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ABSTRACT
Inverse caustic problem, that is computing the geometry of a reflector and/or refractor based on a given caustic
pattern, is currently not widely studied. In this paper, we propose a technique to solve the inverse caustic problem
in which we compute the geometry of a semi-transparent homogeneous refractive object (caustic object) given a
directional light source and a set of caustic patterns (each pattern is considered to be formed at a specified distance
from the caustic object). We validate the results by using mental ray (software rendering). The novelty of our
research is that we consider a set of caustic patterns whereas existing techniques only consider one caustic pattern.
We employ a stochastic approach to simulate the refracted light beam paths that can approximately reconstruct the
input caustic patterns. Working backward, from the computed refracted light beam paths we compute the geometry
of the caustic object that can produce such light beam paths. Due to having multiple caustic patterns as the inputs,
it is a challenge to reconstruct the input caustic patterns because of the differences in their shapes and intensities.
We solve this problem by using a two-step optimization algorithm in which we adjust the position and size of
the caustic regions in the first step and we adjust the caustic shapes in the second step. Our technique is able to
construct a caustic object for a various types of input caustic patterns.

Keywords: caustics, photon, reconstruction, inverse problem, stochastics

1. INTRODUCTION
Recently, there is a growing interest in inverse problem
research in Computer Graphics due to the possibility of
controlling the creation of visual effects. By using the
inverse techniques, the design process becomes easier
as the artists can just specify the intended effects di-
rectly instead of performing the iterative trial-and-error
process. However, inverse problem is generally difficult
as in most cases there is no unique bijective relationship
between the output and the input (i.e., given an output,
there are many input possibilities that can generate such
output).

In the inverse caustic problem, given an input caustic
pattern (shape, intensity, and location from the caus-
tic object) and a light source, we have to compute the
geometry of the caustic object that can produce a caus-
tic pattern similar to the input caustic pattern. Inverse
caustic problem is hard to solve because the input caus-
tic pattern only contains the irradiance magnitude and it
does not have incident light direction information (and
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also the reflected and/or refracted light paths). Up to
now, the inverse caustic problem is not widely studied
and the existing work only consider a single input caus-
tic pattern.

In this paper, we propose a new inverse caustic problem,
that is computing the caustic object given multiple input
caustic patterns formed on a caustic receiver (diffuse
and non-transparent surface) at various distances from
the caustic object. We show an example in Figure 1.

Our basic idea for solving this problem is as follows.
We subdivide one side of the caustic object and also
the caustic patterns into regular cells. The light beam
refracted by each caustic object cell will pass through
one caustic cell of each caustic pattern. We try to com-
pute the orientation of each caustic object cell such that
the combination of the refracted light beams of all caus-
tic object cells can approximately reconstruct the input
caustic patterns.

We use a stochastic approach in our technique and we
represent each input caustic pattern as a 2D probability
mass function (pmf) by considering the brightness of a
caustic cell as the probability of a light beam might pass
through it (i.e., the brighter the caustic cell is, the higher
probability or the more likely a light beam is considered
to pass through it). Hence, for each cell of the caustic
object, we use the pmfs of the caustic patterns to deter-
mine to which direction the caustic object cell refracts
a light beam. From the determined refracted light beam



(a) Scene setup. (b) Computed caustic object and approximately reconstructed caustic patterns.

Figure 1: (a) Scene setup. We compute a caustic object (the leftmost box), specifically the surface geometry of the
side (shown in red color) facing the caustic patterns, given three caustic patterns (WSCG, 2012, and Europe) to be
formed on a caustic receiver at three distances from the caustic object, with a directional light source orthogonal
to the caustic object illuminates from the left. (b) mental ray renderings of caustics produced by our computed
caustic object (final output). Input caustic patterns are shown in the insets at each image. The computational time
is 9.0 hours.

direction, we can compute the orientation of the caustic
object cell.

Due to differences of the input caustic patterns (in
terms of shapes and intensities), it is hard to compute
the caustic object that can satisfy all the input caus-
tic patterns. Thus, we relax the input requirements by
slightly adjusting the sizes, positions, and shapes of the
non-zero intensity regions of the input caustic patterns.
Moreover, we also allow a small amount of light beam
which has passed through several caustic patterns to
miss or overshoot the rest of the caustic patterns. We
compute these adjustments by using optimization tech-
niques. We validate our results by performing rendering
simulation using mental ray [men12a], a robust indus-
try standard rendering engine.

