

ISSN 1213-6972 Volume 20, Number 2, 2012

Journal of

WSCG

An international journal of algorithms, data structures and techniques for

computer graphics and visualization, surface meshing and modeling, global

illumination, computer vision, image processing and pattern recognition,

computational geometry, visual human interaction and virtual reality,

animation, multimedia systems and applications in parallel, distributed and

mobile environment.

EDITOR – IN – CHIEF

Václav Skala

Vaclav Skala – Union Agency

Journal of WSCG

Editor-in-Chief: Vaclav Skala

 c/o University of West Bohemia

Faculty of Applied Sciences

Univerzitni 8

 CZ 306 14 Plzen

 Czech Republic

 http://www.VaclavSkala.eu

Managing Editor: Vaclav Skala

Printed and Published by:

 Vaclav Skala - Union Agency

 Na Mazinach 9

 CZ 322 00 Plzen

 Czech Republic

Hardcopy: ISSN 1213 – 6972

CD ROM: ISSN 1213 – 6980

On-line: ISSN 1213 – 6964

http://www.vaclavskala.eu/

Journal of WSCG

Vol.20, No.2

Contents

Congote,J., Novo,E., Kabongo,L., Ginsburg,D., Gerhard,S., Pienaar,R., Ruiz,O.:

Real-time Volume Rendering and Tractography Visualization on the Web

81

Navrátil,J., Kobrtek,J., Zemcík,P.: A Survey on Methods for Omnidirectional

Shadow Rendering

89

Bernard,J., Wilhelm,N., Scherer,M., May,T., Schreck,T.: TimeSeriesPaths:

Projection-Based Explorative Analysis of Multivarate Time Series Data

97

Kozlov,A., MacDonald,B., Wuensche,B.: Design and Analysis of Visualization

Techniques for Mobile Robotics Development

107

Yuen,W., Wuensche,B., Holmberg,N.: An Applied Approach for Real-Time Level-

of-Detail Woven Fabric Rendering

117

Amann,J., Chajdas,M.G., Westermann,R.: Error Metrics for Smart Image

Refinement

127

Recky,M., Leberl, F., Ferko, A.: Multi-View Random Fields and Street-Side

Imagery

137

Anjos,R., Pereira,J., Oliveira,J.: Collision Detection on Point Clouds Using

a 2.5+D Image-Based Approach

145

Karadag,G., Akyuz,A.O.: Color Preserving HDR Fusion for Dynamic Scenes

155

Real-time Volume Rendering and Tractography Visualization on
the Web

John Congote1, Esther Novo, Luis Kabongo

Vicomtech Research Center
Donostia - San Sebastian, Spain

jcongote,enovo,lkabongo@vicomtech.org

Dan Ginsburg

Children’s Hospital
Boston, United States

dginsburg@upsamplesoftware.com

Stephan Gerhard

Institute of Neuroinformatics
Uni/ETH Zurich, Switzerland

connectome@unidesign.ch

Rudolph Pienaar

Harvard Medical School
Boston, United States

Rudolph.Pienaar@childrens.harvard.edu

Oscar E. Ruiz
1Universidad EAFIT
Medellin, Antioquia

oruiz@eafit.edu.co

ABSTRACT
In the field of computer graphics, Volume Rendering techniques allow the visualization of 3D datasets, and specif-
ically, Volume Ray-Casting renders images from volumetric datasets, typically used in some scientific areas, such
as medical imaging. This article aims to describe the development of a combined visualization of tractography
and volume rendering of brain T1 MRI images in an integrated way. An innovative web viewer for interactive
visualization of neuro-imaging data has been developed based on WebGL. This recently developed standard en-
ables the clients to use the web viewer on a wide range of devices, with the only requirement of a compliant
web-browser. As the majority of the rendering tasks take place in the client machine, the effect of bottlenecks
and server overloading are minimized. The web application presented is able to compete with desktop tools, even
supporting high graphical demands and facing challenges regarding performance and scalability. The developed
software modules are available as open source code and include MRI volume data and tractography generated
by the Diffusion Toolkit, and connectivity data from the Connectome Mapping Toolkit. Our contribution for the
Volume Web Viewer implements early ray termination step according to the tractography depthmap, combining
volume images and estimated white matter fibers. Furthermore, the depthmap system extension can be used for
visualization of other types of data, where geometric and volume elements are displayed simultaneously.

Keywords
WebGL, Volume Rendering, Ray Casting, DVR, dMRI

1 INTRODUCTION

Three-dimensional data can be found in several scien-
tific fields, coming from simulation, sampling or mod-
eling processes. Regarding the biomedical scope, sev-
eral scanning techniques, such as magnetic resonance
(MRI) or computerized tomography (CT), are used for
storing body imaging samples as volumetric datasets
formed by groups of parallel slices, where the term vol-
umetric dataset refers to a scalar field. These datasets
are usually visualized in three dimensions in order to
facilitate specialists to interpret information.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 1: Combined visualization of volume rendering
and tractography information on the web

Journal of WSCG, Vol.20 81 http://www.wscg.eu

Visualization of medical volumetric datasets can suit-
ably be performed by the use of Direct Volume Render-
ing algorithms. These methods show important charac-
teristics of datasets, even though rendering is not usu-
ally photo-realistic.The problem addressed in this pa-
per is the visualization of tractography information ob-
tained from dMRI (diffusion MRI) together with vol-
ume data corresponding to MRI or CT images.

In order to represent the volumetric datasets, volume
rendering techniques allow the visualization of all in-
ner characteristics of volumes at once, by projecting
data into 2D images, according to the corresponding
position of a virtual camera. The main idea of the ray-
casting algorithm is to launch rays from the camera into
the volume, calculating the volume rendering integral
along the rays. Thus, in this method, the colour and
opacity of each pixel in the final image is evaluated by
launching a ray in the scene from the view position,
sampling the volume at discrete points along the ray
and accumulating the contribution of each sample.

Our contribution is an implementation of a web
rendering system for medical images, which integrates
volume rendering and geometric objects within a
compliant WebGL browser, based on the volume ray
casting algorithm and built on previous developments
[CSK11]. Due to the technology limitations of Webgl,
the improvements developed allow us to create a
web application for combined visualization of volume
rendering and tractography, as shown in Figure 1, being
able to compete with desktop tools, supporting high
graphical demands and facing challenges regarding
performance and scalability.

The article is organized as follows. Section 2 presents
the work related to this article, including a description
of volume rendering techniques, visualization of med-
ical images and geometry intersection. The methodol-
ogy of the developed work is explained in Section 3.
Then, the results accomplished are presented, and fi-
nally, Section 5 states the conclusions and future devel-
opments.

2 RELATED WORK
2.1 Volume Rendering
In computer graphics, Ray Casting is a well known di-
rect volume rendering technique that was designed by
Kajiya and Herzen [KVH84] as one of the initial devel-
opments in this area. Traditionally, three dimensional
objects have been created by using surface representa-
tions, drawing geometric primitives that create polygo-
nal meshes [Lev88], hence provoking the loss of infor-
mation from one dimension.

Further developments [DCH88] accomplished the
mathematical modeling of the ray casting process,
based on the light’s behaviour equations. Thus, the

volume rendering integral was defined. A comparative
between different direct volume rendering algorithms,
such as Texture Mapping, Ray Casting, Splatting or
Shear Warp, was presented [MHB00]. Ray casting is
a flexible algorithm that allows the implementation
of acceleration methods, such as Empty Space Skip-
ping [KW03] or Early Ray Termination. Early ray
termination is an optimization process that establishes
certain limitations in the volume, so that the samples
encountered after them do not contribute to the value
of the pixel.

Ray casting suitably fits GPUs’ operating mode
[Sch05], because of the independence of each ray that
is launched to the scene, making this algorithm highly
parallelizable and allowing the exploitation of GPUs’
parallel architecture. For GPU ray casting, the volume
element is stored in the GPU memory as a 3D texture
and a fragment shader program is used in order to
implement the ray casting algorithm.

A quality evaluation model was developed for compar-
ing the different Direct Volume Rendering techniques
[BBD07]. These methods handle a higher amount of
data than surface rendering techniques, therefore, the
complexity of the algorithms is increased, as well as the
necessary rendering time [Bru08]. Optimized volume
rendering methods avoid empty spaces by introducing
a volume proxy geometry [MRH08].

Web 3D Rendering

The use of the recently released WebGL standard
[Mar11] leads to new methods for web 3D visualiza-
tion, where most part of the computational processes
are performed in vertex and fragment shaders that
run on the GPU hardware. WebGL is a software
library that enables HTML5-based browsers to identify
clients’ graphics hardware. HTML5, the latest Internet
standard propose, provides native elements for audio
and video. WebGL consists of a low-level imperative
graphic programming API based on OpenGLES 2.0
for Javascript that enables flexibility and exploits
the characteristics of advanced graphics cards. Due
to the constant improvement of the performance of
Javascript interpreters, the management of scene ele-
ments behaves similarly to the ones obtained by using
natively compiled languages. Moreover, some WebGL
extensions have been implemented in order to achieve
a friendly interaction, such as SpiderGL [DBPGS10].

Several standards and proprietary solutions are cur-
rently being developed in order to fulfil the necessity
of moving 3D visualization into the web [BA01], such
as X3D, a standard derived from VRML that stores
3D information in a scenegraph format using XML
(Extensible Markup Language). This model has been
implemented in a declarative form, as an extension of
HTML; X3DOM presents a framework for integrating

Journal of WSCG, Vol.20 82 http://www.wscg.eu

X3D nodes into HTML5 DOM content [BEJZ09]
and other alternatives have also been developed, e.g.
XML3D [SKR10]. Finally, there is a standardization
for X3D in the MedX3D volume rendering model
[JAC08, PWS11].

2.2 Visualization of Medical Images
Medical visualization is a challenging scientific field
because interpretation of images may lead to clinical
intervention. Therefore, quality and fast interactive re-
sponse are important features in this domain. Remark-
able advances have occurred in medical imaging tech-
nology and applications in the past few years, support-
ing the possibility of sharing imaging data online across
clinical and research centres and among clinicians and
patients. The development of these kind of applications
is influenced by connectivity, security and resources’
heterogeneity concerns.
On-server rendering can be considered a partial solution
for Medical Imaging [BM07]. Moreover, several web
implementations for volumetric visualization have al-
ready been presented [JAC08], although many of these
solutions require third party systems to allow visual-
ization or their scalability is limited by the rendering
server.
As medical volumetric imaging requires high fidelity
and high performance, several rendering algorithms
have been analyzed, leading to thread- and data-parallel
implementations of ray casting [SHC09]. Thus, ar-
chitectural trends of three modern commodity parallel
architectures are exploited: multi-core, GPU, and Intel
Larrabee. Other approaches describe the development
of web-based 3D reconstruction and visualization
frameworks for medical data [SAO10]. Such appli-
cations based on X3D technology allow extending
cross-platform, inter-application data transfer ability.
Several applications have been implemented using
web 3D rendering techniques, for example, evaluation
systems at the educational level [Joh07] or medical
training simulations [JROB08].

dMRI
Diffusion Magnetic Resonance Imaging (dMRI) relies
on the visualization of water diffusion using data from
MRI. Diverse methodologies have been presented over
the last years and can be classified into two categories:
Image based and Object based techniques. The first
methodology divides the space in voxels and the as-
signed colour represents the principal diffusion direc-
tion [MAA03]. However, tracks can not be easily iden-
tified since no segmentation of the visualization is per-
formed, and therefore direction information is difficult
to observe since voxel colour mapping is not one-to-
one, i.e., different directions might be represented by
the same colour. Otherwise, in object based method-
ologies, objects, such as ellipsoids and lines, are used

together with colour mapping in order to enhance visu-
alization and give a direction sense to the representa-
tion.

