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ABSTRACT
Scanning 3D objects has become a valuable asset to many applications. For larger objects such as buildings or 
bridges, a scanner is positioned at several locations and the scans are merged to one representation. Nowadays, 
such scanners provide, beside geometry, also color information. The different lighting conditions present when 
taking the various scans lead to severe luminance artifacts, where scans come together. We present an approach to 
remove such luminance inconsistencies during rendering. Our approach is based on image-space operations for 
both  luminance  correction  and  point-cloud  rendering.  It  produces  smooth-looking  surface  renderings  at 
interactive rates without any preprocessing steps. The quality of our results is similar to the results obtained with 
an object-space luminance correction. In contrast to such an object-space technique the presented image-space 
approach allows for instantaneous rendering of scans, e.g. for immediate on-site checks of scanning quality.

Keywords
Point-cloud Rendering, Image-space Methods, Luminance Correction, Color-space Registration

1. INTRODUCTION
In the field of civil engineering large structures like 
bridges  have  to  be  surveyed  on  a  regular  basis  to 
document  the  present  state  and  to  deduct  safety 
recommendations  for  repairs  or  closures.  Typically 
this is done by measuring the structures manually or 
semiautomatically at predefined measuring points and 
adding detailed photographs or by using completely 
automatic 3D scanning techniques.
Nowadays,  both  dominant  surface  digitalization 
techniques,  laser  scanning [BR02]  as  well  as 
photogrammetry [SSS06,TS08],  produce  colored 
point clouds where the color of each point matches 

the  color  of  the  respective  surface  part  under  the 
lighting  conditions  at  the  time  of  scanning.  Many 
photographs  become redundant  with  this  additional 
information.  However,  when  dealing  with  large 
structures one has to do several scans from different 
points  of  view  in  order  to  generate  a  complete 
building  model  of  desired  resolution.  As  in  most 
cases only one 3D scanner is used and relocated for 
each scan, the time of day and therefore the lighting 
conditions may differ significantly between adjacent 
scans or, on a cloudy day, even within one scan.
When combining  the  different  scans  to  one  object 
representation and using a standard geometry-based 
registration approach, the resulting point cloud may 
have severe inconsistencies in the luminance values. 
Because of the scanning inaccuracies in the geometric 
measures, the renderings of registered scans exhibit 
disturbing  patterns  of  almost  randomly  changing 
luminance  assignment  in  regions  where  scans  with 
different lighting conditions overlap. We present an 
approach  to  correct  the  luminance  and  create  a 
consistent  rendering.  "Consistent"  in  this  context 

Permission to make digital or hard copies of all or part of 
this  work  for  personal  or  classroom  use  is  granted 
without  fee  provided  that  copies  are  not  made  or 
distributed for  profit  or commercial  advantage and that 
copies bear this notice and the full  citation on the first 
page. To copy otherwise, or republish, to post on servers 
or  to  redistribute  to  lists,  requires  prior  specific 
permission and/or a fee.

Journal of WSCG, Vol.20 161 http://www.wscg.eu 



means that no local luminance artifacts occur; it does 
not mean that the global illumination in the rendering 
is consistent.
A  simple,  yet  effective  approach  to  adjust  the 
luminance is to average the luminances locally within 
neighborhoods  in  object  space,  as  outlined  in 
Section 4. We use this approach as a reference to the 
image-space approach we propose in Section 5. The 
reason for  introducing the image-space approach is 
that the luminance correction in object space is rather 
time-consuming  and  needs  to  be  done  in  a 
preprocessing  step.  The  engineers,  however,  would 
like to get an immediate feedback during their field 
trip whether the scans they have taken are capturing 
all  important  details  and  are  of  sufficient  quality. 
Hence,  an  immediate  rendering  of  the  combined 
scans is required. Our image-space approach allows 
for such an instantaneous investigation of the scans 
since  it  is  capable  of  producing  high-quality 
renderings  of  inconsistently  lit  point  clouds  at 
interactive framerates.

2. RELATED WORK
Today both the amount and size of generated surface 
data  are  steadily  increasing.  Beginning  with  the 
Digital  Michelangelo  project [LPC+00],  which  was 
the  first  one  generating  massive  point  clouds,  the 
scanning hardware was getting significantly cheaper 
while producing results of increasing resolution and 
quality. The datasets that are typically generated these 
days range from hundreds of million to several billion 
surface points [WBB+08].
In this setting it is obvious, that global reconstruction 
of the surface becomes infeasible and the use of local 
reconstruction  techniques,  like  splatting [LMR07, 
PzvBG00,  RL00]  or  implicit  reconstruction [AA03, 
ABCO+03,  GG07],  has  become  state  of  the  art. 
However,  these  approaches  still  need  some 
preprocessing steps,  constricting instant  preview of 
generated data. With the advent of image-space point-
cloud rendering techniques [DRL10, MKC07, RL08, 
SMK07]  it  became possible  to  interactively render 
and explore scanned datasets on the fly without any 
preprocessing.
These new possibilities open up a whole set of new 
applications,  but  also  induce  new  challenges.  The 
sampling of the generated point clouds can be highly 
varying,  making  the  use  of  several  rendering 
approaches  difficult.  This  can  be  circumvented  by 
using  level-of-detail  methods  conveying  a  nearly 
uniform sampling in image space [BWK02, GZPG10, 
RD10].
Registration of color scans, produced under different 
light  conditions,  can  result  in  luminance 
inconsistencies of the resulting colored point cloud. 
Consequently, renderings of such point clouds exhibit 

significant  high-frequency  noise.  Removing  such 
noise has always been an important  topic in image 
processing. There exists a vast amount of approaches 
in this field [BC04, BJ10, KS10, WWPS10],  which 
typically  try  to  remove  noise  in  an  image  by 
analyzing  the  spatial  neighborhood  of  a  pixel  and 
adjusting  the  pixel  value  accordingly.  Adams  et 
al. [AGDL09] propose a kd-tree-based filtering which 
is  also  able  to  handle  geometry  if  connectivity 
information is given. This is  not  the case for  point 
clouds resulting from standard scanning techniques. 
The  aforementioned  approaches  are  specialized  on 
denoising  images  and  do  not  utilize  the  particular 
nature of point-cloud renderings. A notable example 
of  denoising that  was explicitly designed  for  point 
clouds was presented by Kawata and Kanai [KK05], 
but it suffers from the restriction to only two different 
points for denoising.
We will  show how to effectively exploit  the whole 
amount of surface points that project to a pixel for 
interactively  generating  smooth  renderings  of 
inconsistently lit point clouds.

3. GENERAL APPROACH
Let P be  a  colored  point  cloud,  i.e.  a  finite  set  of 
points p∈ℝ

3 where each point is enhanced with RGB 
color  information.  Furthermore,  we  assume  that 
colors  stored at  the surface points approximate the 
respective  surface  color  except  for  luminance 
correctly.  Our  goal  is  to  produce  an  interactive 
rendering of the point cloud with smoothly varying 
luminance, following the assumption that neighboring 
points represent surface parts with similar luminance.
To  adjust  the  luminance  of  the  point  cloud  we 
decided  to  use  the  HSV  color  model,  since  it 
naturally describes the luminance of a point p in its 
V  component.  Thus,  we  are  able  to  manipulate 
luminance  without  interfering  with  hue  and 
saturation.  The  basic  approach  is  to  convert  the 
colors of all points to the HSV model, average the V 
component  between  selected  surface  points  and 
convert the colors back to the RGB format for final 
rendering.
As  a  first  idea  one  could  think  of  prefiltering  the 
whole  point  cloud  in  object  space  to  achieve  this 
goal. We implement this idea by generating a space 
partition  for  the  point  cloud,  enabling the  efficient 
generation of neighborhood information. Luminance 
of neighboring surface points is smoothed to generate 
a point cloud with smoothly varying luminance, see 
Section 4. This approach can effectively eliminate the 
luminance  noise  in  point  clouds  when  choosing  a 
sufficiently large neighborhood. However, it takes a 
significant amount of precomputation time, especially 
for  massive  point  clouds  with  hundreds  of  million 
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points,  which  inhibits  the  instant  rendering  of 
generated point clouds.
To avoid this preprocessing step, we propose a GPU-
assisted  image-space  luminance  correction  working 
on the fly. The approach utilizes the fact, that in most 
cases  multiple  surface  points  get  projected  to  one 
pixel  during  rendering,  as  illustrated  in  Figure 1. 
When  restricting  the  surface  points  to  those 
representing  non-occluded  surface  parts,  a  good 
approximation  for  the  desired  luminance  can  be 
obtained by averaging the luminance of the respective 
surface points. This is done in two rendering steps. In 
a first pass the scene is rendered to the depth buffer 
generating a depth mask. Following the idea of a soft 
z-buffer [PCD+97],  an  additional  threshold ϵ is  ad-
ded  to  the  depth  mask,  which  defines  the  minimal 
distance between different consecutive surfaces. In a 
second  render  pass  the  depth  mask  is  utilized  to 
accumulate  the  luminance  of  all  surface  points, 
effectively  contributing  to  a  pixel.  A detailed  des-
cription of the method is given in Section 5.
 After  this step we apply image-space filters to fill 
pixels  incorrectly  displaying  background  color  or 
occluded surface parts, as proposed by Rosenthal and 
Linsen [RL08].  The final  rendering with associated 
depth  buffer  can  be  used  to  approximate  surface 
normals  per  fragment,  which  opens  up  several 
possibilities for calculating postprocessing effects.

4. OFFLINE LUMINANCE
 CORRECTION
Luminance  correction  in  object  space  requires  the 
definition of a certain neighborhood for each surface 
point. We use the n nearest neighbors for each point 
as  neighborhood.  For  fast  detection  of  these 
neighborhoods,  a  three-dimensional  kd-tree  is  built 
for  the  point  cloud.  Since  luminance  correction  is 
done utilizing the HSV color space, all point colors 
are converted to this space. Then for each point we 
compute its neighbors and average their luminance. 
Finally the complete point cloud is converted back to 
RGB for rendering.
Note,  that  for  weighted  averaging  also  a  kernel 
function  can  be  used.  However,  several  tests,  e.g. 
with  a  Gaussian  kernel,  revealed  no  significant 
differences. Regarding the neighborhood size a value 
of  n=40  has proven to produce appealing results. 
However,  the  precomputation  time  increases 
significantly with the number of points and number of 
neighbors. The luminance correction of a point cloud 
with  150  million  surface  points  takes  for  example 
nearly six  hours  in  an  out-of-core  implementation. 
Also  when  using  an  in-core  implementation,  the 
computation  times  are  far  too  long  for  allowing 
instant views of generated point clouds.

Figure 1. Image-space rendering of a real world point cloud. The number of projected points per pixel is color 
coded between 1 (green) and 150 (red), which is also emphasized by the isolines. The image was produced with  
applied depth thresholding and shading to enhance geometry perception.
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5. IMAGE-SPACE LUMINANCE
CORRECTION

Following the main idea of image-space point-cloud 
rendering,  we propose  an  algorithm that  facilitates 
high-quality  point-cloud  inspection  without 
preprocessing,  utilizing  luminance  correction  in 
image space.  The algorithm takes advantage of  the 
fact  that  many points are projected to  one pixel  in 
models with high point densities, as already shown in 
Figure 1.  Usually  a  large  fraction  of  these  points 
describe nearly the same geometric  position on the 
surface. The other points belong to parts of the scene 
which  are  occluded  by  the  surface  closest  to  the 
viewer.

Our  algorithm  for  correcting  luminance  in  image 
space consists of two main rendering steps. In a first 
rendering pass a (linearized) depth map, selecting all 
points  which  represent  visible  surface  parts,  is 
generated (see Figure 2). In a second pass luminance 
is corrected for each pixel, taking all surface points 
into account which pass the depth-mask test.
For  the first  rendering pass  all  points are  rendered 
resulting in a preliminary depth map and a texture T
with the preliminary rendering result. The depth map 
is  extended  fragment-wise  by the  z-threshold,  gen-
erating  the  desired,  slightly  displaced  depth  mask. 
Afterwards,  we  prohibit  writing  operations  to  the 
depth  buffer  such  that  every  surface  point  that  is 
closer  than  the  value  stored  in  the  depth  mask  is 
drawn in the next render pass while farther points are 
discarded.

In  the  second  render  pass  we  accumulate  the 
luminance of the rendered points using the OpenGL 
blending with a  strictly additive  blending function. 
All  surface  points  are  rendered  to  a  non-clamped 
RGB floating point texture using the depth test. In the 
fragment shader we set the color of each fragment to 
(luminance,0,1), which produces a texture T̃ with the 
accumulated luminances in the R component and the 
number  of  blended  points  in  the  B  component. 
Finally,  we combine the blended texture T̃ with the 
preliminary  rendering  result T by  converting  T to 
the HSV color space, applying

T HSV :=(T H , T S ,
T̃ R
T̃ B

)

and  converting  the  result  back  to  the  RGB  color 
space. The result per pixel is a color with averaged 
luminance over all surface points, which passed the 
depth test, i.e. which belong to the visible surface.
Note that one can also easily average colors in RGB 
space  by  using  a  four-channel  texture  for T̃ and 
blending  (R,G,B,1)  for  each  fragment.  Then  the 
resulting color would be given by

T RGB :=(
T̃ R
T̃ A
,
T̃G
T̃ A
,
T̃ B
T̃ A

)

The  difference  between  traditional  z-buffering  and 
our approach is depicted in Figure 3.  Although our 
algorithm requires two rendering passes and therefore 
basically halves the framerate, we are able to produce 
smooth  lighting  much  faster  than  with  the  prepro-
cessing algorithm, making on-site preview feasible.
 An enhancement to the base algorithm is to correct 
luminance not only in one pixel but to additionally 
use points  from neighboring pixels.  We do  this  by 
summing the luminance of a fragment in the final step 
over  its  8-neighborhood  and  dividing  by  the  total 
number of points. A Gaussian kernel can be used as 
additional  weight  for  the points  of  the neighboring 
fragments to take their distances into account.  This 
produces  even  smoother  results  than  the  simple 

a) b)

Figure 3. Comparison of the rendering results with 
(a)  normal  z-buffering  and  (b)  depth  masked 
luminance  correction.  The  change  of  predominant 
luminance at the surface points from top to bottom is 
rendered much smoother with luminance correction.

Figure  2. 2D  illustration  of  point  projection.  The 
traditional  z-buffer  test  renders  only  the  nearest 
points  (light  green).  Points  representing  occluded 
surface parts (red) but also redundant points on the 
same  surface  (dark  green)  are  discarded.  By 
increasing  a  fragment's  z-value  by  a  threshold ϵ
(dotted lines) we still  discard points from occluded 
surface parts but are able to blend the luminance of 
the remaining points for each pixel. (The view plane 
is the dashed line on the left-hand side.)
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averaging  per  fragment  while  not  overblurring  the 
image.
The advantage  of  using the  HSV space  lies  in  the 
error  tolerance  when applying the Gaussian.  While 
RGB averaging produces smoother transitions in the 
image, it tends to blur away details in the rendering. 
HSV  averaging  in  contrast  preserves  even  small 
features and sharp edges if this is desired (Figure 4).
The amount of points necessary to successfully use 
this  approach  can  be  roughly approximated  by the 
following  calculation:  Assume  that  a  spherical 
volume element with a volume of 1cm3 is projected 
to the center of a Full HD screen. Then the volume 
element  gets  projected to  a  spherical  disc with the 
absolute (world-space) radius r= 3√ 3

4π
. Now let α be 

the vertical field of view of the virtual camera. The 
projected area of the volume element in distance d
from the camera is then given by

A=π⋅( 1080 r
2d tan(α))

2

.

Our experiments have shown that a number of seven 
to ten points per pixel usually suffice to yield smooth 
transitions. Therefore, in order to view a model from 
a given distance d , the resolution k of the dataset in 
terms  of  points  per cm 3 has  to  satisfy  k≥10⋅A,
which corresponds to around 50 points per cm 3 for a 
view from a distance of 5 meters with  =35 ° .  If 
this  requirement  is  met  the  angle  from  which  the 
point cloud is viewed is not of great importance since 
the  geometric  measuring  accuracy  is  usually  very 
high,  producing  only  minor  inconsistencies  in  the 
point-to-pixel mapping in adjacent views. It can only 
pose  problems  in  the  immediate  vicinity of  edges, 
when the  depth  threshold  is  so  high  that  occluded 
points are included during blending. This, however, 
can be mitigated by a sufficiently low threshold and 
did not induce visible errors in our experiments.

a) b) c)

d) e)

Figure 4. (a) - (c)  Comparison of averaging in HSV colorspace without (left) and with Gaussian neighborhood  
(middle) and RGB space with Gaussian neighborhood (right). A part of the wall is visible between the viewer and 
the street. While in HSV space the wall is only brightened up but still visible, in RGB space it is smoothed away.
(d) - (e) HSV smoothing (left) preserves sharp corners and the structure of the road in the rendering while using  
RGB (right) produces an antialiased image. In both cases the 3 × 3 neighborhood has been used.
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Having normalized the luminance of our points we 
can fill remaining small holes in the rendering using 
the  image-space  filters  proposed  by Rosenthal  and 
Linsen [RL08].  Finally  we  apply  a  simple  trian-
gulation  scheme  over  a  pixel's  8-connected  neigh-
borhood  in  image  space  to  achieve  a  satisfying 
rendering  enhanced  with  lighting  and  ambient 
occlusion (See Figure 8).

6. RESULTS AND DISCUSSION
We have tested our luminance correction approach in 
terms of quality and speed with the help of two types 
of  datasets:  unaltered  real  world data  (Hinwil)  and 
real  world  data  with  artificial  noise  (Lucy,  dataset 
courtesy of  the  Stanford  3D Scanning Repository). 
We implemented the method using C++ and GLSL on 
an  Intel  Core  i7-970  machine  with  an  NVIDIA 
Quadro 4000 graphics card. All results were obtained 
by rendering to a viewport of 1920 × 1080 pixels.
The  Hinwil  dataset  was  acquired  by  scanning  a 
bridge  with  several  stationary  high-resolution  laser 
scanners.  Two  directly  adjacent  scans,  each  one 
containing about  30  million points,  were  registered 
using a geometry-based approach to obtain a dataset 
with 59 million points. The two scans were taken at 
different  times  of  the  day,  resulting  in  different 
lighting conditions. An image-space rendering of the 
data is shown in Figure 6. It  exhibits three common 
problems  in  such  data  that  are  highlighted  and 
magnified:

1. Scattering:  A part  of  the  object  was  scanned 
from  different  scanners,  but  the  point  cloud 
from one scanner is significantly more dense in 
that region than the other's. The result is a noisy 
appearance of the surface because single points 
are scattered over the surface.

2. Shadowing:  A part  of  the  object  can  be  seen 
from  only  one  scanner,  resulting  in  aliased 
lighting borders.

3. Border regions: These are the regions, where the 
point  density of  two scanners  is  nearly equal, 
causing sharp borders when applying a median 
filter.

Figure 5. Image-space point-cloud rendering of the 
Hinwil  dataset  with  closeup  views  of  three 
problematic regions (left column). The application of 
standard image filters, like a Gaussian filter (middle 
column)  or  a  median  filter  (right  column)  is  not 
producing satisfying results.

The first problem can, in many cases, be satisfyingly 
handled by a median filter, which fails at the border 
regions since it produces a sharp border between the 
scans.  Smoothing  with  a  Gaussian  filter  yields 
slightly better results in border regions, but it keeps 
most of the scattered specks and leads to an overall 
blurry  appearance  of  the  rendered  image,  as 
illustrated in Figure 5. The shadowing problem is not 
easy to solve in image space, since we would have to 
correct  the  lighting over  larger  planar  parts  of  the 
object.

a) b) c)

Figure 6. Detail view of the Hinwil dataset using different approaches. For each approach, the overview and 
three closeup views are presented. (a) Image-space point-cloud rendering, exhibiting typical artifacts in regions 
with inconsistent lighting. (b) Image-space point-cloud rendering of the complete dataset with offline luminance 
correction (n=50). The preprocessing effectively eliminates the artifacts. (c) Image-space point-cloud rendering 
with image-space luminance correction. The visual quality is comparable to the offline method.
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# Points Rendering Rendering + Correction

1M

4M

16M

64M

140 fps

75 fps

19 fps

5 fps

80 fps

40 fps

10 fps

2.5 fps

Table 1. Performance of  luminance  correction.  For 
different numbers of points the performance for just 
image-space  point-cloud  rendering  and  for  the 
combination with image-space luminance correction 
is given in frames per second. 

Our image-space approach eliminates most of these 
problems  and  even  weakens  the  sharp  shadow 
borders  slightly.  In  Figure 6(c)  a  smooth  transition 
from  one  scan  to  the  other  was  achieved  without 
emphasizing borders or blurring the image. To judge 
our  approach  in  terms  of  quality,  we compare  the 
result  to  the  one  obtained  by  offline  luminance 
correction,  shown  in  Figure 6(b).  Both  approaches 
achieve similar results in terms of quality. However, 
the  image-space  luminance  correction  is  able  to 

interactively  display  the  dataset  without  time-
consuming  preprocessing  (offline  luminance 
correction took more than one hour of computation 
time).
To  evaluate  the  performance  of  our  image-space 
algorithm we used the full  Hinwil dataset  with 138 
million  surface  points  and  downsampled  it  to 
different resolutions. As shown in Table 1 the average 
rendering  performance  decreases  by  around  45% 
when  applying  image-space  luminance  correction. 
This is due to the two-pass nature of our approach.
As a real world dataset with artificial luminance noise 
we  used  the  Lucy  dataset,  which  consists  of  14 
million  surface  points.  To  achieve  sufficient  point 
density in close up views we upsampled the model to 
40 million points and, since we were only interested 
in  point  data,  we  discarded  the  given  connectivity 
information and colored each point uniformly white. 
We  simulated  the  effects  of  scans  under  different 
lighting  conditions  by  shading  the  surfaces  points 
using the Phong model with a light source randomly 
positioned on a  90° circular  arc  directly above the 
model. An image-space rendering without luminance 
correction as well as an image-space rendering with 

a) b)

Figure 7. An image-space rendering of the Lucy model with artificial noise (a) without and (b) with luminance 
correction. The model was artificially up-sampled to 40 million points to achieve a high-enough point density.  
The normalization was again carried out over the weighted neighborhood. In this image the prevailing noise is 
less visible than in the torus rendering, since the surface shape of the model is not as homogeneous as the torus.
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image-space  luminance  correction  are  shown  in 
Figure 7. Our algorithm was able to largely remove 
the noise and yielded a satisfying rendering.

7. CONCLUSIONS
We have presented an approach for rendering point 
clouds with corrected luminance value at interactive 
frame  rates.  Our  luminance  correction  operates  in 
image space and is applied on the fly.  As such, we 
have  achieved  our  goal  to  allow for  instantaneous 
rendering of large point clouds taken from multiple 
3D  scans  of  architecture.  No  preprocessing  is 
necessary and the quality of the results is pleasing.
In order to work properly our algorithm relies on a 
sufficient number of points per pixel. Moreover, we 
observed in our experiments that  single very bright 
scanlines from far away scanners were blended with 
darker regions of small point density, still leading to 
noticeable  artifacts.  This  can  be  solved  by 
considering only point clouds from directly adjacent 
scanners for blending which, at the present time, was 
done manually but will hopefully be automated in a 
future version.
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ABSTRACT
We introduce a practical antialiasing approach for interactive ray tracing and path tracing. Our method is inspired
by the Subpixel Reconstruction Antialiasing (SRAA) method which separates the shading from visibility and ge-
ometry sampling to produce antialiased images at reduced cost. While SRAA is designed for GPU-based deferred
shading renderer, we extend the concept to ray-tracing based applications. We take a hybrid rendering approach
in which we add a GPU rasterization step to produce the depth and normal buffers with subpixel resolution. By
utilizing those extra buffers, we are able to produce antialiased ray traced images without incurring performance
penalty of tracing additional primary rays. Furthermore, we go beyond the primary rays and achieve antialiasing
for shadow rays and reflective rays as well.

Keywords: antialiasing, ray tracing, path tracing.

1 INTRODUCTION

With the abundance of computation power and paral-
lelism in multicore microprocessors (CPU) and graph-
ics processors (GPU), achieving interactive photoreal-
istic rendering on personal computers is no longer a
fantasy. Recently, we have seen the demonstration of
real-time ray tracing [6, 17] and the emergence of real-
time path tracing with sophisticated global illumination
[2, 20]. Though real-time path tracing can produce
rendering of photorealistic quality that include com-
plex lighting effects such as indirect lighting and soft
shadow, the illusion of a photograph-like image breaks
down quickly when jaggy edges are visible (Figure 1
shows an example).

Jaggy edges are one of the typical aliasing artifacts
in computer generated images. A straightforward an-
tialiasing technique is to increase the sampling rate by
taking multiple samples uniformly at various subpixel
positions. However this approach induces significant
performance penalty that makes it an afterthought in
real-time ray tracing. A more practical approach is
to increase subpixel samples adaptively for image pix-
els where discontinuity is detected. Although adaptive
sampling approach avoids the huge performance hit of
the multisampling approach, it still requires additional

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

subpixel samples and introduces large variation to the
estimation of rendering time.
In this work, we introduce an antialiasing approach that
works well for real-time ray tracing and path tracing.
We take a hybrid rendering approach in which we add a
GPU rasterization step to produce the depth and normal
buffers with subpixel resolution. By utilizing those ex-
tra buffers, we are able to produce antialiased ray traced
images without incurring performance penalty of trac-
ing additional primary rays. Our method is inspired by
the Subpixel Reconstruction Antialiasing (SRAA) [3]
which combines per-pixel shading with subpixel vis-
ibility to produce antialiased images. While SRAA
is designed for GPU-based deferred shading renderer,
we extend the concept to ray-tracing based applica-
tions. Furthermore, we apply our antialiasing approach
to shadow and reflection which SRAA cannot resolve
with its subpixel buffers.
Our main contributions in this work are:

• We propose an efficient antialiasing technique which
improves the perception of photorealism in interac-
tive or real-time ray tracing without sacrificing its
performance.

• Unlike adaptive sampling or subpixel sampling, our
approach does not penalize the performance of a
CPU ray tracer because no additional primary ray
needs to be traced. Our hybrid rendering approach
obtains the necessary subpixel geometric informa-
tion by leveraging the GPU rasterization pipeline.

• While SRAA works well for improving the sam-
pling on image plane, we extend its application be-
yond the primary rays and achieve antialiasing for
shadow rays and reflective rays as well.
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Figure 1: Antialiasing can improve the rendering quality in interactive ray tracing. The left image is rendered with-
out applying any antialiasing method. The right image is rendered with our method using relatively inexpensive
geometric information to improve expensive shading results.

2 RELATED WORK
2.1 Real-time Ray Tracing
With the rapid improvement of computation power and
parallelism in multicore microprocessors (CPU) and
graphics processors (GPU), various works have been
published on speeding up the ray tracing, either on
CPUs [1, 19], GPUs [5], or special-purpose platforms
[21]. Recently, we have seen the demonstration of real-
time ray tracing with Whitted-style reflection and re-
fraction (a.k.a. specular rays) [6, 17] and the emergence
of real-time path tracing with sophisticated global illu-
mination [2, 20]. The NVIDIA OptiX acceleration en-
gine [12] elevates rendering applications to a new level
of interactive realism by greatly increasing ray tracing
speeds with GPU solutions. While real-time ray tracing
is now feasible, most renderers still rely on Monte Carlo
path tracing to obtain more sophisticated global illumi-
nation effects such as soft shadow and indirect light-
ing. Noisy preview images are usually produced first
at interactive rates and then gradually converge to high
quality images. Therefore, antialiasing often becomes
an afterthought as it further slows down the rendering.

2.2 Adaptive Sampling
The ray tracing algorithm is basically a loop over all
screen pixels to find the nearest visible object in the
scene. We can consider ray tracing as a point sampling
based rendering method in signal processing view.
However, point sampling makes an all-or-nothing
choice in each pixel and thus leads to jaggies. An-
tialiasing of ray-traced images could be achieved by
supersampling the image. However the supersam-
pling approach demands significantly larger amount
of computation resource. Therefore antialiasing by
supersampling is rarely adopted by software renderers.
Adaptive sampling [10, 11] reduces the overhead
by casting additional rays only if significant color
variation across image samples is detected. Variations

of the adaptive sampling techniques have also been
proposed in [8].