2. RELATED WORK
Unknown Input Given only the output, the input
that can produce such output is computed. This is a
hard problem since the a priori knowledge of the input
is not available. One example is the work presented
by Bottino et al. [Bot01a] and Mitra et al. [Mit09a].
They compute a 3D geometry that can satisfy the inputs
which consist of a set of silhouettes or shadow patterns.

Inverse Caustics One of the earliest work in inverse
caustic is presented by Patow and Pueyo [Pat04a]. They
compute the reflector shape in an optical set (consists of
a reflector, light source, and diffusor) given the radiance
distribution as an input. They represent the reflector as
grids and they iteratively adjust the grid vertices such as
positions and number of vertices based on the similar-
ity with the intended radiance distributions. The whole
process took many days even though they can obtain ra-
diance distribution similar to the input. They improve
the work by allowing the user to set the range of the
solution space [Pat07a] (the lower bound and the upper
bound of the reflector shape). Hence, a user has more
control in determining the reflector shape. They later
increase the performance by using GPU [Mas09a] and

they can reduce the processing time into magnitude of
hours.

In parallel with the aforementioned work, Anson et
al. [Ans08a] represent the reflector as a NURBS sur-
face and Finckh et al. represent the reflector as a B-
Spline surface [Fin10a]. As a result, during the opti-
mization they optimize the control points instead of grid
vertices which in the end can produce smooth reflectors
in a relatively fast speed (due to the small number of
parameters to be optimized). However, as Papas et al.
also mention [Pap11a], the parameterized technique has
a difficulty with highly complex caustic images, thus
Finckh et. al [Fin10a] cannot reproduce all frequencies
of the caustic pattern and Anson et. al [Ans08a] assume
the shape of the caustic pattern to be circular.

Weyrich et al. generate a microgeometry reflector given
a single reflected caustic pattern input [Wey09a]. The
caustic object is subdivided into uniform cells (facets),
and they compute the optimized orientation of each cell
that can produce a caustic pattern similar to the input
pattern. Papas et al. [Pap11a] improve the work of
Weyrich et al. [Wey09a] by generating a refractor caus-
tic object on a larger scale. Moreover, they are able
to prevent noise on the reconstructed caustic pattern by
computing the surface of each facet based on the Gaus-
sian distribution. Similar to Weyrich et al. [Wey09a],
they employ several optimization costs in order to gen-
erate the caustic objects. In the most recent develop-
ment, Yue et al. [Yue12a] emphasize on modularity by
reconstructing an input caustic pattern from a caustic
object which consists of many smaller pieces of caustic
object cells. Their caustic object cells are divided into
ten types with each type refracts light to a predefined
direction.

Comparison In all these work, the input is only a sin-
gle caustic pattern. On the other hand, in this paper we
propose a new challenge in which we compute the ge-
ometry of a caustic object based on a set of input caustic
patterns.



Figure 2: Scene setup. Our algorithm computes the
normal/orientation of each caustic object cell. Caus-
tic pattern ’1’ is formed when the caustic receiver is at
distance d0 from the caustic object and similarly caustic
pattern ’2’ at d1.

3. BASIC IDEA OF OUR METHOD
Scene Setup The scene setup is shown in Figure 2. The
scene consists of three components, a caustic object (of
a box shape), a caustic receiver (a planar surface where
the caustic patterns are formed), and a directional light
source (whose direction is orthogonal to the caustic ob-
ject). Both the caustic receiver and the caustic object
are positioned coplanar, with the caustic receiver is on
one side of the caustic object (assumed to be the back
face of the caustic object, facing (0, 0, -1) direction)
and incoming light direction is on the other face of the
caustic object (assumed to be the front face of the caus-
tic object, facing (0, 0, 1) direction). We assume the
caustic receiver and the caustic object to have the same
spatial dimension (i.e. same width and height) and ori-
entation. Therefore, the extent of the region of interest
of each caustic pattern is bounded by the shape of the
caustic receiver

The caustic patterns and the back face of the caustic
object are subdivided into a regular grid of cells. Each
cell of a caustic pattern stores the total caustic intensity
on that particular cell. We call cells of caustic patterns
which have non-zero caustic intensity as caustic cells
and cells with zero caustic intensity as empty cells. The
collection of caustic cells of a caustic pattern is collec-
tively called as a caustic region. For each cell of the
caustic object (caustic object cell), we compute its ori-
entation such that it can produce a refracted light beam
to a specific direction. In the rest of this paper, we refer
to each refracted light beam as light and we represent
each light beam in the following Figures 3 and 4 as an
arrow.