Visualization of brain white matter cortical tracks is one
of the most important applications of dMRI, since it al-
lows to non-invasively visualize white matter anatomy,
and detecting of anomalies [NVLM07, GKN11]. Trac-
tography, which refers specifically to the representation
of the white matter tracks based on the water diffusion
information, employs lines to represent the diffusion
direction and to visualize the white matter paths. In
general, lines are generated using randomly distributed
seed points; together with the principal diffusion infor-
mation and a prescribed interval of time, the different
paths are generated. However, this representation be-
comes dependent on the amount and location of seed
points to correctly visualize tracks [EKG06] because er-
roneous connections might be produced between tracks
due to the existing error in data. Incorrect visualization
of branching of tracks is another drawback, since only
one path is generated per each seed point.

Probabilistic methodologies have been proposed
[EKG06] to represent branching of white matter tracks,
in which secondary seed points are included in regions
in which branching is assumed. Therefore, a denser
visualization is performed in those regions. An algo-
rithm was proposed for path visualization [RSDH10],
in which the different global paths are simplified by
one simple curve, clustering the different paths and
then using average curves to obtain one simple curve
that summarizes each cluster.

2.3 Geometry Intersection
The application described in this article requires rep-
resenting volume rendering and tractography together,
i.e., both volumetric and polygonal data have to be dis-
played in the same scene. There are several models for
combining polygonal geometry and volume rendering.
Some methods identify the intersection between rays
launched in the volume rendering process and geome-
try [SMF00]. This technique can be optimized by creat-
ing octrees for dividing the geometric space and prove
intersections correctly.

Other models try to achieve a correct visibility or-
der for the intersections between volume and geome-
try [HLSR09]. Geometry has to be rendered in the first
place to correctly look at the intersections of the geom-
etry and the volume. Besides, parts that are occluded
by the geometry should not contribute to the final im-
age, not performing any ray casting at all. In order to
achieve this feature, rays should terminate when they
hit a polygonal object, accordingly modifying the ray
length image if a polygonal object is closer to the view
point than the initial ray length.

Journal of WSCG, Vol.20 83 http://www.wscg.eu

3 METHODOLOGY
In our project, the results of the Connectome Mapper
are directly loaded in the browser using WebGL and
JavaScript. The FreeSurfer cortical surface reconstruc-
tion binary files are loaded and processed in JavaScript
and converted to WebGL vertex buffer objects for ren-
dering. The surfaces are overlaid with per-vertex cur-
vature values computed during the FreeSurfer process-
ing stream. The tractography data is likewise parsed
in the JavaScript code and rendered as line primitives
coloured based on direction. Finally, the structural net-
work itself is converted to JSON (JavaScript Object
Notation) as an offline preprocess and loaded into the
browser using JavaScript. The networks are visualized
in 3D along with the fiber tracts and volumes enabling
exploration of connectivity information in real-time.

The work described in this paper has been developed
using volume ray casting, a widely used algorithm for
generation of 2D representations from three dimen-
sional volumetric datasets. The obtained images are 2-
dimensional matrices I : [1,h]× [1,w]→ R4 (w: width
and h: height, both in pixels). Each pixel is represented
by a colour expressed by a four-tuple of red, green, blue
and alpha real-valued components, (R,G,B,A ∈ [0,1]).

An entire volume is represented by a 3-dimensional ar-
ray of real values V : [1,H]× [1,W]× [1,D]→ [0,1] (H:
Height, W: Width, D: Depth of the represented volume,
all of them in positive integer coordinates). Therefore,
V (x,y,z) ∈ [0,1]. The projection model used in this
work is called pin-hole camera [HZ03]. The pin-hole
camera technique uses intrinsic K ∈M3×4 and extrinsic
R ∈M4×4 real-valued matrices in order to project every
3D point p ∈ P3 onto a 2D point p′ ∈ P2.

The volume ray casting algorithm defines the colour for
each pixel (i, j) in the image, which is also known as
projection screen, I, according to the values of a scalar
field V (x,y,z). This scalar field is associated to the
points (x,y,z) reached by rays that are originated at a
certain pixel or camera, represented as C in Figure 2. A
cuboid geometry is generated with coordinates (0,0,0)
to (1,1,1). This cube represents the boundary estab-
lished for the volumetric dataset. Each ray intersects
with the cuboid volume V at points p(i, j)(x,y,z) and
q(i, j)(x,y,z), which represent the input and output co-
ordinates of the ray into and out from the volume, re-
spectively.

Then, each obtained ray pq is equi-parametrically sam-
pled. For every sampled point s(x,y,z) over the ray,
an approximation of the scalar field V (s) is calculated,
commonly by using trilinear interpolation. The sam-
pled points also influence the colour of the originating
pixel, due to the use of a composition function (Equa-
tions 1-4), where the accumulated colour Argb is the
colour of the point s in the volume V , and Aa is the
transparency component of the pixel, which has a value

of 1 at the end of the rendering process. Given a cer-
tain set of coordinates (x,y,z) in the volume and a ray
step k, Va is the scalar value of the volume V , Vrgb is
the colour defined by the given transfer function Va, S
represents the sampled values over the ray and O f , L f
are the general Opacity and Light factors.

Sa =Va×O f ×
(

1
s

)
(1)

Srgb =Vrgb×Sa×L f (2)

Ak
rgb = Ak−1

rgb +
(

1−Ak−1
a

)
×Srgb (3)

Ak
a = Ak−1

a +Sa (4)

In the ray casting process performed in this work, ge-
ometry G is formed by a set of segment lines L (al-
though G could also be represented as a set of points
P or triangles T). Each segment L is defined by two
points in the space. Lines are projected through projec-
tion matrices onto a different image, where the values
of colour (r,g,b,a) and depth (depth) are defined for
each pixel (x,y).

p

q

C

V

V1

V2

V3

G1

G2

Figure 2: 2D representation of the ray casting algorithm
performance (types of ray termination)

Each pq ray traverses the cuboid volume V , where both
volume elements Vi and geometries Gi are rendered in
the same process by modifying the early ray termina-
tion method, as depicted in Figure 2. This technique
checks the alpha value for each sample of the trans-
parency colour of the ray. If the value Va is equal to 1,
which means that the ray has reached the final colour,
the remaining steps of the ray are not evaluated. Rays
might terminate due to several reasons: when encoun-
tering a very dense volume (such as V1 in fig. 2), when
intersecting with a geometric element (e.g. with G1) or
when exiting the boundary cube, at point q.

The early ray termination model is also used to check
the length of the ray and compare it to the depthmap of
the figure. In conclusion, a projection of the geometry is

Journal of WSCG, Vol.20 84 http://www.wscg.eu

obtained, as well as the colour and depth for each pixel
in the image. This information can be compared to the
length of the ray, terminating the ray when the alpha
value is 1 or when the depth is equal to the geometry
depth.

4 RESULTS
This section describes the accomplished implementa-
tion of a real-time web viewer for both direct volume
rendering and tractography visualization. This work is
based on the WebGL standard and performs the ray
casting algorithm with an early ray termination opti-
mization.

4.1 Tractography
The Connectome Mapper [GDL11] is a publicly avail-
able software that provides a pipeline to automatically
generate structural networks from raw dMRI data of
the brain. Gray and white matter segmentations are
obtained by processing T1 MPRAGE MRI using the
Freesurfer set of tools. The Diffusion Toolkit is used
later for reconstruction. A deterministic streamline al-
gorithm is used to obtain tractography, by generating
fiber tracts of the same subject. For cortical and sub-
cortical regions of interest, a parcellation is performed.
Finally, these datasets are coregistered and a network
is generated by weighting the connectivity between re-
gions based on the fiber tracts [GGCP11].

4.2 Data Processing and Volume Interpo-
lation

For the developed work, all the slices that correspond to
a certain volume are composed into a single image, as
shown in Figure 3. This image is generated by placing
slices in a matrix configuration as a preprocessing step
of the rendering algorithm. The size of the image stored
in GPU memory could range from 4096×4096 on a PC
(which can contain up to 2563 volume) to 1024x1024
on other devices (which can contain up to 128×128×
64). The screen resolutions being reduced on mobile
devices it seems reasonable to scale down or even crop
the volumes original dimensions in order to match the
maximum GPU available memory.

In medical imaging, the sample bit depth is usually
higher than 8 bits per pixel. This is a drawback that
has to be handled for the development of web applica-
tions, where commonly supported formats are limited
to 8 bits per sample. In the described experiment, infor-
mation from medical datasets was reduced to 8 bits per
sample.

Identification of Ray Coordinates
According to the ray casting algorithm, the displayed
colours of the boundary cuboid geometry represent

Figure 3: Brain dataset in mosaic form, read by the
shader

the coordinates at each point (x,y,z). Coordinates
are stored as r,g,b colour components for each pixel.
Then, the cube can be rendered in the scene from the
desired view point. In order to achieve volume visu-
alization, several steps are followed in the rendering
process. First of all, the rendering of the colour cube is
performed according to the depth function change.

Taking this into account, rays are defined for each point
of the cube, starting at the front faces, where the vir-
tual camera is located, and ending at the back region.
The colour of every point of the cube represents the ex-
act coordinates of the ray for each pixel in the image.
The colour information is stored as 24 bit RGB values.
The range of values that can be represented may seem
small or imprecise for large images, but colour inter-
polation provides precision enough for ray coordinates.
The depth information is stored in different buffers in
order to obtain the corresponding depth value for each
ray. Finally, the geometry is rendered and the colour
and depth buffers are stored to be processed in the vol-
ume shader.

4.3 Visualization
The previously presented GPU implementation of vol-
ume rendering based on WebGL was used to develop
a real-time online tractography and volume rendering
viewer, accordingly to Table 1, proving this standard to
be a valid technology for real-time interactive applica-
tions on the web. The results shown in the table be-
low were accomplished when interacting with the web
viewer from several computers, using the same web
browser (Chrome) and the same number of steps, 50.
For every graphic card tested, the application can be
completely considered to have a real-time behaviour.

Journal of WSCG, Vol.20 85 http://www.wscg.eu

Graphic card model Frame rate
NVidia GeForce GTX480 60 fps
NVidia GeForce GTX285 60 fps
NVidia 9600GT 28 fps
NVidia Quadro FX 3800M 20 fps
NVidia Quadro FX 880M 15 fps

Table 1: Performance of the developed viewer for dif-
ferent graphic cards, using Chrome as web browser, the
number of steps equal to 50

(a) Tractography

(b) Volume Rendering

(c) Combined visualization

Figure 4: Tractography, volume rendered image of
brain T1 MPRAGE MRI and combined visualization
on the web

In the developed work, the web viewer shows tractogra-
phy information obtained from dMRI in the first place,
represented in Figure 4(a). These organized fiber tracks
in the white matter connect various cortical regions to
each other. The tractography is represented using We-
bGL line primitives, where each fiber track is rendered
by a set of points. The colour is assigned based on the
absolute value of the unit vector pointing in the direc-
tion from the start point to the end point of the tract.
The length value of each tract is stored in a per-vertex
attribute together with the position and colour. The
minimum tract length value is placed in a uniform vari-
able in the vertex shader. The vertex shader determines
whether the tract is longer than the minimum length to
render. The entire tractrography set for the brain is effi-
ciently rendered using a single draw call with one ver-
tex buffer object. Thus, no dynamic geometry genera-
tion is performed in JavaScript.

