
Real-time Volume Rendering and Tractography Visualization on
the Web

John Congote1, Esther Novo, Luis Kabongo

Vicomtech Research Center
Donostia - San Sebastian, Spain

jcongote,enovo,lkabongo@vicomtech.org

Dan Ginsburg

Children’s Hospital
Boston, United States

dginsburg@upsamplesoftware.com

Stephan Gerhard

Institute of Neuroinformatics
Uni/ETH Zurich, Switzerland

connectome@unidesign.ch

Rudolph Pienaar

Harvard Medical School
Boston, United States

Rudolph.Pienaar@childrens.harvard.edu

Oscar E. Ruiz
1Universidad EAFIT
Medellin, Antioquia

oruiz@eafit.edu.co

ABSTRACT
In the field of computer graphics, Volume Rendering techniques allow the visualization of 3D datasets, and specif-
ically, Volume Ray-Casting renders images from volumetric datasets, typically used in some scientific areas, such
as medical imaging. This article aims to describe the development of a combined visualization of tractography
and volume rendering of brain T1 MRI images in an integrated way. An innovative web viewer for interactive
visualization of neuro-imaging data has been developed based on WebGL. This recently developed standard en-
ables the clients to use the web viewer on a wide range of devices, with the only requirement of a compliant
web-browser. As the majority of the rendering tasks take place in the client machine, the effect of bottlenecks
and server overloading are minimized. The web application presented is able to compete with desktop tools, even
supporting high graphical demands and facing challenges regarding performance and scalability. The developed
software modules are available as open source code and include MRI volume data and tractography generated
by the Diffusion Toolkit, and connectivity data from the Connectome Mapping Toolkit. Our contribution for the
Volume Web Viewer implements early ray termination step according to the tractography depthmap, combining
volume images and estimated white matter fibers. Furthermore, the depthmap system extension can be used for
visualization of other types of data, where geometric and volume elements are displayed simultaneously.

Keywords
WebGL, Volume Rendering, Ray Casting, DVR, dMRI

1 INTRODUCTION

Three-dimensional data can be found in several scien-
tific fields, coming from simulation, sampling or mod-
eling processes. Regarding the biomedical scope, sev-
eral scanning techniques, such as magnetic resonance
(MRI) or computerized tomography (CT), are used for
storing body imaging samples as volumetric datasets
formed by groups of parallel slices, where the term vol-
umetric dataset refers to a scalar field. These datasets
are usually visualized in three dimensions in order to
facilitate specialists to interpret information.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 1: Combined visualization of volume rendering
and tractography information on the web



Visualization of medical volumetric datasets can suit-
ably be performed by the use of Direct Volume Render-
ing algorithms. These methods show important charac-
teristics of datasets, even though rendering is not usu-
ally photo-realistic.The problem addressed in this pa-
per is the visualization of tractography information ob-
tained from dMRI (diffusion MRI) together with vol-
ume data corresponding to MRI or CT images.

In order to represent the volumetric datasets, volume
rendering techniques allow the visualization of all in-
ner characteristics of volumes at once, by projecting
data into 2D images, according to the corresponding
position of a virtual camera. The main idea of the ray-
casting algorithm is to launch rays from the camera into
the volume, calculating the volume rendering integral
along the rays. Thus, in this method, the colour and
opacity of each pixel in the final image is evaluated by
launching a ray in the scene from the view position,
sampling the volume at discrete points along the ray
and accumulating the contribution of each sample.

Our contribution is an implementation of a web
rendering system for medical images, which integrates
volume rendering and geometric objects within a
compliant WebGL browser, based on the volume ray
casting algorithm and built on previous developments
[CSK11]. Due to the technology limitations of Webgl,
the improvements developed allow us to create a
web application for combined visualization of volume
rendering and tractography, as shown in Figure 1, being
able to compete with desktop tools, supporting high
graphical demands and facing challenges regarding
performance and scalability.