Problem Formulation We compute the back face of a
caustic object C given a set of p grayscale caustic pat-
terns such that each caustic pattern j will be formed on
the caustic receiver when the receiver is located at the
user-input distance d j from the caustic object. Specif-
ically, we compute the orientation of each caustic ob-

(a) (b)

Figure 3: Problem formulation. (a) Given two caus-
tic patterns at two different locations (with the intensity
of each caustic cell is denoted by the size of the cell),
compute light refraction direction (red arrow) of each
caustic object cell such that the refracted light collec-
tively can generate caustic patterns similar to the input
caustic patterns. (b) Light refraction combination that
can satisfy the input caustic patterns.

ject cell at the back face of the caustic object such that
the cell refracts the incoming light into a direction that
passes through parts of the caustic regions. Collec-
tively, the light refracted from all caustic object cells is
expected to pass through all the input caustic cells thus
reconstructing the input caustic patterns. As mentioned
in Section 1, the input caustic patterns only provide
the estimate of the amount of refracted light arriving
at caustic receiver cells, not the light directions. Hence,
the main challenge is to compute refracted light paths
that can approximately reconstruct all the given caustic
patterns. This problem is illustrated in Figure 3. The
orientation of each cell can then be determined based
on the path of its refracted light.

Solution As explained above, the task is to compute re-
fracted light direction combinations such that they can
approximately reconstruct the input caustic patterns. In
this case, more light is expected to pass through brighter
caustic cells compared to darker caustic cells. Hence,
to solve this, we simulate the direction of the refracted
light of each caustic object cell by using a stochastic
approach. The idea is to use the caustic intensity in
each caustic cell as the probability that we will refract a
light to that caustic cell (i.e. the brighter the input caus-
tic pattern is, the more likely it is chosen as a refracted
light target).

We represent the set of caustic patterns as a set
of normalized 2D probability mass functions
P = { fP0 , fP1 , fP2 , . . . fPp−1} (each in P is the pmf
of the user-input caustic pattern on the caustic receiver
when the receiver is located at the user-input distance
from the caustic object). The pmf of each caustic pat-
tern is defined by using the grayscale value (intensity)
of the caustic pattern in which the probability at each
caustic cell is the grayscale value of that particular cell
in the caustic pattern. Each pmf fPj is normalized by



Figure 4: Each numbered arrow denotes the refracted
light from the cells of the caustic object C and the gray
blocks denote the probability of caustic cells. Light #1
and #2 have joint pmf of zero since their paths pass
through at least one empty cell. Each light in #3 has
the probability greater than zero since the light pass
through non-zero cells. Light #4 is allowed even though
it misses some of the caustic patterns. We will explain
this further in Section 4.2. Light #5 is not valid because
it does not intersect any caustic patterns

dividing the probability of each of its cell with the total
probability of all cells of fPj .
We assign a random variable Xi for each i-th cell of
the caustic object. For each Xi, the probability value of
each possible refracted light direction x is computed by
multiplying the probability of each caustic cell passed
by the light refracted to direction x (see Figure 4), as
shown in Equation 1.

fXi(x) =
p−1

∏
j=0

fPj(g
i
j(x)), (1)

with gi
j(x) is a mapping function. The mapping func-

tion is basically a ray casting function in which the light
is shot from the i-th caustic object cell to the caustic pat-
tern j with the direction of x and return the intersected
cell (of caustic pattern j). Then, for each caustic object
cell or each Xi we assign a refracted light direction by
using the Acceptance-Rejection method [vN51a] with
the distribution based on the sampled joint probability
mass function of all caustic patterns (Equation 1).
Once we obtain the refracted light direction for each
caustic object cell, we compute its normal or orienta-
tion based on the user-input index of refraction of the
caustic object, incoming light direction (orthogonal to
the caustic object), and the obtained refracted light di-
rection by solving the Snell’s Equation (see Appendix
A). Afterward, we perform rendering simulation using
the mental ray to asses the approximate reconstructed
caustic patterns (as shown in Figure 6a).
Note that our technique can also be applied to
point light sources and directional light sources non-
orthogonal to the caustic object. In the rest of the paper,

the terms caustic patterns and pmfs are interchangeable
as we use the term pmfs when we emphasize on the
mathematical representation of the caustic patterns.