2.3 Post Filter Antialiasing
A small disadvantage of adaptive sampling is that some
image pixels still need additional subpixel samples to be
fully shaded or traced. It would be desirable if expen-
sive shading could be avoided at additional subpixel lo-
cations. Reshetov [16] proposes an image filtering ap-
proach, Morphological antialiasing (MLAA) to recover
edges from input image with per-pixel color informa-
tion. However, this sort of color-only information could
fail to identify some geometry edges, especially those
edges without high contrast. Geometric Post-process
Anti-Aliasing (GPAA) [13] and Geometry Buffer Anti-
Aliasing (GBAA) [14] extend the MLAA ideas and use
extra edge information explicitly to eliminate the jaggy
edges. Normal Filter Anti-Aliasing (NFAA) [18] re-
duces aliasing by searching for contrasting luminosity
changes in the final rendering image. It builds a nor-
mal displacement map to apply a per-pixel blur filter in
highly contrast aliased areas. However, it softens the
image due to the filtering of textures. More filter-based
approaches are discussed in [7].

2.4 Shading Reconstruction Filter
Decoupled sampling [9, 15] presents an approach to
generate shading and visibility samples at different
rates in GPU pipelines to speed up the rendering in
applications with stochastic supersampling, depth of
field, and motion blur. Yang et al. [22] present a
geometry-aware framebuffer level of detail (LOD) ap-
proach for controlling the pixel workload by rendering
a subsampled image and using edge-preserving upsam-
pling to the final resolution. Subpixel Reconstruction
Antialiasing (SRAA) [3] takes a similar decoupled
sampling approach and applies a cross-bilateral filter
(as in the geometry-aware framebuffer LOD method) to
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upscale shading information using subpixel geometric
information that is obtained from the GPU rasterization
pipeline. It is based on the assumption that the subpixel
geometric information could be obtained much more
easily without fully going through the expensive shad-
ing stage. SRAA can produce good edge antialiasing
but it cannot resolve shading edges in texture, shadow,
reflection and refraction. Our work follows the same
assumption by avoiding emitting subpixel samples for
the primary rays. This maintains the advantage over
adaptive sampling because no subpixel ray needs to be
traced.

3 ANTIALIASING
SRAA [3] relies on the fact that shading often changes
more slowly than geometry in screen space and gen-
erates shading and visibility at different rates. SRAA
performs high-quality antialiasing in a deferred render-
ing framework by sampling geometry at higher reso-
lution than the shaded pixels. It makes three modifi-
cations to a standard rendering pipeline. First, it must
produce normal and depth information at subpixel res-
olution. Second, it needs to reconstruct the shading val-
ues of sampled geometric subpixel from neighboring
shaded samples with bilateral filter using the subpixel
geometric (normal and depth) information. Finally, the
subpixel shading values are filtered into an antialiased
screen-resolution image.

SRAA detects the geometric edges with geometric in-
formation to resolve aliasing problem. However, the
edges of shadow and reflection/refraction could not be
detected by the subpixel geometric information gener-
ated from the eye position. For example, the shadow
edges mostly fall on other continuous surfaces that have
slowly changing subpixel depths and normals. To ex-
tend the SRAA concept to ray-tracing based applica-
tions, we perform antialiasing separately for primary
rays, shadow rays and secondary rays to resolve this
issue. The following subsections offer the detail.

3.1 Primary Ray
Like SRAA, our goal is to avoid the performance
penalty of shading subpixel samples. In Figure 2,
geometric information and shading are generated at
different rates. Each pixel has 4 geometric samples
on a 4× 4 grid and one of those geometric samples
is also a shaded sample. The shading value at each
geometric sample is reconstructed by interpolating all
shaded neighbors in a fixed radius using the bilateral
weights. We take both depth and normal change into
account when compute the bilateral weight. A neigh-
boring sample with significantly different geometry is
probably across a geometric edge and hence receives a
low weight.

wi j = G(σz(z j− zi))G(σn(1− sat(n j ·ni))) (1)

In Equation 1, G(x) is the Gaussian function of the form
exp(−x2). zi and ni are the depth and normal of the ith

subpixel sample. σz and σn are the scaling factors for
controlling how quickly the weights fall off and allow-
ing us to increase the importance of the bilateral filter.
We set σz to 10 and σn to 0.25 in all our testing. The
sat(x) function is implemented as max(0,min(1,x)).
The result wi j is the weight associated with the jth sub-
pixel sample while performing shading reconstruction
for the ith subpixel sample.

For tracing the primary rays that are emitted from the
eye position, we use a hybrid rendering approach that
utilizes the GPU to generate the subpixel geometric in-
formation including position, normal and depth. We
create 3 auxiliary geometric buffers to store position,
normal and depth by GPU rasterization with the same
resolution as the shaded buffer. Each geometric buffer
is rendered with a subpixel offset applied to the pro-
jection matrix. The subpixel offset is applied not only
to form a 4× rotated-grid but also to do pixel align-
ment between rasterization and ray tracing rendering.
Since the GPU rasterization pipeline produces the sub-
pixel geometric information very efficiently, this over-
head is insignificant when compared to the ray tracing
stage.

3.2 Shadow Ray
As mentioned above in Section 3, the shadow edges
cannot be detected by the geometric information that
is generated from the eye position alone. What we need
is subpixel information that is more meaningful to the
shadow edges. The naive solution for shadow antialias-
ing is through a shadow map drawn at a higher reso-
lution. However, this approach is inefficient because
the increased resolution of the shadow map (from the
light’s view) does not contribute directly to the subpix-
els at the screen space. Therefore, we generate subpixel
shadow information by ray casting and combine this
shadow value with the bilateral filter weighting equa-
tion as shown in Equation 2. The subpixel shadow rays
are generated by utilizing the position information in
the geometric buffer as mentioned in Section 3.1.

Figure 2 shows our algorithm reconstructs the color
value of a geometric sample in a non-shadowed area
not only by taking the Euclidean distance and the nor-
mal change between the source and the target samples
but also under the influence of shadow boundaries to ex-
clude the neighboring samples in shadowed area. This
is the reason why the original SRAA adds excessive
blur to the shadow boundaries, yet our method achieves
a better quality that is comparable to 16× supersam-
pling.
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wi j =

{
G(σz(z j− zi))G(σn(1− sat(n j ·ni))), if si = s j

0, if si 6= s j

(2)

In Equation 2, si is the shadow value of the ith subpixel
sample and is equal to 1 if it is in shadowed area. Oth-
erwise it is equal to 0. If s j is different from si, then the
jth subpixel falls on the other side of a shadow edge.
Therefore we set the weight wi j associated with the jth

subpixel to 0 to exclude it from the shading reconstruc-
tion for the ith subpixel sample.

3.3 Secondary Ray
In the original SRAA framework, it uses geometric in-
formation to detect geometric edges in the subpixel re-
construction process. However, the edge of secondary
shading (such as those from the reflection) cannot be
detected by this geometric information generated from
the eye position. Take the reflection rays for an exam-
ple as shown in Figure 5 (c), if we perform subpixel
shading reconstruction as shown in Equation 1 with the
geometric information generated from the eye position,
it will not be able to detect the edges of the reflected
objects, and in consequence add excessive blur to the
reflected colors.

Therefore we must take geometric information that is
generated from the hit points of primary rays to perform
subpixel-level bilateral filer when computing the shad-
ing value of the secondary rays that originate from the
primary hit point. The subpixel secondary rays for hit
points are generated by utilizing the position and nor-
mal information in the geometric buffer. Our method
which performs subpixel reconstruction separately for
primary and secondary shading achieves better quality
than the original SRAA approach. Please see our re-
sults in Section 4 and Figure 5.

4 RESULT
Our algorithm is implemented using NVIDIA CUDA
4.0, the raytracer is built with OptiX 2.0 and rasteriza-
tion with OpenGL. All results shown in this paper were
obtained using an Intel Xeon E5504 processor and an
NVIDIA Geforce GTX 570 GPU.

4.1 Quality
Figure 4 shows the quality comparison between our
method and other antialiasing techniques in a Cornell
box scene. The original SRAA adds excessive blur to
the shadow, yet our method achieves similar quality to
16× supersampling.

Figure 5 highlights some interesting cases for primary
shading, shadow and secondary shading in the Sponza
scene. For the shading from primary rays, both our

Figure 2: Here we add shadow edge into consideration
to perform subpixel shading reconstruction. Each pixel
has 4 geometric samples on a 4× 4 grid. One of those
geometric samples is also a shaded sample. Shading
value for each geometric sample in non-shadowed area
is reconstructed from nearby shaded samples except the
shaded samples in shadowed area and weighted by their
distance and the normal change between the source and
the target sample.

method and SRAA use the geometric information to
improve image quality and the results are almost iden-
tical between ours and SRAA. For the shadow, our
method uses both the geometry and the shadow edge in-
formation to perform subpixel reconstruction, thus pro-
duces better shadow line in the highlighted area than
SRAA. For secondary shading, we perform subpixel
reconstruction separately for primary and secondary
shading, while SRAA uses only the final color of each
sampled subpixel for this purpose. This results in over
blurring for secondary shading in SRAA.

To summarize, we observe that antialiasing with geo-
metric information from primary rays could be prob-
lematic in some difficult cases and our method offers a
solution to the highlighted cases in Figure 5.

Our method does have a limitation in handling mate-
rial variation or textured surfaces. Figure 6 shows such
an example where the floor contains patches of differ-
ent colors. Since the extra subpixel depth and normal
information does not help us detect the edges between
patches of different colors, jagged edges could still ap-
pear on the floor.

4.2 Performance
There are two rendering passes in our current imple-
mentation. The first pass is the geometric information
generation step and the second pass is the antialiasing
process. Table 1 shows that the geometric information
generation step with raytracer solution takes about 70
percent of the total processing time for rendering the
Sponza scene [4] in Figure 5. This overhead to generate
geometric information for primary rays can be reduced
with a GPU hybrid solution. Figure 3 shows that our
method maintains the interactive rate while rendering
the Sponza scene in Figure 5 with a GPU hybrid solu-
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Rendering Pass
Resolution 1st 2nd Total
256x256 18 5 23
512x512 35 14 49
768x768 69 28 97

1024x1024 116 49 165
unit: millisecond

Table 1: Time measurement of our method for render-
ing the Sponza scene in Figure 5.The first pass is ge-
ometric information generation and the second pass is
antialiasing process. Note that the time shown in first
pass is measured with raytracer solution.

Figure 3: Performance comparison between NoAA (no
antialiasing applied ), our method with GPU hybrid ap-
proach, and SSAA (16× supersampling antialiasing)
for rendering the Sponza scene under various output
resolutions. The vertical axis is the rendering time
in millisecond. The overall rendering performance of
our method with a GPU hybrid approach is about 6×
speedup in average compared to the 16× supersampling
approach.

tion and achieves about 6× speedup in average com-
pared to the 16× supersampling approach.

5 CONCLUSION

We introduce the concept in SRAA to path-tracing
based rendering methods for antialiasing. Our method
extends the subpixel geometric sampling concept
beyond the primary rays and achieves antialiasing for
shadow rays and reflective rays as well. By adopting
a hybrid approach, our method improves the image
quality without incurring performance penalty of
tracing additional primary rays. We hope our method
encourages the adoption of antialiasing even for the
computationally constrained real-time ray tracing or
path tracing.
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Figure 5: Quality comparison between our method and the other antialiasing techniques in highlighted areas of
primary shading, shadow, reflection, and reflected shadow. (Row 1) No antialiasing, (Row 2) SRAA: one subpixel
with shading value and 4 subpixels with primary geometric information, (Row 3) Ours: one subpixel with shading
value and 4 subpixels with geometric information for primary, shadow and secondary rays, (Row 4) Reference
image: 16× supersampling.
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Figure 6: The scene in this figure shows a limitation of our method in handling material variation or textured
surfaces. The floor contains patches of different colors. Since the extra subpixel depth and normal information
does not help us detect the edges between patches of different colors, jagged edges still appear on the floor in the
middle image that is rendered by our antialiasing method. For comparison, the top image shows the result without
antialiasing and the bottom image is produced with 16× supersampling.
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Abstract

Elastically deformable models have found applications in various areas ranging from mechanical sciences and engineering to
computer graphics. The method of Finite Elements has been the tool of choice for solving the underlying PDE, when accuracy
and stability of the computations are more important than, e.g., computation time. In this paper we show that the computations
involved can be performed very efficiently on modern programmable GPUs, regarded as massively parallel co-processors
through Nvidia’s CUDA compute paradigm. The resulting global linear system is solved using a highly optimized Conjugate
Gradient method. Since the structure of the global sparse matrix does not change during the simulation, its values are updated
at each step using the efficient update method proposed in this paper. This allows our fully-fledged FEM-based simulator for
elastically deformable models to run at interactive rates. Due to the efficient sparse-matrix update and Conjugate Gradient
method, we show that its performance is on par with other state-of-the-art methods, based on e.g. multigrid methods.

Keywords: Elastically deformable models, Finite Elements, sparse-matrix update, GPU.

1 INTRODUCTION

Mathematical and physical modeling of elastically de-
formable models has been investigated for many years,
especially within the fields of material and mechanical
sciences, and engineering. In recent years, physically-
based modeling has also emerged as an important ap-
proach to computer animation and graphics modeling.
As nowadays graphics applications demand a growing
degree of realism, this poses a number of challenges for
the underlying real-time modeling and simulation al-
gorithms. Whereas in engineering applications model-
ing of deformable objects should be as accurate as pos-
sible compared to their physical counterparts, in graph-
ics applications computational efficiency and stability
of the simulation have most often the highest priority.

The Finite Element Method (FEM) constitutes
one of the most popular approaches in engineering
applications which need to solve Partial Differential
Equations (PDEs) at high accuracies on irregular
grids [PH05]. Accordingly, the (elastically) deform-
able object is viewed as a continuous connected
volume, and the laws of continuum mechanics provide
the governing PDE, which is solved using FEM.
Other popular methods are the Finite Difference
Method (FDM) [TPBF87], the Finite Volume Method

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

(FVM) [TBHF03] and the Boundary Element Method
(BEM) [JP99] (see [NMK∗06, GM97]). FDM is the
easiest to implement, but as it needs regular spatial
grids, it is difficult to approximate the boundary of an
arbitrary object by a regular mesh. FVM [TBHF03]
relies on a geometrical framework, making it more in-
tuitive than FEM. However, it uses heuristics to define
the strain tensor and to calculate the force emerging
at each node. BEM performs the computations on
the surface of the model, thus achieving substantial
speedups as the size of the problem is proportional
to the area of the model’s boundary as opposed to its
volume. However, this approach only works for objects
whose interior is made of homogeneous material.
Furthermore, topological changes are more difficult to
handle than in FEM methods [NMK∗06].

In this paper we present a fully-fledged FEM-based
simulator for elastically-deformable models, running
solely on GPU hardware. We show that the involved
computations can be performed efficiently on mod-
ern programmable GPUs, regarded as massively par-
allel co-processors through Nvidia’s CUDA compute
paradigm. Our approach relies on the fast GPU Conjug-
ate Gradient (CG) method of [VJ12] to solve the result-
ing linear system. Since the topology of the deformed
mesh does not change during the simulation, the struc-
ture of the sparse-matrix describing the linear system is
reused throughout the simulation. However, during the
simulation, the matrix values have to be updated effi-
ciently. To achieve this, we propose a method that up-
dates the sparse-matrix entries respecting the ordering
of the data, as required by the CG method of [VJ12],
see Sect. 5.4. Thanks to the optimized CG method and
the efficient sparse-matrix update procedure, we ob-
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Figure 1: Effect of external (stretching) forces on an ’elastic’ dragon.

tain results similar to state-of-the-art multigrid meth-
ods [DGW11].

The paper is organized as follows. Sections 3 and 4
describe the involved discretizations using FEM. Next,
Section 5 presents the non-trivial parts of our GPU
mapping, i.e., computing the local matrices, updating
the global sparse matrix and solving the linear system.
Finally, in Section 6 results are presented and analyzed.

2 PREVIOUS AND RELATED WORK

Bolz et al. [BFGS03], and Krüger and Wester-
mann [KW03] were among the first to implement CG
solvers on graphics hardware, using GPU program-
ming based on (fragment) shaders. These authors
had to deal with important limitations, e.g., the lack
of scatter operations, limited floating-point precision
and slow texture switching based on pixel buffers, as
exposed by the ‘rendering-based’ GPU-programming
paradigm. One of the first GPU implementations of
FEM is due to Rumpf and Strzodka [RS01], in the
context of solving linear and anisotropic diffusion
equations. Related work on GPU-accelerated FEM
simulations also include the papers by Göddeke and
collaborators [GST05, GST07, GSMY∗07]. However,
the emphasis is on improving the accuracy of scientific

FEM-based simulations. Prior related work with
respect to elastically deformable models, discretized
using FEM, can be found in [HS04, MG04, ITF06].
They proposed methods which compensate for the
rotation of the elements. Liu et al. [LJWD08] also
present a FEM-based GPU implementation. Their
results show that the involved CG method dominates
the total computation time.

Since FEM often involves a CG solver, consid-
erable research was done on efficiently mapping
the CG method and Sparse Matrix-Vector Multi-
plications (SPMV) on modern GPUs using CUDA,
see [BG08, BCL07, VJ12] and the references therein.
Other approaches for solving the resulting PDE use
multigrid methods, see e.g. [GW06]. An efficient GPU
implementation of a multigrid method, used for de-
formable models, was recently presented in [DGW11].
Although multigrid methods typically converge faster
than CG methods, implementing them efficiently on a
GPU is a much more elaborate process. For example,
invoking an iterative solver such as CG, constitutes

only one of the steps of a multigrid method, the others
being smoothing, interpolation and restriction.

3 ELASTICITY THROUGH THE

METHOD OF FINITE ELEMENTS

As common in computer graphics applications
(see [MG04] and the references therein), we employ
a linearized model based on linear elasticity the-
ory [PH05]. Further, to solve the underlying PDE
we use the Method of Finite Elements with linear

tetrahedral elements.

3.1 Continuum elasticity

In continuum elasticity, the deformation of a body, i.e.,
a continuous connected subset M of R

3, is given by
the displacement vector field uuu(xxx)= [u(xxx),v(xxx),w(xxx)]T ,
where xxx = [x,y,z]T is some point of the body at rest.
Thus, every point xxx of the undeformed body corres-
ponds to a point xxx+uuu(xxx) of the deformed one.

The equilibrium equation of the deformation is usu-
ally written in terms of the stress tensor, σσσ . However,
since it cannot be measured directly, one uses Cauchy’s
linear strain tensor, εεε , and some material parameters
to approximate the stress inside the body. Similar to
Hooke’s law for a 1D spring, in 3D one has

σσσ = DDD · εεε , (1)

for each point of the body, where DDD ∈ R
6×6 is the so-

called material stiffness matrix representing material
parameters. The elastic force fff e acting at a point of
the body is given by

fff e = KKK ·uuu =
(

PPPT DDDPPP
)

·uuu, (2)

with KKK ∈R
3×3, fff e and uuu∈R

3×1. KKK represents the local
stiffness matrix and PPP ∈ R

6×3 is a matrix of partial de-
rivative operators.

3.2 System dynamics

Having defined the elastical forces acting in a body, we
now derive the equations of motion required to simulate
the dynamic behaviour of the object. The coordinate
vectors xxx are now functions of time, i.e. xxx(t), such that
the equation of motion becomes

mẍxx+ cẋxx+ fff e = FFFext , (3)
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where m is the mass of a body particle at position xxx,
c the damping coefficient, fff e the elastic force and FFFext

the vector of external forces, i.e., the gravitational force.
We approximate Eq. (3) using a semi-implicit method,
i.e.,

m

(

vvvi+1 − vvvi
)

∆t
+ cvvvi+1 +KKK ·uuui+i = FFF i

ext . (4)

xxxi+1 = xxxi +∆t vvvi+1
, (5)

with uuui+1 = ∆tvvvi+1 + xxxi − xxx0, which can be rearranged
as

(

m+∆tc+∆t2KKK
)

· vvvi+1 =

mvvvi −∆t
(

KKK · xxxi −KKK · xxx0 −FFF i
ext

)

. (6)

3.3 Discretization using FEM

Within FEM, the continuous displacement field uuu is
replaced by a discrete set of displacement vectors ũuu

defined only at the nodes of the elements. Within each
element e the displacement field is approximated by

uuu = ΦΦΦe · ũuu, (7)

where ΦΦΦe ∈ R
3×12 is the matrix containing the element

shape functions and ũuu = [u1,v1,w1, . . . ,u4,v4,w4]
T is

the vector of the nodal displacement approximations.
Next, Galerkin’s method of weighted residuals is ap-
plied over the whole volume V , in which the weighting

functions are equal to the shape functions. Each term
in Eq. (6) is weighted and approximated as in Eq. (7),
which results in

∫

V
ΦΦΦT

(

m+∆tc+∆t2KKK
)

ΦΦΦ · ṽvvi+1dV =
∫

V
mΦΦΦT ΦΦΦṽvvidV−

∆t

∫

V
ΦΦΦT

(

KKKΦΦΦ · x̃xxi −KKKΦΦΦ · x̃xx0 −ΦΦΦ · F̃FF
i
ext

)

dV, (8)

with ΦΦΦT the weighting functions. The equation above
is defined for each individual element and generates
one matrix consisting of the local mass (MMMe), damp-
ing (CCCe) and element stiffness (KKKe) matrices. Addition-
ally, a local force matrix (FFFe) is generated, representing
the net external force applied to the object. These local
matrices are given by

MMMe = ρe

∫

V ΦΦΦT
e ΦΦΦe dV

CCCe = c
∫

V ΦΦΦT
e ΦΦΦe dV

KKKe =
∫

V ΦΦΦT PPPT DDDPPPΦΦΦdV

FFFe =
∫

V ΦΦΦT
e ΦΦΦe · F̃FFext dV,

(9)

with ρe the density of element e. See [PH05] for more
details on computing these matrices.

Finally, the global matrix KKK ∈ R
3n×3n (with n the

number of mesh vertices) is ‘assembled’ from indi-
vidual element matrices. This resulting system is then

solved using the Conjugate Gradient method for the
unknown velocity vvvi+1, which is then used to update
the positions of the nodes, see Eq. (5). Eq. (5) shows
a first order method for updating the positions which
can be replaced by higher order methods as described
in [ITF06].

Unfortunately, the above equations for simulating
elastic deformation only work fine as long as the model
does not undergo large rotations. This is because lin-
earized elastic forces are used, which are only ’valid’
close to the initial configuration. Therefore we use
the so-called Element-based Stiffness Warping or Coro-

tational Strain method [MG04, HS04] to compensate
for the rotation of the elements. To extract the rota-
tion part of the deformation, we use the polar decom-
position method proposed in [Hig86]. The rotation-
free element stiffness matrix KKKre then becomes KKKre =
RRReKKKeRRR−1

e , with RRRe ∈R
12×12 the rotation matrix for ele-

ment e. Note that this gives rise to an initial elastic force
fff e0 = RRReKKKe · xxx0, which replaces the term KKKΦΦΦ · x̃xx0 in the
right-hand-side of Eq. (8).

4 OVERVIEW OF THE ALGORITHM

Algorithm 1 gives an overview of the simulation of
elastically deformable models as described in Section 3.
First, a tetrahedralization of the polygonal mesh rep-
resenting the surface of the object is computed, see
Section 5.5. Each tetrahedron is considered as an ele-
ment in FEM. Then, the initial stiffness-matrices of
the elements are computed (line 3); these matrices do
not change during the simulation and thus are pre-
computed. Additionally, as the shape functions are con-
stant during the simulation, we can pre-calculate most
matrices from Eq. (9), using NNN1 = ΦΦΦT

e ΦΦΦe. This matrix
is identical for all elements and is therefore only com-
puted once.

Algorithm 1 Simulation algorithm.
1: Compute NNN1 see Eq. (9)
2: foreach element e

3: Compute KKKe see Eq. (9)
4: loop of the simulation

5: foreach element e

6: Compute volume ve

7: Compute RRRe see Section 3.3
8: Compute KKKre = RRReKKKeRRR−1

e ve

9: Compute MMMe = ρeNNN1ve

10: Compute CCCe = cNNN1ve

11: Compute fff e0 = RRReKKKe · xxx0ve

12: Compute FFFe = NNN1 · F̃FFext ve see Eq. (9)
13: Compute FFF te = MMMe · vvv

i −∆t
(

fff e0 −KKKre · xxx
i −FFFe

)

14: Compute KKKte = MMMe +∆tCCCe +∆t2KKKre

15: Assemble global KKK and FFF using KKKte and FFF te of elements
16: Solve KKK · vvvi+1 = FFF for vvvi+1

17: Update xxxi+1 = xxxi +∆tvvvi+1 see Section 3.2

After all local matrices have been computed and
stored (line 14), the global matrix is assembled
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(line 15). The resulting linear system of equations is
solved for velocities (line 16), which are then used to
advance the position vectors (line 17).

5 GPU MAPPING USING CUDA

In this section we describe our GPU mapping of
the simulation on NVida GeForce GPUs using
CUDA [NVI]. First we shall give details about
implementing the rotation extraction through polar
decomposition. Then, we describe the computation of
the local stiffness matrices which are used to assemble
the global (sparse) stiffness matrix (matrix KKK in
Algorithm 1). The resulting system of linear equations
is solved using a Jacobi-Preconditioned CG Method.

5.1 Rotation extraction

As mentioned in subsection 3.3 we have to estimate the
rotation of each element in order to calculate displace-
ments properly. Finding the rotational part of the de-
formation matrix is done using a Polar Decomposition
as described in [MG04,HS04,Hig86]. Although a large
number of matrix inversions is involved, this can be
done efficiently because small 4× 4 matrices are used.
Since each matrix contains 16 elements, we chose to
map the computations of 16 such matrices to a single
CUDA thread-block with 256 threads.

For computing the inverse of a 4 × 4 matrix we
perform a co-factor expansion. Each thread within a
thread-block computes one co-factor of the assigned
matrix. Since the computation of a co-factor requires
almost all values of the matrix, memory accesses
have to be optimized. In order to prevent for possible
bank-conflicts during the computation of the co-factors,
each matrix is stored in one memory bank of shared
memory. Accordingly, the shared-memory segment (of
size 16×16 locations) is regarded as a matrix stored in
row-major order, where each column represents a 4×4
local matrix. Therefore, each column (local matrix)
maps exactly to one memory-bank. Since a large
number of rotation matrices are computed in parallel, a
large performance boost is obtained.

5.2 Local stiffness matrices

Solving a specific problem using FEM starts with de-
scribing the problem locally per element. Since a typ-
ical problem consists of a large number of elements, the
computations involved per element can be easily paral-
lelized. Further, since the matrices used to construct
KKKe are in R

12×12, we map the computation of each
individual local element stiffness matrix to a thread-
block containing 12 × 12 threads. The inner loop in
Algorithm 1 is implemented using one or two CUDA
kernels, depending on the architecture version. Instead
of creating kernels for each individual matrix operation,
we combine a number of them into one larger kernel.
Since data from global memory can be reused multiple

times, less global memory transactions are required,
which improves the overall performance.

5.3 Solving the linear system

Given the local element matrices and load vectors,
the global stiffness matrix of the system is assembled.
Next, the system has to be solved for the unknown
velocity vvvi+i. The (Jacobi-Preconditioned) CG method
performs a large number of sparse matrix-vector
multiplications and other vector-vector operations.
Therefore, solving a large linear system efficiently,
requires a fast and efficient implementation of sparse
matrix-vector multiplications, which is highly-
dependent on the layout used for storing the sparse
matrix. Since three unknown values (components
of the velocity vector) are associated to each mesh
vertex, a block with 3×3 elements in the global matrix
corresponds to each edge of the tetrahedral mesh.
Therefore, a Block-Compressed Sparse Row (BCSR)
format is very well suited for storing the global matrix,
and thus improving the speed of the CG method.

Furthermore, since the vertex degree of internal
nodes is constant in a regular tetrahedralization (see
sect 5.5), the variation of the number of elements per
row in the global matrix is minimal. Therefore, we use
the optimized BCSR format from [VJ12]. This method
efficiently stores a large sparse-matrix in BCSR format
and reorders the blocks in memory to improve the
efficiency of the memory transactions. This fact is
very important since the main bottleneck of the CG
method is the memory throughput. In [VJ12], through
extensive experiments, it is shown that their optimized
BCSR layout outperforms other storage formats for
efficient matrix-vector multiplication on the GPU.

5.4 Global matrix update

Each local matrix represents a set of equations for each
individual tetrahedron. To obtain the global system of
equations, each component of each local matrix is ad-
ded to the corresponding location of the global matrix.
The location is obtained using the indices of the ver-
tices for that specific element. Since the structure of
the underlying mesh does not change during the sim-
ulation, also the structure of the global matrix remains
unchanged. Therefore we assemble the global matrix
only once and updates its values every time step. In this
section, we propose an extension of [VJ12] which al-
lows us to efficiently update a sparse matrix stored in
the BCSR format.