The article is organized as follows. Section 2 presents
the work related to this article, including a description
of volume rendering techniques, visualization of med-
ical images and geometry intersection. The methodol-
ogy of the developed work is explained in Section 3.
Then, the results accomplished are presented, and fi-
nally, Section 5 states the conclusions and future devel-
opments.

2 RELATED WORK
2.1 Volume Rendering
In computer graphics, Ray Casting is a well known di-
rect volume rendering technique that was designed by
Kajiya and Herzen [KVH84] as one of the initial devel-
opments in this area. Traditionally, three dimensional
objects have been created by using surface representa-
tions, drawing geometric primitives that create polygo-
nal meshes [Lev88], hence provoking the loss of infor-
mation from one dimension.

Further developments [DCH88] accomplished the
mathematical modeling of the ray casting process,
based on the light’s behaviour equations. Thus, the

volume rendering integral was defined. A comparative
between different direct volume rendering algorithms,
such as Texture Mapping, Ray Casting, Splatting or
Shear Warp, was presented [MHB00]. Ray casting is
a flexible algorithm that allows the implementation
of acceleration methods, such as Empty Space Skip-
ping [KW03] or Early Ray Termination. Early ray
termination is an optimization process that establishes
certain limitations in the volume, so that the samples
encountered after them do not contribute to the value
of the pixel.

Ray casting suitably fits GPUs’ operating mode
[Sch05], because of the independence of each ray that
is launched to the scene, making this algorithm highly
parallelizable and allowing the exploitation of GPUs’
parallel architecture. For GPU ray casting, the volume
element is stored in the GPU memory as a 3D texture
and a fragment shader program is used in order to
implement the ray casting algorithm.

A quality evaluation model was developed for compar-
ing the different Direct Volume Rendering techniques
[BBD07]. These methods handle a higher amount of
data than surface rendering techniques, therefore, the
complexity of the algorithms is increased, as well as the
necessary rendering time [Bru08]. Optimized volume
rendering methods avoid empty spaces by introducing
a volume proxy geometry [MRH08].

Web 3D Rendering

The use of the recently released WebGL standard
[Mar11] leads to new methods for web 3D visualiza-
tion, where most part of the computational processes
are performed in vertex and fragment shaders that
run on the GPU hardware. WebGL is a software
library that enables HTML5-based browsers to identify
clients’ graphics hardware. HTML5, the latest Internet
standard propose, provides native elements for audio
and video. WebGL consists of a low-level imperative
graphic programming API based on OpenGLES 2.0
for Javascript that enables flexibility and exploits
the characteristics of advanced graphics cards. Due
to the constant improvement of the performance of
Javascript interpreters, the management of scene ele-
ments behaves similarly to the ones obtained by using
natively compiled languages. Moreover, some WebGL
extensions have been implemented in order to achieve
a friendly interaction, such as SpiderGL [DBPGS10].

Several standards and proprietary solutions are cur-
rently being developed in order to fulfil the necessity
of moving 3D visualization into the web [BA01], such
as X3D, a standard derived from VRML that stores
3D information in a scenegraph format using XML
(Extensible Markup Language). This model has been
implemented in a declarative form, as an extension of
HTML; X3DOM presents a framework for integrating



X3D nodes into HTML5 DOM content [BEJZ09]
and other alternatives have also been developed, e.g.
XML3D [SKR10]. Finally, there is a standardization
for X3D in the MedX3D volume rendering model
[JAC08, PWS11].

2.2 Visualization of Medical Images
Medical visualization is a challenging scientific field
because interpretation of images may lead to clinical
intervention. Therefore, quality and fast interactive re-
sponse are important features in this domain. Remark-
able advances have occurred in medical imaging tech-
nology and applications in the past few years, support-
ing the possibility of sharing imaging data online across
clinical and research centres and among clinicians and
patients. The development of these kind of applications
is influenced by connectivity, security and resources’
heterogeneity concerns.
On-server rendering can be considered a partial solution
for Medical Imaging [BM07]. Moreover, several web
implementations for volumetric visualization have al-
ready been presented [JAC08], although many of these
solutions require third party systems to allow visual-
ization or their scalability is limited by the rendering
server.
As medical volumetric imaging requires high fidelity
and high performance, several rendering algorithms
have been analyzed, leading to thread- and data-parallel
implementations of ray casting [SHC09]. Thus, ar-
chitectural trends of three modern commodity parallel
architectures are exploited: multi-core, GPU, and Intel
Larrabee. Other approaches describe the development
of web-based 3D reconstruction and visualization
frameworks for medical data [SAO10]. Such appli-
cations based on X3D technology allow extending
cross-platform, inter-application data transfer ability.
Several applications have been implemented using
web 3D rendering techniques, for example, evaluation
systems at the educational level [Joh07] or medical
training simulations [JROB08].