4. IMPROVING THE RECON-
STRUCTED CAUSTICS

The solution in Section 3 may not be able to reconstruct
the caustic patterns very well if the input consists of
multiple patterns. If we only have a single caustic pat-
tern (shown in Figure 5a), then we can reconstruct it
very well. However, if we add two additional caustic
patterns, then some parts of the input caustic patterns
are missing (Figure 5b).

Reconstruction problem As explained in Section 3
(and shown in Figure 4), some refraction directions
have zero joint pmf when they pass through at least
one empty caustic cell. As a result, if all possible re-
fraction directions from every caustic object cell pass
through a caustic cell of a caustic pattern but they also
pass through the empty cells of other caustic patterns,
then the aforementioned caustic cell cannot be recon-
structed (we call such cell as a missing caustic cell).
As seen in Figure 4, the top and bottom caustic cells
in fP1 are missing caustic cells since the refracted light
that pass through these caustic cells also pass through
empty cells in the other caustic patterns.

Proposed solution Based on the given input caustic
patterns and their configurations (positions and sizes),
it might not be possible to compute the caustic object
that can well reconstruct the original input caustic pat-
terns. Thus, we propose a method to relax the input re-
quirement by allowing slight changes to the positions,
sizes, and shapes of the caustic regions. Our proposed
method consists of two steps. In the first step, we op-
timize the size and position of the caustic regions by
slightly adjusting the size and position given by the user
(Section 4.1). In the second step, the boundaries of each
caustic region are adaptively extended such that they
enable the reconstruction of the missing caustic cells on
the other caustic patterns (Section 4.2). We also com-
pute the amount of light that is allowed to overshoot or
to miss some caustic patterns.

In both optimization steps, we use Simulated Anneal-
ing [Kir83a]. The main reason we use Simulated An-
nealing is because the problem cannot be solved analyt-
ically. However, there are also some possible optimiza-
tion techniques such as Particle Swarm, Ant Colony,
and Genetic Algorithm. However, those techniques re-
quire keeping the record of multiple possible solutions
at once, hence it is not efficient for our case (as seen in
Equation 3, the cost computation requires reconstruc-
tion of the caustic patterns multiple times using the ad-
justed input caustic patterns). Moreover, in some of
the related work [Wey09a, Fin10a, Pap11a], Simulated
Annealing is also used. After applying our proposed



(a) (b)

Figure 5: (a) Only a single caustic pattern and it can be reconstructed very well. (b) Two additional caustic patterns
cause some parts of the input caustic patterns to be missing.

solution, the reconstructed caustic patterns from the test
case in Figure 5b are improved as seen in Figure 1b.

Cost computation In every iteration of both optimiza-
tions, we use the root mean square to compute the cost
or degree of possibility that the adjusted input caustic
pattern can be approximately reconstructed (in order to
guide the simulated annealing). The root mean square
is computed as the difference between the normalized
reconstructed caustic patterns Z = { fZ0 , fZ1 , . . . fZp−1}
and the normalized adjusted input caustic patterns D =
{ fD0 , fD1 , fD2 , . . . fDp−1}. Only in the cost computation
here, the normalization of caustic patterns in Z and D
are computed by dividing the value of each caustic cell
t with the maximum caustic cell value of the caustic
pattern t belongs to. We compute the cost in this way
such that the maximum cost (which is in the worst case
scenario, for example the input caustic patterns are not
reconstructed at all) is 1.0. The cost computation is
shown in Equation 3.

