adabala, N. Magnenat-Thalmann, and
G. Fei. Real-time rendering of woven
clothes. In Proceedings of the ACM sympo-
sium on Virtual reality software and tech-
nology, pages 41–47. ACM, 2003.

[AS00] M. Ashikhmin and P. Shirley. An
anisotropic phong BRDF model. Jour-
nal of graphics tools, 5(2):25–32, 2000.

[DLH01] K. Daubert, H.P.A. Lensch, and W. Hei-
drich. Efficient cloth modeling and ren-
dering. In Rendering techniques 2001:
proceedings of the Eurographics work-
shop in London, United Kingdom, June 25-
27, 2001, page 63. Springer Verlag Wien,
2001.

[HA90] Paul Haeberli and Kurt Akeley. The ac-
cumulation buffer: hardware support for
high-quality rendering. SIGGRAPH Com-
put. Graph., 24(4):309–318, September
1990.

[Ira08] Piti Irawan. Appearance of woven cloth.
PhD thesis, Ithaca, NY, USA, 2008.
AAI3295837.

[Kan10] Y.M. Kang. Realtime rendering of real-
istic fabric with alternation of deformed
anisotropy. Motion in Games, pages 301–
312, 2010.

[Kau05] J. Kautz. Approximate bidirectional tex-
ture functions. GPU Gems, 2:177–187,
2005.

[Lot09] T. Lottes. FXAA. 2009. Also available as
http://developer.download.nvidia.
com/assets/gamedev/files/sdk/11/
FXAA_WhitePaper.pdf.

[Mam89] Abraham Mammen. Transparency and an-
tialiasing algorithms implemented with the
virtual pixel maps technique. IEEE Com-
put. Graph. Appl., 9(4):43–55, July 1989.

[Mit07] Martin Mittring. Finding next gen:
Cryengine 2. In ACM SIGGRAPH 2007
courses, SIGGRAPH ’07, pages 97–121,
New York, NY, USA, 2007. ACM.

[Res09] A. Reshetov. Morphological antialiasing.
In Proceedings of the Conference on High
Performance Graphics 2009, pages 109–
116. ACM, 2009.

[Ros05] R.J. Rost. OpenGL (R) shading language.
Addison-Wesley Professional, 2005.

[War92] G.J. Ward. Measuring and modeling
anisotropic reflection. ACM SIGGRAPH
Computer Graphics, 26(2):265–272, 1992.

[WZT+08] J. Wang, S. Zhao, X. Tong, J. Snyder, and
B. Guo. Modeling anisotropic surface re-
flectance with example-based microfacet
synthesis. In ACM SIGGRAPH 2008 pa-
pers, pages 1–9. ACM, 2008.

[YW11] W. Yuen and B. Wünsche. An eval-
uation on woven cloth rendering tech-
niques. In Proceedings of the 26th In-
ternational Image and Vision Comput-
ing New Zealand Conference (IVCNZ
2011), pages 7–12, Auckland, New
Zealand, November 2011. Also available
as http://www.cs.auckland.ac.nz/
~burkhard/Publications/IVCNZ2011_
YuenWuensche.pdf.

[YYTI92] T. Yasuda, S. Yokoi, J. Toriwaki, and
K. Inagaki. A shading model for cloth
objects. Computer Graphics and Applica-
tions, IEEE, 12(6):15–24, 1992.

[ZJMB11] S. Zhao, W. Jakob, S. Marschner, and
K. Bala. Building volumetric appearance
models of fabric using micro ct imaging.
ACM Trans. Graph, 30(44):1–44, 2011.