dMRI
Diffusion Magnetic Resonance Imaging (dMRI) relies
on the visualization of water diffusion using data from
MRI. Diverse methodologies have been presented over
the last years and can be classified into two categories:
Image based and Object based techniques. The first
methodology divides the space in voxels and the as-
signed colour represents the principal diffusion direc-
tion [MAA03]. However, tracks can not be easily iden-
tified since no segmentation of the visualization is per-
formed, and therefore direction information is difficult
to observe since voxel colour mapping is not one-to-
one, i.e., different directions might be represented by
the same colour. Otherwise, in object based method-
ologies, objects, such as ellipsoids and lines, are used

together with colour mapping in order to enhance visu-
alization and give a direction sense to the representa-
tion.

Visualization of brain white matter cortical tracks is one
of the most important applications of dMRI, since it al-
lows to non-invasively visualize white matter anatomy,
and detecting of anomalies [NVLM07, GKN11]. Trac-
tography, which refers specifically to the representation
of the white matter tracks based on the water diffusion
information, employs lines to represent the diffusion
direction and to visualize the white matter paths. In
general, lines are generated using randomly distributed
seed points; together with the principal diffusion infor-
mation and a prescribed interval of time, the different
paths are generated. However, this representation be-
comes dependent on the amount and location of seed
points to correctly visualize tracks [EKG06] because er-
roneous connections might be produced between tracks
due to the existing error in data. Incorrect visualization
of branching of tracks is another drawback, since only
one path is generated per each seed point.

Probabilistic methodologies have been proposed
[EKG06] to represent branching of white matter tracks,
in which secondary seed points are included in regions
in which branching is assumed. Therefore, a denser
visualization is performed in those regions. An algo-
rithm was proposed for path visualization [RSDH10],
in which the different global paths are simplified by
one simple curve, clustering the different paths and
then using average curves to obtain one simple curve
that summarizes each cluster.

2.3 Geometry Intersection
The application described in this article requires rep-
resenting volume rendering and tractography together,
i.e., both volumetric and polygonal data have to be dis-
played in the same scene. There are several models for
combining polygonal geometry and volume rendering.
Some methods identify the intersection between rays
launched in the volume rendering process and geome-
try [SMF00]. This technique can be optimized by creat-
ing octrees for dividing the geometric space and prove
intersections correctly.

Other models try to achieve a correct visibility or-
der for the intersections between volume and geome-
try [HLSR09]. Geometry has to be rendered in the first
place to correctly look at the intersections of the geom-
etry and the volume. Besides, parts that are occluded
by the geometry should not contribute to the final im-
age, not performing any ray casting at all. In order to
achieve this feature, rays should terminate when they
hit a polygonal object, accordingly modifying the ray
length image if a polygonal object is closer to the view
point than the initial ray length.



3 METHODOLOGY
In our project, the results of the Connectome Mapper
are directly loaded in the browser using WebGL and
JavaScript. The FreeSurfer cortical surface reconstruc-
tion binary files are loaded and processed in JavaScript
and converted to WebGL vertex buffer objects for ren-
dering. The surfaces are overlaid with per-vertex cur-
vature values computed during the FreeSurfer process-
ing stream. The tractography data is likewise parsed
in the JavaScript code and rendered as line primitives
coloured based on direction. Finally, the structural net-
work itself is converted to JSON (JavaScript Object
Notation) as an offline preprocess and loaded into the
browser using JavaScript. The networks are visualized
in 3D along with the fiber tracts and volumes enabling
exploration of connectivity information in real-time.