Direct volume rendering of MRI data (Figures 4(b)) is
developed simultaneously with the tractography. The
volume renderer loads the MRI dataset from the server
into a tiled 2D texture. Then, ray-tracing is performed
in the shader in order to obtain the volume render-
ing. This implementation of a volume rendering sys-
tem for the Web is based on the Volume Ray-Casting
algorithm. Since the algorithm is implemented in We-
bGL, the reached visualization speed is similar to na-
tive applications, due to the use of the same accelerated
graphic pipeline. The algorithm simulates 3D data by
using a 2D tiling map of the slices from the volume
maintaining trilinear interpolation and runs entirely in
the client.

In the developed Web viewer, shown in Figure 5, the
tractography and the volume rendering from brain MRI
data can be represented separate or simultaneously, as
depicted in Figures 4(c). Several features can be modi-
fied at runtime, by adjusting the provided sliders. Trac-
tography’s position can be changed according to the
three main axes and fiber tracks can be seen more
clearly by reducing the volume opacity. Finally, the
minimum tract length can also be modified.

5 CONCLUSIONS AND FUTURE
WORK

This paper describes the successful implementation of
remote visualization of medical images based on We-
bGL1. Interaction with remote medical images was lim-
ited by many technical requirements, but the emergence
of recent standards such as WebGL and HTML5 allow
the development of applications that enable clients to
access images without downloading them, maintaining

1 http://www.volumerc.org/demos/brainviewer/webgl/
brain_viewer/brain_viewer.html

Journal of WSCG, Vol.20 86 http://www.wscg.eu

Figure 5: Volume rendering and tractography web
viewer (sliders available for configuration)

data in a secure server and being able to perform func-
tions, e.g. registration, segmentation, etc., in a web
context. These technologies empower web browsers to
handle 3D graphics naturally. Thus, modern browsers
support a wide range of applications, from simple ren-
dering of two dimensional images to complex manipu-
lation of 3D models.

The achieved visualization of volume rendering and
tractography on the web, used for the implementation
the presented viewer (shown in Figure 5), has demon-
strated the capabilities of complex volume rendering vi-
sualization in web browsers, as well as the potential
of WebGL for interactive visualization of neuroimag-
ing data. Combined representation of volume render-
ing of brain T1 MRI images and tractography in real
time has been accomplished. The main strength of the
WebGL standard used here is the ability to provide effi-
cient access to GPU rendering hardware with no special
client-side software requirements, except for a compat-
ible browser. Thus, this platform has great potential for
imaging tools, particularly those providing web-based
interfaces for automatic pipelining of image data pro-
cessing.

In the work explained herein, the early ray termina-
tion algorithm was modified in order to combine vol-
ume and geometric elements in a seamless way. Thus,
the developed software modules, which are available as
open source code, successfully implement early ray ter-
mination step according to the tractography depthmap,
performing a combination between volume images and
estimated white matter fibers.

6 ACKNOWLEDGMENTS
This work was partially supported by CAD/CAM/CAE
Laboratory at EAFIT University and the Colombian
Council for Science and Technology -COLCIENCIAS-
. Everyone who has contributed to this work is also
gratefully acknowledged.

7 REFERENCES
[BA01] Johannes Behr and Marc Alexa. Volume vi-

sualization in vrml. In Proceedings of the sixth
international conference on 3D Web technology,
Web3D ’01, pages 23–27, New York, NY, USA,
2001. ACM.

[BBD07] Christian Boucheny, Georges-Pierre Bon-
neau, Jacques Droulez, Guillaume Thibault, and
Stéphane Ploix. A perceptive evaluation of vol-
ume rendering techniques. In Proceedings of the
4th symposium on Applied perception in graphics
and visualization, APGV ’07, pages 83–90, New
York, NY, USA, 2007. ACM.

[BEJZ09] Johannes Behr, Peter Eschler, Yvonne Jung,
and Michael Zöllner. X3dom: a dom-based
html5/x3d integration model. In Proceedings
of the 14th International Conference on 3D Web
Technology, Web3D ’09, pages 127–135, New
York, NY, USA, 2009. ACM.

[BM07] Bojan Blazona and Zeljka Mihajlovic. Visu-
alization service based on web services. 29th In-
ternational Conference on, pages 673–678, 2007.

[Bru08] S. Bruckner. Efficient Volume Visualization
of Large Medical Datasets: Concepts and Algo-
rithms. VDM Verlag, 2008.

[CSK11] John Congote, Alvaro Segura, Luis
Kabongo, Aitor Moreno, Jorge Posada, and Oscar
Ruiz. Interactive visualization of volumetric data
with webgl in real-time. In Proceedings of the
16th International Conference on 3D Web Tech-
nology, Web3D ’11, pages 137–146, New York,
NY, USA, 2011. ACM.

[DBPGS10] Marco Di Benedetto, Federico Ponchio,
Fabio Ganovelli, and Roberto Scopigno. Spi-
dergl: a javascript 3d graphics library for next-
generation www. In Proceedings of the 15th
International Conference on Web 3D Technol-
ogy, Web3D ’10, pages 165–174, New York, NY,
USA, 2010. ACM.

[DCH88] Robert A. Drebin, Loren Carpenter, and Pat
Hanrahan. Volume rendering. In Proceedings of
the 15th annual conference on Computer graph-
ics and interactive techniques, SIGGRAPH ’88,
pages 65–74, New York, NY, USA, 1988. ACM.

[EKG06] H.H. Ehricke, U. Klose, and W. Grodd. Visu-
alizing mr diffusion tensor fields by dynamic fiber
tracking and uncertainty mapping. Computers &
Graphics, 30(2):255–264, 2006.

[GDL11] S. Gerhard, A. Daducci, A. Lemkaddem,
R. Meuli, J.P. Thiran, and P. Hagmann. The con-
nectome viewer toolkit: an open source frame-
work to manage, analyze, and visualize connec-
tomes. Frontiers in Neuroinformatics, 5, 2011.

Journal of WSCG, Vol.20 87 http://www.wscg.eu

[GGCP11] Daniel Ginsburg, Stephan Gerhard,
John Edgar Congote, and Rudolph Pienaar. Re-
altime visualization of the connectome in the
browser using webgl. Frontiers in Neuroinfor-
matics, October 2011.

[GKN11] A.J. Golby, G. Kindlmann, I. Norton,
A. Yarmarkovich, S. Pieper, and R. Kikinis. In-
teractive diffusion tensor tractography visualiza-
tion for neurosurgical planning. Neurosurgery,
68(2):496, 2011.

[HLSR09] Markus Hadwiger, Patric Ljung,
Christof R. Salama, and Timo Ropinski. Ad-
vanced illumination techniques for gpu-based
volume raycasting. In ACM SIGGRAPH 2009
Courses, pages 1–166. ACM, 2009.

[HZ03] Richard Hartley and Andrew Zisserman. Mul-
tiple View Geometry in Computer Vision. Cam-
bridge University Press, Cambridge, UK, second
edition, 2003.

[JAC08] N W John, M Aratow, J Couch, D Evestedt,
A D Hudson, N Polys, R F Puk, A Ray, K Victor,
and Q Wang. Medx3d: Standards enabled desk-
top medical 3d. Studies In Health Technology And
Informatics, 132:189–194, 2008.

[Joh07] Nigel W. John. The impact of web3d technolo-
gies on medical education and training. Comput-
ers and Education, 49(1):19 – 31, 2007. Web3D
Technologies in Learning, Education and Train-
ing.

[JROB08] Yvonne Jung, Ruth Recker, Manuel Ol-
brich, and Ulrich Bockholt. Using x3d for medical
training simulations. In Web3D ’08: Proceedings
of the 13th international symposium on 3D web
technology, pages 43–51, New York, NY, USA,
2008. ACM.

[KVH84] James T. Kajiya and Brian P Von Herzen.
Ray tracing volume densities. SIGGRAPH Com-
put. Graph., 18:165–174, January 1984.

[KW03] J. Kruger and R. Westermann. Acceleration
techniques for gpu-based volume rendering. In
Proceedings of the 14th IEEE Visualization 2003
(VIS’03), VIS ’03, pages 38–, Washington, DC,
USA, 2003. IEEE Computer Society.

[Lev88] Marc Levoy. Display of surfaces from volume
data. IEEE Comput. Graph. Appl., 8:29–37, May
1988.

[MAA03] Y. Masutani, S. Aoki, O. Abe, N. Hayashi,
and K. Otomo. Mr diffusion tensor imaging: re-
cent advance and new techniques for diffusion
tensor visualization. European Journal of Radiol-
ogy, 46(1):53–66, 2003.

[Mar11] Chris Marrin. WebGL Specification. Khronos

WebGL Working Group, 2011.
[MHB00] M. Meißner, J. Huang, D. Bartz, K. Mueller,

and R. Crawfis. A practical evaluation of popular
volume rendering algorithms. In Proceedings of
the 2000 IEEE symposium on Volume visualiza-
tion, pages 81–90. Citeseer, 2000.

[MRH08] Jörg Mensmann, Timo Ropinski, and Klaus
Hinrichs. ccelerating volume raycasting using
occlusion frustums. In IEEE/EG Volume and
Point-Based Graphics, pages 147–154, 2008.

[NVLM07] P.G.P. Nucifora, R. Verma, S.K. Lee, and
E.R. Melhem. Diffusion-tensor mr imaging and
tractography: Exploring brain microstructure and
connectivity. Radiology, 245(2):367–384, 2007.

[PWS11] Nicholas Polys, Andrew Wood, and Patrick
Shinpaugh. Cross-platform presentation of inter-
active volumetric imagery. Departmental Tech-
nical Report 1177, Virginia Tech, Advanced Re-
search Computing, 2011.

[RSDH10] N. Ratnarajah, A. Simmons, O. Davydov,
and A. Hojjat. A novel white matter fibre track-
ing algorithm using probabilistic tractography and
average curves. Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2010,
pages 666–673, 2010.

[SAO10] S. Settapat, T. Achalakul, and M. Ohkura.
Web-based 3d visualization and interaction of
medical data using web3d. In SICE Annual Con-
ference 2010, Proceedings of, pages 2986–2991.
IEEE, 2010.

[Sch05] Henning Scharsach. Advanced gpu raycast-
ing. Proceedings of CESCG, 5:67–76, 2005.

[SHC09] Mikhail Smelyanskiy, David Holmes, Jatin
Chhugani, Alan Larson, Douglas M. Carmean,
Dennis Hanson, Pradeep Dubey, Kurt Augustine,
Daehyun Kim, Alan Kyker, Victor W. Lee, An-
thony D. Nguyen, Larry Seiler, and Richard Robb.
Mapping high-fidelity volume rendering for med-
ical imaging to cpu, gpu and many-core architec-
tures. IEEE Transactions on Visualization and
Computer Graphics, 15:1563–1570, November
2009.

[SKR10] Kristian Sons, Felix Klein, Dmitri Rubin-
stein, Sergiy Byelozyorov, and Philipp Slusallek.
Xml3d: interactive 3d graphics for the web. In
Proceedings of the 15th International Conference
on Web 3D Technology, Web3D ’10, pages 175–
184, New York, NY, USA, 2010. ACM.

[SMF00] Marcelo Rodrigo Maciel Silva, Isabel Harb
Manssour, and Carla Maria Dal Sasso Freitas. Op-
timizing combined volume and surface data ray
casting. In WSCG, 2000.