Cost =
1
p

p−1

∑
j=0

 1
n(W( j))

β

∑
i=0

( fD j(ti)− fZ j(ti))2, (2)

with

W( j) = {t| fD j(t)+ fZ j(t)> 0}, (3)

and t is the caustic cell, p is the number of caustic pat-
terns, n(W( j)) is the number of elements of a set of
caustic cells contributing to the cost computation, and
β is the total number of cells of each caustic pattern (in
our experiments, β = 64× 64 = 4096). For more ac-
curate computation of Z, we approximately reconstruct
the caustic patterns 32 times and accumulate their caus-
tic cell values, and finally we divide the value of each
caustic cell by 32 in order to get Z.

We reconstruct the caustic patterns by computing the re-
fracted direction as explained in Section 3 and then for
each caustic cell we accumulate the amount of refracted
light that intersects it. We use the modified pmfs (which
are adjusted in each optimization step) to compute the
joint pmfs (Equation 1).

4.1. Adjusting the Size and Position
In this first optimization step, we relax the input caustic
pattern configurations by iteratively adjusting the size
and position of the input caustic region. Adjusting the
position is basically translating the caustic regions in
3D space (translation in x, y, z). This means we also
adjust the input distance (translation in z) between the
caustic object and the caustic pattern (caustic receiver).

In every iteration, we adjust the size and positions of
the input caustic regions and compute the cost by using
Equation 2 in order to guide the optimization iterations.
The adjusted input caustic patterns are used as the input
to the next optimization step (Section 4.2) and they are
also the target caustic patterns for every iteration of the
second step.

4.2. Extending Caustic Regions and Over-
shooting Refracted Light

After performing the first optimization step, there
might be some missing caustic cells left. Missing
caustic cells are the caustic cells that cannot be recon-
structed. To reconstruct some of these missing caustic
cells, we slightly extend the shape of all input caustic
regions. For example, in Figure 4, the middle-top
and middle-bottom caustic cells of fP1 cannot be
reconstructed since all possible refracted light that
passes through these cells in fP1 have to pass through
empty cells in either fP0 or fP2 . Hence, to solve this,
we can extend the middle caustic regions in fP0 and fP2
up and down by one cell.

Some caustic cells especially around caustic patterns
borders are hard to reconstruct as most light passing
through these cells can miss other caustic patterns in
behind. Thus, we relax this requirement by enabling
some of the refracted light that passes through caustic
cells of one or several caustic patterns to miss the rest
of the caustic patterns (or region of interests of the rest
of the caustic patterns). This is beneficial especially
for the caustic cells on the border of the caustic pat-
terns. For example, in Figure 4, if we enable light #4
to pass the bottommost caustic cell of fP0 and miss the
rest of caustic patterns (we call this overshoot), then



(a) Results without optimization. Cost : 4.45×10−1

(b) Results after 1st optimization (Section 4.1). Cost : 4.08×
10−1

(c) Results after 1st and 2nd optimization (Section 4.2). Cost
: 2.64×10−1

Figure 6: Mental ray rendering results of the optimiza-
tion steps. Input caustic patterns are shown at the bot-
tom right of each screenshot in (a). We also show the
missing caustic cell maps at the below right of each im-
age (green cells show the missing caustic cells, gray
cells show the caustic cells that can be reconstructed,
and cyan cells show the extended caustic cells). For
the visualization of the differences between the target
and the reconstructed caustic patterns, we also show the
caustic irradiance difference maps (assuming the total
irradiance of each target caustic pattern is 1.0 and the
total light emitted to the scene is 1.0, i.e. each caus-
tic object cell refracts the light with the amount of 1.0
divided by the number of caustic object cells) at the be-
low left of each image (from the darkest pixels with the
least errors to the brightest pixels with the most errors).
For the sake of visual clarity, we scale up the difference
values by 5000. The computational time is 5.7 hours.

the bottommost caustic cell of fP0 can be reconstructed.
However, we still do not allow the refracted light of one
caustic object cell to miss all of the caustic patterns (as
in light #5).

Fully extending the caustic regions can deform the orig-
inal caustics too much, and likewise if we allow too
much light to overshoot the caustic patterns then the ap-
proximate reconstructed caustic patterns will have very
low intensity. Hence, in this step, we apply an optimiza-

tion to determine the appropriate caustic regions exten-
sions amount k = {k0,k1, . . .kp−1} and light overshoot
amount o= {o0,o1, . . . ,op−1} with k and o ∈ [0,1] (i.e.,
a k and an o value for each caustic pattern).