The work described in this paper has been developed
using volume ray casting, a widely used algorithm for
generation of 2D representations from three dimen-
sional volumetric datasets. The obtained images are 2-
dimensional matrices I : [1,h]× [1,w]→ R4 (w: width
and h: height, both in pixels). Each pixel is represented
by a colour expressed by a four-tuple of red, green, blue
and alpha real-valued components, (R,G,B,A ∈ [0,1]).

An entire volume is represented by a 3-dimensional ar-
ray of real values V : [1,H]× [1,W ]× [1,D]→ [0,1] (H:
Height, W: Width, D: Depth of the represented volume,
all of them in positive integer coordinates). Therefore,
V (x,y,z) ∈ [0,1]. The projection model used in this
work is called pin-hole camera [HZ03]. The pin-hole
camera technique uses intrinsic K ∈M3×4 and extrinsic
R ∈M4×4 real-valued matrices in order to project every
3D point p ∈ P3 onto a 2D point p′ ∈ P2.

The volume ray casting algorithm defines the colour for
each pixel (i, j) in the image, which is also known as
projection screen, I, according to the values of a scalar
field V (x,y,z). This scalar field is associated to the
points (x,y,z) reached by rays that are originated at a
certain pixel or camera, represented as C in Figure 2. A
cuboid geometry is generated with coordinates (0,0,0)
to (1,1,1). This cube represents the boundary estab-
lished for the volumetric dataset. Each ray intersects
with the cuboid volume V at points p(i, j)(x,y,z) and
q(i, j)(x,y,z), which represent the input and output co-
ordinates of the ray into and out from the volume, re-
spectively.

Then, each obtained ray pq is equi-parametrically sam-
pled. For every sampled point s(x,y,z) over the ray,
an approximation of the scalar field V (s) is calculated,
commonly by using trilinear interpolation. The sam-
pled points also influence the colour of the originating
pixel, due to the use of a composition function (Equa-
tions 1-4), where the accumulated colour Argb is the
colour of the point s in the volume V , and Aa is the
transparency component of the pixel, which has a value

of 1 at the end of the rendering process. Given a cer-
tain set of coordinates (x,y,z) in the volume and a ray
step k, Va is the scalar value of the volume V , Vrgb is
the colour defined by the given transfer function Va, S
represents the sampled values over the ray and O f , L f
are the general Opacity and Light factors.

Sa =Va×O f ×
(

1
s

)
(1)

Srgb =Vrgb×Sa×L f (2)

Ak
rgb = Ak−1

rgb +
(

1−Ak−1
a

)
×Srgb (3)

Ak
a = Ak−1

a +Sa (4)

In the ray casting process performed in this work, ge-
ometry G is formed by a set of segment lines L (al-
though G could also be represented as a set of points
P or triangles T ). Each segment L is defined by two
points in the space. Lines are projected through projec-
tion matrices onto a different image, where the values
of colour (r,g,b,a) and depth (depth) are defined for
each pixel (x,y).

p 

q 

C 

V 

V1 

V2 

V3 

G1 

G2 

Figure 2: 2D representation of the ray casting algorithm
performance (types of ray termination)

Each pq ray traverses the cuboid volume V , where both
volume elements Vi and geometries Gi are rendered in
the same process by modifying the early ray termina-
tion method, as depicted in Figure 2. This technique
checks the alpha value for each sample of the trans-
parency colour of the ray. If the value Va is equal to 1,
which means that the ray has reached the final colour,
the remaining steps of the ray are not evaluated. Rays
might terminate due to several reasons: when encoun-
tering a very dense volume (such as V1 in fig. 2), when
intersecting with a geometric element (e.g. with G1) or
when exiting the boundary cube, at point q.

The early ray termination model is also used to check
the length of the ray and compare it to the depthmap of
the figure. In conclusion, a projection of the geometry is



obtained, as well as the colour and depth for each pixel
in the image. This information can be compared to the
length of the ray, terminating the ray when the alpha
value is 1 or when the depth is equal to the geometry
depth.