Journal of WSCG, Vol.20 88 http://www.wscg.eu

A Survey on Methods for Omnidirectional Shadow
Rendering

Jan Navrátil
inavrati@fit.vutbr.cz

Faculty of Information
Technology

Brno University of Technology,
Brno, Czech Republic

Jozef Kobrtek
xkobrt00@stud.fit.vutbr.cz

Faculty of Information
Technology

Brno University of Technology,
Brno, Czech Republic

Pavel Zemčík
zemcik@fit.vutbr.cz

Faculty of Information
Technology

Brno University of Technology,
Brno, Czech Republic

ABSTRACT

This paper focuses on methods of rendering shadows cast by point light sources. The goal is to summarize advantages and
disadvantages of methods based on shadow mapping. We compare the traditional approach that exploits cube maps with the
Dual–Paraboloid mapping. All of the methods are implemented on the latest hardware and they exploit capabilities of current
GPUs. We also implemented optimization techniques which decrease the computational time. We examine the time the methods
spent in particular rendering passes and we evaluate their overall performance. Finally, we conclude the comparison with some
recommendations for typical applications in which the methods of interest can be exploited. We also suggest some direction of
future investigation.

Keywords: shadow mapping, rendering, GPU, performance, cube maps, Dual–Paraboloid mapping

1 INTRODUCTION

Shadows play very important role in modern graphics
applications as they increase overall visual cue from
a rendered image. The shadow mapping algorithm
[Wil78] and the technique based on shadow volumes
[Cro77] are the most popular techniques for adding
shadows to 3D scenes.

A well known disadvantage of the shadow mapping
algorithm is the limited resolution of textures which
store the depth information. Furthermore, it is also dif-
ficult to render shadows cast from point light sources.
The basic shadow mapping algorithm cannot cover the
whole environment with a single texture and thus addi-
tional computations are required. Such additional com-
putations decrease the performance especially in scenes
with a complex geometry.

The technique based on shadow volumes can eas-
ily render shadows from point light sources with per
pixel accuracy. However, a high fill rate rapidly reduces
the computational performance even for moderate sized
scenes. Even though some optimization approaches ex-
ist [LWGM04], interactive applications mostly use the
shadow mapping algorithm.

In this paper, we investigate several approaches for
rendering shadows cast from point light sources based
on the shadow mapping algorithm. Our contribution is
the evaluation of the advantages and disadvantages of

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

the approaches. We compare the existing methods es-
pecially with respect to their performance. We present
some figures related to the time spent on generation
of shadow maps on GPUs [MGR+05, Gru07] and also
some frame times related to a camera view. We will
also discuss the efficiency of all of the presented meth-
ods and potential implementation problems related to
GPUs. Since the paper is restricted to the specific case
of the shadow mapping algoritm we do not consider the
shadow volumes approaches [LWGM04, VBGP09] as
well as techniques that increase visual quality of shad-
ows [WSP04]. Because they add some additional pro-
cessing steps that might influence the results.

In Section 2, we refer to some techniques related to
shadow rendering. We also mention some existing sur-
veys. Section 3 introduces some issues that may arise
when implementing the presented methods. We demon-
strate all of the methods and their optimization in Sec-
tion 4 and in Section 5, we present our experiments and
discuss their results. We conclude our work in Section
6 where we also suggest some areas of future investiga-
tion.

2 RELATED WORK
For high quality shadow rendering, techniques such as
ray tracing can be used. However, the shadow volumes
algorithm or the shadow mapping approach are the most
frequently used in interactive applications. The shadow
volume technique [Cro77] provides per-pixel accuracy,
its main disadvantage is a huge required fill rate. This
fact does not allow for its common use in interactive ap-
plications. We can, however, find some methods that re-
duce the fill rate [LWGM04]. Nevertheless, the shadow
mapping is the most popular algorithm for shadow ren-

Journal of WSCG, Vol.20 89 http://www.wscg.eu

dering. Basically, two approaches exist to render shad-
ows cast from omnidirectional light sources using the
shadow mapping algorithm. Firstly, shadow maps can
be represented by faces of a cube map [Ger04]. In
this case, six render passes are needed to fill the data
into the cube map faces. Secondly, the Dual–Parabo-
loid mapping technique [BAS02, OBM06] can be used.
It is capable of capturing the whole environment in
two render passes. However, the mapping is not linear
and thus not fully supported by contemporary graphics
hardware. Recently, different techniques have been in-
troduced [CVM11, HWL+11] that discuss other types
of parametrizatons.

All of the above mentioned methods are capable of
rendering shadows cast from omnidirectional (point)
light sources. However, they all have some limitations
and their usage may depend on the application and on
scene complexity. Some surveys of shadow rendering
have already been published, but they generally com-
pare visual quality of the shadows with respect to the
aliasing error [SWP10] or they address problem of soft
shadow rendering [HLHS03]. In these cases, mostly
directional light sources have been taken into account.
The omnidirectional light sources need an extra treat-
ment for creating shadow maps but also for reducing
the aliasing error. Vanek et al. [VNHZ11] did some
experiments with Dual–Paraboloid mapping technique
but they did not work with the cube maps approach at
all. They considered the cube map approach ineffective
for omnidirectional light sources.

3 ISSUES OF THE SHADOW MAP-
PING ALGORITHM

3.1 Overview of the Algorithm
The first step of the shadow mapping algorithm is cre-
ation of the shadow map. A virtual camera is placed
in the position of a light source. Then the scene is ren-
dered as viewed from the virtual camera and the depth
information is captured in the shadow map. In the sec-
ond step, the scene is rendered from a camera point of
view and the rendered pixels are compared with values
stored in the shadow map.

During the process of the creation of the shadow map,
the geometry has to be transformed to the light space
coordinate system. For this purpose, the transforma-
tion matrix has to provide an appropriate transformation
based on the type of the light source.

3.2 Linear Transformation and Interpo-
lation

In case of directional light sources, orthogonal projec-
tion is used since all of the light rays have the same
direction. For spotlights, perspective projection is used
since the spotlights cover only certain part of the scene.

a) b)

Figure 1: (left)A virtual camera for spotlights creates
the view frustum. The frustum covers only a part of
the scene based on a direction of the spotlight. (right)
Directional lights use orthographic projection, because
direction the light rays are parallel.

Then, the field-of-view in perspective projection is sim-
ilar to the concept of falloff angle in spotlights. (see
Figure 1). The perspective projection has a limited
field-of-view range and thus it can not cover the whole
environment. However, both projections are linear and
thus they do not allow for covering the 180 degree field-
of-view appropriately. To cover the whole environment,
multiple linear projections are required. This means
that if we want to use the basic shadow mapping algo-
rithm for omnidirectional light sources, multiple render
passes are necessary to create the shadow map (see Fig-
ure 2). Otherwise, a non-linear transformation has to be
used.

...

Figure 2: Multiple frusta have to be placed next to each
other to cover the whole environment.

When we apply a projection, represented by a ma-
trix, on vertices in the vertex shader, the fragments in
the fragment shader are linearly interpolated. Instead of
multiple linear projections, we can apply a non-linear
transformation. The non-linear transformation, how-
ever, does not work well with the interpolation scheme
used in graphics hardware. Straight lines are curved
after the transformation (see Figure 3). It causes un-
wanted artifact for large polygons. The solution for
these artifacts is to refine tessellation of the scene. For
small polygons, the artifacts are not noticeable.

3.3 Limited Resolution
Stamminger et al. [SD02] described two types of alias-
ing: perspective and projection. Perspective aliasing
is caused by limited resolution of shadow texture when

Journal of WSCG, Vol.20 90 http://www.wscg.eu

linear nonlinear

Vertex

shader

Fragment

shader

Figure 3: Fragments, that have to be rasterized be-
tween two vertices, are linearly interpolated in frag-
ment shaders. Nonlinear parameterization can cause
that fragments do not lie on a line.

the shadow map is undersampled while projection alias-
ing appears when the direction of light rays is parallel
to the surface. Some methods exist that try to reduce
the perspective aliasing artifacts on shadow boundaries.
The shadow map can be filtered to make the shadow
smooth [Fer05].

4 OVERVIEW OF METHODS
In this section, we present an overview of various meth-
ods for rendering shadows cast from omnidirectional
light sources. We describe principles of each of the
methods and we discuss their advantages and disadvan-
tages. Furthermore, we present some optimization tech-
niques that eliminate some of the disadvantages in order
to achieve the best results for each of the methods. For
our purpose, we only deal with omnidirectional light
sources. It means that the light is emitted from a single
point in space: therefore, we neglect an extent of the
light source.

4.1 Cube Shadow Maps Technique
In Section 3, we mentioned how problematic it is to
cover the whole environment with traditional projection
transformations. In order to create shadow maps for
an omnidirectional light source, it is necessary to point
the virtual camera into six directions. The view direc-
tion of the virtual camera should point toward directions
defined by the axes of the local coordinate system of
the cube: positive X, negative X, positive Y, negative Y,
positive Z and negative Z. This is almost identical to the
way how a cube map for environment mapping is gen-
erated except that in this case depth values are stored
instead of color.

Basics of the Cube Shadow Maps

The faces of the cube represent shadow maps and di-
rections of the faces shows the particular direction for
the virtual camera (see Figure 4). In order to cover the
whole environment, the traditional shadow mapping al-
gorithm exploits cube maps to visualize shadows cast
from point lights. To fill the data in the cube shadow

map, six render passes have to be performed. The GPUs
generally support the cube shadow maps which are thus
easy to implement.

The biggest disadvantage of the cube shadow maps
is that six render passes are often too expensive. This
fact can cause rapid decrease of performance for com-
plex scenes with high number of polygons. Even if per-
object frustum culling is applied, rendering of shadows
is still very expensive compared to rendering of the rest
of the scene.

Figure 4: Illustration of the cube shadow maps tech-
nique. Each face of the cube stores depth values for
a certain part of the scene.

Efficient Cube Face Frustum Culling

The methods of reduction of the number of passes have
been investigated [KN05]. If the light source is outside
the view frustum, then we can skip rendering of at least
one face of the shadow map. This leads to the most
noticeable effect on the performance

For our experiments, we use the following technique
for efficient culling of cube map faces. A camera view
frustum and each cube map frustum are tested for their
mutual intersection. Those frusta that do not inter-
sect can be discarded for further rendering because they
do not affect the final image. The efficient culling
of arbitrary frustum F against the camera view frus-
tum V works as follows. The frusta are defined by
8 boundary points and 12 boundary edges. To deter-
mine whether the two frusta intersect, two symmetric
tests have to be performed. Firstly, it should be tested
whether a boundary point of one frustum lies inside
other frustum (see Figure 5a). Secondly, it should be
tested whether a boundary edge of one frustum inter-
sects one or more clip planes of other frustum (see Fig-
ure 5b) [KN05].

For each face of the cube shadow map, we investigate
whether the camera view frustum intersects the shadow
face frustum and vice versa. If it is not the case, the
shadow face frustum does not affect the scene and we
can skip the additional processing (see Figure 6).

It is also necessary to take into account shadow cast-
ers outside the view frustum. If we cull the shadow
caster against the view frustum, the projected shadow
may still be visible in the view frustum. On the other

Journal of WSCG, Vol.20 91 http://www.wscg.eu

a) b)

V V

FF

Figure 5: A frustum consists of boundary points and
boundary edges. Two frusta intersect when (a) at least
one boundary point of the frustum F lies inside other
the frustum V or (b) at least one boundary edge of the
frustum F intersects a face of the frustum V .

hand, culling the shadow caster against the cube map
frustum draws invisible shadows as well. King et al.
[KN05] suggest to use frustum-frustum intersection test
described above for the shadow casters as well. Since
we use point light sources, rays are emitted from a sin-
gle point towards all shadow casters. This is analogous
to the perspective projections. If the shadow casters are
enclosed by bounding objects, frusta representing the
projected shadows can be created [KN05] and then the
frustum-frustum test can be applied in this case as well.
These tests are performed once per frame.