For updating the global matrix, two approaches are
possible. Within the first approach (scatter), all values
of a local matrix are added to their corresponding values
in the global matrix. When the local matrices are pro-
cessed on the GPU, many of them are processed in par-
allel. Therefore, multiple threads can update the same
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(a) Block layout of a sparse-matrix: Each
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resents the dimension of the matrix.
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(d) Updating matrix blocks (green), requires the
associated local values. The indices of these val-
ues are stored in index blocks (gray), in the same
order as the matrix blocks. Within each sub-step,
a set of continuous index-blocks are loaded and
used to fetch the corresponding values from the
local matrices. The dark-gray blocks are used for
padding and contain −1’s. i, j,k represent (start-
ing) offsets in memory.

Figure 2: Updating the sparse matrix: the initial sparse matrix is created, stored and processed, (a), (b) and (c).
Updating the matrix is done by collecting the corresponding values from the local matrices, (d).

value in the global matrix at the same time, which res-
ults in race conditions. In order to prevent race condi-
tions from appearing, access to the values of the global
matrix would have to be serialized.

The second approach is to gather per element in the
global matrix, the corresponding values from the local
matrices. To do so, the indices of all associated local
values are stored per element in the global matrix. Each
index represents the position of the local value in an
array A, which stores the values of all local matrices.
Given these indices per global element value, the local
values are looked-up and used to update the correspond-
ing value in the global matrix.

Within the optimized BCSR implementation
of [VJ12], the global sparse-matrix is divided in
N × N-sized blocks, Fig. 2(a). Next, block rows are
compressed and sorted by length, Fig. 2(b). Finally,
a number of consecutive block rows are grouped and
mapped to a CUDA thread block. Within each group
of block rows, the blocks are reordered in memory,
such that accessing these blocks is performed as
optimal as possible. Accessing the blocks (for e.g. a
multiplication) is done as follows. First, all threads
of a thread-block (T B0) are used to access the blocks
mapped to it in the first step (step 0), see Fig. 2(c).
Each thread computes an index pointing to these
blocks. Next, blocks 0− 7 are loaded from the global
memory. Note that these are the same blocks appearing
in the first column of Fig. 2(b). For the next step, each
thread increases its current index, such that the next set
of blocks (8−15) can be loaded (step 1). Note that all

block rows must have the same length, and therefore,
empty blocks must be padded (blocks 16 and 17).

To actually update the data blocks of the global mat-
rix, we use a gather approach. Accordingly, N × N-
sized index blocks are used for each matrix block, see
Fig. 2(d). Since the matrix blocks have a specific or-
dering, the same ordering is used for the index-blocks.
For each step, a number of sub-steps is performed.
Within each sub-step a set of index-blocks is loaded
from memory, given a start offset (i, j or k in Fig. 2(d)).
Then, for each index-block, its N ×N values (indices)
are used to fetch the corresponding N ×N data values
from local matrices, stored in global memory. Please
note that the N×N data values fetched using one N×N

index-block, do not come, in general, from the same
local matrices. To accumulate the local contributions,
an array (stored in shared memory) is used. If an in-
dex has value −1, no update is performed. For the next
sub-step, the indices pointing to the index blocks are
increased. Therefore, per step, the number of index
blocks for each processed matrix block must be equal,
which requires padding with ’−1’ index blocks. The
advantage of this approach is that loading the indices
and writing the updated values always result in an op-
timal throughput. Loading the actual local-element val-
ues is in general not optimal.

5.5 Tetrahedralization and rendering

The quality of the tetrahedral mesh is essential for effi-
ciently simulating a deforming elastic object represen-
ted by a polygonal mesh. We have experimented with
tetrahedralizations in which the surface mesh forms the
outer boundary of the tetrahedral mesh. Since the tri-
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angles of the surface mesh can have a high variety in
size, the generated tetrahedralization also contains tet-
rahedral elements with a high variation in size and con-
figuration. This can have a negative effect on the quality
of the tetrahedralization. Therefore, we chose to create
a tetrahedral mesh, using equi-sized elements, which
however, may result in a rather rough approximation of
the original surface mesh. We tackle this problem by
coupling the input polygonal mesh to the (deforming)
tetrahedral mesh, as follows.

First, a regular 3D grid of N3 voxels is created, in
which each voxel containing a part of the surface is
marked as important; typical values for N are 32,64 or
128. Next, a regular tetrahedralization of the grid is
created using equi-sized tetrahedral elements, and each
element containing at least one important vertex of the
grid, is stored. Further, the inner volume of the object
is tetrahedralized using the same equi-sized tetrahedral
elements. Next, in order to reduce the amount of ele-
ments, those elements belonging to the inner volume
are merged together into fewer larger ones. This re-
duces the total amount of elements and thus the total
computation time. Note however that this approach
is most useful with models which have large internal
volumes, similar to the bunny in Figure 5. Finally, the
original surface mesh is coupled with the tetrahedral
one similar to [MG04]: each vertex in the original sur-
face mesh is mapped to exactly one tetrahedron, and
its barycentric coordinates in that tetrahedron are stored
along with the vertex coordinates.

When the new positions of the tetrahedra are com-
puted, the surface mesh is also updated. To compute
new positions of the deformed surface mesh, for each
vertex of the input mesh, the positions of the four ver-
tices of the corresponding tetrahedron are looked-up
and interpolated using the barycentric coordinates of
the original vertex.

6 RESULTS

All experiments have been performed on a machine
equipped with an Intel Q6600 quad-core processor and
a GeForce GTX 570 with 1.2 Gb of memory.

Figure 3 shows the performances obtained for com-
puting the local element matrices (Matrix), the rota-
tion matrices (Rotation), solving the resulting linear
system (CG), performing a single SpMV (SpMV), and
the total performance (Total) as a function of the num-
ber of elements. Steps/sec is the corresponding num-
ber of simulation steps performed per second. Simil-
arly, Figure 4 shows the computation time per simula-
tion time-step. For each model, we have used the fol-
lowing material parameters: Young’s modulus of elasti-
city, E = 5×105N/m2; Poisson’s ratio, µ = 0.2; dens-
ity, ρ = 1000KG/m3. Furthermore, the time step of
the simulation ∆t = 0.001 and the volume of each ini-
tial element ve = 1.65× 10−6m3. Each model used in
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this paper is scaled such that each dimension is at most
66 cm and is tetrahedralized as described in Section 5.5.
With these settings, the CG solver found a solution for
each model in 5 to 18 iterations. In order to obtain a
generic performance picture, we have fixed the number
of iterations to 18, which resulted in the performances
from Fig. 3.

Within Figure 3 a number of interesting patterns can
be seen. First, the performance for computing the
local element matrices reaches its maximum very soon.
Since each matrix is mapped to exactly one thread-
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block, a large amount of thread-blocks is created, res-
ulting in a ’constant’ performance. Second, the per-
formance figures for computing the rotation matrices
show a larger variation. Since 16 rotation matrices are
processed by one thread-block, a significantly smal-
ler amount of thread-blocks is used. Finally, the per-
formance of the CG method seems to be low compared
to the other operations. The CG method operates on
a global sparse-matrix and performs a large number
of sparse-matrix vector multiplications (SPMVs) and
vector-vector operations, for which the performances
are mainly bound by the memory throughput. However,
the CG performances from Figure 3 agree with those
from [VJ12], given the dimensions of the problem.

The measured, effective throughput for updating the
global matrix was about 50 GB/sec, in all cases with
more than 5k elements. Since this operation transfers
a large amount of data, the memory bus is saturated
very soon, resulting in a good throughput. However,
since not all transactions can be coalesced, the max-
imum throughput is not reached. This operation is very
similar to an SPMV with 1× 1 blocks, but now for a
matrix containing d× more elements, with d the degree
of internal nodes in the model. This observation shows
that the measured throughput is close to the expected
one, according to the results in [VJ12].

As expected, the total performance increases with the
number of elements. This shows that the computational
resources are used efficiently for larger models. The
number of elements, for which the maximum perform-
ance is reached, depends on the actual GPU mapping
of the computations. For example, the CG solver does
not reach its maximum performance for 100k elements,
while the computation of the local element matrices
reaches its peak at 5k elements. Due to this, one can
expect better performances for the CG method when
larger models are used. Furthermore, for models having
less than 30k elements, the total computation is domin-
ated by the time spent by the CG solver. For larger mod-
els, more time is spent on computing the local matrices,
see Figure 4.

The measured overall performance is based on the
total time needed per simulation step, which includes
all operations performed, except the rendering of the
model. Figure 3 also shows the number of simulation
steps performed per second, given the number of ele-
ments; these numbers are based on the total compu-
tation time. Accordingly, even for large models, in-
teractive frame rates can be reached. A rough com-
parison of the obtained performance and frame rate
with other state-of-the-art multigrid GPU implement-
ations [DGW11] shows that, even if in theory the CG
method converges slower than multigrid, comparable
results can be obtained for similar models. We assume
that memory transactions in our method are more effi-
cient, despite of transferring more data. However, more

research is required to get a full understanding of the
differences between both methods performed on mod-
ern GPUs, with respect to performance figures. Finally,
Figures 1, 5, 6, 7, 8 and 9 show example results from
our simulations.

Figure 5: Material properties and collision handling.
Left: flexible material (E = 5×104). Right: stiffer ma-
terial (E = 5× 105). Simulation rate: 120 frames per
second.

Figure 6: Left: stretching and deforming a model using
external forces. Right: deformation after releasing ex-
ternal forces. Simulation rate: 118 frames per second.

Figure 7: Bunny bouncing on the floor. Simulation rate:
120 frames per second.

7 CONCLUSIONS

We have presented an efficient method for simulat-
ing elastically deformable models for graphics applica-
tions, accelerated on modern GPUs using CUDA. Our
method relies on a fast Conjugate Gradient solver and
an efficient mapping of the SPMV operation on modern
GPUs [VJ12]. Since the topology of the underlying grid
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Figure 9: Other simulation results. Simulation rate: 160 frames per second.

Figure 8: Left: applying external forces on the wings.
Right: after releasing the external forces. Simulation
rate: 116 frames per second.

does not change during the simulation, data structures
are reused for higher efficiency. To further improve the
performance, we proposed a scheme which allows to
efficiently update the sparse matrix, during the simula-
tion.

In future work we will investigate the performance of
this method when multiple GPUs are used. Further-
more, we will investigate the performance difference
between traditional CG methods and multigrid methods
performed on modern GPUs. Also, we plan to enhance
the simulation to allow for plastic behaviour as well as
brittle and fracture of stiff materials.
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ABSTRACT
Visualization of vector fields plays an important role in research activities nowadays. Web applications allow a
fast, multi-platform and multi-device access to data, which results in the need of optimized applications to be im-
plemented in both high and low-performance devices. The computation of trajectories usually repeats calculations
due to the fact that several points might lie over the same trajectory. This paper presents a new methodology to
calculate point trajectories over a highly-dense and uniformly-distributed grid of points in which the trajectories
are forced to lie over the points in the grid. Its advantages rely on a highly parallel computing implementation
and in the reduction of the computational effort to calculate the stream paths since unnecessary calculations are
avoided by reusing data through iterations. As case study, the visualization of oceanic streams in the web platform
is presented and analyzed, using WebGL as the parallel computing architecture and the rendering engine.

Keywords
Streamlines, Trajectory, Hierarchical Integration, Flow Visualization, WebGL.

1 INTRODUCTION

Vector field visualization plays an important role in the
automotive and aero-spatial industries, maritime trans-
port, engineering activities and others. It allows the de-
tection of particularities of the field such as vortexes or
eddies in flow fields, but also permits exploring the en-
tire field behavior, determining flow paths.

In particular, ocean flow visualization is important in
maritime navigation and climate prediction, since the
movement of sea water masses produces variations in
air temperature and wind currents. Therefore, flow
visualization becomes determinant to represent the
ocean’s behavior.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 1: flow visualization of Atlantic ocean currents
in WebGL. Hierarchical integration was used to reduce
the total number of iterations required to calculate the
paths.
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With the growth of a great diversity of devices, develop-
ment of multi-platform applications has become a com-
mon goal for developers. The Web is de-facto a univer-
sal platform to unify the development and execution of
applications. However, challenges arise since applica-
tions must be optimized in order to be useful as well as
on high as on low-performance devices.
The development of parallel computing hardware for all
the different devices is increasing and the development
of applications and computer-based procedures are tak-
ing in advance this capability. The contribution of this
paper is a new methodology to calculate point trajecto-
ries of a highly dense grid of points over n-dimensional
vector fields, in which the trajectories are forced to pass
over the grid points (Figure 1). This allows to imple-
ment a hierarchical integration procedure ([HSW11]),
which takes advance of previously calculated data in
order to avoid repetitive and unnecessary calculations,
and reduces the complexity of the algorithm from lin-
ear to logarithmic. The procedure is suitable to be im-
plemented over highly parallel computing architectures
due to independent calculations and the number of com-
putations to be performed. We employ WebGL as the
parallel computing engine to calculate the iterations, us-
ing the inherently parallel rendering procedure, and im-
ages are used to store the data through the iterations.
Different from other procedures, in which the calcula-
tion of the trajectories is performed for each point in
particular, our methodology allows to merge its calcu-
lation for all the points in which the field is discretized.
Therefore, the number of unnecessary computations is
critically reduced.
This paper is organized as follows: Section 2 presents
the related work. Section 3 exposes the methodology in
which the contribution of this work is explained. Sec-
tion 4 presents a case of study in oceanic currents and
finally section 5 concludes the article.

2 LITERATURE REVIEW
2.1 Flow Visualization
A great amount of methodologies to visualize vector
fields (flow fields) has been developed among the last
decades. Geometric-based approaches draw icons
on the screen whose characteristics represent the
behavior of the flow (as velocity magnitude, vorticity,
etc). Examples of these methodologies are arrow
grids ([KH91]), streamlines ([KM92]) and streaklines
([Lan94]). However, as these are discrete approaches,
the placement of each object is critical to detect the
flow’s anomalies (such as vortexes or eddies), and
therefore, data preprocessing is needed to perform an
illustrative flow visualization. An up-to-date survey on
geometric-based approaches is presented by [MLP10].
However, in terms of calculating those trajectories for
determined points in the field, the procedures usually

compute for each point the integrals, and, as a result, the
procedures are computationally expensive for highly
dense data sets.

On the other hand, texture-based approaches represent
both a more dense and a more accurate visualization,
which can easily deal with the flow’s feature represen-
tation as a dense and semi-continuous (instead of sparse
and discrete) flow visualization is produced. A deep
survey in the topic on texture-based flow visualization
techniques is presented by [LHD04].

An animated flow visualization technique in which a
noise image is bended out by the vector field, and then
blended with a number of background images is pre-
sented by [VW02]. Then, in [VW03] the images are
mapped to a curved surface, in which the transformed
image visualizes the superficial flow.

Line Integral Convolution (LIC), presented by [CL93],
is a widely implemented texture-based flow visualiza-
tion procedure. It convolves the associated texture-
pixels (texels) with some noise field (usually a white
noise image) over the trajectory of each texel in some
vector field. This methodology has been extended to
represent animated ([FC95]), 3D ([LMI04]) and time
varying ([LM05, LMI04]) flow fields.

An acceleration scheme for integration-based flow vi-
sualization techniques is presented by [HSW11]. The
optimization relies on the fact that the integral curves
(such as LIC) are hierarchically constructed using pre-
viously calculated data, and, therefore, avoid unneces-
sary calculations. As a result, the computational effort
is reduced, compared to serial integration techniques,
from O(N) to O(logN), where N refers to the number
of steps to calculate the integrals. Its implementation
is performed on Compute Unified Device Architecture
(CUDA), which allows a parallel computing scheme
performed in the Graphics Processing Unit (GPU), and
therefore the computation time is critically reduced.
However, it requires, additionally to the graphic Appli-
cation Programming Interface (API), the CUDA API in
order to reuse data, and hence, execute the procedure.

2.2 WebGL literature review
The Khronos Group released the WebGL 1.0 Specifi-
cation in 2011. It is a JavaScript binding of OpenGL
ES 2.0 API and allows a direct access to GPU graphical
parallel computation from a web-page. Calls to the API
are relatively simple and its implementation does not
require the installation of external plug-ins, allowing
an easy deployment of multi-platform and multi-device
applications. However, only images can be transfered
between rendering procedures using framebuffer ob-
jects (FBOs).

Several WebGL implementations of different applica-
tions have been done such as volume rendering, pre-
sented by [CSK11] or visualization of biological data,
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presented by [CADB10]. A methodology to implement
LIC flow visualization with hierarchical integration, us-
ing only WebGL, was presented by [ACS12], in which
FBOs are used to transfer data between different ren-
dering procedures, and therefore allowing to take in ad-
vance the parallel computing capabilities of the render-
ing hardware, in order to perform the different calcula-
tions. However, for the best of our knowledge, no other
implementation that regards to streamline flow visual-
ization on WebGL has been found in the literature or in
the Web.

2.3 Conclusion of the Literature Review
WebGL implementations allow to perform appli-
cations for heterogeneous architectures in a wide
range of devices from low-capacity smart phones to
high-performance workstations, without any external
requirement of plug-ins or applets. As a result, opti-
mized applications must be developed. In response
to that, this work optimizes the calculation of point
trajectories in n-dimensional vector fields over highly
dense set of points, forcing the trajectories to lie over
the points in the set. As a consequence, previously
calculated data can be reused using hierarchical
integration, avoiding unnecessary calculations and
reducing the complexity of the algorithm.

3 METHODOLOGY
The problem that we address is stated as: given a set
of points and a vector field that exists for all of these
points, the goal is to find the finite trajectory that each
point will reproduce for a certain period of time.

Normal calculation of point trajectories in n-
dimensional vector fields, requires to perform
numerical integration for each particular point in order
to reproduce the paths. In the case of a dense set of
points, the procedures suffer from unnecessary step
calculations of the integrals, since several points in
the field might lie over the same trajectory of others.
Hence, some portions of the paths might be shared.
Figure 2 illustrates this situation.

s
yj=xj(0)

xj(1)
xj(2)

f(xj(0))
f(xj(1)) f(xj(2))

Figure 2: Trajectory overlapping in several point paths.

In order to avoid repeated computations, we propose a
methodology to calculate trajectories of highly dense
grid of points, in which the paths are forced to lie over

the points in the grid, i.e., the paths are generated as a
Piecewise Linear (PL) topological connection between
a set of points that approximates the trajectory. With
this, hierarchical integration [HSW11] is employed to
iteratively compute the paths and reuse data through the
iterations.

3.1 Hierarchical Integration
Since line integration over n-dimensional vector fields
suffers from repeated calculations, hierarchical integra-
tion [HSW11] only calculates the necessary steps and
then iteratively grows the integrals reusing the data.
This reduces the computational complexity of the algo-
rithm from O(N), using serial integration, to O(logN).
The procedure is summarized as follows.
For an arbitrary point in the field y ∈ Y with Y ⊆ Rn,
let us define f : Y → Rm, as an arbitrary line integral
bounded by its trajectory cy. Consider its discrete ap-
proximation as described in equation 1.

f (y) =
∫

cy

w(x(s))ds≈
t

∑
i=1

w(x(i∗∆s))∆s (1)

where t is the maximum number of steps required to
reproduce cy with ∆s the step size. x(0) = y is the start-
ing point of the trajectory to be evaluated and w is the
function to be integrated. The integration procedure is
performed for all points y ∈ Y in parallel.
We assume that ∆s = 1 , ∀y ∈ Y and therefore f (y) ≈

t
∑

i=1
w(x(i)). The algorithm starts with the calculation of

the first integration step for all the points in the field.
Namely,

f0(y) = w(x(1)) (2)

It is required to store the last evaluated point x(1) over
the growing trajectory and the partial value of the in-
tegral for all the points y in order to reuse them in the
following steps to build the integral. With this, the next
action is to update the value of the integral, using the
sum of the previously calculated step at y and the step
evaluated at its end point (x(1)). Namely,

f1(y) = f0(x(0))+ f0(x(1)) (3)

In this case, the end point of f1(x(0)) is x(2) as the
calculation evaluates f0(x(1)). Therefore, the next iter-
ation must evaluate f1 at x(0) and x(2) in order to grow
the integral. In general, the k’th iteration of the proce-
dure is calculated as follows:

fk(y) = fk−1(x(0))+ fk−1(x(end)) (4)

It is important to remark that each iteration of this pro-
cedure evaluates two times the integration steps eval-
uated in the previous iteration. As a result, the to-
tal number of integration steps t is a power of two,
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and the hierarchical iterations required to achieve this
evaluations is reduced by a logarithmic scale, i.e., k =
log2 t. Also notice that the evaluation of the vector
field is performed only once, in the calculation of the
first step, which avoids unnecessary evaluations of the
vector field, which are computationally demanding for
complex vector fields. Figure 3 illustrates the procedure
up to four hierarchical steps.

Step 0

Step 1

Step 2

Step 3

Step 4

f0(y)

f1(y)

f3(y)

f3(y)

f4(y)

Figure 3: Exponential growth of hierarchical integra-
tion methodology. At step 3, the procedure evaluates 8
serial integration steps, meanwhile at step 4 it evaluates
16 serial integration steps.

3.2 Stream Path Calculation
In order to perform the visualization of a vector field us-
ing trajectory paths, lets assume a homogeneously dis-
tributed set of points

Y = {y, z ∈ Rn|y− z = ∆y,

∆y is constant ∀z adjacent to y} (5)

and a n-dimensional vector field F : Rn→Rn. The goal
is to calculate for each point y ∈ Y , the PL approxi-
mation of the trajectory that the point will describe ac-
cording to F , defined by the topological connection of
a particular set of points Ay ⊂Y . Figure 4 illustrates the
approximation.

y

Figure 4: PL approximation of the trajectory by the pro-
cedure.

The trajectory cy of an arbitrary point y in the field is
defined as

cy = xy(s) =
∫

l
F(xy(s))ds (6)

where l represents a determined length of integration.

Using hierarchical integration, for each point in the field
the first step of the PL trajectory is calculated, this is,
the corresponding end point of the first step of the in-
tegral is computed using a local approximation of the
point in the set of points.

xy(0) = y (7)

y′ = xy(0)+ γF(xy(0)) (8)

xy(1) = arg
xy

min(Y − y′) (9)

where y′ is the first iteration result of the Euler inte-
gration procedure, γ is a transformation parameter to
adjust the step given by the vector field to the local sep-
aration of the set of points and xy(1) is defined as the
closest point in Y that approximates y′. The value of
xy(1) is then associated (and stored) to y. The set Ay
contains the reference to the points of the trajectory that
describes y, and therefore for equation 8, Ay is defined
as:

A0
y = {xy(1)} (10)

Similarly to the hierarchical integration procedure, the
next steps are performed to join the calculated steps in
order to grow the trajectories. Therefore, for each point
y, its computed trajectory is joint with its last point’s
trajectory, this is, for the step in equation 8.

A1
y = A0

y ∪A0
xy(1) = {xy(1),xy(2)} (11)

Note that each iteration of the procedure will increase
the number of points in the trajectory by a power of
two. Therefore, the growth of the paths is exponential.
In general, the k’th iteration is calculated as

Ak
y = Ak−1

y ∪Ak−1
xy(2k)

= {xy(1),xy(2), . . . ,xy(2(k+1))}
(12)

The accuracy of the procedure is strongly determined
by the discretization (density) of Y , since it is directly
related to the step size in the integration procedure, i.e.,
the approximation of the first step end-point is deter-
minant. In order to increase the accuracy of the proce-
dure, the computation of the first step can be calculated
with e.g., a 4th order Runge Kutta numerical integra-
tion, however, it might significantly increase the com-
putation time of the procedure if the computation time
of the vector field function is relevantly high.

3.3 Time-Varying Data
In terms of unsteady flow fields, i.e., time-varying vec-
tor fields, the generation of the trajectories might seem
difficult. In that case, as proposed in [HSW11], time
is considered another dimension of the vector field.
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Therefore, the set of points is formed with the posi-
tion coordinates of the points and discretized time steps,
producing an n+1-dimensional grid of points.

It is also determinant for the accuracy of the procedure
that the density of the discretization set is high, in order
to increase the precision of the approximated trajecto-
ries.

3.4 Animation
Dynamic scenes are demanding in most of the visu-
alization procedures. We consider in this section two
kinds of dynamic scenes. A first kind of procedures
refers to when the vector field is steady, i.e., it remains
constant through the time. In this case, the goal is to
visualize the motion of the particle all across the field.

Since the paths for all the points in the field are cal-
culated, the representation of the particle’s trajectory
through the frames is simple. Consider a point y and its
approximated trajectory given by the set of points Ay.
Notice, as described in section 3.2, that the first point
of the set Ay [1], i.e., xy(1), represents the next point
in which y will lie in a determined period of time. As
a result, at a posterior frame, the displayed trajectory
should be Axy(1).

The second type of procedure refers when vector field
is varying with the time. Complementary to the ani-
mation stated before, a second kind of dynamic scene
is comprised since it is also important to visualize the
changes that a trajectory suffers in the time. In the case
of time varying data, as in the steady case, all the points
have an associated trajectory. In order to animate the
change of one trajectory, from one frame to another, the
trajectory that will be represented refers to the one of
the point with the same point coordinate, but the next
time coordinate. i.e., Ay,t+∆t .

4 CASE STUDY
In this section the visualization of 2D oceanic currents
using the proposed methodology is performed. The im-
plementation has been done in WebGL, so the method-
ology’s parallel computing capabilities are fully used.
WebGL offers the possibility to use the rendering pro-
cedure to calculate images (textures) through Frame-
buffer Objects, and then use those rendered textures as
input images for other rendering procedures. As a con-
sequence, for this implementation we associate the pix-
els of an image to the points in the field, and therefore,
the rendering procedure is used to compute the different
hierarchical iterations, which are stored in the color val-
ues of the pixels. Finally, the trajectories are hierarchi-
cally constructed. The implementation was performed
on an Intel Core2Quad 2.33 GHz with 4 GB of RAM
and with a nVidia GeForce 480.

4.1 Implementation
For a w×h grid of points (w and h being its width and
height respectively in number of elements), images of
size w×h in pixels are used, in which a particular pixel
(i, j) is associated with the point (i, j) in the grid. Since
for each particular pixel, a four component vector is
associated, i.e., a vector of red, green, blue and alpha
values, each value can be associated as a particular po-
sition of another pixel. This is, if the value of a pixel is
r, then its associated pixel coordinates are given by

i = r mod w (13)

j =
r− i

w
(14)

where mod represents the remainder of the division of
r by w. As a result, if for each hierarchical integration,
only the last point of the trajectory is to be stored, then
one image can store four hierarchical iterations.

For the zero’th hierarchical iteration, and the image I to
store its calculation, the value of a pixel (i, j) is given
by

i0 = i+ kFi(i, j) (15)
j0 = j+ kFj(i, j) (16)

(17)

where the parameter ’0’ refers to the hierarchical step
0, k represents the scaling factor of the vector field, and
Fi(i, j) represents the component of the vector field over
the direction of i, evaluated at the point (i, j). The vec-
tor field used in this case study is shown in figures 5(a)
for the direction of i and 5(b) for the direction of j.

In general, the k’th step is calculated as follows,

inext = I(i, j,k−1) mod w (18)

jnext =
I(i, j,k−1)− inext

w
(19)

I(i, j,k) = I(inext , jnext ,k−1) (20)

In the case that k is greater than four, then more images
are used to store the values of the hierarchical iterations.

With that, all the desired steps are stored in the neces-
sary images. In order to build the trajectories from those
images, a generic line, formed by k2 points, is required.
Each point in the trajectory needs to have an associated
value, that refers to its order in the trajectory, i.e., the
first point in the trajectory has an index 0, the second
point the value 1 and so on. With this index associ-
ated to each point of the trajectory of the point y, the
position of each point is calculated as described in Al-
gorithm 1, where HL is the hierarchical level that needs
to be evaluated and the function evalHL() returns the
new position of the point y, for a particular hierarchical
level.
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(a)

(b)

Figure 5: Oceanic currents information. Color-scale of the oceanic currents magnitude in the (a) longitudinal and
(b) latitudinal directions, of the 1st January of 2010. Images generated using data from the NASA’s ECCO2 project.

Require:

index Index referring to the element
position into the line.

y Position of the initial point of
the trajectory.

Ensure: yend Position of the i’th element of the
line in the space.

Finished = f alse
while not Finished do

HL = floor(log2(index))
index = index−2HL

y = evalHL(HL,y)
if index == 0 then

yend = y
Finished = true

Algorithm 1: Procedure to reconstruct the streamlines
using the already calculated hierarchical levels.