4 RESULTS
This section describes the accomplished implementa-
tion of a real-time web viewer for both direct volume
rendering and tractography visualization. This work is
based on the WebGL standard and performs the ray
casting algorithm with an early ray termination opti-
mization.

4.1 Tractography
The Connectome Mapper [GDL11] is a publicly avail-
able software that provides a pipeline to automatically
generate structural networks from raw dMRI data of
the brain. Gray and white matter segmentations are
obtained by processing T1 MPRAGE MRI using the
Freesurfer set of tools. The Diffusion Toolkit is used
later for reconstruction. A deterministic streamline al-
gorithm is used to obtain tractography, by generating
fiber tracts of the same subject. For cortical and sub-
cortical regions of interest, a parcellation is performed.
Finally, these datasets are coregistered and a network
is generated by weighting the connectivity between re-
gions based on the fiber tracts [GGCP11].

4.2 Data Processing and Volume Interpo-
lation

For the developed work, all the slices that correspond to
a certain volume are composed into a single image, as
shown in Figure 3. This image is generated by placing
slices in a matrix configuration as a preprocessing step
of the rendering algorithm. The size of the image stored
in GPU memory could range from 4096×4096 on a PC
(which can contain up to 2563 volume) to 1024x1024
on other devices (which can contain up to 128×128×
64). The screen resolutions being reduced on mobile
devices it seems reasonable to scale down or even crop
the volumes original dimensions in order to match the
maximum GPU available memory.

In medical imaging, the sample bit depth is usually
higher than 8 bits per pixel. This is a drawback that
has to be handled for the development of web applica-
tions, where commonly supported formats are limited
to 8 bits per sample. In the described experiment, infor-
mation from medical datasets was reduced to 8 bits per
sample.

Identification of Ray Coordinates
According to the ray casting algorithm, the displayed
colours of the boundary cuboid geometry represent

Figure 3: Brain dataset in mosaic form, read by the
shader

the coordinates at each point (x,y,z). Coordinates
are stored as r,g,b colour components for each pixel.
Then, the cube can be rendered in the scene from the
desired view point. In order to achieve volume visu-
alization, several steps are followed in the rendering
process. First of all, the rendering of the colour cube is
performed according to the depth function change.

Taking this into account, rays are defined for each point
of the cube, starting at the front faces, where the vir-
tual camera is located, and ending at the back region.
The colour of every point of the cube represents the ex-
act coordinates of the ray for each pixel in the image.
The colour information is stored as 24 bit RGB values.
The range of values that can be represented may seem
small or imprecise for large images, but colour inter-
polation provides precision enough for ray coordinates.
The depth information is stored in different buffers in
order to obtain the corresponding depth value for each
ray. Finally, the geometry is rendered and the colour
and depth buffers are stored to be processed in the vol-
ume shader.

4.3 Visualization
The previously presented GPU implementation of vol-
ume rendering based on WebGL was used to develop
a real-time online tractography and volume rendering
viewer, accordingly to Table 1, proving this standard to
be a valid technology for real-time interactive applica-
tions on the web. The results shown in the table be-
low were accomplished when interacting with the web
viewer from several computers, using the same web
browser (Chrome) and the same number of steps, 50.
For every graphic card tested, the application can be
completely considered to have a real-time behaviour.



Graphic card model Frame rate
NVidia GeForce GTX480 60 fps
NVidia GeForce GTX285 60 fps
NVidia 9600GT 28 fps
NVidia Quadro FX 3800M 20 fps
NVidia Quadro FX 880M 15 fps

Table 1: Performance of the developed viewer for dif-
ferent graphic cards, using Chrome as web browser, the
number of steps equal to 50

(a) Tractography

(b) Volume Rendering

(c) Combined visualization

Figure 4: Tractography, volume rendered image of
brain T1 MPRAGE MRI and combined visualization
on the web