Cullable frusta
Cullable frusta

Cullable frusta

Figure 6: If the light source lies outside the camera view
frustum, at least one face is cullable.

4.2 Dual–Paraboloid Mapping Algorithm
In the following text, we will discuss the Dual–Parab-
oloid Mapping algorithm (DPSM) [BAS02]. The map-
ping is based on two paraboloids attached back-to-back,
each capturing one hemisphere:

f (x,y) =
1
2
− 1

2
(x2 + y2), x2 + y2 ≤ 1 (1)

In principle, a single hemisphere mapping can be
imagined as an exploitation of a totally reflective mir-
ror which reflects incident rays from the hemisphere
into the direction of the paraboloid (see Figure 7). The
rays may carry some information about the environ-
ment (mostly distance to the light) and the information
can be stored into a texture. The texture coordinates are

computed according to coordinates of the point where
the ray is reflected. The Dual–Paraboloid mapping ba-
sically maps 3D space to 2D which is represented by
the shadow map.

The algorithm needs only two render passes to cap-
ture the whole environment. Thus, it is more efficient
than the cube shadow maps technique. Other parame-
terization can be certainly found (spherical, cube map-
ping etc.) but the proposed parabolic parameterization
maintains its simplicity and performance, e.g. in GPU
implementation [OBM06]. It minimizes the amount of
used memory and the number of render passes that are
necessary to cover the whole environment.

Figure 7: Two paraboloids attached back-to-back can
capture the environment from all directions.

Nevertheless, the DPSM algorithm has also some dis-
advantages. While in the cube shadow map approach,
all the transformations needed to create the shadow
map are linear, they do not need any extra treatment
on GPUs. This mainly concerns interpolation process
between vertex and fragment shader (see Sec 3). When
using the DPSM algorithm, the rendered scene needs to
be finely tessellated because the mapping is not linear
and thus it does not work well for large polygons. It
may, however, introduce new bottlenecks.

4.3 Limitations of Geometry Shader
It is also possible to exploit both shadow mapping
methods utilizing a geometry shader in order to reduce
the number of render passes from six (two in Dual–Pa-
raboloid mapping algorithm) to a single one [Eng08].
In this case, we exploited capablities of the frequently
used graphics card, i.e., NVIDIA GeForce GTX560Ti,
which supports geometry shaders.

The core of this method is usage of multiple render
targets for and rendering all of the six cube map faces
at once. The geometry shader transforms each of the
incoming triangles with view-projection matrix of the
corresponding cube. A naive approach sends all the
incoming geometry data to all render targets, produc-
ing three to five times more geometry data than neces-
sary. Such data is, however, anyhow discarded in the
following rendering phases by the rasterizer. This leads
to a massive performance penalty, as seen in Table 1.
The results were measured on the same scene with the
shadow map resolution set to 10242.

Journal of WSCG, Vol.20 92 http://www.wscg.eu

avg. FPS
Cube6 6.19
Cube6Optim 20.3
DP 18.81
DPOptim 30.90

Table 1: All the methods exploit geometry shader and
render the shadow maps in one pass.

This method was further optimized by testing each
object bounding sphere against view frusta of the cube
map faces, or, in case of Dual–Paraboloid mapping al-
gorithm, against plane dividing scene in place of both
paraboloids. Cube shadow mapping method was sped
up by 227%, but still resulting in a very poor perfor-
mance. Dual–Paraboloid mapping approach did not
benefit that much from optimization, resulting in only
64% increase of performance, but also scoring far less
than multi-pass methods.

Despite the optimizations, these methods did not
overcome above mentioned optimized 6-pass tech-
niques (described in Section 4.1). The core problem of
the geometry shader is its execution model. It outputs
data in a serial fashion with no parallelism used.
Utilizing vertex shader and multiple passes overcomes
the above mentioned geometry shader solutions despite
switching of the render targets and updating resources
between render calls.

5 EXPERIMENTAL RESULTS
We implemented the experimental framework in
DirectX11 on an Intel Core i5 CPU 661 running at
3.33GHz using NVIDIA GeForce GTX560Ti GPU.
The rendered images have resolution of 1024× 768.
We used the 32bit render target for the shadow
maps. The resulting graphs were generated from
an experimental walkthrough of a demo scene. The
benchmarking scene had approximately 3 millions of
vertices.

Our implementation does not introduce any hardware
specific features. We can assume that the difference be-
tween the approaches would not be principally differ-
ent.

5.1 Frame Time in Walkthrough
The first measurement shows dependence of the frame
time for the walkthrough of the scene for all of the im-
plemented methods. The unoptimized variants of the
cube shadow maps and the Dual–Paraboloid shadow
mapping (DPSM) show the worst results. In this ap-
proach, for every pass, all the geometry is rendered.
Naturally, six render passes of the cube shadow maps
lead into the highest frame time.

The basic optimization technique provided the
bounding object frustum culling against the view frus-
tum, the cube shadow maps frustum and the clipping

plane for paraboloids. In this case, the same amount
of geometry is rendered in both approaches. The
overhead for increased number of the render passes for
the cube shadow maps had no effect on an overall time
for a single frame and thus the resulting frame times
are similar.

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

Animation Time [s]

F
ra
m
e
T
im
e
[m
s
]

Cube6

Cube6 Optim

Cube6 Optim + EFC

Dual Paraboloid

Dual Paraboloid Optim

Dual Paraboloid Optim + PC

Figure 8: Frame times for the walkthrough of the scene
for all implemented methods.

The cube shadow maps approach exhibits the best re-
sult with the effective cube face frustum culling - EFC
(see Section 4.1). The plot shown in Figure 8 shows that
the DPSM increased the performance only by skipping
one paraboloid wherever appropriate (using plane clip-
ping - PC). Otherwise, all of the geometry had to be ren-
dered in two passes. The cube shadow maps approach
can skip up to five render passes and thus it achieved the
best results (e.g. in 25th second of the walkthrough).
The frame time in the DPSM depends mainly on the
amount of rendered geometry and also the amount of
geometry in the given hemisphere. As can be seen in
the plot, the DPSM saved only 50% of the computation
time when rendering the scene only for one side. How-
ever, the cube shadow maps saved up to 83% of the per-
formance. Furthermore, Figure 9 shows that the DPSM
uses only one paraboloid most of the time and also that
the cube shadow map rarely performed all six passes.
This is mainly because the light source lied outside the
camera view frustum.

5.2 Timings of Render Passes
Since the shadow mapping algorithm renders shadows
in two passes, we investigated frame times for the
passes for all implemented methods. The time for
final shadow rendering showed to be equivalent for
all methods, because it mainly depends on number of
rendered geometry. Here, the view frustum culling was
employed. The most noticeable differences were in
times for generation of the shadow map.

As shown in Figure 10, the methods without any opti-
mization had to render all the geometry six times in case
of the cube shadow maps (blue) or two times in case of

Journal of WSCG, Vol.20 93 http://www.wscg.eu

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

Animation Time [s]

F
ru

st
ra

/P
la

ne
s

U
se

d

Cube6 Optim + EFC
DP Optim + PC

Figure 9: The plot shows the number of processed
cube faces (blue) and the number of rendered parabo-
loid sides (red).

0 5 10 15 20 25 30 35
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Animation Time [s]

S
ha

do
w

 M
ap

 C
re

at
io

n
T

im
e

[m
s]

Cube6 Optim
Cube6 Optim + EFC
Dual Paraboloid Optim
Dual Paraboloid Optim + PC

Figure 10: Evaluation of the times which all methods
spent on the shadow map generation. For better illus-
tration, unoptimized methods are not visible, because
they had very poor results as compared to optimized
techniques.

the DPSM algorithm (yellow). There are also some dif-
ferences between methods where a frustum and plane
culling is applied. The DPSM algorithm was faster
compared to the cube shadow maps. An overall amount
of rendered geometry was equivalent in both cases so
there seems to be some additional overhead in the cube
shadow maps technique.

Generally, the DPSM algorithm was faster when only
one paraboloid was processed. The cube shadow map
technique reached the similar times when only 2 faces
were processed. The plot in Figure 10 also shows that in
time 25 s, the cube shadow maps technique achieved the
best results. In this case, only one face was processed
which is mainly based on the position of a light sources
relative to a camera (see Figure 11).

5.3 Effect of Shadow Map Resolution
We also investigated how the shadow map resolution af-
fects the frame rate. In Table 2 and Table 3 you can see
the results for various shadow map sizes. As you can

Processed face

Discarded

faces

Figure 11: An illustration of the situation when only
one face is processed during shadow map generation
pass. Figure shows that only one cube face frustum in-
tersects with the camera view frustum.

see, the optimization techniques brought an increase in
frame rate.

Considering shadow map as a texture storing single
32-bit value per texel, memory consumption of the cube
shadow maps was from 24MB (1024×1024) to 384MB
(4096×4096). Whereas the Dual–Paraboloid mapping
approach uses one third of memory compared to the
cube shadow maps (8MB to 128MB), it is more compu-
tationally intensive. Utilizing efficient frustum culling
methods, we can save computation time by reducing
number of the render passes and size of the geometry
data, which also reduces memory utilization (less num-
ber of values stored due to frustum culling).

When taking 10242 resolution of shadow map as
100% performance for each method, switching to
20482 causes performance drop off only by 6.54% in
average, but greatly increases shadow quality. Choos-
ing 40962 resolution for shadow map takes 25.76%
performance penalty in average.

Image quality of the result of Dual–Paraboloid map-
ping technique depends on the geometry of the occlud-
ing object. As described in [BAS02, OBM06], the
Dual–Paraboloid mapping causes low-polygonal cast-
ers to produce incorrect shadows. Increasing shadow
map resolution does improve shadow quality, but still
can not match the quality of details achieved by the
cube shadow maps approach (see Figure 12).

10242 20482 40962

Cube6 75.71 70.04 47.9
Cube6Optim 150.43 116.76 64.04
Cube6Opt+EFC 188.71 151.67 89.68
DP 167.95 146.62 97.52
DPOptim 207.24 178.67 109.4
DPOptim+PC 208.15 180.24 110.95

Table 2: FPS of low-poly scene (600K vertices)

5.4 Position of a Light Source Relative to
Geometry

We also performed an experiment where we focused
on position of a light source relative to the geometry.
This experiment was inspired by techniques for com-
putation of interactive global illumination [RGK+08].

Journal of WSCG, Vol.20 94 http://www.wscg.eu

5122 10242 20482 40962

C
u

b
e

 S
h

a
d

o
w

 M
a

p
s

D
P

S
M

Figure 12: Figure shows how the shadow map resolution influences the shadow quality. Since a single paraboloid
covers one hemisphere, one shadow map texel is projected on the large area in the scene (as compared to the cube
shadow maps). This leads to worse quality of shadows.

10242 20482 40962

Cube6 19.11 18.38 16.21
Cube6Optim 57.15 51.23 36.50
Cube6Opt+EFC 127.47 114.21 83.38
DP 41.50 39.74 33.17
DPOptim 57.47 54.32 42.85
DPOptim+PC 90.56 86.08 69.58
Table 3: FPS of high-poly scene (3M vertices)

In this case, Virtual Point Lights (VPLs) are generated
on the surface to approximate indirect lighting. The re-
flected light is scattered into all directions. Therefore,
some method is required to handle shadows from the
reflected light. For this purpose, all the geometry data
is positioned into one hemisphere relative to the light
source. When the geometry is distributed around the
light sources, it is useful to use the cube shadow maps
technique, because it has better optimization strategy
and it can easily manage the number of processed cube
map faces. However, when we need to render only one
hemisphere, the DPSM algorithm is more sufficient.