4.2 Results
A general grid of 2048× 2048 points is used as the
world’s discretization. The vector field information was

acquired from the NASA’s ECCO2 project (see figure
5), in which high-resolution data is available. Only six
hierarchical levels, i.e., 26 = 64 points in the trajectory
are used for each point in the field, as a result only 2
images are required to calculate the trajectories.

The time needed to compute all the hierarchical levels
(from 0 to 6) was 3 ms. The trajectory computation was
performed to 10000 equally-distributed points all over
the field, which means that 64000 points need to be
transformed by the trajectory computation. The com-
putation time of those trajectories was 670 ms (Final
results are shown in Figure 6).

In order to compare the visualization using the pro-
posed methodology, the LIC visualization of the vector
field using the methodology proposed in [ACS12] was
inserted below the stream line visualization. It shows
that for this level of discretization (2048× 2048), the
visualization is correct and accurate. However, sparse
data might produce inaccurate results.
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(a) (b)

(c) (d)

Figure 6: Different view points of the final visualization of the oceanic currents using hierarchically calculated
streamlines. Six hierarchical steps were used to achieve this visualization. The LIC visualization of the flow is
used below the streamlines in order to visually compare the different methods and to enhance the visualization

5 CONCLUSIONS AND FUTURE
WORK

This article presents a novel methodology to calculate
points trajectories in highly dense point sets, in which
the trajectories are formed as piecewise-linear connec-
tions of the points in the set. This allows to merge the
calculation of the different trajectories and use itera-
tively the data to avoid repeated and unnecessary calcu-
lations, hence, accelerating the process. The procedure
is suitable to be implemented in parallel architectures
such as WebGl, OpenCL or CUDA, since the calcula-
tions of the integrals for one point are independent from
the calculation of the other points.

As a result, thanks to the use of hierarchical integration,
the procedure reduces the computational complexity of
the calculation of the trajectories from linear to loga-
rithmic. The methodology deals with n-dimensional
and time-varying data and animated visualization can
be easily achieved due to the fact that the trajectories
are calculated for all the points in the set.

Since the procedure performs an approximation of
the trajectories using a piecewise-linear connection
of the points in the set, the accuracy of the algorithm
is strongly influenced by the discretization distance
between the points, because this distance determines a
lower bound in the integration step to be used.
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Ongoing research focuses on the adaptation of this
methodology to require less computational effort
(processing and memory effort), so that extremely
low-performance devices such as smart-phones and
tablets might be able to perform an accurate and
complete flow visualization using streamlines. Related
future work includes the adjustment of the grid point
positions along the iterations and the increase in the
accuracy of the calculated trajectories.
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ABSTRACT 
Augmented reality is a visualization technique widely used in many applications including different design tools. 
These tools are frequently based on tracking artificial objects such as square markers. The markers allow users to 
add a 3D model into the scene and adjust its position and orientation. Nevertheless, there are significant problems 
with marker occlusions caused by users or objects within the scene. The occlusions usually cause a disappearance 
of the 3D model. Such behavior has substantial negative impact on the application usability. In this article we 
present a hybrid marker detection approach. With this approach, markers are detected using the well-known 
SURF method. This method is able to recognize complex natural objects and deal with partial occlusions. 
Further, we overcome the problem of distinguishing similar markers by using the Golay error correction code 
patterns. The described approach represents a robust method that is able to identify even significantly occluded 
markers, differentiate similar markers, and it works in a constant time regardless of the amount of used markers. 

Keywords 
Augmented reality, augmented prototyping, SURF, Golay error correction code. 

1. INTRODUCTION 
The augmented reality (AR) research has been 
running for almost two decades. Nevertheless, it is 
possible to find just a few applications for common 
users. There are several principal reasons. One of the 
key problems is the inability to deal with occlusions 
of markers that are used for scene augmentation. 
During the work with an AR application, a marker is 
frequently obstructed by different solid objects, e.g. 
users´ hands. Inability to identify such a partially 
occluded marker leads to frequent disappearances of 
a visualized 3D model. Despite the obvious 
importance, this problem is unsolved even in many 
well-known AR toolkits (e.g. ARToolKitPlus). 

The presented approach is implemented in the AR 
application AuRel that is focused on an augmented 
prototyping process. The application is developed in 
cooperation with an automotive company. It allows a 
car designer to extend a physical car model by selected virtual objects (3D models of car spare parts 

(see Fig. 1)). The usage of AR for industrial design is 
mentioned in many papers, e.g. in [FAM*02], 
[BKF*00] and [VSP*03].   

Although there is a substantial amount of existing 
augmented reality frameworks (ARToolkit, ARTag, 
Studierstube, etc.), OpenCV library has been used for 
the implementation [Lag11]. Principal reasons being 
active OpenCV development, cross-platform 

Permission to make digital or hard copies of all or part 
of this work for personal or classroom use is granted 
without fee provided that copies are not made or 
distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first 
page. To copy otherwise, or republish, to post on servers 
or to redistribute to lists, requires prior specific 
permission and/or a fee. 

Figure 1: 3D model of a spoiler inserted onto a 
rear car hood 
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deployment, 64bit systems support, a wide range of 
implemented computer vision algorithms and the 
amount of documentation (books, tutorials, 
etc.) [PK11]. 

There are briefly summarized current methods used 
for recognition of possible markers in the section 2. 
Two approaches focused on identification of 
geometric features are compared with the advanced 
technique usually used for natural object detection. 
Further, the section 3 outlines our method that is 
composed of SURF marker detection and Golay error 
correction code identification. Finally, the section 4 
presents our results and concentrates on the ability to 
deal with occlusions. 

2. MARKER RECOGNITION 
METHODS 
The process of marker recognition is usually divided 
in two parts: marker detection and marker 
identification. The former involves recognition of 
video frame regions that may represent markers. The 
latter concentrates on verifying the identity of the 
markers. The marker identity defines which 3D 
model will be displayed to the user.  

2.1 Marker Detection Approaches 
The registration process of all further described 
methods is influenced by many negative factors, e.g. 
low image resolution, camera distortion (caused by 
lens), various light conditions or marker occlusions. 
The methods endeavor to compensate most of these 
factors. For the purpose of the article, the methods 
are distinguished into three general groups according 
to their basic principles. In detail the description of 
object recognition methods can be found e.g. in 
[Sze11]. 

2.1.1 Morphology-based marker detection 
These methods are based on recognition of shapes in 
preprocessed images. An approach described in 
[HNL96] uses a system of concentric contrast circles 
(CCC). The marker is composed of a black circle 
around a white middle or vice versa. The detection 
process starts with image thresholding and noise 
removal. Further, connected components are found, 
and their centers are determined. The results are two 
sets of centers: centers of white connected 
components and centers of black connected 
components.  CCC marker position is given by the 
cross section of black and white centers. 

An example of another approach is implemented in 
the frequently used ARToolKit [KB99]. In this case, 
square markers with black borders and black-and-
white inner pictures are detected. A camera image is 
thresholded and connected components contours are 
found. Further, quadrangles are selected from the 

contours set. These quadrangles represent potential 
markers [KTB*03]. 

The obvious limitation of these methods is their 
inability to deal with occlusions. Such occlusion 
causes a change in the image morphology. Therefore, 
the required shape cannot be detected.  

2.1.2 Edge-based marker detection 
These methods are more flexible with regard to the 
marker occlusions than the image morphology-based 
methods. One solution that is based on this principle 
is the ARTag system [Fia05]. Although the ARTag 
markers are similar to the ARToolKit markers 
(significant is a thick black border), the implemented 
detection method is completely different. The ARTag 
method is based on detection of edgels (edge pixels) 
of an object. Further, a set of lines is constructed 
from the found edgels. It is not necessary to detect all 
line edgels; therefore, the edge could be partially 
occluded. Finally, four corresponding lines represent 
edges of a potential marker.  

The same detection principle is used also in 
StudierStube project [Hir08] and many others. 

2.1.3 Feature-based marker detection 
These methods are based on key points detection. 
The key points are various regions of interest: edges, 
corners, blobs. To identify whether a given key point 
really represents a part of a marker, it is necessary to 
match it with a key point in a marker template. This 
matching process requires that both key points to be 
matched are described by gradient changes in their 
neighborhood. The process of key point 

Figure 2: Markers used with different 
detection methods. Detected features are 

highlighted with a red color. From left: a) 
Match template, b) Golay error correction 

code, c) SURF and d) S-G detection 

a) b) 

c) d) 
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neighborhood description is usually called feature 
extraction. The output of this process is a set of 
feature descriptors vectors. The feature descriptors 
are later compared and their distance is computed 
[Low04]. This enables to match points of interest 
between a template and a camera image. 

There are several approaches for feature-based 
detection. Widely used are e.g. SIFT [CHT*09] and 
SURF [BTG06].  A thorough comparison of selected 
methods is described in [TM08]. The SURF 
(Speeded Up Robust Features) algorithm has a good 
ratio between detection capabilities and performance. 
The SURF algorithm application is composed of 
three steps: detection of key points (points of 
interest), feature extraction and key point matching. 

The detection of image key points that are used for 
the image description is based on gradient changes in 
the grayscale version of the image. Each key point is 
identified by position and radius that specifies the 
size of the key point neighborhood. Then the process 
of feature extraction is performed. 

During this process, each key point neighborhood is 
described using 64-dimensional or 128-dimensional 
vector that describes the gradient changes of each key 
point neighborhood. The descriptors are produced 
both for a template and a camera image, so that the 
corresponding key points are identified.  

The SURF main advantage is the scale and rotation 
invariance [BTG06]. This allows the SURF to work 
even with low resolution images or small objects. 
Another advantage is that the algorithm compares 
only the points; therefore, the object can be partially 
occluded. Although the SURF method is usually used 
for natural object identification (see e.g. [BCP*08]), 
it can be used also for marker detection as described 
in our method outlined in section 3. 

2.2 Marker Identification Approaches 
Morphological and edge-based detection methods are 
commonly used with following marker identification 
approaches: template matching and decoding of 
various binary codes. 

Match template identification is based on 
computation of a pixel value correlation between a 
potential marker and a list of templates. In case the 
correlation fulfills a given threshold, the marker is 
identified. Obviously, the method has a linear time 
complexity. It is necessary to compute correlations 
with all templates until the required one is found or 
all templates are tested. Moreover, it is difficult to 
choose a threshold that allows to distinguish a large 
amount of markers [Bru09]. Therefore, methods 
based on different binary codes are frequently used to 
compensate this problem. One of the possible codes 
is the Golay error correction code. 

A marker based on the Golay error correction code 
(ECC) can be composed of a large white square in the 
top left corner and e.g. 24 black or white squares that 
encode a number. The large square provides 
information about the marker orientation (see Fig. 2-
b). 

In the first step, a Golay ECC decoder for such a 
marker detects the position of the large white square. 
Further, it divides the code area into 24 blocks and 
calculates an average pixel value in all segments. 
Finally, the average value is thresholded to zero or 
one and the binary code is reconstructed. Possible 
implementation of the code reconstruction is outlined 
in [MZ06]. 

A significant advantage of this approach is that the 
binary code is reconstructed in a constant time. 
Another important advantage is the ability to correct 
errors caused by occlusions or an image corruption. 
Finally, the amount of distinguishable markers is 
limited just by the binary code length. 

A feature-based method, such as the SURF is, is 
capable of both marker detection and marker 
identification. Therefore, it is not usually used with 
an identification method. As mentioned above, the 
method relies on searching for distinctive key points 
in a camera image that are then matched against 
image template descriptors. This process has linear 
time complexity because all template descriptors 
must be tested until the required one is found. 

2.3 Summary of the Marker Recognition 
In general, there are three approaches for marker 
recognition. The first one is based on image 
morphology. Detection can be fast and precise. 
However, it cannot deal with marker occlusions. The 
edge-based methods can detect partially occluded 
markers. Nevertheless, this ability is limited. Larger 
occlusions of the edges are problematic. Both 
detection methods can be accompanied by a binary 
code identification method that is able to work in a 
constant time and reliably distinguish a substantial 
amount of markers. 

Feature-based approaches are able to detect and 
identify even substantially occluded markers. 
However, they work in a linear time. This complexity 
is usually problematic for real-time applications with 
larger amounts of markers. Even more, feature-based 
methods have problems with distinguishing of similar 
markers [SZG*09]. 

3. S-G HYBRID RECOGNITION 
METHOD 
The proposed identification method combines the 
positive properties of two previously mentioned 
methods. We take advantage of robustness of the 
SURF feature-based object identification and 
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combine it with high reliability and effectiveness of 
the Golay error correction code detection, hence the 
name S-G hybrid detection method. 

3.1 Marker design 
As described in section 2.1.3, the SURF algorithm is 
suitable especially for natural objects identification. 
However, many applications use this method to 
identify only a single object in an image. This is 
marker may appear in a scene. 

The most problematic part of the SURF marker 
identification is the matching of corresponding 
marker key points in both images. The key points 
similarity is determined by gradient changes in the 
key points neighborhoods (these are represented by 
feature descriptors). If the image contains areas with 
similar gradient changes, then such areas will be 
identified as the same or similar key points. 

Therefore, it is important to design markers so that 
the key points identified in them have distinctive 
gradient changes. Furthermore, these key points must 
be distinguishable both from the scene image and 
from other markers. 

We use artificial markers very distinctive from the 
scene objects. Acceptable results are obtained using 
complex asymmetric markers composed of arbitrary 
geometric shapes (see Fig. 2–c). These markers are 
easily detected because they contain a substantial 
amount of features which can be tracked. The 
development of such marker, however, requires a lot 
of manual work. Even with a thorough testing it 
seems that only a very low number (approx. 3) of 
these markers could be reliably distinguished in an 
image. 

Therefore, to ensure the correct marker identification 
we propose a hybrid detection method – S-G 
Detection – in which we combine the SURF 
algorithm with the Golay error correction code. In 
this case, the marker template is divided into two 
parts: the marker border and marker content. These 
two parts of a template may be combined 
independently. 

Marker content is composed solely of a Golay code 
image. Only the marker content is used for marker 
identification. This has the advantage of very high 
identification reliability and allows to distinguish 
large number of markers – see section 2.2. 

Marker border is composed of different geometric 
shapes selected so that they are distinctive from real 
scene objects. However, the border is no longer used 
for identification of the markers. This is possible 
because each marker border may be combined with 
any number of Golay codes to identify the marker. 
This combination solves the problem of 
distinguishing between marker templates while 
maintaining great robustness against template 
occlusion (see Fig. 4). Different marker borders may 
be used in the application. However, it is not 
necessary. We use the same border for all markers. 

3.2 Marker Detection 
As been described in the previous section, we use the 
SURF method to identify key points only in the 
marker border (see Fig. 2–d). This border is the same 
for all markers. A strong advantage of this approach 
is that the time complexity of the whole algorithm is 
not a function of a number of templates (see section 
2.1). Therefore, we can use a high number of markers 
without a performance hit. This is an important 
usability feature.  

A common approach [Lag11] in matching the 
template and video frame points of interest is: find 
the best matches of key points using a defined metric, 
filter out false positives (invalid matches), repeat 
filtering until a sufficient number of adequately 
reliable points are obtained.  

Errors in matched points may occur when a template 
key point is matched to an unrelated video frame key 
point because it happens to have similar 
neighborhood. Another source of errors occurs when 
a video frame contains two or more markers and 
template points are matched to correct points but on 
different marker borders (two or more physical 
markers).  

Figure 3: S-G hybrid method. From left: a) key points are detected and filtered b) angle filter is 
applied so that the key points on both markers are distinguished c) marker specified in application 

configuration is detected. 

a) b) c) 
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For many applications, it is enough to identify if the 
template is present in the image, other applications 
require approximate template positions. Our 
application requires the exact position (translation 
and rotation) of the marker so that the virtual object 
may be inserted to the real scene. 

The first step of marker matching feature extractor is 
to discover key points in the processed image. Then a 
descriptor vector for each key point is found using a 
feature extractor. These vectors are matched by 
computation of Euclidean distance between each pair 
of points. Moreover, we use symmetric matching 
filter for the key points.  

First, template key points are matched against video 
frame image and the best matches are selected. Then 
the frame key points are matched against template 
key points, and best matches are selected. The 
intersection of these two sets is a set of matched 
points [Lag11]. 

Further, we filter the set of key points by application 
of an angle filter. The idea behind the angle filter is to 
take advantage of the information stored in a SURF 
key point itself. Each SURF key point contains an 
angle value, which defines the direction of the most 
significant gradient descent in the neighborhood of 
the key point. In our application, we use artificial 
markers; therefore we search for a set of predefined 
objects. This means that relative differences in 
rotation of the matched key point must be similar for 
all matched key points. That is – if the template has 
two key points and their rotation is 45° and 70°, then 
the two key points matched in the frame must have 
the rotation difference approximately 25°. Due to 
perspective deformations, the differences can be 
computed only approximately. An example of this 
filtering is shown in Fig. 3 – each set of differently 
colored points maintains the same relative rotation 
differences between points (in other words the same 
rotation difference between a template and a video 
frame). 

A difficult part of the angle filtering algorithm is 
defining initial conditions. This is caused by the fact 
that until the marker is identified, its key points, their 
rotations and order are all unknown. To overcome 
this problem, the angle filter algorithm is 
implemented by marshaling all possible rotations into 
overlapping intervals of a defined width (rotation 
difference tolerance – RT). Each interval overlaps 
half of neighboring intervals so that there are no 
artificial boundaries. Key points in each interval are 
then processed individually as if it was a standalone 
key point set. This introduces a performance hit as 
another loop iterating over sets of key point has to be 
processed. Fortunately this is upper bounded – 
maximum number of iterations is 360 / (RT · 2). This 

upper bound is hardly reached because only sets 
containing at least four points need to be processed. 
A minimum of four points is required for a correct 
positioning of a 3D model which will be added to the 
image later in the process. The angle filter algorithm 
may be described by the following pseudo-code: 
FOR each matched_point 

  difference = 

    matched_point_template->angle - 

    matched_point_frame->angle; 

  div = difference / RT 

  angles[div * RT]->add(matched_point) 

  angles[(div + 1) * RT] 

 ->add(matched_point) 

END FOR 

FOR each angle 

  find homography 

  identify Golay marker 

  IF marker identified THEN 

 display 3D object 

END FOR 

 

3.3 Marker Identification 
For each set of points detected by the angle filter, we 
compute homography matrix so that the Golay code 
can be identified. By applying the homography 
transformation to the camera image we compensate 
the perspective deformation. This image transformed 

Figure4: Examples of S-G method capability 
of occluded marker identification from a close 

distance. 
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to the camera plane is cropped and processed by the 
Golay code detector. 

If a Golay code is found, it means that the marker is 
identified. This identification introduces important 
feedback for the SURF marker detection. Given the 
reliability of the Golay detector, false positives are 
almost impossible. In other words, if the code is 
identified, we can be sure it is one of searched 
markers. It also means that the homography was 
computed correctly. This is also important because 
we can use the points to compute projection matrix. 
Reliable projection matrix is important for correct 3D 
models positioning. 

In section 2.2 that describes the Golay codes is stated 
that the Golay code rotation is determined by the 
position of the large white square in the top left 
corner. Since the S-G detection method is focused on 
robustness against marker occlusions, it is 
undesirable to have parts of the marker with greater 
importance. In the S-G method, the rotation of the 
marker is determined solely by the position of key 
points. This part of the Golay code is therefore 
unused.  

4. COMPARISON 
The S-G hybrid method was tested against two other 
solutions: ARToolKitPlus (http://handheldar.icg.tug 
raz.at/artoolkitplus.php) and ALVAR Toolkit 
(www.vtt.fi/multimedia/alvar.html). All tests were 
made in a laboratory under artificial light. We used 
markers with 14 cm long edge for testing. The 
solutions were tested from three aspects: 

• Distance – minimum, maximum and 
maximum distance without visible jitter. 

• Angles – marker was placed at different 
distances from the camera and rotated 
around x and y axis (the z axis was not tested 
because all solutions are capable of 360 
degrees rotation). 

• Occlusion – occlusion was tested with 
stationary marker and camera.  

Compared to the other two solutions, S-G has a 
smaller maximum distance where it is capable to 
identify a marker. The S-G method is able to detect a 
marker placed at a distance 2 m from the camera. The 
ARToolKitPlus and ALVAR have maximal distance at 
approx. 5 m.  

Figure 5: Examples of S-G method capability of occluded marker identification from a large 
distance. Both the marker boarder and marker content may be occluded. 
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In the angles comparison, measured results are 
influenced by the SURF algorithm limitations. The S-
G method is able to detect a marker that is under 55° 
angle to the camera axis. (0° represents a marker 
perpendicular to the camera axis. The maximal 
theoretical angle is therefore 90°.) The other two 
solutions have maximal angles ranging from 74° to 
85°. 

Neither ARToolKitPlus nor ALVAR can deal with any 
type of occlusion. This is the most important 
disadvantage of these solutions. The S-G method can 
deal with significant marker occlusion. Because S-G 
works with key points instead of morphological 
operations or e.g. edgels, it is able to withstand a 
substantial number of different occlusions. We tested 
several of them (see Fig. 4).  

The marker border can be obstructed up to 50 %. It is 
irrelevant what part of marker border is obstructed 
(all corners, two whole sides, etc.). The marker 
content (the Golay error correction code) must be 
visible at least from 75 % in case the large white 
square is obstructed. In case the obstruction is in 
other part of the Golay code, maximum allowed 
occlusion is approx. 15 %. This occlusion is limited 
by the Golay code redundancy.  

This is the most important contribution of our 
solution in comparison to other used methods.  

Because of the nature of the detection, the solutions 
capable of occlusion (e.g. ARTag) need at least three 
visible marker corners to detect and identify the 
marker. Our method is capable of the identification of 
a marker with all corners or sides covered. Our 
method has capability even of overcoming of the 
occlusion of marker contents. This is possible 
because of the Golay error correction code usage.  

5. CONCLUSION 
Our application aims to improve the car design 
process. Therefore, several criteria must be fulfilled: 
Our marker detection and identification methods must 
be able to distinguish several hundred markers (one 
marker represents one spare part). Further, it must be 
possible to compute the precise position and rotation 
of the marker. Finally, the methods must be able to 
deal with occlusions that are common in real 
situations. 

The SURF detection method as well as the Golay 
error correction code is able to deal with the 
occlusions. The proposed S-G registration method is 
slower than other frequently used approaches (e.g. 
image morphology approach with the Golay error 
correction codes). Still, it works in a constant time 
that is significant for real-time applications. 

Nevertheless, in case of very good lighting conditions 
and absence of occlusions we recommend techniques 
based on the image morphology. With these methods, 
the video stream processing speed is substantially 
improved. Our AuRel application supports both 
approaches; therefore, registration technique is 
chosen according to the current conditions. By 
default, the morphology-based method (16 fps) is 
used. In case a marker detected in previous frame is 
missing, we switch to the S-G method (4 fps). 
Following frame is again processed by morphology-
based method. Frame rates are measured on 
640×480 px camera stream processed by Intel Core 
i5 2.6 GHz, 4 GB RAM, HDD 7200 rpm.  

We consider our approach very promising. 
Nonetheless, there must be further research focused 
on several technical aspects. Particularly, the marker 
detector performance should be optimized (on the 
reference hardware configuration, ARToolKitPlus and 
ALVAR have above 20 fps). This could be done by 
reducing the number of key points in exchange for 

Figure 6: Marker occlusion. The marker is 
approx. 2 m distant from the camera. 

Figure 7: Key points detected by the S-G 
method and augmented 3D model. 
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lower reliability. Also the maximum detection 
distance needs to be improved. Possible solution can 
be to improve marker design so that the marker 
detector response is increased as outlined in 
[Sch*09].  

SURF method can be easily used to design a marker-
less tracking method as outlined in many articles. The 
absence of markers can substantially improve the 
application usability. Nevertheless, there could be a 
problem with selection of a correct 3D model and its 
manual position adjustment. 
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ABSTRACT
The rendering of participating media still forms a big challenge for computer graphics. This remark is particularly
true for real-world clouds with their inhomogeneous density distributions, large range of spatial scales and different
forms of appearance. We survey techniques for cloud visualization and classify them relative to the type of volume
representation, lighting and rendering technique used. We also discuss global illumination techniques applicable
to the generation of the optical effects observed in real-world cloud scenes.
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1 INTRODUCTION

We review recent developments in the rendering of par-
ticipating media for cloud visualization. An excellent
survey on participating media rendering was presented
by Cerezo et al. [5] a few years ago. We build upon
their survey and present only recently published tech-
niques, with a focus on the rendering of real-world
cloud scenes. In addition, we discuss global illumina-
tion techniques for modeling cloud-to-cloud shadows
or inter-reflection.

We start with explaining real-world cloud phenomena,
state the graphics challenges caused by them, and move
on to optical models for participating media. In the
following sections we categorize the state-of-the-art ac-
cording to three aspects: The representation of clouds
(Section 2), rendering techniques (Section 3) and light-
ing techniques (Section 4).

1.1 Cloud Phenomenology
Clouds exhibit a huge variety of types, differing accord-
ing to the following aspects.

Size: Clouds reside in the troposphere, which is the
layer above the Earth’s surface reaching up to heights
of 9–22 km. In the mid-latitudes clouds show a maxi-
mum vertical extension of 12–15 km. Their horizontal
extension reaches from a few hundred meters (Fig. 1.7)
to connected cloud systems spanning thousands of kilo-
meters (Figs. 1.11 and 1.12).

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 1: Clouds as seen from the ground: broken cloud
layers with fractal cloud patches (top row), clouds with
diffuse boundaries (second row), dense cloud volumes
with surface-like boundaries (third row); and clouds
viewed from a plane and from space (last two rows),
where (14) shows a zoom into the central region of (13).

Geometry: In relation to the Earth’s radius (6371 km)
the troposphere represents a shallow spherical shell.
The curvature of the Earth produces the horizon and is
directly visible when viewing clouds from space.

Clouds often develop at certain heights and form layers.
These either consist of cloud patches (Fig. 1.1 to 1.5) or
create overcast cloud sheets (Fig. 1.6 or 1.11).
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Local upward motions emerging from the ground (con-
vective plumes) create clouds with a sharp cloud base
and a cauliflower-like structure above, so-called Cumu-
lus (Figs. 1.7 to 1.9). Their vertical extension reaches
up to several kilometers (Fig. 1.9).
For low clouds also mixed forms of convective and lay-
ered clouds exist, where the convective plumes are ver-
tically bound and form a layer (Fig. 1.3).
Clouds formed in connection with frontal systems usu-
ally show a large vertical extension and can span thou-
sands of kilometers (Fig. 1.12).
Boundary Appearance: The appearance of clouds
mainly depends on the cloud volume’s constituents:
droplets of different size or ice particles. While large
water droplets produce a determined, surface-like
boundary (Figs. 1.7 to 1.9), smaller droplets create a
diffuse or fractal boundary (Figs. 1.2 to 1.6). Ice parti-
cles often form hair-like or fiber-like clouds, so-called
Cirrus (Fig. 1.1), or diffuse clouds, the anvil-like tops
of convective clouds (Fig. 1.13).
The appearance of a cloud is strongly influenced by
the distance to its observer: While distant clouds often
show a distinct surface and sharp contours (Figs. 1.12
and 1.13), a closer look reveals diffuse or fractal struc-
tures (Fig. 1.14).

Optical Phenomena: Clouds consist of water droplets
and ice crystals which scatter light mostly independent
of wavelength. Clouds are therefore basically white.
Spectral colors appear only at certain angular constella-
tions but generally do not influence their overall appear-
ance. However, several optical phenomena determine
their characteristic, natural appearance:
Self-Shadowing: The attenuation of light within a
cloud creates gray tones and is proportional to the
optical depth of the volume. The self-shadowing
provides the cue to perceive clouds as volumetric
objects.
Multiple scattering slightly attenuates the effect of
self-shadowing by distributing light within the cloud
volume in a diffusion-like process; see e.g. [4, 27, 33].
Inter-Cloud Shadows: Clouds cast shadows onto other
clouds, like in Fig. 1.11, where a high cloud layer on the
right-hand side shadows a low cloud layer.
The Earth’s Shadow: Clouds can be shadowed by the
Earth; see Fig. 1.8 showing an evening scene, where the
low clouds lie in the shadow of a mountain range.
Indirect Illumination: Light inter-reflection between
different clouds or between different parts of the same
cloud brighten those regions, as, e.g., in Fig. 1.9, where
the cloud seems to gloom from the inside.
Light Traps: Light inter-reflection at a smaller scale
occurs on determined cloud surfaces (Neyret [29]) and
lets concavities appear brighter (Figs. 1.7 and 1.10).

Corona: The corona effect occurs when the cloud is
lit from behind. The strong forward scattering at the
boundary produces a bright silhouette (silver-lining).