In the developed work, the web viewer shows tractogra-
phy information obtained from dMRI in the first place,
represented in Figure 4(a). These organized fiber tracks
in the white matter connect various cortical regions to
each other. The tractography is represented using We-
bGL line primitives, where each fiber track is rendered
by a set of points. The colour is assigned based on the
absolute value of the unit vector pointing in the direc-
tion from the start point to the end point of the tract.
The length value of each tract is stored in a per-vertex
attribute together with the position and colour. The
minimum tract length value is placed in a uniform vari-
able in the vertex shader. The vertex shader determines
whether the tract is longer than the minimum length to
render. The entire tractrography set for the brain is effi-
ciently rendered using a single draw call with one ver-
tex buffer object. Thus, no dynamic geometry genera-
tion is performed in JavaScript.

Direct volume rendering of MRI data (Figures 4(b)) is
developed simultaneously with the tractography. The
volume renderer loads the MRI dataset from the server
into a tiled 2D texture. Then, ray-tracing is performed
in the shader in order to obtain the volume render-
ing. This implementation of a volume rendering sys-
tem for the Web is based on the Volume Ray-Casting
algorithm. Since the algorithm is implemented in We-
bGL, the reached visualization speed is similar to na-
tive applications, due to the use of the same accelerated
graphic pipeline. The algorithm simulates 3D data by
using a 2D tiling map of the slices from the volume
maintaining trilinear interpolation and runs entirely in
the client.

In the developed Web viewer, shown in Figure 5, the
tractography and the volume rendering from brain MRI
data can be represented separate or simultaneously, as
depicted in Figures 4(c). Several features can be modi-
fied at runtime, by adjusting the provided sliders. Trac-
tography’s position can be changed according to the
three main axes and fiber tracks can be seen more
clearly by reducing the volume opacity. Finally, the
minimum tract length can also be modified.

5 CONCLUSIONS AND FUTURE
WORK

This paper describes the successful implementation of
remote visualization of medical images based on We-
bGL1. Interaction with remote medical images was lim-
ited by many technical requirements, but the emergence
of recent standards such as WebGL and HTML5 allow
the development of applications that enable clients to
access images without downloading them, maintaining

1 http://www.volumerc.org/demos/brainviewer/webgl/
brain_viewer/brain_viewer.html



Figure 5: Volume rendering and tractography web
viewer (sliders available for configuration)

data in a secure server and being able to perform func-
tions, e.g. registration, segmentation, etc., in a web
context. These technologies empower web browsers to
handle 3D graphics naturally. Thus, modern browsers
support a wide range of applications, from simple ren-
dering of two dimensional images to complex manipu-
lation of 3D models.

The achieved visualization of volume rendering and
tractography on the web, used for the implementation
the presented viewer (shown in Figure 5), has demon-
strated the capabilities of complex volume rendering vi-
sualization in web browsers, as well as the potential
of WebGL for interactive visualization of neuroimag-
ing data. Combined representation of volume render-
ing of brain T1 MRI images and tractography in real
time has been accomplished. The main strength of the
WebGL standard used here is the ability to provide effi-
cient access to GPU rendering hardware with no special
client-side software requirements, except for a compat-
ible browser. Thus, this platform has great potential for
imaging tools, particularly those providing web-based
interfaces for automatic pipelining of image data pro-
cessing.

In the work explained herein, the early ray termina-
tion algorithm was modified in order to combine vol-
ume and geometric elements in a seamless way. Thus,
the developed software modules, which are available as
open source code, successfully implement early ray ter-
mination step according to the tractography depthmap,
performing a combination between volume images and
estimated white matter fibers.

6 ACKNOWLEDGMENTS
This work was partially supported by CAD/CAM/CAE
Laboratory at EAFIT University and the Colombian
Council for Science and Technology -COLCIENCIAS-
. Everyone who has contributed to this work is also
gratefully acknowledged.

7 REFERENCES
[BA01] Johannes Behr and Marc Alexa. Volume vi-

sualization in vrml. In Proceedings of the sixth
international conference on 3D Web technology,
Web3D ’01, pages 23–27, New York, NY, USA,
2001. ACM.