We measured times for generation of the shadow
map in both of the presented techniques. Ritschel et
al. [RGK+08] employed the Dual–Paraboloid mapping
algorithm in their approach. They generated shadow
maps for multiple VPLs (256 and more) from simpli-
fied geometry. We compared timings for the DPSM and
the cube map technique.

In Figure 13, it can be seen that the DPSM algorithm
is approximately two times faster than the cube shadow
maps approach. The results are similar for various lev-
els of the scene complexity. The Dual–Paraboloid map-
ping algorithm can be used despite its worse accuracy,
because indirect lighting produces low-frequency shad-
ows. In this case, the artifacts are blurred.

0 5 10 15 20 25 30 35

1.4

1.6

1.8

2

2.2

2.4

2.6

Animation Time [s]

S
ha

do
w

 M
ap

 C
re

at
io

n
T

im
e

[m
s]

Cube6 Optim
DP Optim

0 5 10 15 20 25 30 35
0.8

1

1.2

1.4

1.6

1.8

2

Animation Time [s]

S
ha

do
w

 M
ap

 C
re

at
io

n
T

im
e

[m
s]

Cube6 Optim
DP Optim

Figure 13: Figure illustrates times that the methods of
interest spent on generation of the shadow map. In this
case, the geometry is placed into one direction from the
light source. The scene was represented by points only:
3 millions points (Top) and 100k points (Bottom).

6 CONCLUSION AND DISCUSSION

The goal of the work presented in this paper was to in-
vestigate the shadow mapping algorithm and techniques
based on this algorithm as well as their capabilities to
render shadows cast from point light sources. We ex-

Journal of WSCG, Vol.20 95 http://www.wscg.eu

amined two techniques that are based on the shadow
mapping algorithm. The cube shadow maps approach
exploits the traditional shadow mapping algorithm and
renders the shadow map on cube faces. The Dual–Pa-
raboloid shadow mapping uses nonlinear parameteriza-
tion to render one hemisphere in one render pass.

The initial assumption was that multiple render
passes performed by the cube shadow maps technique
should be very time consuming process. The result of
the measurement is that an unoptimized version of the
cube shadow maps exhibits the worst performance of
the examined algorithms. When a simple optimization
technique was used significantly increased perfor-
mance was reached, in fact, the best of the examined
algorithms. The performance and the visual quality of
the cube shadow maps is better compared to the Dual–
Paraboloid algorithm. However, the Dual–Paraboloid
algorithm produces better results if we consider the
specific position of a light source related to a geometry,
e.g., when computing illumination using VPLs.

Future work includes the complexity study that will
improve the quality of measurements but since the tim-
ings depend mainly on the rendered geometry, however,
as the complexity class is similar for all approaches, no
significant differences are expected. It might be inter-
esting to compare the implementation using the current
hardware capabilities, e.g. CUDA. Evaluation of visual
quality of the presented methods and their ability to deal
with the aliasing problem in the shadow mapping algo-
rithm is also subject of future work.

ACKNOWLEDGMENT
This work was supported by the European Regional De-
velopment Fund in the IT4Innovations Centre of Excel-
lence project CZ.1.05/1.1.00/02.0070 and the Artemis
JU project R3-COP, grant no. 100233.

REFERENCES
[AM00] Ulf Assarsson and Tomas Möller. Optimized view frus-

tum culling algorithms for bounding boxes. J. Graph.
Tools, 5(1):9–22, January 2000.

[BAS02] Stefan Brabec, Thomas Annen, and Hans-Peter Sei-
del. Shadow mapping for hemispherical and omnidi-
rectional light sources. In Proceedings of Computer
Graphics International, pages 397–408, 2002.

[Cro77] Franklin C. Crow. Shadow algorithms for computer
graphics. SIGGRAPH Comput. Graph., 11(2):242–248,
1977.

[CVM11] Marcel Stockli Contreras, Alberto José Ramírez
Valadez, and Alejandro Jiménez Martínez. Dual sphere-
unfolding method for single pass omni-directional
shadow mapping. In ACM SIGGRAPH 2011 Posters,
SIGGRAPH ’11, pages 69:1–69:1, New York, NY,
USA, 2011. ACM.

[Eng08] Wolfgang Engel, editor. Programming Vertex, Geome-
try, and Pixel Shaders. Charles River Media; 2 edition,
2008.

[Fer05] Randima Fernando. Percentage-closer soft shadows.
In ACM SIGGRAPH 2005 Sketches, SIGGRAPH ’05,
New York, NY, USA, 2005. ACM.

[Ger04] Philipp Gerasimov. Omnidirectional shadow mapping.
In Randima Fernando, editor, GPU Gems: Program-
ming Techniques, Tips and Tricks for Real-Time Graph-
ics, pages 193–203. Addison Wesley, 2004.

[Gru07] Holger Gruen. Performance profiling with amd gpu
tools: A case study. AMD Sponsored Session, GDC,
March 2007.

[HLHS03] Jean-Marc Hasenfratz, Marc Lapierre, Nicolas
Holzschuch, and François Sillion. A survey of real-
time soft shadows algorithms. Computer Graphics
Forum, 22(4):753–774, dec 2003.

[HWL+11] Tze-Yiu Ho, Liang Wan, Chi-Sing Leung, Ping-Man
Lam, and Tien-Tsin Wong. Unicube for dynamic envi-
ronment mapping. IEEE Transactions on Visualization
and Computer Graphics, 17(1):51–63, January 2011.

[KN05] Gary King and William Newhall. Efficient omni-
directional shadow maps. In Wolfgang Engle, edi-
tor, ShaderX3: Advanced Rendering with DirectX and
OpenGL, pages 435–448. Charles River Media, Hing-
ham, MA, 2005.

[LWGM04] Brandon Lloyd, Jeremy Wendt, Naga Govindaraju, and
Dinesh Manocha. Cc shadow volumes. In ACM SIG-
GRAPH 2004 Sketches, SIGGRAPH ’04, pages 146–,
New York, NY, USA, 2004. ACM.

[MGR+05] Victor Moya, Carlos Gonzalez, Jordi Roca, Agustin
Fernandez, and Roger Espasa. Shader performance
analysis on a modern gpu architecture. In Proceed-
ings of the 38th annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 38, pages 355–
364, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

[OBM06] Brian Osman, Mike Bukowski, and Chris McEvoy.
Practical implementation of dual paraboloid shadow
maps. In Proceedings of the 2006 ACM SIGGRAPH
symposium on Videogames, pages 103–106. ACM,
2006.

[RGK+08] T. Ritschel, T. Grosch, M. H. Kim, H.-P. Seidel,
C. Dachsbacher, and J. Kautz. Imperfect shadow maps
for efficient computation of indirect illumination. In
SIGGRAPH Asia ’08: ACM SIGGRAPH Asia 2008 pa-
pers, pages 1–8. ACM, 2008.

[SD02] Marc Stamminger and George Drettakis. Perspective
shadow maps. In Proceedings of the 29th annual confer-
ence on Computer graphics and interactive techniques,
pages 557–562. ACM, 2002.

[SWP10] Daniel Scherzer, Michael Wimmer, and Werner Pur-
gathofer. A survey of real-time hard shadow mapping
methods. In EUROGRAPHICS 2010 State of the Art
Reports, 2010.

[VBGP09] Forest Vincent, Loïc Barthe, Gael Guennebaud, and
Mathias Paulin. Soft Textured Shadow Volume. Com-
puter Graphics Forum, 28(4):1111–1120, 2009.

[VNHZ11] Juraj Vanek, Jan Navrátil, Adam Herout, and Pavel
Zemčík. High-quality shadows with improved parab-
oloid mapping. In Proceedings of the 7th international
conference on Advances in visual computing - Volume
Part I, ISVC’11, pages 421–430, Berlin, Heidelberg,
2011. Springer-Verlag.

[Wil78] Lance Williams. Casting curved shadows on curved
surfaces. SIGGRAPH Comput. Graph., 12(3):270–274,
1978.

[WSP04] M. Wimmer, D. Scherzer, and W. Purgathofer. Light
space perspective shadow maps. In the Eurographics
Symposium on Rendering, 2004.

Journal of WSCG, Vol.20 96 http://www.wscg.eu

TimeSeriesPaths: Projection-Based Explorative Analysis of
Multivarate Time Series Data

Jürgen Bernard
Fraunhofer Institute for

Computer Graphics
Research, Darmstadt,

Germany
juergen.bernard

@igd.fraunhofer.de

Nils Wilhelm
Technische Universität
Darmstadt, Germany

nwilhelm
@rbg.informatik.tu-

darmstadt.de

Maximilian Scherer
Interactive Graphics

Systems Group, Technische
Universität Darmstadt,

Germany
maximilian.scherer

@gris.tu-darmstadt.de

Thorsten May
Fraunhofer Institute for

Computer Graphics
Research, Darmstadt,

Germany
thorsten.may

@igd.fraunhofer.de

Tobias Schreck
Data Analysis and

Visualization Group,
Universität Konstanz,

Germany
tobias.schreck

@uni-konstanz.de

ABSTRACT
The analysis of time-dependent data is an important problem in many application domains, and interactive visual-
ization of time-series data can help in understanding patterns in large time series data. Many effective approaches
already exist for visual analysis of univariate time series supporting tasks such as assessment of data quality, detec-
tion of outliers, or identification of periodically or frequently occurring patterns. However, much fewer approaches
exist which support multivariate time series. The existence of multiple values per time stamp makes the analysis
task per se harder, and existing visualization techniques often do not scale well.
We introduce an approach for visual analysis of large multivariate time-dependent data, based on the idea of
projecting multivariate measurements to a 2D display, visualizing the time dimension by trajectories. We use visual
data aggregation metaphors based on grouping of similar data elements to scale with multivariate time series.
Aggregation procedures can either be based on statistical properties of the data or on data clustering routines.
Appropriately defined user controls allow to navigate and explore the data and interactively steer the parameters
of the data aggregation to enhance data analysis. We present an implementation of our approach and apply it on a
comprehensive data set from the field of earth observation, demonstrating the applicability and usefulness of our
approach.

Keywords: Multivariate Time Series, Visual Cluster Analysis, Exploratory Data Analysis, Data Projection, Data
Aggregation

1 INTRODUCTION

Multivariate time series data are gathered in many
domains including economics, experimental physics,
computer vision, robotics, and earth observation. E.g.,
in the financial domain, large amounts of stock prices
are tracked over time; in earth observation, daily tem-
peratures and many additional parameters are observed
at specific locations over time; time-dependent mea-
surements also arise in monitoring traffic parameters

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

on a communication network. Analysis of time series
data can take many forms, including assumption-free
exploration; correlation of time series with each other;
or evaluation of specific generative models. Much work
has been done focused on analyzing one-dimensional
time series, and respective solutions are often applied to
multivariate data by analyzing each dependent variable
versus an independent one. However, for multivariate
data the widely used IID assumption (independent
and identically distributed) usually does not hold.
Therefore there is a need to analyze all dimensions of
such data at once.