Atmospheric Scattering: Clouds often appear in vivid
colors. This is caused by the scattering of light outside
the cloud volume on air molecules and aerosols. Clouds
are therefore often lit by yellowish to reddish sunlight
(Fig. 1.9). Different paths of light in the atmosphere let
the high clouds in Fig. 1.14 appear bright white and the
low clouds yellowish. Atmospheric scattering also cre-
ates blue skylight which in some situations represents
the main source of lighting (Fig. 1.8).

Ground Inter-Reflection: For low-level clouds the
inter-reflection with the ground creates subtle tones de-
pending on the type of the ground; see e.g. [3].

1.1.1 Summary

From a computer graphics point of view we identify
the following volume properties, in addition to the form
of the clouds as created by cloud modeling techniques,
which are out of the scope of this survey: thin clouds
that show no self-shadowing; cloud patches that repre-
sent a mixture of slightly dense cores and optically thin
boundaries, usually forming horizontally extensive lay-
ered clouds; and dense cloud volumes of different sizes
and extensions with a sharp or surface-like boundary.
The boundary of clouds exhibits either a fractal, dif-
fuse or sharp appearance.

1.2 Computer Graphics Challenges
A realistic visualization of clouds requires to tackle the
following challenges:

Heterogeneity: Real-world cloud scenes typically con-
sist of a very heterogeneous collection of clouds with
different appearances, sizes and forms. Different cloud
types require different volume representations, lighting
and rendering techniques.

Atmospheric Scattering: For creating a cloud’s
natural appearance the lighting model employed has to
reproduce its typical optical phenomena (see Sec. 1.1),
including atmospheric scattering which is the main
source for color in the sky. This requires the inclusion
of atmospheric models (which are not discussed in this
survey) in the lighting process of clouds.

Curved volume: The spherical atmosphere makes it
difficult to take advantage of axis-aligned volumes if
clouds are viewed on a large or even global scale, as in
Figs. 1.12 or 1.13.

Huge domain: The sheer size of the volume of real-
world cloud scene, especially when viewed from above,
like in Figs 1.11 to 1.13, requires sophisticated and ef-
ficient lighting and rendering techniques.
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1.3 Participating Media
A cloud volume constitutes a participating medium ex-
hibiting light attenuation and scattering. This section
uses the terminology of [5] to provide a short introduc-
tion to the radiometry of participating media.

While light in vacuum travels along straight lines, this
is not the case for participating media. Here photons in-
teract with the medium by being scattered or absorbed.
From a macroscopic point of view light spreads in par-
ticipating media, gets blurred and attenuated, similar to
heat diffusion in matter.

Participating media are characterized by a particle den-
sity ρ , an absorption coefficient κa, a scattering coeffi-
cient κs, and a phase function p(~ω, ~ω ′) which describes
the distribution of light after scattering.

Absorption is the process where radiation is trans-
formed to heat. The attenuation of a ray of light with
radiance L and direction ~ω at position x (within an in-
finitesimal ray segment) is described by

(~ω ·∇)L(x, ~ω) = −κa(x)L(x, ~ω).

In the atmosphere absorption is mainly due to water va-
por and aerosols. Cloud droplets or ice crystals show
little absorption which means that the light distribution
in clouds is dominated by scattering.

Scattering is the process where radiance is absorbed
and re-emitted into other directions. Out-scattering
refers to the attenuation of radiance along direction ~ω
due to scattering into other directions:

(~ω ·∇)L(x, ~ω) =−κs(x)L(x, ~ω).

In-scattering refers to the scattering of light into the
direction ~ω from all directions (integrated over the
sphere) at a point x:

(~ω ·∇)L(x, ~ω) =
κs(x)
4π

∫
4π

p(~ω ′, ~ω)L(x, ~ω ′)dω
′,

Extinction is the net effect of light attenuation due to ab-
sorption and out-scattering described by the extinction
coefficient κt = κa +κs.

Emission contributes light to a ray:

(~ω ·∇)L(x, ~ω) = κa(x)Le(x, ~ω).

It is usually not relevant for cloud rendering since
clouds do not emit light. (An exception is lightning
inside a cloud.)

Radiative Transfer Equation (RTE): Putting all terms
together yields the RTE which describes the change of
radiance within a participating medium at a point x:

(~ω ·∇)L(x, ~ω) = κa(x)Le(x, ~ω) +

κs(x)
4π

∫
4π

p(~ω ′, ~ω)L(x, ~ω ′)dω
′ −

κa(x)L(x, ~ω) − κs(x)L(x, ~ω).

L(x, ~ω) L(x0, ~ω)x′

x x0

Ls(~ωs)

L(x, ~ω) L(x0, ~ω)

x′x x0

xs
Ls(~ωs)

Figure 2: Multiple scattering (left), and the single scat-
tering approximation (right).

By using the single scattering albedo Ω = κs/κt and
noting that κa can be expressed as κa = κt (1−Ω), we
can re-write the RTE as

(~ω ·∇)L(x, ~ω) = κt(x)J(x, ~ω) − κt(x)L(x, ~ω), (1)

with the source radiance J:

J(x, ~ω) = (1−Ω(x))Le +

Ω(x)
4π

∫
4π

p(~ω ′, ~ω)L(x, ~ω ′)dω
′.

The source radiance describes all contributions of ra-
diance to a ray (x, ~ω) at a point x inside the medium.
In high-albedo media, like clouds, the source term is
mainly due to in-scattering, while the extinction is dom-
inated by out-scattering: κt ≈ κs.

Integrating the RTE along a ray from x0 to x yields the
radiance reaching point x from direction−~ω (see Fig. 2,
left):

L(x, ~ω)= T (x,x0)L(x0, ~ω)+
∫ x

x0

T (x,x′)κt(x′)J(x′)dx′,

(2)
with the transmittance T (x1,x2) = exp(−∫ x2

x1
κt(x)dx).

The boundary condition of the integral is L(x0, ~ω), rep-
resenting the light coming from the background, an en-
vironment map, or from scene objects.

Note that the coefficients κ∗ depend on the wavelength.
Therefore, three versions of Eqn. 2 have to be solved
with appropriate coefficients κ∗,λ for each wavelength
corresponding to the RGB color components.

Single Scattering Approximation: A difficulty in
solving Eqn. 2 is that L appears (implicitly through J)
on both sides of the equation. A common approxima-
tive solution is to account only for a certain number of
scattering events and apply extinction on the paths in
between. Considering only the first order of scattering
yields the single scattering approximation: The source
radiance JSS is given by the light from the light source
Ls attenuated on its way between xs and x′, see Fig. 2
(right), thus eliminating L:

JSS(x′, ~ω) = Ω(x′)T (x′,xs) p(x′, ~ωs, ~ω)Ls(xs, ~ωs).

The single scattering approximation simulates the self-
shadowing of a volume. Higher order scattering ac-
counts for the “more diffuse” distribution of light within
the volume.
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Phase Function: A scattering phase function is a prob-
abilistic description of the directional distribution of
scattered light. Generally it depends on the wavelength,
and the form and size of the particles in a medium. Usu-
ally phase functions show a symmetry according to the
incident light direction, which reduces it to a function
of the angle θ between incident and exitant light p(θ).

Often approximations for certain types of scattering are
used, like the Henyey-Greenstein or the Schlick func-
tion. However, as noted in [4], those functions cannot
model visual effects that depend on small angular vari-
ations, like glories or fog-bows. See [4] and its refer-
ences for plots and tabular listings of phase functions.

2 CLOUD REPRESENTATIONS
A cloud representation specifies the spatial distribution,
overall structure, form, and boundary appearance of
clouds in a cloud scene.

2.1 Hierarchical Space Subdivision
2.1.1 Voxel Octrees

Voxel octrees are a hierarchical data structure built upon
a regular grid by collapsing the grid cells of a 2×2×2
cube (children) to a single voxel (parent).

Sparse voxel octrees reduce the tree size by account-
ing for visibility and LOD: Interior voxels are removed,
yielding a hull- or shell-like volume representation (see
Fig. 3, middle). Also hidden voxels (relative to the cur-
rent viewing point) are removed (see Fig. 3, right). Ad-
ditionally the LOD resolution can be limited according
to the screen resolution (view-dependent LOD). These
techniques require an adaptive octree representation ac-
companied with an update strategy.

Crassin et al. [7], and similarly Gobetti et al. [13], pro-
pose a dynamic octree data structure in combination
with a local regular grid representation. Each node of
the octree is associated with a brick, a regular 323 voxel
grid, which represents a filtered version of the volume
enclosed by its child nodes. The bricks are stored in
a brick pool of a fixed size. Bricks are referenced by
pointers stored in the nodes of the octree (see Fig. 4).
The octree nodes themselves are stored in a pool as well
(node pool). During the visualization brick and node
data is loaded on demand and the pools are managed by
updating least recently used data.

Figure 3: Voxel volume (left), shell-like boundary vox-
els (middle), culling invisible voxels (right).

N0

N0.2

N0.2.3

brick pool

N0.2.3

N0.2

N0node pool
octree bricks

Figure 4: Sketch of the GigaVoxel data structure [7].

Laine and Karras [25] store an octree data structure in
a single pool. The data is divided into blocks which
represent contiguous areas of memory allowing local
addressing and taking advantage of fast memory ac-
cess operations on the GPU (caching). The data struc-
ture is designed to compactly store mesh-based scenes
but their open-source implementation could probably
be adapted to represent cloud volumes.
Miller et al. [28] use a grid representation on the coarse
scale and nest octrees within those cells. This provides
fast grid marching on a large scale, and adaptive sam-
pling on the small scale. A fixed data structure, resem-
bling 4-level octrees, allows to directly access the oc-
tree’s nodes without requiring pointers. However, their
current implementation assumes that the whole scene
fits into the memory of the graphics device, which lim-
its the model size. A streaming-based data structure for
dynamic volumes was announced as future work.
The real-time voxelization of scene geometry, as pro-
posed by Forester et al. [12], allows to transform raster-
izable geometry to an octree representation on-the-fly
on the GPU, and thus to apply voxel-based lighting and
rendering to a surface-based geometry.
Octrees are a flexible data structure, generally capable
of representing all types of clouds and supporting effi-
cient lighting and rendering techniques. However, since
octrees usually take advantage of axis-aligned grids,
they are not directly applicable in an efficient way to
large-scale cloud scenes, but would have to be nested in
the spherical shell or used with a ray caster that takes
into account the curvature of the Earth.

2.1.2 Binary Space Partitioning (BSP)
BSP, e.g., in form of kd-trees, recursively subdivides
the space into half-spaces, concentrating at regions with
high geometric detail and removing empty space. BSP
could be used for cloud volume representation as well.

2.1.3 Bounding Volume Hierarchies (BVH)
BVH enclose scene geometry by bounding planes. Re-
cently, BVH were used for structuring particle systems
[14], which could also be employed for cloud volumes.

2.2 Implicit Representations
A common way to model and represent a cloud’s den-
sity field is the use of procedural methods. While the
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Figure 5: Perlin noise [31] and “fractal sum” [11] func-
tions (left). A hypertexture applied to a surface (right).

overall structure is usually specified by simple geomet-
ric primitives, like spheres or ellipsoids, the internal,
high-resolution structure is modeled by a function.

Perlin and Hoffert [31] introduce space-filling shapes,
based on procedural functions, so-called hypertextures.
Ebert et al. [11] propose many additional noise func-
tions (see Fig. 5, left), and create various natural pat-
terns applicable also for clouds.

The sampling of implicitly defined densities can be-
come expensive and harm rendering performance. Sch-
pok et al. [36] propose to evaluate the procedural func-
tions on-the-fly on the GPU during the rendering by us-
ing a fragment shader program and a 3D texture con-
taining Perlin noise.

Kniss et al. [22] use procedural functions for geomet-
ric distortion which adds a fractal appearance to regular
shapes by changing the vertex positions of the geometry
rendered. They apply this distortion during the render-
ing process by using vertex shader programs.

Bouthors et al. [4] use hypertextures in combination
with surface-bounding volumes for creating a fractal
boundary appearance; see Fig. 5, right.

Implicitly specifying a volume via procedural functions
is a compact volume representation. The computational
cost can be mitigated by employing parallel process-
ing on the GPU and taking advantage of hardware-
supported tri-linear interpolation of 3D textures. Pro-
cedural techniques are perfect for clouds with a frac-
tal boundary appearance. However, they only provide
the fine-scale volume structure while the overall cloud
shape has to be modeled by other techniques.

2.3 Particle Systems
The volume is represented by a set of particles with a
pre-defined volume. Usually spherical particles with a
radial density function are used.

Nishita et al. [30] promote the use of particles with
a Gaussian density distribution, so-called metaballs.
While the metaballs in [30] are used only to create a
volume density distribution, Dobashi et al. [10] directly
light and render the metaballs and visualize medium-
size cloud scenes of Cumulus-like clouds with a diffuse
boundary appearance.

Bouthors and Neyret [2] use particles to create a shell-
like volume representation for Cumulus-like clouds.

Their algorithm iteratively places particles at the in-
terface of a cloud volume, with smaller particles being
placed upon the interface of larger particles. This cre-
ates a hierarchy of particles with decreasing radius and
specifies the cloud’s surface, which can be transformed,
e.g., to a triangle mesh.

Efficient transformation algorithms were developed to
match the favored lighting and rendering approaches.
Cha et al. [6] transform the density distribution given
by a particle system to a regular grid by using the GPU,
while Zhou et al. [44] propose the inverse process trans-
forming a density field to radial basis function (RBF)
representation. This low-resolution particle system is
accompanied by a high-resolution grid, which stores
deviations of the particles’ density distribution from the
initial density field in a so-called residual field. Perfect
spatial hashing allows a compact storage of this field.

Particles systems are a compact volume representation
and directly support many cloud modeling techniques.
Spherical particles are well suited for Cumulus-like
clouds or dense cloud volumes, but less appropriate for
stratified cloud layers with a large horizontal extension
or for thin, fiber-like clouds.

2.4 Surface-Bounded Volumes
The cloud volume is represented by its enclosing hull,
usually given as a triangle mesh. Since no information
on the internal structure is available, usually a homoge-
neous volume is assumed.

Bouthors et al. [4] demonstrate the use of surface-
bounded volumes for visualizing single Cumulus
clouds. A triangle mesh is used in combination
with a hypertexture to add small-scale details at the
boundaries. A sophisticated lighting model reproduces
a realistic appearance (see Sec. 4.1.4).

Porumbescu et al. [32] propose shell maps to create a
volumetric texture space on a surface. A tetrahedral
mesh maps arbitrary volumetric textures to this shell.

Surface-bounded volumes are a very compact represen-
tation of cloud volumes, allowing for efficient rendering
and for incorporating sophisticated lighting techniques.
However, they are only applicable if a quick saturation
of a ray entering the volume may be assumed. While
this is valid for dense clouds it does not apply to thin
or layered clouds with their optically thin boundaries.
Also special rendering techniques have to be developed
for allowing perspectives from within the clouds.

2.5 Clouds as Layers
Clouds represented by a single layer, usually rendered
as a textured triangle mesh, allow fast rasterization-
based rendering and are the traditional technique to
present clouds, e.g., during weather presentations [24].
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Bouthors et al. [3] visualize cloud layers viewed from
the ground or from above. They achieve a realistic
appearance of the cloud by applying a sophisticated,
viewpoint-dependent lighting model.

The 2D representation is especially predestined for thin
cloud sheets viewed from the ground, or for visualizing
the cloud tops viewed, e.g., from the perspective of a
satellite. However, this non-volumetric representation
limits the possible perspectives and generally does not
allow for animations, like transitions of the viewpoint
from space to the ground, or cloud fly-throughs.

3 CLOUD RENDERING TECHNIQUES
3.1 Rasterization-based Rendering
3.1.1 Volume Slicing
Volume slicing is a straightforward method for render-
ing regular grids. The slices are usually axis aligned
and rendered in front-to-back order (or vice-versa), ap-
plying viewing transformations and blending. While
volume slicing is not necessarily a rasterization-based
method, most algorithms exploit the highly optimized
texturing capabilities of the graphics hardware.

Schpok et al. [36] use volume slicing for cloud render-
ing and propose the use of the GPU also for adding de-
tailed cloud geometry on-the-fly by using a fragment
shader program. This reduces the amount of data which
has to be transferred onto the GPU to a low-resolution
version of the cloud volume. Harris et al. [15] create
the density volume by a CFD simulation on the GPU
for creating a 3D density and light texture which can
efficiently be rendered on the GPU. Sparing the trans-
fer of the volumetric data from the CPU, they achieve
interactive frame rates for small volumes (up to 643),
creating soft, diffuse clouds. Hegeman et al. [17] also
use 3D textures to capture the volume density and the
pre-calculated source radiance, and evaluate a lighting
model in a CG shader program during rendering.

Zhou et al. [44] visualize smoke represented by a
low-resolution particle system accompanied by a
high-resolution density grid, stored in compressed
form (see Sec. 2.3). During the rendering process the
lighted particles are first rasterized and converted to a
3D texture by applying parallel projection rendering
along the z-axis to fill slices of the 3D texture. Thereby,
for each slice, all particles are traversed and, in case
of intersection with the slicing plane, rendered as
textured quads. During this pass also the residual
field is evaluated and stored in a separate 3D texture.
In a second step perspective rendering is applied by
slicing in back-to-front manner. Again, for each slice
all particles are traversed and bounding quads are
rendered triggering a fragment shader which composes
the light and density information from the 3D textures.
They achieve interactive frame rates under dynamic

Figure 6: Volume rendering by half-angle slicing.

lighting conditions for moderate volume sizes which
completely fit into the GPU’s memory (1283 in their
examples), based on 0.5 to 1.5 hours of pre-processing
time.
Half-Angle Slicing: Slicing the volume at planes ori-
ented halfway between the lighting and viewing direc-
tion (or its inverse, see Fig. 6) is called half-angle slic-
ing. It allows to combine the lighting and rendering of
the volume in a single process by iterating once over
all slices. During this single-volume pass two buffers
are maintained and iteratively updated: one for accumu-
lating the attenuation of radiance in the light direction,
and one for accumulating the radiance for the observer
(usually in the frame buffer). Due to the single pass
through the volume, the lighting scheme is limited to
either forward or backward scattering.
Kniss et al. [22] use half-angle slicing in combination
with geometric distortion, modifying the geometry of
shapes on-the-fly during rendering (see Sec. 2.2) by us-
ing vertex shader programs. Riley et al. [35] visualize
thunderstorm clouds, taking into account different scat-
tering properties of the volume.
For avoiding slice-like artifacts volume slicing tech-
niques have to employ small slicing intervals, resulting
in a large number of slices which can harm rendering
performance and introduce numerical problems. Inho-
mogeneous volumes, like in Figs. 1.2 or 1.14, would
also require a huge number of slices for appropriately
capturing the volume’s geometry and avoiding artifacts
in animations with a moving viewpoint. Slicing-based
methods therefore seem to favor volumes with soft or
diffuse boundaries and, thus, are applicable to clouds
with sharp boundaries only to a limited extent.

3.1.2 Splatting
Splatting became the common method for rendering
particle systems. Particles, which are usually specified
as independent of rotation, can be rendered by using a
textured quad representing the projection of the particle
onto a plane, also called splat or footprint. The particles
are rendered in back-to-front order, applying blending
for semi-transparent volumes.
Dobashi et al. [10] use metaballs for splatting cloud
volumes. Harris et al. [16] accelerate this approach
by re-using impostors, representing projections of a
set of particles, for several frames during fly-throughs.
The use of different particle textures can enhance the
clouds’ appearance [42, 18].

Journal of WSCG, Vol.20 210 http://www.wscg.eu 



Since usually a single color (or luminance) is assigned
to each particle and the particles do not represent a dis-
tinct geometry, but a spherical, diffuse volume (due to
the lack of self-shadowing within a particle), the splat-
ting approach is limited to visualizing clouds with a
soft, diffuse appearance. Clouds with a distinct surface
geometry, like Cumulus clouds, cannot be reproduced
realistically.

3.1.3 Surface-Based Volume Rendering

Nowadays, rendering clouds as textured ellipsoids is
no more regarded as realistic. The same applies to the
surface-bounded clouds of [41]. A triangle mesh is cre-
ated by surface subdivision of an initial mesh, created
by a marching cubes algorithm applied on weather fore-
cast data. The rendering of the semi-transparent mesh,
however, is prone to artifacts on the silhouette.

Bouthors et al. [4] resurrected surface-based cloud ren-
dering by using fragment shader programs which cal-
culate the color for each fragment of a triangle mesh
at pixel-basis. This allows to apply a sophisticated
volume lighting scheme and the sampling of a hyper-
texture superposed onto the surface on-the-fly for each
pixel. They achieve a realistic, real-time visualization
of dense clouds with fractal and sharp boundaries.

3.2 Ray Casting-Based Rendering
3.2.1 Ray Marching

Ray marching casts rays into the scene and accumulates
the volume densities at certain intervals. For rendering
participating media volumes, like clouds, the illumina-
tion values of the volume have to be evaluated, either
by applying a volume lighting model on-the-fly or by
retrieving the illumination from a pre-computed light-
ing data structure.

Grids: Cha et al. [6] transform a particle-based volume
representation to a regular density grid for applying ray
marching. The volume density is sampled within a 3D
texture, combined with the illumination, stored in a sep-
arate 3D texture, and accumulated along the viewing
rays. Geometric detail is added to the low-resolution
volume representation on-the-fly by slightly distorting
the sampling points of the ray march according to a pre-
computed 3D procedural noise texture. For volumes fit-
ting into the memory of the GPU (around 2563 in their
examples), they achieve rendering times of a few sec-
onds (including the lighting calculation).

BVHs: A particle system stored within a kd-tree
structure is proposed by Gourmel et al. [14] for fast ray
tracing. The technique could be used for cloud render-
ing, e.g., by ray marching through the particle volumes
and adding procedural noise as proposed in [4] or [6].

Octrees: The huge amount of data caused by volu-
metric representations can be substantially reduced by
using ray-guided streaming [7, 13, 25]. The GigaVoxel
algorithm [7] is based on an octree with associated
bricks (Sec. 2.1.1) which are maintained in a pool and
streamed on demand. The bricks at different levels of
the octree represent a multi-resolution volume, similar
to a mip-map texture. Sampling densities at different
mip-map resolutions simulates cone tracing (see Fig. 4,
right). The octree is searched in a stack-less manner,
always starting the search for a sampling position at the
root node. This supports the cone-based sampling of
the volume since the brick values at all levels can be
collected during the descent. The implementation em-
ploys shader programs on the GPU, and achieves 20–90
fps, with volumetric resolutions up to 160k.

4 LIGHTING TECHNIQUES
4.1 Participating Media Lighting
We review recent volume lighting approaches and refer
to [5] for a survey of traditional, mainly off-line lighting
models.

4.1.1 Single-Scattering Approximation
Slice-Based: Schpok et al. [36] use volume slicing
for creating a low-resolution volume storing the source
radiances. This so-called light volume is oriented such
that light travels along one of the axes, which allows
a straightforward light propagation from slice to slice.
The light volume storing the source radiance is calcu-
lated on the CPU and transferred to a 3D texture on the
GPU for rendering.

In the half-angle slicing approach by Kniss et
al. [22, 23] the light is propagated from slice to slice
through the volume by employing the GPU’s texturing
and blending functionalities. A coarser resolution can
be used for the 2D light buffer (Fig. 6), thus saving
resources and accelerating the lighting process.

Particle-Based: Dobashi et al. [10] use shadow cast-
ing as a single-scattering method for lighting a particle
system. The scene is rendered from the perspective of
the light source, using the frame buffer of the GPU as
a shadow map. The particles are sorted and processed
in front-to-back manner relative to the light source. For
each particle the shadow value is read back from the
frame buffer before proceeding to the next particle and
splatting its shadow footprint. This read-back operation
forms the bottleneck of the approach which limits either
the model size or the degree of volumetric detail. Har-
ris and Lastra [16] extend this approach by simulating
multiple forward scattering and propose several lighting
passes for accumulating light contributions from differ-
ent directions including skylight.

Bernabei et al. [1] evaluate for each particle the opti-
cal depth towards the boundary of the volume for a set
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of directions and store it in a spherical harmonic repre-
sentation. Each particle therefore provides an approx-
imate optical depth of the volume for all directions,
including the viewing and lighting directions (Fig. 8,
left). The rendering process reduces to accumulating
the light contributions of all particles intersecting the
viewing ray, thus sparing a sorting of the particles, and
provides interactive frame rates for static volumes. For
the source radiance evaluation a ray marching on an in-
termediate voxel-based volume is used in an expensive
pre-process. Zhou et al. [44] accomplish this in real-
time by employing spherical harmonic exponentiation;
see Sec. 4.1.6.

4.1.2 Diffusion

Light distribution as a diffusion process is a valid ap-
proximation in optically thick media, but not in inho-
mogeneous media or on its boundary. Therefore Max et
al. [27] combine the diffusion with anisotropic scatter-
ing and account for cloudless space to reproduce, e.g.,
silver-lining. However, the computational cost is still
high and causes rendering times of several hours.

4.1.3 Path Tracing

Path tracing (PT) applies a Monte Carlo approach to
solve the rendering equation. Hundreds or even thou-
sands of rays are shot into the scene for each pixel and
traced until they reach a light source. PT produces un-
biased, physically correct results but generally suffers
from noise and low convergence rates. Only recent
acceleration techniques allow an efficient rendering of
large scenes, at least for static volumes.

In [39, 43], the volume sampling process of PT is accel-
erated by estimating the free path length of a medium
in advance and by using this information for a sparse
sampling of the volume (“woodcock tracking”). While
Yue et al. [43] use a kd-tree for partitioning the volume,
Szirmay-Kalos et al. [39] use a regular grid.

4.1.4 Path Integration

Path integration (PI) is based on the idea of following
the path with the highest energy contribution and esti-
mates the spatial and angular spreading of light along
this so-called most probable path (MPP). PI favors
high-order scattering with small scattering angles, and
tends to underestimate short paths, diffusive paths and
backward scattering.

The initial calculation model of Premoze et al. [33] is
based on deriving a point spread function which de-
scribes the blurring of incident radiance. Hegeman et
al. [17] proposed the evaluation of this lighting model
using a shader program executed on the GPU. They
visualize dynamic smoke (at resolutions up to 1283)
within a surface-based scene at interactive frame rates.

Bouthors et al. [4] use PI in combination with pre-
computed tables which are independent of the cloud
volume. In an exhaustive pre-computation process the
impulse response along the MPP at certain points in
a slab is calculated and stored as spherical harmon-
ics (SH) coefficients (Fig. 7, left). During the ren-
dering process the slabs are adjusted to the cloud vol-
ume (Fig. 7, right), and used for looking up the pre-
computed light attenuation values. Multiplying it with
the incident radiance at the cloud surface around the so-
called collector area yields the resulting illumination.
The model is implemented as a shader program which
evaluates the lighting model pixel-wise in real-time.

4.1.5 Photon Mapping

Photon mapping (PM) traces photons based on Monte
Carlo methods through a scene or volume and stores
them in a spatial data structure that allows a fast nearest-
neighborhood evaluation (usually a kd-tree). However,
when applied to volumes the computational and mem-
ory costs are significant.

Cha et al. [6] combine photon tracing with irradiance
caching, accumulating the in-scattered radiances at
voxels of a regular grid. The gathering process reduces
to a simple ray marching in the light volume executed
on the GPU. This provides rendering times of a few
seconds for medium-size volumes.

Progressive photon mapping as proposed by Knaus
and Zwicker [21] improves traditional static photon
mapping (PM) by reducing the memory cost and can
also be applied to participating media. Photons are ran-
domly traced through the scene, but instead of storing
them in a photon map, they are discarded and the ra-
diances left by the photons are accumulated in image
space. Jarosz et al. [20] combine progressive PM with
an improved sampling method of photon beams.

4.1.6 Mixed Lighting Models

Lighting techniques can be combined by evaluating dif-
ferent components of the resulting light separately.

Particle-Based: Zhou et al. [44] evaluate the source
radiances at the particles’ centers by accumulating the
light attenuation of all particles onto each particle.
Thereto a convolution of the background illumination
function with the light attenuation function of the
particles (spherical occluders) is applied (Fig. 8,

~ωs

p~ω

p
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Figure 7: Pre-computed light in a slab (left), fitting
slabs to a cloud surface (right).
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Figure 8: Pre-computed optical density at a particle
center (left). Convolution of background illumination
with the light attenuation by spherical occluders (right).

right). The functions are represented by low-order
spherical harmonics (SH) and the convolution is done
in logarithmic space where the accumulation reduces
to summing SH coefficients; a technique called SH
exponentiation (SHEXP), introduced by Ren et al. [34]
for a shadow calculation. For multiple scattering an
iterative diffusion equation solver is used on the basis
of the source radiance distribution. This includes
solving linear systems of dimension n, with n being
the number of particles. The approximation of the
smoke density field by a small number of particles
(around 600 in their examples) allows interactive frame
rates under dynamic lighting conditions. However,
the super-quadratic complexity in terms of the particle
number prohibits the application to large volumes.