(a) (b)

Figure 7: (a) A simple example of missing caustic cell
projection (is explained in Section 4.2). Gray cells are
the caustic cells and the green cell is the missing caustic
cell. (b) We extend the second caustic pattern (two cells
away) with gradually decreasing intensity.

Extending Caustic Regions To enable the missing
caustic cells of a caustic pattern j to be reconstructed,
we have to firstly compute at most how many sb unit
cells away the caustic region boundaries of the other
caustic patterns b (0 ≤ b ≤ p−1,b ̸= j) have to be ex-
tended. Afterward, for every caustic pattern b, we ex-
tend its caustic region with the amount of sb · kb. In or-
der to enable smooth extension, we extend the caustic
regions with linearly decreasing intensity (or probabil-
ity value).

To do this, for every missing caustic cell of the caustic
pattern j, we project it from every caustic object cell
to the empty cells of other caustic patterns b (0 ≤ b ≤
p− 1,b ̸= j). We perform this projection for the miss-
ing caustic cells of all caustic patterns. This projection
example is shown in Figure 7a in which we project the
missing caustic cell (shown in green color). Afterward,
for each caustic pattern b, we obtain the maximum dis-
tance (sb) between its caustic region boundaries and its
empty cells that receive the projections of the missing
caustic cells (of other caustic patterns). In Figure 7a ex-
ample, it is five cells (sb = 5) away for the second caus-
tic pattern and in Figure 7b the caustic region boundary
is extended two cells away (if kb = 0.4).

Some of the missing caustic cell projections might miss
the other caustic patterns b. For example, if the missing
caustic cell in Figure 7a is one or two cells to the right,
then some of the projections will overshoot or will not
hit the second caustic pattern. We use this information
to control the possibility of the refracted light to over-
shoot each caustic pattern.

Overshooting Refracted Light To improve the re-
sults, we also enable the refracted light to overshoot
some of the caustic patterns. Thus, during the missing
caustic cells projections, we also compute the ratio (eb)
between the amount of these projections that do not hit
caustic pattern b and the total amount of these projec-



tions toward caustic pattern b (i.e. sum of the missing
caustic cell projections that hit and do not hit caustic
pattern b). eb is essential since it provides the informa-
tion on the amount of probability that the refracted light
miss plane b. Hence, the probability hb that we will re-
fract the light to miss the caustic pattern b is shown in
Equation 4.

hb = eb ·ob · fPb(tmax), (4)

with ob is the coefficient to control the probability of
overshooting b-th caustic pattern and tmax is a cell of
fPb with the highest probability value.

We show the optimization progression in Figure 6.

5. GEOMETRY CONSTRUCTION
As explained in Section 3 we use the joint pmf (Equa-
tion 1) of the caustic patterns to compute the refraction
direction of each caustic object cell. From the refrac-
tion direction, we can obtain the normal of the partic-
ular caustic object cell. However, if we perform the
optimizations in Section 4, then we use the modified
pmfs (output from both optimization steps) to compute
the joint pmf (and ultimately the normal of each caustic
object cell).

Based on the computed orientation of each caustic ob-
ject cell, we can obtain the caustic object geometry by
computing the x,y,z coordinates of the four corners of
each caustic object cell. The x,y coordinates of each
caustic object cell corner can be easily found as the
caustic object is uniformly subdivided. To compute
the z coordinates of the caustic object cell corners, we
firstly assume that the z coordinate of all caustic object
cell middle points to be the same (z = 0.0). Next, we use
the dot product operation, i.e. dot product between the
normal of the caustic object cell and the vector from
the caustic object cell middle point (we know its x,y
coordinates from the uniform subdivision and also its z
coordinate which is 0.0) to each caustic object cell cor-
ner (we know its x,y coordinates) must be equal to zero.
In this case, the only unknown value is z of the caustic
object cell corner.

Since the edges of the neighbouring caustic object cells
do not have the same slope or the same z coordinate on
both endpoints, there are vertical open spaces between
caustic object cells (shaded with lighter gray in Fig-
ure 8), we generate additional polygons to close those
gaps.