In the context of data mining and visual analytics, mul-
tivariate time series analysis is a difficult problem, with
solutions typically relying, in some form or the other,
on dimensionality reduction, feature selection, projec-
tion, and glyph-based visualization. The task at hand
often includes finding periodic or frequent patterns in

Journal of WSCG, Vol.20 97 http://www.wscg.eu

Figure 1: Main display: data analysis of a multivariate time series of 10 years length is always challenging due
to overview problems and visual cluttering. This is the starting point of our data exploration. The Time Series
Path System provides visual structures and interactive functionality to address the implied challenges. In this
example, we aggregate a weather scenario by its temperature values and receive 5 well-distributed data clusters
from cold (blue) on the left to warm (yellow) on the right. This is a qualified starting point for selection and
filtering approaches to detect periodicity, dense data regions and outliers. Confer our case study in Section 5 for
details about the 2D projection.

the data, relating multiple variables to each other, or
detecting outliers or anomalies. Visual-interactive ap-
proaches can help to tackle these challenging tasks by
closely involving the user in the exploration process,
addressing the typically difficult parameter selection
problem, which could be more complicated to solve re-
lying on purely automatic methods.

Several works propose to visually analyze multivariate
time-dependent data by dimensionality reduction [26,
12]. Multivariate data is visualized as two-dimensional
time series paths obtained by dimensionality reduction
(projection to 2D). While these works visually compare
sections of labeled multivariate time-dependent data,
they do not consider exploratory search in unknown
data sets. Furthermore, these works do not focus on ag-
gregation efforts to reduce over-plotting problems. To
this end, we introduce interactively steerable data ag-
gregation, supporting handling of multivariate time se-
ries data. In particular, the user is able to group data
points according to data-specific characteristics like sta-
tistical calculations based on value and time, or cluster-
ing results.

Our approach supports an effective overview of fre-
quent and infrequent states in multivariate time series
data even in cases of very large data. Furthermore, users
can interactively select meaningful path line subsets

for detailed exploration and for visual clutter reduction
purposes. Understanding of aggregated data groups is
supported by showing a comprehensive cluster glyph
metaphor, wherever data aggregation visualization is
required within the exploration process. We directly
involve the user in the exploration process, combining
data exploration with interactive steering of the auto-
matic analysis methods, such as searching for appropri-
ate clustering parameters, in particular.

We demonstrate the usefulness of our approach by an
application to earth observation data. There, long time
series of many parameters arise, and users want to un-
derstand periodicities, trends, and anomalies. We show
how our set of interactive views allows for interactively
exploring weather patterns of different lengths and pa-
rameters. Due to our data aggregations, domain users
can explore multivariate weather data in a single dis-
play, giving an overview of all data aspects at once.

The remainder of this paper is structured as follows.
In Section 2 we discuss related work in several areas.
In Section 3 and 4 we motivate our approach, explain
our system design and describe user interaction tech-
niques. In Section 5 we apply our implementation to a
real-world data set, demonstrating the usefulness of the
approach. Finally, we summarize this paper and discuss
future extensions in Sections and 6 and 7.

Journal of WSCG, Vol.20 98 http://www.wscg.eu

Figure 2: Visual comparison SOM, PCA and MDS projection technique. A k-means clustering result is shown.

2 RELATED WORK
Our work is related to analysis methods for time-
dependent data and multivariate data. Time series
analysis in general is conducted to understand the
behavior of systems, to distinguish regular from
extraordinary characteristics [14] and to predict future
development [13].

Visualization of Time Series Data

The visualization of time series is often helpful for ex-
ploratory analysis. Traditionally, time series can be vi-
sualized by line charts [24]. However, using line charts
is typically not effective for large time series data,
as many and long time series lead to over-plotting if
packed into a given display or would require excessive
user navigation (cf. the problem specification in Fig-
ure 1). The pixel paradigm [2] for visualization of time
series suggests to map the quantitative values of a time
series to an appropriate color scale. Ultimately, each
value can be represented by a single pixel. The Recur-
sive Pattern technique [2] employs the pixel paradigm
to arrange time series in a generic proximity-preserving
way, allowing to arrange between row-by-row up to
more complex patterns following space-filling curves.
The comparison of many time series can be supported
by rendering them next to each other in an appropriate
display.

Besides side-by-side schemes, e.g., TreeMap-like lay-
outs have been proposed [10]. An alternative to the
pixel paradigm is to map the time axis to a spiral, ef-
fectively using more length, which is particularly use-
ful for analysis of periodic data [27]. For domain-
specific visualization tasks, e.g., atomistic simulation
data, specialized techniques have been proposed [6].
An overview of time series visualization can be found
in the textbook by Aigner et al. [1]

Automatic Support

Automatic analysis techniques are often used in time
series visualization. E.g., the size of the data to be vi-
sualized may be reduced by aggregation [5] or dimen-
sionality reduction [8].

In [25] prototypical time series patterns are found by
cluster analysis, and linked to occurrence on the time
scale by color-coding. In [17] a discretization approach

is applied to support visual analysis of frequent subse-
quences in a node-link-diagram. Often, the similarity
definition between time series or subsequences thereof
is important to support exploratory search. In [28] so-
called Perception Points of Interest are identified to sort
a large number of time series for effective overview-
ing. Various other systems support the interactive re-
trieval of time series by defining appropriate similar-
ity notions and query interfaces [9, 11, 3]. A visual-
interactive approach to analyzing different families of
functions is presented in [16]. Here, the authors allow
the user to highlight data patterns of interest and pro-
vide linked views of the multidimensional data and the
user-selected highlights.

Multivariate Time Series

The above methods mainly consider univariate time se-
ries. Yet, multivariate time series analysis is of impor-
tance in many domains. A number of approaches in-
clude small multiple displays for showing all variables
over time next to each other. They may rely on line
charts, pixel displays, or any other appropriate base
technique. Also, automatic analysis methods for ex-
ploratory analysis in multivariate time series have been
considered. E.g., in [19] a frequent-pattern-based ap-
proach is used to find interesting time series patterns
along several levels of abstraction.

Recently, a number of authors have considered the visu-
alization of multivariate time series data based on pro-
jection. The basic idea is to project discrete points in
time to a 2D display, which in turn allows for analysis of
the time series for regularities and irregularities [23]. In
[22, 12] multivariate observation measures from motion
tracking are projected using the Self-Organizing Map
(SOM) method [15]. Individual observations are con-
nected by lines, and glyphs illustrating the particular
configurations of the motion are shown. In [18] mul-
tivariate time series are extracted from text, by com-
putation of certain text features for discrete intervals
along the sequence of the text. A PCA-based display
was used to assess the development of the text content,
by analysis of feature trajectories observed in the dis-
play. In [26] the authors use PCA-based projection to
explore the sequence of small fixed-size intervals (so-
called n-grams) of long univariate time series data. The
approach was applied to stock market data and shown to
provide an informative overview over long time series

Journal of WSCG, Vol.20 99 http://www.wscg.eu

Figure 3: Aggregation of multivaritate time series data based on a variety of statistical data properties. Most of the
functionality can either be performed on a single, or all dimensions.

data. In particular, the authors proposed their method
to support the following analysis cases: Detection of
cyclic behaviors; visual identification of base patterns
and outliers; and analysis for trends.

3 SYSTEM DESIGN
In this work we present TimeSeriesPaths, a system for
the analysis of multivariate time series data. The PCA
projection algorithm is applied to arrange multivariate
time-series on the (2D) display screen (the Time Series
Path Map). We connect temporally adjacent data ele-
ments and receive a sequentially ordered set of points –
a so called time series path. By default, such a visual-
ization suffers from severe over-plotting and overview
problems. In order to make such a visualization under-
standable for domain-experts and to counter the implied
challenges, our approach comprises three contributions:

1. We apply semi-automatic data aggregation function-
ality, either derived from statistical data calculation,
or from visual-interactive data clustering (cf. Sub-
section 3.2). This helps the user to get an overview
to the dataset.

2. We present a cluster visualization technique that
incorporates multiple information about the aggre-
gated data (cf. Subsection 3.2). This supports data
interpretation and cluster comparison approaches.

3. We propose a multi-view system with broad visual-
interactive analysis functionality (cf. Subsection 4).
Selection and highlighting modalities of data path
subsets counter the challenge of over-plotting and
allow for comprehensive detail on demand perspec-
tives.

3.1 Visualizing Multivariate Time Series
Data Projection

We apply a projection technique to visualize multivari-
ate time series data on 2D displays. An applicability

consideration between visualizations based on projec-
tion and the multiple linechart technique is given in
Section 6.

A general requirement concerning projection is the
preservation of data topology, by means that similar
data in the multivariate input space is also arranged
close to each other in the display space. Due to their
popularity and their diversity in arithmetical manner
we chose PCA, SOM and Multidimensional Scaling
MDS [7] as promising candidates. After an evaluation
of our requirement criteria and a visual comparison in
Figure 2, we choose the PCA algorithm as a default for
prospective projection needs in the TimeSeriesPaths
system. The non-linear MDS proves to be rather un-
suitable for our approach, solely because it has troubles
in separating k-means clusters. The SOM algorithm
suffers in respect to the calculation speed and a major
difficult (fully automatic) parametrization. Yet the key
benefit of PCA derives from the ability to project data
points in a linear manner, by means that the projection
results do not lack on local distortions and thus allow
for a more straight forwarded interpretation. Further-
more, the visual comparison of the three projection
techniques shows a good cluster separation by PCA.
We accept that PCA does not exploit the complete
display space as well as the SOM projection. However
later in this section, we will present our cluster glyph
and show how our glyph visualization mitigates this
problem.

Visualizing Time Series Paths

The visualization of time series paths is provided by
the Time Series Path Map in the center of the display.
Based on our data projection method, we connect indi-
vidual data points by their chronological order to form
paths. The projection arranges similar data points close
to each other and reflects the data point distances of the
multivariate data input space. Accordingly, if path se-
quences are similar to each other, their possibly close

Journal of WSCG, Vol.20 100 http://www.wscg.eu

Figure 4: The “Rollercoaster Animation”. By dragging the time slider, the user can explore the temporal devel-
opment of the time series path. The cursor position and time series path neighbors are animated with circular
shapes.

positions on the display space help the user with pro-
found analysis approaches.

3.2 Multivariate Time Series Aggregation
Statistics Calculation and Aggregation

We integrate automatically generated statistical data in-
formation into the visualization to counter the overview
problem and support the analysis process. So far, re-
lated approaches color-code data points for time-based
and value-based changes or class labeling [12, 26]. Our
approach generalizes this by a variety of statistical data
measurements that provide additional important infor-
mation, an overview is given in Figure 3. Altogether,
our system provides four different properties of statisti-
cal data information for color coding:

• (a) occurrence within the time line (time-based)

• (b) nearest neighbor distance (NN-based)

• (c) speed of value change to adjacent time stamps
(gradient-based)

• (d) cluster membership (clustering-based)

Except for (a), all statistical data information can either
be calculated on a single dimension or on all dimen-
sions of the data set. Thus, we are also able to perform
domain-specific exploration tasks due to the level of de-
tail in the aggregation setup. The number of data groups
k can be specified by the user for all properties, (a)-(d).

Data color codings according to group affiliations are
displayed on the Time Series Path Map, our time axis
display at the bottom (called Color Time Bar), and the
Data Aggregation List on the right, respectively. Show-
ing multiple aspects of the data enables to find an ap-
propriate aggregation level, to interpret groups of data
and derive mutual characteristics, to detect outliers and
to explore periodic behavior in the data.

In our case study (cf. Section 5), we will show that dis-
tributions of aggregated statistical data information on
the Time Series Path Map and the Color Time Bar give
valuable information about dense data regions, data
anomalies and the periodicity of time series paths.