Surface-Based: Bouthors et al. [3] separately cal-
culate the single and multiple-scattering components
of light at the surface of a cloud layer. The single-
scattering model reproduces silver lining at the silhou-
ettes of clouds and back-scattering effects (glories and
fog-bows). Multiple-scattering is evaluated by using a
BRDF function, pre-calculated by means of path trac-
ing. Inter-reflection of the cloud layer with the ground
and sky is taken into account by a radiosity model. They
achieve real-time rendering rates by executing the light-
ing model on the GPU as a shader program.

4.1.7 Heuristic Lighting Models

Neyret [29] avoids costly physical simulations when
a-priori knowledge can be used to simulate well-
known lighting effects. He presents a surface-based
shading model for Cumulus clouds that simulates
inter-reflection in concave regions (light traps) and the
corona at the silhouette.

Wang [42] does not employ a lighting model at all, but
lets an artist associate the cloud’s color to its height.

4.1.8 Acceleration Techniques

Pre-Computed Radiance Transfer: The lighting
distribution for static volumes under changing lighting
conditions can be accelerated by pre-computing the ra-
diance transfer through the model.

Lensch et al. [26] pre-compute the impulse response to
incoming light for a mesh-based model. Local lighting
effects are simulated by a filter function applied to a

light texture. Looking up the pre-computed vertex-to-
vertex throughput yields global lighting effects.
Sloan et al. [38] use SH as emitters, simulate their dis-
tribution inside the volume and store them as transfer
vectors for each voxel. The volume can be rendered ef-
ficiently in combination with a shader-based local light-
ing model under changing light conditions.
Radiance Caching: Jarosz et al. [19] use radiance
caching to speed up ray marching rendering process.
Radiance values and radiance gradients are stored as SH
coefficients within the volume and re-used.

4.2 Global Illumination
Inter-cloud shadowing and indirect illumination cannot
be efficiently simulated by participating media lighting
models. These effects require global illumination tech-
niques, usually applied in surface-based scenes.

4.2.1 Shadows
Sphere-based scene representations allow a fast shadow
calculation, either, e.g., by using SH for representing
the distribution of blocking geometries [34] (Fig. 8,
right), or by accumulating shadows in image space [37].
The CUDA implementation of the GigaVoxel algorithm
[8] allows to render semi-transparent voxels and to cast
shadow rays. Employing the inherent cone tracing ca-
pability produces soft shadows.

4.2.2 Indirect Illumination
Voxel cone tracing applied to a sparse octree on the
GPU is used by Crassin et al. [9] for estimating indi-
rect illumination. The illumination at a surface point is
evaluated by sampling the neighborhood along a small
number of directions along cones.
A fast ray-voxel intersection test for an octree-based
scene representation is used in Thiedemann et al. [40]
for estimating near-field global illumination.

5 SUMMARY AND OUTLOOK
In the following table we summarize efficient lighting
and rendering techniques for clouds with different types
of volume (rows) and boundary appearances (columns).

diffuse fractal sharp
dense [6, 7, 10, 15] [4, 7, 11] [4, 42]

[16, 35, 44] [17, 22]
thin [22, 36, 44] [11, 17, 36] do not exist
layer [3]

The approaches surveyed represent a set of impres-
sive but specialized solutions that employ fairly diverse
techniques. However, all known approaches cover only
some of the phenomena found in nature (see Sec. 1.1).
Extensive memory usage or the algorithm’s complexity
often limit the size of a cloud volume. Thus, the realis-
tic visualization of real-world cloud scenes still is and
will remain widely open for future research for years to
come.
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Major future challenges to be tackled include the
efficient handling of

• heterogeneous cloud scene rendering, i.e., the simul-
taneous visualization of different cloud types, each
favoring a specific cloud representation, lighting and
rendering technique;

• large-scale cloud scenes, e.g., clouds over Europe;
• cloud-to-cloud shadows and cloud inter-reflection,

i.e., the combination of global illumination tech-
niques with participating media rendering;

• the inclusion of atmospheric scattering models for
lighting clouds;

• cloud rendering at different scales, i.e., views of
clouds from close and far, and seamless transitions
in between, requiring continuous LOD techniques;

• temporal cloud animations implying dynamic vol-
umes and employing cloud simulation models.
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ABSTRACT
The available methods for volume data segmentation and/or classification differ in the amount of the required
user input on the one side and precision and ability to tweak the obtained results on the other. Automation of the
task is more difficult when a general case is considered. In this paper we present an interactive segmentation and
classification tool for arbitrary volumetric data, which is based on pre-segmentation of the volume in a hierarchy
of homogeneous regions. The hierarchical subdivision allows for interactive adaptation of scale and precision
according to the user requirements. The data is processed in three dimensions which minimises the amount of the
needed interaction and gives instant overview of the resulting segmentation.
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1 INTRODUCTION
Segmentation methods, which are commonly used with
volume data, can be classified in two groups – gen-
eral methods and model-based methods [PB07]. Un-
like general ones, model-based methods are based on
certain knowledge about the target objects in the data
as, for example, the expected object shape, mean voxel
intensity, etc. In this paper we omit these as our goal
is to provide a general segmentation tool which can be
used with any volume data to segment arbitrary objects.

As the general methods use no additional information
about the data which would aid in the process of seg-
mentation, they require a greater amount of user inter-
action either in the form of process control, specifica-
tion of parameters tailored to the current task or post-
processing of the result. Our aim is to minimise this
interaction while still leaving full control of the seg-
mentation process to the user.

2 RELATED WORK
Common approach in volume data segmentation con-
sists of selection of a region or object of interest in
slices of the volume. The most basic general segmenta-
tion method used is manual segmentation where a user

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

delineates the object of interest in the slices by hand.
Although it is applicable at all times, its heavy user
interaction demands are apparent. To speed up delin-
eation of contours the LiveWire method [MMBU92]
may be used. To obtain the desired results, a suitable
cost function has to be first specified. The LiveWire
method speeds up the process of contour drawing if the
object of interest is clearly separeted from the rest of
the data. If this condition is not satisfied for the cur-
rent task, difficulties in cost function specification arise
resulting in slow downs – user intervention is required
and the method is reduced to manual segmentation.

As commonly used data sets have rather large dimen-
sions, performing the segmentation on each slice is te-
dious and time consuming. An option is to segment
only certain slices and interpolate the contour in the
in-between slices [SPoP00]. Instead of the interpola-
tion of the contour one may interpolate LiveWire con-
trol points instead and let the system compute con-
tour in intermediate slices from the interpolated control
points [SOB]. Precision of the resulting segmentation
is dependent on the used interpolation and also on the
set of key-slices. Problems might arise when topology
or shape of the contour change rapidly between slices.
Validation and potential correction of the interpolation
is necessary.

Another common segmentation method is thresholding
where voxels with intensities in certain range are se-
lected. This method can be easily applied to certain
data where tissue types can be distinguished by inten-
sity (e.g. bone tissue in CT data), but applications to
other data modalities or tissue types may pose a prob-
lem. If the task is to separate various objects of the same
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tissue type thresholding may be used for preprocessing
to reject clearly non-target voxels and thus localise the
area of interest.

Two methods based on detection of homogeneous
regions instead of contours are worth mentioning.
General region growing requires user specified seed
points and a suitable homogeneity criterion. Data is
flooded from the seed points as long as the homo-
geneity criterion is satisfied, creating a homogeneous
region. The watershed segmentation [VS91] is usually
performed on a gradient image, which is treated as
a topographic height map. Homogeneous regions
with voxels with small gradient magnitude form
valleys having voxels with high gradient magnitude on
region borders as ridges. Although there exist various
algorithms for computing the watershed transform,
variants of two approaches are common – simulation
of downhill water flow for each voxel or immersing
of the relief into water. Exhaustive study of existing
watershed algorithms is provided by Roedink and
Meijster [RM00].

A broader overview and more detailed description
of the existing segmentation methods can be found
in [PB07].

2.1 Interaction techniques
All of the previously mentioned segmentation ap-
proaches differ in the way how a user can interact with
the data to modify a partial result until the desired seg-
mentation is achieved. For example, when delineating
a contour the user directly sees the partial result and
can undo recent steps if the contour starts to diverge
from the desired position.

Thresholding requires numeric input – the threshold.
Usually, a user is provided with a histogram from which
the most suitable threshold value can be estimated.
Clean separation of various tissue types based only on
voxel intensity is rare and thus it may be difficult to find
an optimal threshold value. Usage of other methods for
refining the segmentation from thresholding (morpho-
logic operations, connected component labeling, etc) is
therefore convenient [STBH92].

Watershed segmentation produces a highly over-
segmented result, especially if the data is spoiled by
noise. Some methods allow merging of neighbour-
ing regions if the shared border is weak (gradient
magnitude is low). This situation is illustrated in
figure 1 which shows gradient magnitude image of a
CT head dataset slice – the corresponding watershed
segmentation can be seen in figure 3 (red borders).
The aim is to create segmentation in which the target
object is labeled by a unique label. If this is not
happening user intervention is usually required. For
example, an interaction technique called marker-based
watershed segmentation can be used [HP03], where a

Figure 1: Slice from the Visible human male [Ack98]
CT dataset with corresponding gradient magnitude im-
age on right.

user specifies special include and exclude points in the
data which prohibit merging of neighbouring regions if
new region would contain markers of both types.

Watershed hierarchies [Beu94] were used in a tech-
nique based on interaction with slice views by Cates
et al [CWJ05]. In such hierarchy, the order in which
regions are merged defines a binary merge tree. Orig-
inal regions form leaves and non-leaf nodes represent
regions formed by merging of two regions – its children
nodes. This tree may be used to segment an object from
a data with a possibility to select large parts of the ob-
ject by specification of high-positioned tree nodes and
to refine the border by adding/removing low-positioned
nodes.

In the paper by Armstrong et al [APB07] an extension
of LiveWire or Intelligent Scissors called Live Surface
was proposed. Data is presegmented into hierarchy of
regions. Initial regions are computed using toboggan-
ing [MB99] creating result equivalent to watershed seg-
mentation (depends on the used watershed definition).
For merging of the regions for higher levels in the hi-
erarchy a special metric is used, which is based on the
mean voxel intensity/colour and intensity/colour vari-
ance of a region. Segmentation is done by specifying
two types of markers – inner and outer – which are then
used to create a graph-cut in the region neighbourhood
graph with minimal cost. Markers can be entered on
an arbitrary cross section of the volume or directly in
the 3D view allowing to add/remove parts to/from the
border of an already segmented object.

3 THE SEGMENTATION TOOL
All of the segmentation approaches mentioned in the
previous section were either proposed for two dimen-
sional images or, if targeted to segmentation of 3D data,
were used only for interaction in two dimensional space
– on respective slices – or provided limited possibilities
to modify the resulting segmentation directly in the 3D
visualisation of the data. In our approach we let the user
directly control the segmentation process by selecting
fragments of the target object in 3D space. As manual
segmentation by pixels/voxels is too cumbersome, data
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Figure 2: Measured dependency of mean region size on
the Gaussian filter sigma. Three data sets were used
– an MRI head, VHP male CT head and VHP female
colour head dataset. Measured was diameter of mini-
mal bounding sphere centered at the region’s centre of
mass.

is pre-segmented by the watershed transform as it cre-
ates homogeneous regions which can be used instead of
single voxels.

3.1 Preprocessing
The watershed segmentation produces highly over-
segmented results, because for each local minimum in
the (usually gradient image of) original data a region
is created. This can be a serious problem especially
if noise is present in the data. To cope with this,
data is usually first smoothed by the Gaussian filter.
Smoothing, however, also shifts edges and removes
weak edges, resulting in merging of regions which a
user might desire in certain cases separated. Therefore,
we perform the watershed segmentation on a sequence
of derived data sets where each one is produced from
the original by smoothing with a gradually increasing
degree (increasing of the Gaussian sigma). As Koen-
derink showed [Koe84] this produces a set of images
where on each image details smaller than certain size
are increasingly ignored (the scale-space approach).
As can be seen in figure 2, measurements on three dif-
ferent head datasets showed that dependency of mean
bounding sphere diameter of regions on used Gaussian
filter sigma can be approximated with function 1.

d(σ) = 5(σ −1)+10 (1)

To further reduce the starting number of regions, region
merging based on mean region intensity or some other
criterion can be used.

In order to correct position of the shifted edges, caused
by smoothing, to the original position specified by the
unsmoothed data or at least data at the lowest level of
smoothing, an aligned region hierarchy is build. Spa-
tial alignment of borders of corresponding regions on
different hierarchy levels is achieved by the technique
based on the maximum number of spatially overlapping
voxels [SD02]. Thus, if later required, aligned regions

Figure 3: Three levels of watershed segmentation on
visible human – male CT dataset. In the red channel
are boundaries of regions for Gaussian smoothing with
sigma 3, in green for sigma 5 and in blue for sigma 7.
Overlapping boundaries are blended. On the left are the
original watersheds, on the right the regions are aligned
showing only red, yellow (red plus green) and white (all
three levels) boundaries.

positioned higher in the hierarchy can be unambigu-
ously decomposed to multiple smaller regions on some
lower level.

As the last step of preprocessing the relevant neigh-
bour information is extracted from the original voxel
data and stored in a file. The described technique works
equally well for scalar data (CT and MRI scans) as well
as for multi-field data (dual energy CT, T1, T2 and PD
MRI data etc). In the second case the watershed trans-
form is performed on a gradient volume obtained as
maximum of individual gradient fields.

3.2 GUI interaction
GUI of the segmentation application is shown in Fig-
ure 4. In this section all parts of the application as well
as the segmentation workflow will be explained.

After the hierarchy is loaded into the application it is
displayed in a tree widget allowing the user to navi-
gate through it. Hovering or selecting a node highlights
the corresponding region in a 3D visualisation window
(Figure 5). This allows the user to choose an initial
fragment of the region of interest. Depending on the tar-
get object and created hierarchy, regions on higher lev-
els might consist of multiple target objects (e.g. various
bones of skull). As pre-segmentation was performed at
various scale levels, there is no need to repeat the pro-
cess when the aforementioned problem arises – moving
to lower levels in the hierarchy until the objects are sep-
arated is possible.

After the initial region is selected it is possible to dis-
play neighbouring regions which satisfy certain similar-
ity criteria (Figure 6, also see section 3.3). The user can
then select either one neighbour belonging to the target
object by clicking into the 3D view or by selecting the
neighbour in the list or can select all neighbors. De-
selection of an undesired region is possible in a similar
way, too. Once a neighbour is added/removed to/from
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Figure 4: The segmentation tool: the region hierarchy is on the right. Left side from top to bottom: the list of
selected regions, classification classes, the list similar neighbours of the regions in selection. At centre-bottom
similarity criteria can be specified and above is the 3D visualisation and interaction window.

Figure 5: Selection of objects using the tree widget.
The scene consist of concentric spheres/ellipsoids with
different density and was intentionally spoiled by noise
and superimposed low frequency density variation to
make segmentation of the ellipsoids by thresholding
impossible. Left: A region on the highest hierarchy
level (white) was selected. One can see that it is com-
posed of pieces of several ellipsoids. I we go down in
the hierarchy (bottom row, in this case by two levels
of the hierarchy), these pieces are separated and can be
individually selected. The yellow region is a partially
segmented and labeled part of the central sphere.

the selection, updated neighbours of the new selection
are displayed. This allows traversal of the target object
until all fragments are in the selection. Now classifica-
tion class for the object can be created and all selected
regions can be classified (Figure 6 right). Already clas-
sified regions are during selection refining displayed
dimmed to provide context whereas the current selec-
tion is always highlighted.

3.3 Similarity criteria
To decide whether neighbouring regions are similar we
implemented five different similarity criteria. Each cri-
terion can be turned on or off and has a separate thresh-
old value. When deciding whether two neighboring re-
gions are similar all criteria which are turned on have
to return a positive answer. Detailed description of the
similarity criteria can be found below.

When searching for similar neighbours all neighbour-
ing regions of the regions in the current selection are
visited. As the selection might contain regions on dif-
ferent levels in the hierarchy we have to prevent multi-
ple inclusion of same region – once directly and second
time by including parent of the region. Naturally, re-
gions positioned higher in the hierarchy are accepted in
favor of the lower positioned child.

A second issue arises from the fact that we would like
to move to a lower level of the hierarchy and to repeat
the search for similar neighbors there, if we were not
successful on a higher level. In this case, first, all re-
gions in the selection are decomposed to regions on
the lowest level – some lowest-level regions were di-
rectly present in the selection and some were selected
indirectly by selection of its ancestor. Now we iterate
through all pairs of the selected lowest-level regions
and their neighbours (also at the lowest level). For
both regions in the pair we ascend as many levels up
in the hierarchy, until the original region in the selec-
tion which was decomposed to the currently processed
lowest-level region is found. This leaves us with a list
of pairs – (indirectly) selected region with its neighbour
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– for each level not higher than level of the original se-
lected region. Subsequently we start with the similarity
tests. If a region and its neighbor on the higher level
do not pass the selected similarity test we descent by
one level and again perform the tests. By this higher
positioned similar neighbours are found first.
A detailed description of the different similarity criteria
follows:

Mean intensity Simple criterion comparing mean in-
tensities of neighbouring regions. Difference in the
intensities have to be in the specified interval for the
test to pass. If the data contains multiple bands, the
test must pass for all bands to be considered success-
ful.

Similar neighbors In this criterion the prevalent di-
rections of intensities in the region’s neighborhood
are compared. All neighbors of a region are vis-
ited and their center of mass is computed by aver-
aging their geometric centroids weighted by their
mean intensity. Subsequently, the direction vector,
which points in the direction of growing intensity, is
obtained by subtracting the center of mass from the
geometric centroid of the region. Comparison of an
angle between such vectors of two neighboring re-
gions against a user defined threshold yields result
of the similarity test.

Surface to volume ratio As working directly with
the volume data would be slow and would increase
memory requirements significantly, only derived
information is used – mean intensity of a region,
voxel count, etc. To compare region shapes ratio
of the number of region’s surface voxels to its
total voxel count is used. The computed value is
normalized to the [0,1] range where 0 represents
sphere-like objects and 1 string-like objects.

Weak borders For two regions to be similar in this cri-
terion their border should have small mean gradi-
ent magnitude. Unlike the mean intensity criterion
which compares mean values for whole regions, this
criterion uses the original gradient data which were
used during the creation of the most-detailed water-
shed segmentation. Intensity of the regions is n this
criterion irrelevant.

Continuous border This criterion tries to find border
in the data which spans multiple region boundaries.
For two regions to pass this test they have to have
a common neighbor. Both faces – first region with
the common neighbor and second region with the
common neighbor – have to be similar. For this, the
angle between mean normal/gradient vectors of the
faces is examined. Faces which are too small are
ignored as their mean gradient vectors are based on
too small set of values.

4 RESULTS
The application was implemented in C++ and uses
OpenGL with GLSL. It was tested on the VHP dataset
(the male head CT dataset). Individual bones of the
skull, which are connected without a well defined bor-
der, were successfully segmented (figure 7 left). We
also tested the application on an MRI scan of a human
head. Figure 7 right shows segmentation of the brain
cortex with certain gyri labeled as separate objects.
Preprocessing with three levels of watershed hierar-
chies and 3 additional levels of merging by density sim-
ilarity took about 10 minutes. Both segmentations were
produced in about 30 minutes.
In contrast to other methods, we intentionally omitted
the possibility to interact through slices or cross sec-
tions to investigate the possibility for interaction only
through the 3D view. If desired, display of the slices
or cross sections can be easily added to the application,
which may be then used for an initial selection.
If compared to traditional segmentation approaches,
our method is most similar to region growing – assum-
ing that mean intensity criterion is used. Neighbours
to selected regions having similar intensity can be iter-
atively added to the selection until only regions with
large difference in intensity remain. Because of the
manual operation, user can omit regions which evaluate
similar, but are not part of the target object. This can be
essential when separating two or more objects of same
or similar intensity, but different shape (as exemplified
by segmentetion of the brain cortex in individual gyri).
Automatic, or semi-automatic methods fail to separate
these, if the interface is too weak or not present due to
partial volume effect.

5 CONCLUSION
The presented segmentation and classification tool al-
lows fast insight into data and fast segmentation of tar-
get structures while still leaving full control of the seg-
mentation in user’s hands. The amount of user interac-
tion depends on data properties – resolution, presence
of noise or other artefacts. Different similarity criteria
were presented which should simplify and thus speed-
up localisation of similar neighbouring regions in the
data. Still, the user interaction is mainly done directly
in the 3D visualisation window instead of slices. Opera-
tion in the visualisation window also gives direct visual
feedback.
The concept was tested on the VHP dataset by segmen-
tation of the bones of human skull and on MRI data by
segmentation of respective gyri of the brain cortex.
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Figure 6: From left: selection of similar neighbors starting from an initial region. The blue regions are selection
candidates (density similarity was used). White objects are already selected objects, the green color means that the
object has already been labeled. The highlighted blue candidate object can be individually added to the selection
or all candidates can be added at once.

Figure 7: Left: segmentation of skull bones of the VHP male CT head dataset. Right: segmentation of brain and
gyri in the MRI head dataset.
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ABSTRACT

Starting from the computation of a covariance matrix
of neighborhoods in a point cloud, streamlines are uti-
lized to reconstruct lines of linearly distributed points
following the major Eigenvector of the matrix. This
technique is similar to fiber tracking in diffusion ten-
sor imaging (DTI), but in contrast is done mesh-free.
Different weighting functions for the computation of
the matrix and for the interpolation of the vector in the
point cloud have been implemented and compared on
artificial test cases. A dataset stemming from light de-
tect and ranging (LIDAR) surveying served as a testbed
for parameter studies where, finally, a power cable was
reconstructed.
Keywords: tensor-field visualization; streamlines;
mesh-free methods; particle systems; point cloud; co-
variance matrix; fiber tracking; LIDAR; DT-MRI

1 INTRODUCTION

Reconstructing lines from point clouds has an impor-
tant application in light detection and ranging applica-
tions (LIDAR). The surveying of power lines and their
geometrical analysis is of great interest for companies
that transmit electrical energy. Large networks of elec-
tric facilities have to be maintained to guarantee stable
electrical power supply and prevent power outages. LI-
DAR surveying is a suitable technique to either detect
damages on the electrical facilities or detect high grow-
ing vegetation in power line corridors [19] [15]. We
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experiment on a new method to reconstruct linear struc-
tures, stemming from airborne LIDAR surveying. We
utilize a method inspired by diffusion tensor imaging
(DTI) fiber tracking developed, originally, for magnetic
resonance imaging (MRI) to track neuronal structures
in the human brain [5].

1.1 Related Work

Current algorithms for reconstructing power lines are
usually based on data filtering followed by a segmen-
tation of the filtered and reduced point cloud either di-
rectly on the point cloud data or on a rastered 2D im-
age. Melzer [18] first computes a digital terrain model
(DTM) by using the method by Kraus [14] to remove
terrain points. The remaining points are projected onto
a 2D gray-scale raster (image). A Hough-Transform
(e.g. [11]) is utilized iteratively to detect straight lines.
Later, Melzer [17] improved the segmentation of LI-
DAR data also for power cables, based on the so called
mean shift clustering, originally developed for pattern
recognition [9]. Liu et al. [16] introduced a methodol-
ogy based on statistical analysis to first remove ground
points. Then, they project points onto a 2D gray-
scale raster (image) and do a Hough-Transform simi-
lar to Melzer [18], but use a different technique for the
Hough-Transform [8] to detect straight lines. Jwa et
al. [13] developed a four step method. First they se-
lect power-line candidates, by utilizing a voxel based
Hough-Transform to recognize linear regions. After a
filtering process they construct line segments based on
geometric orientation rules and, finally, use a voxel-
based piece-wise line detector to reconstruct the line
geometries.

Weinstein et al. [23] worked on tracking linear struc-
tures in diffusion tensor data stemming from MRI. Be-
sides following the major Eigenvector they developed
some rules for overcoming areas of not linear diffusion.
The flow of Eigenvectors was also used for segmen-
tation and clustering in brain regions as, for example,
shown in [6] and [20]. Jones discusses the study of con-
nections in human brains. He states that tracking the
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diffusion directions is still not solved a in stable way
and is an active research area [12].

Our work is based on previous work on the direct vi-
sualization of the covariance matrix describing the lo-
cal geometric properties of a neighborhood distribution
within in a point cloud, the so called point distribution
tensor [21].

1.2 Our Approach

In our method we do not want to remove any points
but operate on the entire dataset to avoid artifacts due
to a complex point removal method. Instead, we first
compute the point distribution tensor for each point.
Eigen-analysis of the tensor yields the major Eigenvec-
tor, which indicates the dominant orientation of a point
distribution. We may follow this orientation by comput-
ing streamlines along this dominant Eigenvector field in
regions where one Eigenvalue dominates, so-called lin-
ear regions. In contrast, regions where the points are
distributed more isotropic, are indicated by the point
distribution tensor’s Eigenvalues becoming more simi-
lar values. We want to avoid these regions, as they will
not correspond to power cables. This approach is very
similar to the fiber-tracking approach in medical visu-
alization, but in our case the integration of the Eigen-
vectors needs to be done in a mesh-free way, merely
on a point distribution rather than uniform grids. Thus,
it can be applied to airborne LIDAR data without re-
sampling to uniform grids (which would reduce data
resolution and introduce artifacts due to the chosen re-
sampling method).

1.3 Overview of the Paper

Section 2 presents the mathematical background and
describes the implementation of the algorithm in sec-
tion 2.2. Section 2.3 shows verifications by means of
simple artificial point distributions. Here, the influence
of different weighting functions on the tensor computa-
tion and the vector field interpolation during streamline
integration is investigated. Also, two different numeri-
cal integration schemes are tested. In section 3 one set
of power cables is reconstructed from a LIDAR data set
stemming from actual observations. We then explore
the available parameter space for weighting and inte-
gration in order to identify the best values for the given
scenario.

2 ALGORITHM

2.1 Background

In [21] we defined the “point distribution tensor” of a
set of N points {Pi : i = 1, ...,N} as

S(Pi) =
1
N

N

∑
k=1

ωn(|tik,r|)(tik ⊗ tτ

ik), (1)

whereby ⊗ denotes the tensor product, τ the transpose
and tik = Pi −Pk. ωn(|tik|,r) is a weighting function de-
pendent on the distance of a point sample to a center
point Pi and a radius of a neighborhood r, which can
be constant or defined by a scalar field on the points:
r(Pi). We did not find a generally optimal solution for
the weighting function, but implemented seven choices
for our first investigations:

ω1 = 1 (2)

ω2 = 1− x/r (3)

ω3 = 1− (x/r)2 (4)

ω4 = r/x2 (5)

ω5 =







1− 3
2 a2 + 3

4 a3 0 ≤ a < 1
1
4 (2−a)3 1 ≤ a < 2

0 otherwise
(6)

ω6 =















( 5
2 −b)4 −5( 3

2 −b)3 +10( 1
2 − v)b [0, 1

2 )

( 5
2 −b)4 −5( 3

2 −b)3 [ 1
2 ,

3
2 )

( 5
2 −b)4 [ 3

2 ,
5
2 )

0 [ 5
2 ,∞)

(7)

ω7 =















(3− c)5 −6(2− c)5 +15(1− c)5 [0,1)
(3− c)5 −6(2− c)5 [1,2)

(3− c)5 [2,3)
0 [3,∞)

(8)

with a := 2x
r

, b := 2.5x
r

and c := 3.0x
r

, illustrated in Fig-
ure 1. The three functions ω5, ω6 and ω7 are typi-
cal Gauss-like spline kernel functions used in smooth
particle hydrodynamics (SPH) [10]. We use the same
weighting functions for interpolating the vector field
during Eigenvector integration. Even though, interpo-
lation of Eigenvectors and interpolating tensors and lo-
cally computing its Eigenvectors lead to different re-
sults, we utilize the interpolation of the Eigenvector as
a simpler implementation.
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Figure 1: Different weighting functions of the distance interval 0.0 to 2.0,
r = 2.0. Different slopes and characteristics are visualized. The square function
(green) was clamped for axis scaling reasons and would grow further quadrat-
ically to the origin. The weights were normalized regarding to the integral of
the curve in the interval. The curve numbers match the index of the weighting
function: 1-average illustrates ω1, 2-slinear illustrates ω2, ...