6. RESULTS
We present some results computed using our technique
in Figures 1, 6, 10. In all of the test cases, the index of
refraction of the caustic objects are 1.5, the resolution
of the caustic objects are 128× 128 and the resolution
of the caustic receiver is 64× 64. Resolution refers to

Figure 8: Caustic object geometry (inset) of Figure 6c
with a zoom-in view. In the zoom-in view, each caustic
object cell consists of two co-planar triangles shaded
with darker gray. We also generate additional vertical
polygons (shaded with lighter gray) to close the gaps
between caustic object cells.

the number of cells. If we assume the spatial size to
be 1.0×1.0, then the size of each caustic object cell is
1.0/128× 1.0/128 and the size of each caustic cell is
1.0/64×1.0/64.

We use higher resolution for caustic object cells since
we want to have more variations on the refracted light
paths so that we can better reconstruct the contrast (or
intensity variations) of the given caustic patterns. We
show a difference example with a single caustic pattern
case in Figure 9, a simple caustic pattern (resolution
64×64) reconstructed with a resolution 64 x 64 caustic
object and a resolution 128 x 128 caustic object.

(a) (b)

Figure 9: A simple test case (one caustic pattern, with
resolution 64×64) reconstructed with different caustic
object resolutions. (a) Resolution 64 x 64 caustic ob-
ject. (b) Resolution 128 x 128 caustic object.

We use the same parameters for the simulation anneal-
ing for both optimization steps in all experiments, i.e.
10 cycles of 10 iterations, Boltzmann’s constant of 1.0,
and temperature reduction factor of 0.5.

The experiments were performed on two comparable
PCs. The specification of the first PC is Intel i7 920
2.67 GHz (CPU) with NVIDIA GeForce GTX 285



(GPU) and the specification of the second PC is Intel i7
880 3.07 GHz (CPU) with NVIDIA GeForce GT 330
(GPU). In the implementations, we calculate the joint
pmf by rendering each caustic pattern and then we mul-
tiply them by using alpha blending (hence the use of
GPU). For the rest of the computations such as Simu-
lated Annealing and Acceptance-Rejection method, we
perform them on CPU.

From the results, we can observe that the caustic ob-
jects generated using our technique can approximately
reconstruct various types of input caustic patterns, es-
pecially for the WSCG (Figure 1b), fruits (Figure 10a),
and rotating star (Figure 10c) test cases. The degree of
difficulty in reconstructing the caustic patterns mostly
depends on the number of caustic patterns, similarity
between shapes, and the number of caustic cells in the
input caustic patterns. As shown in Equation 4, due to
the multiplication in computing the joint pmf, the prob-
ability of a particular refraction direction can become
zero if the refracted light passes through empty cells.
With the increasing number of caustic patterns espe-
cially the ones with different shapes, the chances that
we have many refraction directions with zero probabil-
ity also increase. We can see this from the results in
Figures 1 and 6 (three input caustic patterns) where we
can reconstruct better compared to the results in Fig-
ures 10 (four or more caustic patterns).

The shapes and orientations of caustic patterns can also
affect the reconstruction difficulty. The test cases with
similar caustic patterns, can be approximately recon-
structed pretty well since similar refracted light paths
are sufficient to reconstruct the caustic patterns. This is
evident by comparing Figure 10a and Figure 10b. The
caustic patterns in Figure 10a have near round shapes
and approximately the same orientations. In contrast,
the test case in Figure 10b have pretty different shapes
(and orientations). Hence, there are few light that can
pass through the endpoints of the bars compared to the
middle regions of the bars.

Note the difficult test case shown in Figure 10b, four
bar caustic patterns with alternating orientations. As
we can see, the hardest parts to reconstruct are the ones
near the two endpoints of the bars and on the other hand
the parts around the centers are the easiest. This is due
to the alternating shapes which cause the light paths to
always pass through the center of the caustic regions.
As we allow the refracted light to miss some of the
caustic patterns, we are able to approximately recon-
struct the top and bottom parts of the first caustic pat-
tern. However, the consequence is that the last caustic
pattern appears much dimmer.