[BBD07] Christian Boucheny, Georges-Pierre Bon-
neau, Jacques Droulez, Guillaume Thibault, and
Stéphane Ploix. A perceptive evaluation of vol-
ume rendering techniques. In Proceedings of the
4th symposium on Applied perception in graphics
and visualization, APGV ’07, pages 83–90, New
York, NY, USA, 2007. ACM.

[BEJZ09] Johannes Behr, Peter Eschler, Yvonne Jung,
and Michael Zöllner. X3dom: a dom-based
html5/x3d integration model. In Proceedings
of the 14th International Conference on 3D Web
Technology, Web3D ’09, pages 127–135, New
York, NY, USA, 2009. ACM.

[BM07] Bojan Blazona and Zeljka Mihajlovic. Visu-
alization service based on web services. 29th In-
ternational Conference on, pages 673–678, 2007.

[Bru08] S. Bruckner. Efficient Volume Visualization
of Large Medical Datasets: Concepts and Algo-
rithms. VDM Verlag, 2008.

[CSK11] John Congote, Alvaro Segura, Luis
Kabongo, Aitor Moreno, Jorge Posada, and Oscar
Ruiz. Interactive visualization of volumetric data
with webgl in real-time. In Proceedings of the
16th International Conference on 3D Web Tech-
nology, Web3D ’11, pages 137–146, New York,
NY, USA, 2011. ACM.

[DBPGS10] Marco Di Benedetto, Federico Ponchio,
Fabio Ganovelli, and Roberto Scopigno. Spi-
dergl: a javascript 3d graphics library for next-
generation www. In Proceedings of the 15th
International Conference on Web 3D Technol-
ogy, Web3D ’10, pages 165–174, New York, NY,
USA, 2010. ACM.

[DCH88] Robert A. Drebin, Loren Carpenter, and Pat
Hanrahan. Volume rendering. In Proceedings of
the 15th annual conference on Computer graph-
ics and interactive techniques, SIGGRAPH ’88,
pages 65–74, New York, NY, USA, 1988. ACM.

[EKG06] H.H. Ehricke, U. Klose, and W. Grodd. Visu-
alizing mr diffusion tensor fields by dynamic fiber
tracking and uncertainty mapping. Computers &
Graphics, 30(2):255–264, 2006.

[GDL11] S. Gerhard, A. Daducci, A. Lemkaddem,
R. Meuli, J.P. Thiran, and P. Hagmann. The con-
nectome viewer toolkit: an open source frame-
work to manage, analyze, and visualize connec-
tomes. Frontiers in Neuroinformatics, 5, 2011.



[GGCP11] Daniel Ginsburg, Stephan Gerhard,
John Edgar Congote, and Rudolph Pienaar. Re-
altime visualization of the connectome in the
browser using webgl. Frontiers in Neuroinfor-
matics, October 2011.

[GKN11] A.J. Golby, G. Kindlmann, I. Norton,
A. Yarmarkovich, S. Pieper, and R. Kikinis. In-
teractive diffusion tensor tractography visualiza-
tion for neurosurgical planning. Neurosurgery,
68(2):496, 2011.

[HLSR09] Markus Hadwiger, Patric Ljung,
Christof R. Salama, and Timo Ropinski. Ad-
vanced illumination techniques for gpu-based
volume raycasting. In ACM SIGGRAPH 2009
Courses, pages 1–166. ACM, 2009.

[HZ03] Richard Hartley and Andrew Zisserman. Mul-
tiple View Geometry in Computer Vision. Cam-
bridge University Press, Cambridge, UK, second
edition, 2003.

[JAC08] N W John, M Aratow, J Couch, D Evestedt,
A D Hudson, N Polys, R F Puk, A Ray, K Victor,
and Q Wang. Medx3d: Standards enabled desk-
top medical 3d. Studies In Health Technology And
Informatics, 132:189–194, 2008.

[Joh07] Nigel W. John. The impact of web3d technolo-
gies on medical education and training. Comput-
ers and Education, 49(1):19 – 31, 2007. Web3D
Technologies in Learning, Education and Train-
ing.