We utilize tensor splats [1] for direct visualization of
the tensor field. Figure 2 illustrates a point distribution
along the edges of a rectangle and the corresponding
tensor visualization with a neighborhood being 1/5 of
the longer rectangle edge. We then use Westin’s shape
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analysis method [24] to determine the so-called linear,
planar and spherical shape factors. Points having a lin-
early distributed neighborhood are displayed as green
oriented splats. Planar distributions are displayed as red
disks. The linearity of the distribution tensor is shown
in Figure 4 and Figure 5.

Figure 2: Distribution tensor visualization of a rectangular point distribution.
Top: Points on a rectangle. Bottom: Tensor splats [1] of the point distribution
tensor [21]. At each point one splat, a small textured and oriented disk, is drawn
to represent the properties of the tensor’s shape.

Visualizing streamlines is a common method to study
vector fields. Starting from some seeding point, or ini-
tial condition, a curve q(s) is computed which is always
tangent to the vector field, solving the equation:

q̇(s) =V (q(s)) (9)

with s the curve parameter and V the vector field. Solv-
ing the differential equation at an arbitrary coordinate
location Q within in the discretized data domain re-
quires interpolation of the vector field. For mesh-free
interpolation within a point cloud we use weighting
functions parameterized with a specific radius of influ-
ence:

v(Q) =
∑

N
i=1 v(Pi)ω(|Q−Pi|,r)

∑
N
i=1 ω(|Q−Pi|,r)

, (10)

with v(Pi) representing the vector at point Pi.

2.2 Software Engineering Aspects

The algorithm was implemented using C++ within the
VISH visualization shell [2]. The implementation ex-
tends a framework for computing integral geometries
in vector fields, such as streamlines, pathlines or time
surfaces. The streamline integration and visualization
is separated into three different components: seeding,
integration and displaying. The first component defines
the initial conditions or seeding geometry. For com-
puting streamlines within vector fields seeding points

are sufficient. However, for streamlines of Eigenvec-
tor fields also an initial direction must be specified, be-
cause the Eigenvector is undirected. Integration based
on an orientation continuing an user-chosen direction
must be possible. Thus, requiring also a vector field on
initial seeding points to disambiguate the Eigenvectors’
orientations into unique directions.

Two new integration modules were developed. The
first one extends the original streamline module, which
was designed for vector field integration in uniform and
curvilinear multi-block grids [4], to Eigenvector field
integration. The second module expands this method
further to allow integrating Eigenvector fields on mesh-
free grids. One of the seven weighting functions (Equa-
tions 2, 3, 4, 5, 6, 7 and 8) and the radial influence
weighting parameter can be specified for the interpo-
lation of the Eigenvector inside the field domain. A
range query on a KD-tree returns the points and their
distances within the neighborhood of radius r. Equa-
tion 10 is utilized and Eigenvectors are aligned in ori-
entation with respect to the Eigenvector of the closest
neighbor. The Eigenvector is reversed if the dot prod-
uct is negative. The integration of the streamline stops
when the neighborhood becomes empty. Both integra-
tion modules support two different numeric schemes for
the integration: explicit Euler and DOP853 [7]. Explicit
Euler is used to get a fast yet inaccurate result. DOP853
is more expensive due to its adaptive stepsize but gives
highly accurate results. When aiming at the same accu-
racy, DOP853 is faster than the Euler method by orders
of magnitude. It is a Runge Kutta method of order eight
using order five and three for error estimation and adap-
tive step size control, providing dense output. Accuracy
measures and timing measures comparing the two inte-
gration methods were done, e.g., in [3].

The display module utilized here is reused from ear-
lier development and implements color-coded illumi-
nated lines utilizing OpenGL, allowing interactive nav-
igation through the generated streamlines. Other mod-
ules, such as displaying ribbons [3] are also available.

2.3 Test Cases

We investigate the two Eigenvector integration modules
on an uniform grid and on mesh-free grids. The Eigen-
vector field of a DTI-MRI scan [1], originally given on a
uniform grid (128x128x56), was converted into a mesh-
free grid, a point cloud holding the same Eigenvectors:
Figure 3 (a) shows a volume rendering of the trace of
the diffusion tensor along with the streamlines, reveal-
ing some brain structure and the location of the stream-
lines. Figure 3 (b) shows the comparison of Eigenvec-
tor streamlines computed on the uniform grid (blue) and
Eigenvector streamlines computed in the point cloud
(white). Both integrations were done with explicit Eu-
ler and a step size of 0.05. The size of a uniform
grid cell is about 0.2, thus, utilizing about four integra-
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Figure 3: Comparison of the influence of integration of an Eigenvector field
given on an uniform and a mesh-free grid. A mesh-free grid was generated
from the uniform for testing. The arrows mark the start positions and directions
of small Eigenstreamlines of a MRI diffusion tensor field. Streamlines on the
uniform grid are blue. On the mesh-free grid they are white.

tion points per grid cell and requiring data interpolation
within each cell. The length of each streamline is set to
1.0. Tri-linear interpolation was chosen for the uniform
grid to compare the results with the linear weighting
function ω2 (slinear) for the mesh-free grid. The gen-
erated lines coincide on most cases. About 9% (13 of
144) do not coincide well. Some start in different direc-
tions. Here, the seeding vector field is almost perpen-
dicular to the initial direction and the influence of the
interpolation method results in different initial stream-
line directions. This issue could be cured by integrat-
ing Eigenvector streamlines in both directions starting
from the initial seeding points, which would also allow
avoiding the seeding vector field.

(a) average, slinear

(b) square, sphcubic

(c) sphquadratic, sphquintic

Figure 4: Influence of different weighting functions on the scalar field linearity,
compare Figure 1. The linearity is illustrated by offset and over-scaling in z-
axis, and gray-scale color-map on the points. Tensor splats directly show the
distribution tensor.

Next, the influence of the different weighting func-
tions on the computation of the distribution tensor was
investigated. We define an analytic distribution of points
along a rectangle as test case for computing the point
distribution tensor. The rectangle is set up using a
width of 10 and a height of 8. The radius parameter
for the neighborhood is r = 0.2. Figure 4 illustrates
the point distribution tensor using tensor splats and its
corresponding linear shape factor by offsetting, over-
scaling and a gray-scale color-map. The offsetting ap-
proach for the linear shape factor clearly illustrates the
influence of the weighting: The “average” method re-
sulting in a very abrupt change in the slope around cor-
ners points. The “slinear” weighting function results
in smoother changes and a more localized influence,
since closer points are weighted stronger than more dis-
tant points. Square shows the smoothest result. The
three SPH spline kernels have an increasing locality
with higher order of the kernel, when comparing sphcu-

bic, sphquadratic and sphquintic. This is demonstrated
in Figure 5 as well: Figure 5(a) shows the result of the
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cubic and quadratic SPH kernel function. When the ra-
dius of the neighborhood is increased to match the ker-
nels there is no visible difference between the sphcubic

in Figure 5(a), sphquadratic and sphquintic in Figure
5(b) in the resulting linearity.

(a) sphcubic r = 0.2, sphquadratic r = 0.2

(b) sphquadratic r = 0.25, sphquintic r = 0.3

Figure 5: Different orders of the SPH kernel functions are compared, see Fig-
ure 1. (a) sphcubic and shpquintic using the same radius for the neighborhood.
(b) sphquadratic and shpquintic, with adjusted neighborhood radius, have a
similar result as the sphcubic (a)-left.

The influence of the integration scheme on the Eigen-
streamline integration is demonstrated in Figure 6. The
distribution tensor of a circular point distribution was
computed using the ssquare weighting function. Ten-
sor splats show the undirected Eigenvector, vector ar-
rows show how the vector is directed within the internal
vector representation. One Eigenstreamline is seeded
downwards at the rightmost point of the circular point
distribution and follows the undirected vectors. The top
image shows Euler integration. Decreasing the step size
would result in a more accurate integration. But, clos-
ing the gap of the integrated circle requires such a small
step size, that the Runge Kutta method outperforms the
Euler method. The 8th order Runge Kutta method suc-
cessfully closes the gap and reconstructs a circle from
the circular point distribution, as shown in the bottom
image. Also, a square-shaped point distribution was
tested as shown in Figure 7. The length of a side is
10. Here, the influence of different weighting functions
on the interpolation of the Eigenvector field was inves-
tigated. The distribution tensor was computed using
the ssquare weighting function with r = 2. An Eigen-
streamline is seeded downwards in the mid of the right
edge. It follows the undirected vectors and flows around
the corners of the rectangle. At each corner some error
is introduced and the streamline is moving apart from

Figure 6: Comparison of different numerical integration schemes in a circu-
lar point distribution. One streamline (white) is seeded at the east-pole of the
circle pointing southwards. Tensor splats and vector arrows illustrate the point
distribution tensor and major Eigenvector. Note, that the Eigenvectors change
orientation at north-east and south-west. Top: explicit Euler. Bottom: DOP853.

the original point distribution. Integration was done
using the DOP853 method. Different weighting func-
tions, mostly with r = 1, were tested for vector field
interpolation. The length of the horizontal gap between
the end and the start of the streamline was used as a
measure for the integration error. Figure 8 shows the
different errors in a bar diagram. The two best results
were achieved using the ssquare and average weighting
function.

Figure 7: Comparison of Euler and DOP853 streamline integration on a
square-shaped point distribution. Tensor splats and Eigenvectors are visual-
ized besides the streamline (white) seeded downwards at the center of the right
edge of the rectangle.
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Figure 8: Comparison of errors in the square integration using different weight-
ing functions for the vector interpolation. The weighting function for comput-
ing the tensor was ssquare, compare Figure 1. The values represent the hor-
izontal distance between start and end point of the streamlines. The square’s
length is 10.0. The colors of the bars match the colors in Figure 1.

3 RESULTS

We used a dataset with circa eight million points cov-
ering a water basin close to the Danube in Austria. It
was acquired by a Riegl’s hydrographic laser scanner
VQ-820G [22]. Figure 9 shows the point cloud colored
by the linearity of a distribution tensor analysis. Here,
we wanted to extract one power cable. The cable in the
mid of the three lowest power cables suspended from
the tall power pole. The white arrows mark the explic-
itly user-specified position and direction used as initial
conditions of the streamline integration.

Different parameters and combinations of weighting
functions for the tensor computation and the Eigenvec-
tor interpolation were investigated. The choice of a cer-
tain neighborhood radius and good weighting functions
was crucial to successfully follow the 280 m long power
cable. 41 parameter combinations were tested. For
the tensor computation different radii r = 0.5,r = 1.0
and r = 2.0 and the weighting functions average, slin-

ear, ssquare and the SPH kernels for the tensor were
used. For the vector interpolation radii r = 0.25,r =
0.5,r = 1.0,r = 2.0 and r = 3.0 and all seven weight-
ing functions were used. Figure 10 shows a view along
the power cable, with a non optimal configuration. The
Eigenstreamline is not following the cable to the end
because it moves apart more than 1.0 m from the cable,
resulting in an empty neighborhood during integration.

Best results were achieved by using the ssquare

weighting with r = 2.0 for tensor computation and the
sphquintic weighting with r = 3.0 for the vector inter-
polation. Results show that a more smooth weighting
in the tensor computation and a more local interpolation
weight are a good combination for reconstructing linear
structures. Using the same weighting for tensor compu-
tation and vector interpolation did not work, see Figure
11 (b). The global error of the reconstruction at the end
of the power cable is about 80 cm and needs to be fur-
ther improved. The cable could only be followed using
DOP853 integration. Explicit Euler failed to produce
acceptable results. When comparing Figures 11(a) and
11(c) the global error is almost the same. The main

difference is the local shape of the Eigenstreamline. A
larger vector interpolation radius results in a smoother
curve. Figure 11(c) shows the best reconstruction of
the investigated technique and described parameters.

Figure 9: Overview of the LIDAR data set. The two upper images show the
point cloud as points and as tensor splats (taken from [21]). In the two lower
images points are colored by linearity. Three arrows mark the explicitly user-
specified seeding points and directions of the streamline computation located at
the mid lower power cable (magenta) of the larger power pole.

4 CONCLUSION

A new method of reconstructing power cables, or other
linear structures in general, in point clouds was pre-
sented. The method employs the point distribution
tensor as presented in previous work [21]. Different
weighting functions for the tensor computation and the
interpolation of the major Eigenvector field were im-
plemented and compared. Streamline integration was
verified on artificial test cases and applied to a LIDAR
point cloud dataset acquired from actual observations.
Finally, a power cable was reconstructed and visualized
using this dataset.

Journal of WSCG, Vol.20 228 http://www.wscg.eu 



Figure 10: Power cable reconstruction via streamlines. The distribution tensor
was computed using the average r = 2.0 weighting and the vector interpolation
was done with the ssquare r = 1.0 weighting. Top: Points colored by linearity.
Bottom: Tensor splats illustrate the distribution tensor. Streamlines are moving
apart from the power cable and break before they can reconstruct the full 280
m of cable.

(a) Tensor: ssquare r=2, Vectorfield: sphquintic r=1

(b) Tensor: sphquintic r=2, Vectorfield: sphquintic r=2

(c) Tensor: ssquare r=2, Vectorfield: sphquintic r=3

Figure 11: Comparison of different parameters and weighting function com-
binations of the computation, finally resulted in a successfully reconstructed
power cable. The LIDAR point cloud is colored by linearity of the distribution
tensor. The three Eigenvector streamlines reconstruct a 280 m long cable.

5 FUTURE WORK

Other weighting functions for computing the tensor and
doing the interpolation during the streamline integra-
tion need to be tested. Automatic determination of the
optimal combination of weighting functions and also
their parameters will be the goal of further investiga-
tions. Seeding points and directions for computing
the streamlines need also to be chosen automatically,
for example, by taking tensor properties into account.
Following the major Eigenvector of points with high
planarity or sphericity needs to be prevented during
streamline integration. Finally, more datasets should be
explored to stabilize the method. Furthermore, minor
changes of the algorithm would enable streamline inte-
gration in datasets stemming from SPH simulations.
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ABSTRACT
In the paper an algorithm of triangle mesh generation for a full three-dimensional volumetric data is presented.
Calculations are performed in real time using graphics processors. The method is very well suited for the visu-
alization of dynamic data, as the calculations use only the current frame data (not including data from previous
frames). Due to high performance of the algorithm, it can be practically applied in programs for digital sculpting,
simulators and games which require editable geometries.

Keywords
mesh generation, iso-surface, volume data, real-time, GPU computation

1 INTRODUCTION
Nowadays, visualization of volumetric data is very of-
ten applied in practice. Both in medicine, e.g. for the
MRI, PET, or CT data presentation in medical imag-
ing, nondestructive inspection of materials (industrial
CT), digital sculpting software, as well as in computer
games. Often the visualization itself is not sufficient
and a three-dimensional mesh is required for a physi-
cal calculations, such as collision detection, calculation
of material properties or stress. Moreover, the advan-
tage of representing models with triangle meshes is that
modern GPUs are optimized for efficient rendering of
triangles.

Another issue is that volumetric data can change dy-
namically. When modeling is performed in a program
for sculpting a virtual material, a three-dimensional
mesh generated in real time is needed in order to dis-
play the results. In video games or simulators of earth-
moving machineries, we have to deal with the terrain,
which cannot be fully represented by height maps. We
may require a visualization of structures such as tun-
nels, caves, overhangs of the land as well as other mod-
ifications caused as a result of a player actions, such as
explosions, vehicle interactions with the terrain or other
gameplay activities.

Currently available methods often do not allow to gen-
erate a mesh for a large amount of data in real time.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Sometimes the resulting effect is described as "interac-
tive" which usually means ability to carry out calcu-
lations giving a few frames per second. This speed,
however, is not sufficient for the smooth operation of
applications such as computer games.

In response to these problems, a mesh generation al-
gorithm for a fully three-dimensional volumetric data
has been developed. All calculations are performed on
GPU in real time by which we understand the actual
mean speed of computations above 30 frames per sec-
ond. Another advantage of the presented algorithm is
its independence of the volumetric data representation;
therefore, scalar fields, implicit functions, or metaball
objects can be used.

The rest of this article is organized as follows. The
next section presents previous work on mesh generation
methods of volumetric data. The third part briefly de-
scribes the possible methods of data representation. It
then shows the subsequent steps of the algorithm while
in the following passage detailed information on how
to implement the algorithm using graphics processors
is included. The last section presents a description and
summary of results.

2 RELATED WORK
The subject of this paper is to visualize an iso-surface
generated for the volumetric data using triangle mesh.
Mesh-based methods allow their easy integration with
other algorithms or modules, e.g. physics engines, that
require mesh as an input. Thanks to this approach our
algorithm can be used in real-time applications.

Therefore, discussion of previous works does not
include ray-tracing and view-dependent visualization;
however, information on the methods of these types
can be found e.g. in [OBA05, LK10, GDL+02].
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GPU-based methods which allows to interactive
or real-time calculations were presented e.g. in
[KOKK06, CNLE09, KOR08, TSD07].

One of the basic methods of generating a mesh on the
basis of volumetric data is the Marching Cubes algo-
rithm [LC87] developed in the 1980s. It consists in di-
viding the visualized space into equal cubes and gen-
erating a polygon within each cube, which is then sub-
jected to triangulation. The position and shape of the
polygon are dependent on the values of an implicit
function in eight vertices of each cube. A common
issue with this method is that it requires generating a
mesh in the entire space of visualized data. In response
to this, several hierarchical and adaptive versions of
the Marching Cubes algorithm have been developed
[OR97, Blo88, WKE99, KKDH07] using octal trees to
reduce the area for which calculations were carried out
and which reduce the number of triangles by generating
them in different densities depending on the distance of
the camera. Implementations of of the Marching Cubes
algorithm using GPUs are presented in [JC06, Gei07].

Another, possibly less popular, method is the Sur-
faceNets method [Gib98] which originally was used
to visualize binary medical data. This method is dual
to the marching cubes algorithm and, as in the latter
one, visualized space is divided into cubes of the same
dimensions. In its base version, the method consisted
of selecting the nodes belonging to the surface in a way
that a certain node has been selected, if among the eight
vertices of the cube were those that had a different
sign. These nodes were linked with adjacent ones thus
creating a net, which was then smoothed by moving
the nodes so as to minimize the energy between them
while maintaining the restriction that a node could not
leave the cube, to which it originally belonged. The
final step was a triangulation of the network, which
gave the resulting mesh of triangles. The next method
which belongs to the group of "dual algorithms" is the
one by [Nie04], which generates a mesh very similar
to SurfaceNets, but its implementation is more like
the Marching Cubes algorithm. One of the important
differences between this method and the SurfaceNets
is that the mesh generated by the former is a proper
two-dimensional manifold.

In addition to the methods outlined above, there are
also: the marching tetrahedra method [TPG99], whose
operating principle is based on the marching cubes al-
gorithm, the marching triangles method based on the
Delaunay triangulation [HSIW96] which generates an
irregular mesh, or the method based on marching cubes
which allows one to obtain sharp edges, described in
the work [JLSW02].

We follow the existing approach of dual marching
cubes, however, our algorithm is implemented exclu-
sively on GPU and it efficiently exploits geometry

shaders. Thanks to the use of dual methods, the result-
ing mesh contains fewer triangles and is regular due to
the number of generated triangles within each of the
cubes. The latter allows the method to be implemented
in a very efficient way using graphics processors.
Former GPU-accelerated mesh extraction algorithms
(e.g. [KW05], [Goe05], [JC06]) are based on both
CPU and GPU computations, using vertex or fragment
shaders only. Although meshes generated using our
method are not proper two-dimensional manifolds, our
approach is extremely efficient and can be used for
dynamic data which change on random every frame.

3 VOLUMETRIC DATA
The basic method of describing three-dimensional vol-
umetric data is the implicit function. By setting the val-
ues of the contour we obtain surface limiting the de-
sired area. If the values of this function represent the
Euclidean distances from a given contour and we save
them as an array, then we get a three dimensional signed
distance field D : R3 → R, representing the iso-surface
S, defined for point p ∈ R

3 as:

D(p) = sgn(p) ·min{|p−q| : q ∈ S}, (1)

where

sgn(p) =
{

−1 if p is inside
+1 if p is outside (2)

This representation can be stored in graphics card mem-
ory as a three-dimensional texture. Thanks to this rep-
resentation, smoothing of the resulting mesh using nor-
mals computed directly from distance fields and vertex
distances from the surface, is very effective.

Also, most medical data is stored in the form of three-
dimensional arrays. For such data combined with con-
tour values we can generate a mesh. Another, less
common way to represent the volumetric data, is using
metaball objects which, with adequate representation,
can be converted to distance fields.

4 ALGORITHM OVERVIEW
Due to the GPU architecture and the way they carry out
calculations, the developed algorithm is based on dual
methods. They allow to obtain a regular mesh consist-
ing of squares, so one doesn’t need expensive triangula-
tion of polygons generated inside a cube, as is the case
of marching cubes method. The algorithm has been
adapted to carry out calculations on GPUs, and highly
parallelized, which allows it to achieve very high per-
formance.

Input data block, of size n3, where n of a form 2k, is
divided into equal cubes. This is shown in Figure 1.
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Figure 1: Data organization (2D view)

The image represents a two-dimensional version, but
the three-dimensional one is similar.
Calculation points marked with "•" symbol are placed
in the centers of cubes and their coordinates are used
to calculate the distance from the contour, based on
the volumetric data. Distance field values are stored in
points marked "+", while points marked "×" represent
vertices of quadrangles generated by the algorithm.
The calculations of the algorithm are processed in two
steps. At the beginning, for each calculation point
p ∈ R

3, marked with the symbol "•", such that p ∈
{[0,n − 1]× [0,n − 1]× [0,n − 1]}, there are gener-
ated three points q,r,s ∈ R

3 such that for p = (x,y,z):
q = (x − 1,y,z), r = (x,y − 1,z), s = (x,y,z − 1). In
each of these points p,q,r,s an implicit function value
dp = f (p) is calculated and three edges defined by pairs
of calculation points pq, pr, ps are created. Then, for
each edge – if its endpoints have different signs (lie on
different sides of the contour) – a quadrangle located on
the border of the cubes is generated. Its orientation is
determined by the direction of the edge, which is con-
sistent with the direction of the normal to the surface of
the quadrangle. A set of squares, generated in this way,
approximates the iso-surface for input volumetric data,
and is smoothed in the next stage. As a result of con-
version of each square to a pair of triangles, a triangle
mesh is obtained.
Due to the fact that during the calculation the sign
changes, zero is treated differently depending on the
direction of the edge, the condition 3, under which
quadrilaterals are generated is presented as follows:

( f (q)≥ 0∧ f (p)< 0)∨ ( f (q)< 0∧ f (p)≥ 0) (3)

The first step in the algorithm, described above, is ide-
ally suited for parallelization, because the calculations

for computing the individual points can be carried out
independently. Despite the fact that the distance fields
are calculated for each point twice, it is possible to ob-
tain a high-performance computing algorithm, because
it is not a costly operation.

The second stage of the algorithm is a smoothing of
generated mesh by moving its vertices in the direction
of the surface represented by the distance fields values.
For this purpose, at each vertex of the distance field, a
normal vector n is calculated on the basis of the gradi-
ent and the distance d to the surface. Then, the vertex
is moved in the direction of the normal, by the value
calculated according to formula 4.

p′ = p+dn (4)

In the case that the resulting mesh is used only for dis-
playing a surface, this step can be implemented directly
during rendering. Otherwise, it is possible to smooth
the mesh only and use it for subsequent calculations,
such as collision detection.

The advantage of the developed algorithm over march-
ing cubes method consists partly in that for creating a
quad for the cube we generate exactly four indices and
there is no need for triangulation of polygons gener-
ated. This allows the calculations to be successfully
performed on the GPU.

5 IMPLEMENTATION DETAILS
The algorithm was implemented using the OpenGL
graphics library; however, DirectX library can be used
as well.

Input volumetric data, for which a mesh is generated,
is divided into equal blocks, for which fragments of the
mesh are generated independently. This approach was
chosen because of the GPU hardware limitations on the
maximum size of supported textures, as well as for op-
timization purposes. To be specific: not all parts of dy-
namic data need to be modified at the same time, and
hence there is no need for mesh regeneration in these
blocks. Generated meshes merge together in continu-
ous blocks along borders.

The algorithm is carried out equally for each data
block. All calculations are done on the GPU, so the
data are not transferred between main memory and
graphics card memory. Calculations are carried out in
two phases, the algorithm flowchart is shown in Figure
2.

In both passes of the rendering shaders refer to the vol-
umetric data.

5.1 Volume Representation
Three-dimensional floating-point texture is used for
distance field representation in each block of data.
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Figure 2: Algorithm flowchart

Texture size is (n+ 3)3, 2 bytes per texel. Although
4-byte floating point numbers can be applied for the
precision improvement, no need for that has been
found during testing. To avoid communication between
neighboring blocks, block’s data size is enlarged and
overlaps adjacent blocks; for each common quadrangle
between two adjacent blocks of size (n+3)3 each, 2n2

of voxels are duplicated. This allows parts of the mesh
in each block to be generated independently of the
others.

In the texture, we used a single GL_RED channel,
where the data is stored in GL_FLOAT16 format. In
order to allow reading distance field values, each point
of the texture is sampled using linear filtering. This is
done automatically, and the values are calculated on the
basis of neighboring texels. Mipmaps for the textures
are not generated.

5.2 Mesh Generation (Pass 1)

In the first pass calculations are performed using ver-
tex shader and geometry shader. Then, using a trans-
form feedback, generated indices are stored in the out-
put buffer. Input and output data are presented in Table
1.

IN
Vertex buffer containing calculation points p ∈
{[0,n−1]× [0,n−1]}
type: GL_ARRAY_BUFFER
size: (n−1)2

sharing: one per all blocks
Texture with volumetric data
type: GL_TEXTURE_3D
size: (n+3)3

sharing: one per single block
OUT
Buffer with indices of generated quads
type: GL_ELEMENT_ARRAY_BUFFER
sharing: one per single block

Table 1: Input and output data of the first pass

The subsequent steps of the algorithm are as follows:

1. Data from the vertex buffer containing the calcula-
tion points is rendered n−1 times, using the instance
rendering.

2. For a calculation point p three points q,r,s are cre-
ated in the vertex shader.

3. For each of the points p,q,r,s a volumetric texture is
sampled in order to retrieve implicit function value.
Texture coordinates t are calculated according to for-
mula 5.

t =
p+2
n+3

(5)

4. Subsequently three edges pq, pr, ps are created and
according to formula 3 it is checked whether the val-
ues of implicit function at the endpoints have differ-
ent signs.

5. For each edge, if the sign changes, there is a flag set,
which specifies whether the quadrilateral is gener-
ated or not, and what is its orientation (zero means
that the quadrilateral is not generated). Generated
flags along with the coordinates of the point p are
forwarded to the geometry shader.

6. In the geometry shader, for each non-zero flag there
a vertex containing four indices of generated quad-
rangles is established. Indices are calculated on the
basis of the flag f and coordinates p. For example,
quadrangle, which normal is consistent with the di-
rection of the edge pq, is defined by (i1, i2, i4, i3),
where

i1 = pxn2 + pyn+ pz+1
i2 = pxn2 + py+1n+ pz+1
i3 = pxn2 + py+1n+ pz
i4 = pxn2 + pyn+ pz

7. Using the feedback transformation these indices are
stored directly in the index buffer, used in the next
pass. Number of saved indices is queried using an
OpenGL query mechanism.

5.3 Rendering (pass 2)
The second pass is responsible for smoothing of the
generated mesh and its rendering. All programmable
shader units, i.e. vertex, fragment and geometry shaders
are used. The input data is presented in Table 2.

Subsequent steps of the second pass of the algorithm
are as follows:

1. The data from the vertex buffer is ren-
dered using the indices as primitives of the
GL_LINES_ADJACENCY type. This type was
chosen because it is the only type that can render
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IN
Vertex buffer which contains all potential vertices,
such as: u ∈ {[0,n]× [0,n]× [0,n]}.
type: GL_ARRAY_BUFFER
size: n3

sharing: one per all blocks
Buffer with indices for generated quadrangles
type: GL_ELEMENT_ARRAY_BUFFER
sharing: one per single block
Texture with volumetric data
type: GL_TEXTURE_3D
size: (n+3)3

sharing: one per single block
Table 2: Input data for the second pass of the algorithm

primitives indexed by four indices (in OpenGL
version 3.0 or higher it is not possible to render
quadrangles).

2. Then in the vertex shader for each vertex u, a nor-
mal vector n is calculated, on the basis of the gradi-
ent map. Normal value is obtained by sampling the
volumetric data texture in the neighboring six texels
in x,y,z directions.

3. On the basis of the direction of the normal and the
density function value, the point u is moved in the
direction of the contour, according to formula 4.
Due to the fact that the value of the density func-
tion is calculated as the average of neighboring tex-
els at the point u, for small values of n it is required
to perform a smoothing of the mesh in an iterative
manner.