In many cases, light tends to converge to the middle
caustic patterns and as a result the center regions of
these caustic patterns become relatively brighter com-
pared to the other caustic patterns (for example, the Ar-

madillo caustic pattern in Figure 6 exhibits this effect).
This is due to two reasons. First, the caustic regions
are positioned approximately at the center of the caus-
tic patterns. Second, because the size of the caustic re-
gions are mostly smaller than the caustic object. There-
fore, some caustic object cells have to refract the light
in the diagonal directions. This is illustrated in Figure 4
in which some of the light grouped to #3 have to be
refracted in the diagonal directions.

Note that the relative depth of caustic patterns also af-
fects the quality, as it is very difficult to reconstruct if
the caustic patterns are located very near to each other.
This is because the refracted light paths will intersect
the patterns at similar locations and thus it is difficult to
reconstruct caustic patterns with different shapes.

Please refer to the submitted video to see the progres-
sive changes of the caustic patterns as the caustic re-
ceiver is moved.

7. APPLICATIONS
The inverse caustics has several potential applications.

Arts As shown in Figure 10, our technique can gener-
ate caustic objects that can produce several interesting
caustic effects (similar to the intention in the inverse
shadow [Mit09a]). Therefore, we hope that our work
can encourage more exploration in caustic arts.

Information Encoding Information (such as serial
numbers, passwords) can be encoded as caustic patterns
of encrypted 2D images. Only when the requirements
(such as light direction and caustic receiver distance)
are known, we can recover the original information.
We show an example in Figure 11 in which we encrypt
WSCG and 2012 into two QR barcode patterns.

Validation Tests By using the computed caustic ob-
ject, we can validate some processes such as rendering
process (validating the correctness of caustics render-
ing algorithm) or manufacturing (validating the quality
of produced glasses or light sources).

8. CONCLUSIONS AND FUTURE
WORK

We have presented an inverse caustic problem and a
novel technique which computes a caustic object given
a set of caustic patterns with each pattern is positioned
at a user-input distance from the caustic object. Our
proposed technique is based on a stochastic approach,
and it is augmented with two optimization steps that
can alleviate the missing caustic problems. We have
validated our results by performing physically render-
ing simulation using mental ray, and the caustic ob-
ject generated using our technique can approximately
reconstruct various types of input caustic patterns.

In the future, we would like to improve the quality of
the reconstructed caustics in terms of smoothness. It



(a) Fruits (four caustic patterns). Computational time : 7.7 hours.

(b) Four bars (four caustic patterns). Computational time : 15.7 hours.

(c) Rotating Star (nine caustic patterns). Computational time : 27.6 hours.

Figure 10: More results. Note that the caustic pattern set in (c) contain similar patterns, as they are frames of a
simple animation.

Figure 11: An application of information encoding. We
encode WSCG and 2012 into two QR barcode patterns.

is also interesting to consider more complex light sit-
uations such as area light sources and dynamic light
sources. It is challenging to use area light sources since
they emit light to many directions from every point in
the area light sources. As for the dynamic light sources,
it is interesting to generate unique caustic pattern for
each given light source direction (in this case, caustic
object and caustic receiver are static). Last but not least,
we would like to fabricate a real caustic object based on
the computed geometry.
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A. NORMAL COMPUTATION

Given the Snell’s Equation

η1 sinθ1 = η2 sinθ2,

η


1− cos2 θ1 =


1− cos2 θ2,

η


1− (−N ·M)2 =


1− (N ·R)2,

A1NxNx +A2NxNy +A3NyNy = 1, (5)

with η1 is the index of refraction of the caustic object,
η2 is the index of the refraction of air, N is the normal,
M is the inverse incoming light direction, R is the re-
fracted light direction, θ1 is the angle between M and
the inverse normal, θ2 is the angle between M and the
normal, and

η = η1
η2

A1 =
η2MxMx−RxRx

η2−1

A2 = 2 η2MxMy−RxRy
η2−1 A3 =

η2MyMy−RyRy
η2−1

Since the normal vector N is normalized, the solution
lies on a unit circle and as a result Nx = cosφ and Ny =
sinφ . Hence, Equation 5 can be simplified to

(2A3 −2) tan2
φ +2A2 tanφ +(2A1 −2) = 0. (6)

Equation 6 is basically a quadratic equation and the an-
gle φ can be obtained by solving the quadratic equation.
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