[JROB08] Yvonne Jung, Ruth Recker, Manuel Ol-
brich, and Ulrich Bockholt. Using x3d for medical
training simulations. In Web3D ’08: Proceedings
of the 13th international symposium on 3D web
technology, pages 43–51, New York, NY, USA,
2008. ACM.

[KVH84] James T. Kajiya and Brian P Von Herzen.
Ray tracing volume densities. SIGGRAPH Com-
put. Graph., 18:165–174, January 1984.

[KW03] J. Kruger and R. Westermann. Acceleration
techniques for gpu-based volume rendering. In
Proceedings of the 14th IEEE Visualization 2003
(VIS’03), VIS ’03, pages 38–, Washington, DC,
USA, 2003. IEEE Computer Society.

[Lev88] Marc Levoy. Display of surfaces from volume
data. IEEE Comput. Graph. Appl., 8:29–37, May
1988.

[MAA03] Y. Masutani, S. Aoki, O. Abe, N. Hayashi,
and K. Otomo. Mr diffusion tensor imaging: re-
cent advance and new techniques for diffusion
tensor visualization. European Journal of Radiol-
ogy, 46(1):53–66, 2003.

[Mar11] Chris Marrin. WebGL Specification. Khronos

WebGL Working Group, 2011.
[MHB00] M. Meißner, J. Huang, D. Bartz, K. Mueller,

and R. Crawfis. A practical evaluation of popular
volume rendering algorithms. In Proceedings of
the 2000 IEEE symposium on Volume visualiza-
tion, pages 81–90. Citeseer, 2000.

[MRH08] Jörg Mensmann, Timo Ropinski, and Klaus
Hinrichs. ccelerating volume raycasting using
occlusion frustums. In IEEE/EG Volume and
Point-Based Graphics, pages 147–154, 2008.

[NVLM07] P.G.P. Nucifora, R. Verma, S.K. Lee, and
E.R. Melhem. Diffusion-tensor mr imaging and
tractography: Exploring brain microstructure and
connectivity. Radiology, 245(2):367–384, 2007.

[PWS11] Nicholas Polys, Andrew Wood, and Patrick
Shinpaugh. Cross-platform presentation of inter-
active volumetric imagery. Departmental Tech-
nical Report 1177, Virginia Tech, Advanced Re-
search Computing, 2011.

[RSDH10] N. Ratnarajah, A. Simmons, O. Davydov,
and A. Hojjat. A novel white matter fibre track-
ing algorithm using probabilistic tractography and
average curves. Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2010,
pages 666–673, 2010.

[SAO10] S. Settapat, T. Achalakul, and M. Ohkura.
Web-based 3d visualization and interaction of
medical data using web3d. In SICE Annual Con-
ference 2010, Proceedings of, pages 2986–2991.
IEEE, 2010.

[Sch05] Henning Scharsach. Advanced gpu raycast-
ing. Proceedings of CESCG, 5:67–76, 2005.

[SHC09] Mikhail Smelyanskiy, David Holmes, Jatin
Chhugani, Alan Larson, Douglas M. Carmean,
Dennis Hanson, Pradeep Dubey, Kurt Augustine,
Daehyun Kim, Alan Kyker, Victor W. Lee, An-
thony D. Nguyen, Larry Seiler, and Richard Robb.
Mapping high-fidelity volume rendering for med-
ical imaging to cpu, gpu and many-core architec-
tures. IEEE Transactions on Visualization and
Computer Graphics, 15:1563–1570, November
2009.

[SKR10] Kristian Sons, Felix Klein, Dmitri Rubin-
stein, Sergiy Byelozyorov, and Philipp Slusallek.
Xml3d: interactive 3d graphics for the web. In
Proceedings of the 15th International Conference
on Web 3D Technology, Web3D ’10, pages 175–
184, New York, NY, USA, 2010. ACM.

[SMF00] Marcelo Rodrigo Maciel Silva, Isabel Harb
Manssour, and Carla Maria Dal Sasso Freitas. Op-
timizing combined volume and surface data ray
casting. In WSCG, 2000.