4. Vertices calculated in this way are sent to the geom-
etry shader, in which there is a change of type done,
from "lines adjacency" into "triangle strip".

5. The last step is to display a completed mesh, during
which the associated shading calculations are per-
formed in the fragment shader. In case when mesh
rendering is not required, but the mesh is needed for
further calculations, smoothed values of the vertices
can be stored in the output buffer using a transform
feedback.

6 RESULTS
All calculations were performed on an AMD Phenom
II X6 1090T 3.2GHz computer with an nVidia GeForce
GTX 460 graphics card. Figure 3 presents datasets used
in tests; Armadillo and Asian Dragon from The Stan-
ford 3D Scanning Repository, Engine and Skull from
http://www.volvis.org/. In addition, three-
dimensional animated Perlin noise has been used as a
dynamic, time-dependent data. All tests were run for
different n on one block of data.

(a) Armadillo (b) Asian Dragon

(c) Engine (d) Skull

Figure 3: Datasets used for tests

Table 3 lists times for mesh generation and rendering
for different block sizes and different data sets. All
meshes were regenerated from volumetric data each
frame; moreover, calculations for time-dependent Per-
lin noise data were also performed before mesh gener-
ation every frame. Generated meshes for the Armadillo
dataset for different block sizes are presented on figure
4, results for noise dataset are presented on figure 6.

dataset n triangle count fps
Armadillo 64 14180 1100
Armadillo 128 91958 208
Armadillo 256 494880 28
Asian Dragon 64 5864 1180
Asian Dragon 128 41578 234
Asian Dragon 256 229840 30
Engine 256 592884 29
Skull 256 1699526 23.6
Perlin Noise 128 180k-246k 60

Table 3: Results for different block sizes and data sets

Table 4 presents results for our method compared to
[Goe05, JC06]. The Engine and Skull datasets were
used, no preprocessing were performed for these data.
As it can be seen our algorithm performs much faster,
however, if all methods would be run on the same hard-
ware configuration, the difference could be less signifi-
cant. Both methods of [Goe05] and [JC06] were tested
on nVidia GeForce 6800GT graphics card.

The Marching Cubes algorithm described in [Gei07]
seems to execute faster than [Goe05, JC06] methods
but no measurable results were published. Authors of
[Gei07] claims that their algorithm executes in interac-
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(a) n = 64 (b) n = 128 (c) n = 256

Figure 4: Generated mesh for the Armadillo dataset

tive frames but mesh generation are not performed each
frame.

dataset size method fps
engine 256x256x110 [Goe05] 3.6
engine 256x256x128 [JC06] 2.8
engine 256x256x256 our method 29
skull 256x256x225 [Goe05] 2.4
skull 256x256x256 [JC06] 1.5
skull 256x256x256 our method 23.6

Table 4: Results compared to previous GPU-based
methods

7 MESH IMPROVEMENTS
The presented method works well for smooth surfaces,
such as the ones presented in figure 6. In case of sur-
faces with sharp edges we see artifacts as it is shown in
figure 5(a).

(a) Artifacts on sharp edges

(b) Smoothed mesh

Figure 5: Mesh improvements due to smoothing

In order to improve visual quality of the generated sur-
face, in the second pass of the algorithm a smoothing

process based on normals is performed about 10 times.
Next, during transforming quadrangles into strips of tri-
angles, the quadrangles are divided along the shorter
diagonal. The last step of smoothing the mesh is com-
putation of normals for every pixel in fragment shader,
on the basis of volumetric data. Normals are calculated
in the same way as for the mesh vertices. The smoothed
mesh is presented in Figure 5(b).

8 CONCLUSION AND FUTURE
WORK

In this paper we present a real-time algorithm for gener-
ating a three-dimensional mesh fully based on volumet-
ric data. This method has been optimized for graphics
processors and provides a significant advantage over the
already existing solutions for conventional processors.
The presented algorithm is also very well suited for the
visualization of dynamic data, because the calculations
carried out do not need to know the state of the algo-
rithm from previous time steps.
With the resulting performance, practical application
of the algorithm in digital sculpting software, earth-
moving machineries simulators and computer games is
fully possible. The tests show a significant advantage
of GPUs. The volumetric data representation that has
been used allows also for efficient data modification us-
ing GPUs.
As part of further work on the algorithm it would be rea-
sonable to add support for levels of detail (LOD), so as
to enable the process to connect continuously adjacent
blocks containing cubes of different sizes and densities.
The second issue is to optimize the algorithm by an
additional parallelization and simultaneous calculation
carried out for 4 blocks. It would be possible in the
case of using all four available texture channels. As a
result, it would be possible to generate meshes for the
four blocks at the same time.
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ABSTRACT
Depth of field (DoF) represents a distance range around a focal plane, where objects on an image are crisp. DoF
is one of the effects which significantly contributes to the photorealism of images and therefore is often simulated
in rendered images. Various methods for simulating DoF have been proposed so far, but little tackle the issue of
partial occlusion: Blurry objects near the camera are semi-transparent and result in partially visible background
objects. This effect is strongly apparent in miniature and macro photography. In this work a DoF method is
presented which simulates partial occlusion. The contribution of this work is a layered method where the scene
is rendered into layers. Blurring is done efficiently with recursive Gaussian filters. Due to the usage of Gaussian
filters big artifact-free blurring radii can be simulated at reasonable costs.

Keywords:
depth of field, rendering, real-time, layers, post-processing

1 INTRODUCTION
DoF represents a distance range around a focal plane
in optic systems, such as camera lenses. Objects out of
this range appear to be blurred compared to sharp ob-
jects in focus. This effect emphasizes objects in focus
and therefore is an important artistic tool in pictures and
videos.

People in the field of computer graphics aim for the
ambitious goal of generating photo-realistic render-
ings. Depth of Field is one effect which significantly
contributes to the photorealism of images because
it is an effect that occurs in most optical systems.
In computer renderings, the pinhole-camera model,
which relies upon the assumption that all light-rays
travel through one point before hitting the image
plane, is used. Therefore, there is no focus range
and no smearing occurs, resulting in a crisp image.
However, in real-life optical systems—such as the
eye or photographic cameras—sharp images are only
produced if the viewed object is within a certain depth
range: the depth of field.

DoF can be simulated very accurately by ray tracing,
but the rendering of accurate DoF effects is far from in-
teractive frame rates. For interactive applications, the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

(a) (b)
Figure 1: A pinhole rendering of the scene Dragons resulting in a
crisp image (a). Simulating shallow depth-of-field with the proposed
method partly reveals occluded scene content (b). Note how the
tongue of the dragon almost vanishes.

effect has to be approximated in real time. Therefore,
most approaches use fast post-processing techniques
and sacrifice visual quality, causing artifacts. Com-
mon techniques to produce the DoF effect use an ap-
proach where pixels get smeared according to their cir-
cle of confusion (CoC) [25]. The CoC depends on the
distance of objects and the lens parameters. One arti-
fact in post-processing approaches is partial occlusion:
An object in-focus occluded by an out-of-focus object
should be partly visible at the blurred object borders of
the front object. In computer graphics, the used pin-
hole camera model in combination with depth testing
leads to a dismissing of background pixels. Real optical
systems use a finite aperture camera model where light
rays from occluded objects can hit the image sensor.
Figure 1 shows this effect next to a pinhole rendering.

In this paper, we present an approach to tackling the
partial occlusion problem. By rendering the scene with
depth peeling [11], occluded pixels can be retrieved
(Section 3.1). This occluded scene information is used
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Figure 2: The model of a thin lens and how the points q (in-focus)
and p (out-of-focus) are projected onto the image sensor (inspired by
[25]).

to overcome the problem of partial occlusion. Rendered
fragments are weighted, based on their depth, into lay-
ers (section 3.2), where each layer is blurred uniformly
(section 3.3). Previous such layered DoF methods pro-
duced artifacts due to the layer splitting. We avoid most
of these artifacts by smoothly decomposing layers and
additional scene information. After blurring, the layers
are composed by blending, thus producing renderings
with convincing partial occlusion effects.

2 PREVIOUS WORK
DoF is an effect caused by the fact that optical lenses in
camera systems refract light rays onto the image sensor,
but fail to produce crisp projections for all rays. Fig-
ure 2 shows a schematics of a thin lens model and how
rays are refracted. Although modern optical systems
use a set of lenses, for the purpose of explaining DoF, a
single lens is sufficient. Hypothetically, a sharp image
point will only appear on the image plane from an ob-
ject exactly in focus, located at zfocus (see figure 2). In
practice, because of limitations of the human eye, ob-
jects within an acceptable sharpness are recognized as
sharp. Objects out of the DoF range are projected as cir-
cles on the image plane. The diameter of this so-called
circle of confusion (CoC) can be calculated as

dcoc(z, f ,N,zfocus) =

∣∣∣∣ f 2 (z− zfocus)

zN (zfocus− f )

∣∣∣∣ , (1)

where z is the distance to the object in front of the lens,
f is the focal length of the lens, N is the f -stop number,
and zfocus is the focus distance [25].

While the blurring is produced as an imperfection in
optical systems, computer renderings usually produce
a crisp image. Therefore DoF has to be simulated by
specific rendering methods [1, 2, 10, 3].

Methods operating in object space simulate rays that do
not go through the center of the lens. These methods
include distributed ray tracing [8] and the accumulation
buffer method [12], which both produce high-quality
results but fail to deliver real-time frame rates.

Faster methods are based on the idea of rendering the
scene with a pinhole camera model and simulating the

DoF effect via post processing, leading to few or no
changes in the rendering pipeline. The first method dis-
cussed by Potmesil and Chakravarty in 1981 presented
equation 1, the formula for calculating the CoC [25].
Most modern methods (including this one) are based
on this work.

Methods using graphic cards for acceleration use pyra-
mid methods, Poisson sampling or a combination of
both [24, 26, 27, 13, 22]. Isotropic filters lead to in-
tensity leaking artifacts, where colors from in-focus
foreground pixel bleed on the out-of-focus background.
Cross-bilateral filters or heat diffusion ([6, 14]) can
be used to overcome this artifact, but this introduces
other issues like discontinuity artifacts: Out-of-focus
objects have sharp boundaries although the object itself
is blurred.

The partial occlusion artifact is apparent in all previ-
ously mentioned methods. Rasterization techniques do
not store occluded fragments, therefore it is not possible
to accurately simulate transparency caused by out-of-
focus smearing. To fully simulate this effect, occluded
information has to be either stored or interpolated in
layers. Layered DoF methods compose scene frag-
ments into layers depending on fragment depth. With
this representation it is possible to store or interpolate
occluded scene content. Furthermore it is possible to
uniformly blur each layer. One prominent artifact in
layered DoF methods are discretization artifacts: Lay-
ers get blurred and therefore object borders are smeared
out. When this smeared-out layer is blended with the
other layers, the smeared border region appears as a
ringing artifact at object borders due to the reduced
opacity. In [4, 5], the authors investigate such artifacts.
One way to avoid these ringing artifacts is presented
in [18], where occluded scene information is interpo-
lated before layers are created. Blurring and interpo-
lation is done by a pyramidal method, which approxi-
mates a Gaussian filter. The author presents a variation
of this method in [17], where the costly interpolation
steps are left out and different filters are used. How-
ever, these methods fail to correctly solve the partial
occlusion problem, because hidden scene information
is only interpolated and does not represent any actual
scene content.

The DoF methods [21, 15] are able to solve partial oc-
clusion by generating CoC-sized splats for each pixel.
However, these methods come with additional costs for
sorting fragments, making them impractical for com-
plex scenes.

In [19], layered rendering is used to generate a layered
representation. The DoF effect is then generated by ray-
traversing these layers. Rays are scattered across the
aperture of a virtual lens, thus avoiding the previously
mentioned discretization artifacts. An improvement is
discussed in [20], where the layers are generated by
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depth peeling and ray-tracing is done differently. Fur-
thermore various lens effects (e.g., chromatic aberra-
tion and lens distortion) can be simulated. However,
the method needs preprocessing previously to ray in-
tersecting and needs back faces to be rendered. If the
number of rays is not sufficient both methods produces
noise and aliasing artifacts. Especially for strong blurs
many rays have to be used, resulting in non-interactive
rates.

For a solid approximation of partial occlusion, a lay-
ered scene representation, storing occluded fragments,
has to be used. The approach presented in the following
section is a layered DoF method which produces con-
vincing partial occlusion effects while vastly avoiding
the discussed issues.

3 METHOD
The method proposed in this paper decomposes the
scene into depth layers, where each layer contains pix-
els of a certain depth range. The resulting layers are
then blurred with a filter that is sized according to the
distance from the focal point, and then composited.
This approach handles partial occlusion, because hid-
den objects are represented in more distant layers and
contribute to the compositing.

One way to generate the K layers would be to render
the scene K times, with near- and far planes adjusted
to cover the desired depth range of the layer. However,
this leads to two problems: first, rendering the scene K
times is too expensive for interactive applications, and
second, discretization artifacts would appear due to the
hard layer borders. In this paper, we solve both prob-
lems:

In order to avoid rendering the scene K times, we use
depth peeling to generate a number M of occlusion lay-
ers (also named buffers in the following), where M <K.
Note that each occlusion layer can contain fragments
from the full depth range of the scene, while a depth
layer is bound by its associated depth range. We then
generate the depth layers by decomposing the occlusion
layers into the depth ranges, which is much faster than
rendering each depth layer separately.

To avoid discretization artifacts, we do not use hard
boundaries for each depth layer, but a smooth transition
between the layers, given by matting functions.

Furthermore, we also propose a method for efficiently
computing both the blur and the layer composition in
one step.

Our method consists of the following steps:

1. Render the scene into M buffers, where I0 and Z0
contain the color and depth from an initial pinhole
rendering. The buffers I1 . . . IM−1 and Z1 . . .ZM−1
store peeled fragments from front to back.

Z0

I0

Z1

I1

L0 L1 LK−1

. . .

L′0 L′1 L′K−1

. . .

Matting

Rendering/Depth peeling

Blurring

Compositing

I′

. . .

. . .

ZM−1

IM−1

Figure 3: A overview of the proposed method in this work: The scene
is rendered into color buffers I0 to IM−1 and depth buffers Z0 to ZM−1
by depth peeling . The color buffers are decomposed into K layers
L0 to LK−1 by a depth-dependent matting function. The decomposed
layers get blurred by their CoC and composed. Note that the final
algorithm combines the blurring and composing step, which is sim-
plified in this figure.

2. Decompose the fragments of the input buffers into K
depth layers L0 to LK−1, based on a matting function
and the fragments’ depth.

3. Blend and blur each layer Lk onto the buffers I′front,
I′focus or I′back, which are composed back-to-front af-
terwards.

Figure 3 outlines the above described algorithm.

3.1 Rendering
Rendering is done by depth peeling [11]. For depth
peeling, first a 3D scene is rendered into a buffer stor-
ing the color I0 and the depth Z0 of a rendering, shown
in figure 3. Then the scene is rendered a second time
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into new buffers Im and Zm while projecting the pre-
vious depth buffer Zm−1 onto the scene. A fragment
p gets rejected if its depth zp has the same or smaller
depth than the previously rendered fragment, stored in
Im−1 and Zm−1. This means that only previously oc-
cluded fragments are stored in Im and Zm. This is done
iteratively until M layers are retrieved. If a fragment is
rejected, it is “peeled away,” revealing objects behind
the first layer. Although there are faster peeling meth-
ods (e.g., [23]), we rely on [11], because peeling can be
done iteratively from front to back.

3.2 Scene decomposition
The input images I0 . . . IM−1 are decomposed into K lay-
ers L0 . . .L(K−1) by matting functions ω(z) and ω̇:

Lk =
(

I0 ·ωk(Z0)
)
⊕
(

I1 · ω̇k(Z1)
)
. . .

⊕
(

IM−1 · ω̇k(ZM−1)
)

. (2)

The functions ωk(z) and ω̇k(z) denote the matting func-
tion for the layer Lk and A⊕B denotes alpha-blending
A over B.

3.2.1 Matting functions
The matting function ωk was introduced in [18] and
guarantees a smooth transition of objects between lay-
ers, while ω̇k retains a hard cut at the back layer bound-
aries to avoid situations where background fragments
would be blended over foreground layers. The formu-
las are

ω̇k(z) =


z−zk−2

zk−1−zk−2
for zk−2 < z < zk−1,

1 for zk−1 ≤ z≤ zk,
0 otherwise,

(3)

and

ωk(z) =

{
zk−z

zk−zk+1
for zk < z < zk+1,

ω̇k(z) otherwise,
(4)

where zk−2 to zk+1 defines anchor points for the layer
boundaries. A plot of the functions is shown in figure
4. Special care has to be taken when matting the front
L0 and back LK−1 layer, where the boundaries are set to
z−2 = z−1 = z0 =−∞ and zK−1 = zK = ∞, respectively.

3.2.2 Layer boundaries
The layer matting relies on anchor points. Similarly to
[18], the boundaries are spaced according to the filter
size of the blurring method (further explained in sec-
tion 3.3). Potmesil’s formula for calculating the CoC
(equation 1) can be rearranged to calculate a depth z
based on a given CoC d. Since dcoc is non-injective,
there are two possible results of this inversion:

d−1
coc(d) =

(
D1(d),D2(d)

)
(5)

0

1

zk−2 zk−1 zk zk+1

ω
k(

z)

z
0

1

zk−2 zk−1 zk zk+1

ω̇
k(

z)

z

(a) (b)

Figure 4: The matting functions ωk (a) and ω̇k (b) with exemplary
depth coordinates zk−2 to zk+1.

with

D1(d) =
zfocus · f 2

f 2 +d ·N · (zfocus− f )
, (6)

D2(d) =
zfocus · f 2

f 2−d ·N · (zfocus− f )
. (7)

With equation 5, the depth of anchor points can be cal-
culated by using dcocas input parameter, calculated by
the filter size of the blurring method. Note that D2(d),
d ∈ R+ is only applicable as long as

d <
f 2

N · (zfocus− f )
. (8)

The anchor point furthest away from the camera, zK−1,
is limited by this constraint. An anchor pointzk is placed
at the average CoC of the layers Lk and Lk+1. Thus

zk =

D1

(
dk+dk+1

2

)
for k < kfocus,

D2

(
dk+dk+1

2

)
for k ≥ kfocus,

(9)

where kfocus is the index of the layer in focus and dk
and dk+1 are the CoCs of the layers Lk and Lk+1 respec-
tively. The layer’s CoC dk is given by the blur radius for
a discrete layer Lk, determined by the blurring method
(see section 3.3).

3.2.3 Determining the number of layers
The depth of rendered fragments in the scene should
lie within the depth range of the closest and furthest
anchor points (zK−1 and z0). Therefore enough an-
chor points to cover the scene have to be generated.
This can be done manually or automatically. One naive
automatic approach would be to use the near and far
clipping planes, resulting in the highest possible depth
range, which usually is not present in a scene. A better
approach is to use hierarchical N-Buffers for determin-
ing the minimum and maximum depth values within the
view frustum [9].

3.3 Blurring and Composition
We use Gaussian filters for blurring, because they can
be separated, recursively applied and produce smooth
results. The mapping from CoC to the standard devia-
tion σ of a Gaussian kernel is chosen empirically as

dpix = 4σ . (10)
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Figure 5: Overview of the combined blurring and composition steps:
The layers L0 to LK−1 are blended iteratively. Between each blending
step the composition is blurred. Layers in front of the focus layer
Lkfocus and layers behind the focus layer are composed separately.
Those are combined in a final step into the result I′.

Note that dpix is the dcoc in screen coordinates and has to
be transformed into the world coordinate system. Each
layer is blurred by a Gaussian kernel Hk with the stan-
dard deviation σk as

L′k = Lk ∗Hk, (11)

where ∗ denotes a convolution.

Instead of convolving each layer separately (shown in
figure 3 for illustrative reasons), a cascaded approach is
chosen. Between each blur, one layer is blended onto
the composition.

Layers in front and behind the in-focus layer have to be
composed and blurred separately. Otherwise it is not
possible to keep the correct depth ordering of the lay-
ers. The composition of the front layer starts by taking
the layer closest to the camera (i.e., L0) and blurring it
with the filter kernel Ĥ0. In the next step this blurred
layer is blended over the next closest layer (i.e., L1) and
afterwards blurred with Ĥ1. A schematic of the compo-
sition steps is shown in figure 5. Since a blurred layer
Lk is blended over Lk+1 and then blurred again, the ef-
fect of this method is that Lk is blurred by Ĥk and by
Ĥk+1. The iteration continues until the layer in-focus
Lkfocus is reached. In general, such recursive Gaussian
filters produce the same result as blurring with one big
Gaussian. The resulting filter sizes can be calculated by

the Euclidean distance [7, chapter 8]. However, in our
application the results differ due to occlusions within
the layers.

Back layers are blurred similarly, starting with LK−1.
To keep the correct layer ordering, the layer closer to
the camera (i.e., LK−2) has to be blended over the pre-
viously blurred layer. The iteration is again continued
until the layer in-focus is reached.

The number of blurring iterations for a layer Lk is given
by |k− kfocus|. Calculating the final composition I′ is
done by

I′ = L̂kfocus−1⊕ (Lkfocus ⊕ L̂kfocus+1), (12)

where

L̂k =


Lk for k = kfocus

Lk ∗ Ĥk for k = 0 and k = K−1
(L̂k−1⊕Lk)∗ Ĥk for k < kfocus

(Lk⊕ L̂k+1)∗ Ĥk for k > kfocus

(13)

Results in section 4 are produced with a Gaussian filter
kernel Ĥk with a standard deviation of σ̂k:

σ̂k = |k− kfocus|. (14)

Various methods for calculating the filter size can be
used. For Gaussians, the adequate (non-recursive) σk
can be calculated by

σk =


0 for k = kfocus,√

σ̂2
k +σ2

k+1 for k < kfocus,√
σ̂2

k +σ2
k−1 for k > kfocus,

(15)

where k is in the interval [0,K−1].

3.3.1 Normalization
Due to the usage of matting functions ω and ω̇ , result-
ing in expanded depth layers, and the usage of depth
peeling, discretization artifacts as discussed in [5, 4]
are mostly avoided. However, in some circumstances
(e.g., almost perpendicular planes) such artifacts may
still appear. We use premultiplied color values while
matting and filtering. Therefore the composition can be
normalized (divided by alpha), thus further minimizing
discretization artifacts.

4 RESULTS
The proposed method was implemented in OpenGL and
the shading language GLSL. Performance benchmarks
are done on an Intel Core i7 920 CPU with a Geforce
GTX 480 graphics card. Depth peeling uses a 32bit
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Figure 6: DoF effects produced with our method, the ray-traversal method ([20]) and the accumulation-buffer method. The first row shows the
scene Homunculus (74k faces), and the second shows Dragons (610k faces). Renderings have the resolution 1024×1024. Note that there are
sampling artifacts on the chest of the Homunculus scene in the accumulation and ray-traversal method, although there are 256 rays/views used.
Our method avoids such artifacts by cascaded Gaussian filtering. Also note the partial-occlusion artifacts (e.g., in the second red dragon) in the
ray-traversal method. The lens settings are f = 0.1, N = 1.4 and is focused at the stone wall in the back (zfocus = 18.5) for the Homunculus and
at the foremost blue dragon (zfocus = 3) for the Dragon scene.

z-buffer to avoid any bias values due to z-buffer impre-
cisions.

We compare our method to the accumulation buffer-
technique [12] and to a ray-traversal technique[20], be-
cause the first simulates high-quality DoF effects if
enough views are sampled, while the latter method is
a state-of-the-art method which handles partial occlu-
sion correctly. The accumulation buffer technique is
implemented in OpenGL, but does not use the accu-
mulation buffer, because of precision issues when ac-
cumulating a high number of views. Instead, a 32bit-
per-channel float texture is used for accumulation. The
ray-traversal method was implemented in OpenGL and
GLSL. Although there are some tweakable parameters,
the authors give little information about their configu-
ration. So for the intersection tests of rays, we use 100
steps for the linear search and 5 for the binary search
in normalized device coordinates. A hierarchical N-
Buffer is used to decrease the depth range for each
rays. In our implementation, we decrease the depth
range for each ray individually—while the original au-
thors packed rays—and we use 4 regular depth-peeling
layers, without any optimizations. Additionally, the
ray-traversal method requires closed scene objects and
back-face culling to be turned off, for reliable intersec-
tion testing. This introduces additional rendering costs
and decreases the usable peeling layers to only 2. The
authors propose ways to overcome the latter limitation.
However, in our implementation we use the simplified
version containing only two peeling layers and their
backface counterparts. For both reference methods we

use a Gaussian distribution for lens samples position-
ing.

The methods are applied to the scenes Homunculus
(74k triangles) and Dragons (610k triangles), shown
in figure 6. Performance comparisons are shown in
table 1. Rendering costs for the accumulation-buffer
method are basically the costs for one scene render-
ing multiplied by the number of views. Our method
is, apart from depth peeling, independent of the scene
complexity, and faster than the ray-traversal method,
even when that method uses only 32 rays, resulting in
sampling artifacts. Our method is faster at processing
the Dragons scene, although the scene Homunculus has
fewer triangles. This can be explained by the distribu-
tion of the depth layers and the resulting amount of blur.
In the Homunculus scene there are more highly blurred
foreground layers, resulting in overall more rendering
costs than in Dragons, where the layers are more, but
evenly spread. Note that although scene Dragons has
more triangles than Homunculus, it is rendered faster
due to shading without textures and the use of vertex-
buffer objects.

We currently store all sub-images on the graphics
card—for convenience and debug reasons—resulting
in heavy memory usage. However, additional depth
layers (L̂0 to L̂K−1) can be avoided by applying the
process-queue (matting, blurring, composing) in one
buffer, which would decrease memory consumption.
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our (DP/matting/blur) Total (DP/ray-traversal) Total accum.
cascaded non-cascaded 256 128 32 rays 256 views

Homunculus (74k tri.) (46/5/51)102 (46/5/95)146 (58/1290)1348 (48/643)691 (48/140)188 4809
Dragons (610k tri.) (40/7/51)98 (40/8/85)133 (69/1374)1443 (69/685)754 (59/152)211 4163

Table 1: Performance comparisons, in ms, of our method (cascaded and non-cascaded blurring) with the ray-traversal method ([20]) and
the accumulation-buffer method for the scenes Homunculus and Dragons. Renderings have the resolution 1024× 1024 and 4 Depth-peeling
iterations (DP) have been used.

5 CONCLUSION AND FUTURE
WORK

We have presented a depth-of-field post-processing
method with the aim of overcoming the partial occlu-
sion artifact. The contribution of this work is a simple,
efficient and GPU-friendly method. We combine
depth-peeling with improved matting functions to
avoid the overhead of rendering to a high number
of depth layers. Furthermore we use high-quality
Gaussian filters in a recursive way, which has not been
done—to our knowledge—in DoF methods before.
With the usage of Gaussian filters, high blur radii can
be simulated, where even the reference methods start
to produce sampling artifacts. We have shown that
those DoF effects can be produced at frame rates that
are significantly higher than previous methods, making
high-quality DoF available for interactive applications.

One important step for the correct handling of partial
occlusion is depth peeling, which is frequently used to
resolve transparency issues, thus making the method
hardly usable for interactive applications like games.

Currently we use Gaussian filters, which are separa-
ble and can be computed efficiently while delivering
artifacts-free images. The usage of cascaded filters
while composing the DoF effect slightly alters the pro-
duced image, but results in better performance. If
higher frame rates are needed and visual quality can be
sacrificed faster blurring methods (e.g., box, pyramid
filters) can be used.

The composition by alpha-blending is simple and effi-
cient, thus leading to faster results when compared to
current methods like [20]. Layering discretization arti-
facts known from other methods are mostly avoided by
matting, depth peeling and normalization.

Wide-spread anti-aliasing methods (i.e., MSAA)
cannot be easily enabled for our method. However,
image-based anti-aliasing methods (such as MLAA or
FXAA)—which are becoming more popular due to the
wide usage of deferred shading—can be applied.

Currently, layers are split based on the dcoc of fragments
and on the chosen blurring method. This might result
in empty layers. Decomposition could be optimized by
using clustering methods, such as k-means clustering,
as proposed in [21, 16]. With the use of clustering, layer
borders could be tailored to the pixel density in scenes
and empty layers could be avoided. However, cluster-

ing is a costly process and therefore only applicable for
off-line rendering.

One further field of investigation would be the impact
of correct partial occlusion rendering on human percep-
tion. We think that a correct handling of partial oc-
clusion in combination with gaze-dependent focusing
(e.g., with an eye-tracker) would result in deeper im-
mersion of the user.
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