Generic Cluster Glyph

The aggregation of data into groups requires a mean-
ingful cluster visualization method (cf. Figure 5). The
main requirement is genericity in order to suit to a
great variety of multivariate time series data. Addition-
ally, averages, minima and maxima, variances, num-
ber of elements and cluster quality indices are needed.
Each data dimension is displayed with an error bar
chart glyph metaphor and labeled with the correspond-
ing physical unit. Additionally, we include the distribu-
tion of time stamps on a time axis to monitor chrono-
logical data characteristics to detect periodic behavior
or anomalies. Finally we demand the cluster glyph to
show the cluster color coding for linking, and a headline
for user-centered data labeling purposes.

Earlier we argued that PCA does not capitalize the en-
tire border areas of the display space. We benefit from
this instance due to the fact that we have free space re-
maining to position cluster glyphs for data aggregation
operations. Four black concentrical lines connect the
cluster glyph with the appropriate display coordinate
without producing too much occlusion (see Figures 1,
6, 7 and 8).

Figure 5: Generic Cluster Glyph. A boxplot-like visu-
alization shows the distribution of data elements in each
dimension of the dataset, transparency is used to show
data frequency. Cluster centroid values are displayed as
red bars, just like gray variance bands mapped laterally
for each dimension. Statistical information about the
data cluster is shown at the center, the data distribution
on the global time axis is shown at the bottom.

4 INTERACTION TECHNIQUES
TimeSeriesPaths includes a set of linked user interac-
tion modalities which work across the three different

Journal of WSCG, Vol.20 101 http://www.wscg.eu

Figure 6: Data aggregation on single input data dimensions: Distribution of relative humidity values (color map:
blue means wet, yellow means dry). We constitute rainy weather states to be located left on the Time Series Path
Map. By exploring the Color Time Bar, we discover rainy weathers dominating the winter periods. Composing
these two findings, we reason that (wet) winter climates are located on the left of the Time Series Path Map.

views. We give a short introduction to the major visual-
interactive capabilities of the TimeSeriesPaths system.

Tooltipping

An important user requirement is detail on demand vi-
sualization. By hovering above data elements on the
Time Series Path Map and the Color Time Bar, tooltips
show the multivariate data information and the position
of the respective data elements on the time axis (cf. Fig-
ures 9 and 10).

Selection, Interactive Grouping and Highlighting

The selection of data is supported in each of our three
views. The user can (1) select single data points, (2)
time series paths or subsequences thereof, (3) the selec-
tion of data within a distinct display region in the Time
Series Path Map is possible (cf. Figure 7). The user
sketches an arbitrarily polygonal shape on the map, and
the surrounded data points will be selected.

Data selections can subsequently be added to the Data
Aggregation List for additional information about the
selection and for future re-selection. The respective se-
lection is highlighted in all three views to allow the user
the detection of interesting patterns. For example, when
the user selects a data cluster from the Data Aggrega-
tion List (cf. Figures 9 and 8), respective data points are
highlighted in the Time Series Path Map and the Color

Time Bar. Thus, the user has three different scopes for
the exploration of the selected data: (a) the distribu-
tion of the data on the Time Series Path Map, (b) occur-
rences of data elements along the time line in the Color
Time Bar and (c) cluster value distributions in the Data
Aggregation List (cf. Figure 8).
By means of transparency and plotting size, the user
can counter over-plotting on his own by reducing the
visibility of elements that are not selected.

Rollercoaster Animation

The Color Time Bar also contains a Time Slider for ani-
mated time series analysis. We can drag the Time Slider
to a specific point or interval in time, and correspond-
ing subsequences are highlighted with circular shapes
in real-time on the Time Series Path Map. A schemat-
ical demonstration of our so called “Rollercoaster Ani-
mation” is given in Figure 4, an application is shown in
Figure 10. This interactive animation allows a detailed
exploration of the distribution of projected values over
time, and also to detect periodic patterns on the Time
Series Path Map. The latter is especially helpful in case
of over-plotted displays, where a large amount of data
elements is visualized on the display.

5 CASE STUDY
We apply our system to a data set from earth obser-
vation research. Based on consultation with domain re-
searchers, we explore weather phenomena hidden in the

Journal of WSCG, Vol.20 102 http://www.wscg.eu

Figure 7: Data aggregation on single input data dimensions: Air pressure development. Selection of the left half of
the paths (winter weathers). We discover a color gradient from high (top, yellow) to low (bottom, blue) air pressure
values.

data like periodic patterns, frequent ’weather states’ and
abnormal behavior that can be found with our system.

5.1 Data Set and Application Domain

Our considered data set is acquired from the open data
repository PANGAEA [21], operated by the Alfred
Wegener Insitute (AWI) for Polar and Marine Research
in Bremerhaven. PANGAEA archives and publishes
geo-referenced scientific earth observation data in
the research areas of water, ice, sediment and atmo-
sphere. Our data set focuses on atmospheric weather
measurements, gathered in the scope of the Baseline
Surface Radiation Network (BSRN) [20] PANGAEA
compartment. These measurements are multivariate
atmospheric observations of radiation-related physical
parameters) which were recorded every minute. We
focus on a dataset of ten years duration, originated
from the BSRN station in Payerne (Switzerland) in
the time period of January 1st, 1994 to December
31th, 2003 [4]. Payerne is located in the center of
the triangle Lyon, Milan and Fribourg at 491 meters
above sea level. The climate of Payerne is temperate,
semi-continental with average minimum temperatures
at about -2◦C in January and about 18◦C in July. The
average daily sunshine duration varies between 2 hours
in January and 8 hours in July. Hence, the researchers
affirm a yearly climate periodicity to the data that
serves as ground truth and primary analysis goal.
Beyond that, the so called “summer of the century”
in 2003 produced temperature values up to 40◦C and

motivates us finding this and yet other anomalies in the
data set.
We consulted researchers from BSRN to select a suit-
able parameter subset for detecting interesting weather
scenarios. Besides temperature, relative humidity and
air pressure, we incorporate the short-wave downward
radiation (SWD) and the long-wave downward radia-
tion (LWD). The SWD is well suited to give statements
about cloud occurrences. Most radiation is measured at
the so called clear-sky condition, even when there are
no clouds in the sky. It is used for climate research in
general and in applied sciences, e.g., in land surface as-
similation models, surface energy budget models, and
ocean assimilation models. In agriculture, the short-
wave downward radiation is used as an input for crop
modeling and the solar industry applies it for estima-
tions where to build solar power plants. The LWD is
another important factor in the energetic exchange be-
tween atmosphere and the earth surface. While the so-
lar dependent short-wave downward radiation is near
zero at night, the long-wave downward radiation can
be measured all night long. The long-wave downward
radiation is higher when the sky is clear. By applying
these five measurements as our data set, we are able
to make statements about different weather states that
possibly change within a seasonal cycle.
Due to the long time period of ten years, we determine
each single day as one data point, periodic behaviors
within single days are also discovered in the data set
and possible to analyze with our system, but not in the
focus in this case study. In order to remain on a uni-

Journal of WSCG, Vol.20 103 http://www.wscg.eu

Figure 8: Advanced exploration of Figure 1. We have
no problems in identifying the periodic appearance of
hot temperatures in the summers in the Color Time Bar.
Furthermore, the “summer of the century” anomaly in
2003 stands out with a lot of hot days.

versally accepted approach, we use a generic moving
average routine to produce meaningful daily represen-
tatives, climate specific daily data aggregation proce-
dures are not applied. Missing value periods of less
than 6 hours are linearly interpolated, longer data gaps
are ignored. We want to point out that other preprocess-
ing approaches are possible and merely implicate for us
the effort of reconfiguring parameters or, if necessary,
add a domain-specific preprocessing routine.

5.2 Obtaining a Global Overview

We primarily obtain a global overview to the Time Se-
ries Path Map and the data, respectively (cf. Figures 1
and 6). This is crucial due to the described problems
in dealing with large multivariate data and projection-
based approaches (cf. Section 3). The Color Time Bar
indicates a meaningful periodicity with in the seasonal
cycle. We constitute Payernes climate to be warm in
the summer and cold in the winter period (cf. Figure
1). The overview is completed with Figure 6, where the
relative humidity appears to be high (rainy) on the left
and low (dry) on the right. At least since the Time Color
Bar shows summers to be dry and winters to be wet, we
can constitute that the left half of the Time Series Path
Map depicts the winter period whereas the summer time
is allocated at the right of the display. We prove this hy-
pothesis in Figure 7 by selecting the left half of the time
series paths and obtain a meaningful segmentation on
the Color Time Bar between summer and winter. Tak-
ing the cluster glyphs of the three discussed images into
account, we assess correlations between dimension 1
(temperature), 4 (SWD) and 5 (LWD) and thus register
another finding in the data set.

After we have received a global overview to the data
and our views (some findings may appear evident to the
reader so far), we now proceed our case study and focus
on the exploration of more particular findings.

5.3 Findings in the Data Set
We now focus on abnormal behavior and anomalies in
the data set. We try to discover the “summer of the
century” of 2003 as a first finding. We use the view
shown in Figure 1 and select the hottest data cluster
(yellow); the result is shown in Figure 8. Besides, we
discover the coldest summer of the data set in the year
1996 as a new finding. Together with the researchers
from AWI, we find our final data exploration goal in
the detection of thunderstorms and intense low-pressure
systems. Besides the researchers expertise, we consult
Internet forums, weather history literature, and insur-
ance damage reports to verify our findings. Figure 9
displays our course of exploration. We focus on the
air pressure dimension and apply our gradient-based
statistical property that measures value changes over
time. An aggregation to six clusters produces one group
of about 200 highlighted data points that manifest ex-
tremely decreasing air pressure gradients. We tooltip a
collection of five proven hurricanes and chose the most
prominent and devastating hurricane Lothar for a de-
tail on demand exploration. Figure 10 details about
the air pressure development over 10 days in december
1999. The Rollercoaster Animation helps us navigating
through a clearly arranged display, released from visual
clutter and overview problems.

6 DISCUSSION
One of the most traditional visualization types for time
series data are line charts. In case of multivariate time
series, multiple parallel line charts can be used for data
visualization. Eventually, projection-techniques such
as studied in this paper need to be compared against
alternative time series visualization options. While we
have not yet done a formal comparison, we provide a
conceptual discussion to point at possible advantages
and disadvantages of the projection-based approaches
vs. line chart approaches.

First, we expect the traditional line chart approach to
have scalability problems with respect to very long
time series, and to a high number of dimensions. The
projection-based approach for the visualization of time
series data aims at improving scalability with respect
to (1) the time axis (long time series) and (2) the po-
tentially high number of dimensions. Considering (1),
information loss occurs for line charts as soon as the
number of time stamps becomes larger than the num-
ber of available pixels on the x-axsis of the line chart
display. Basically, three observations can be made:

1. Drawing multiple data points per pixel coordinate
leads to visual artifacts and information loss.

2. Downsampling the number of time stamps reduces
the amount of information of the visualization.

Journal of WSCG, Vol.20 104 http://www.wscg.eu

Figure 9: Detection of historic thunderstorms by highlighting most crucial air pressure decreases (blue).

3. Scrolling facilities allow to navigate large time se-
ries, yet can be cumbersome for very large time se-
ries and may lead to loss of user overview.

Using a 2D projection has the potential to show longer
time series in a given display space, if an appropriate
projection can be found. On the other hand, interpre-
tation of the projected time series paths may become
harder, as directions and distances cannot be read as
straightforward as in a line chart.
Considering (2), a high number of dimensions may con-
stitute a problem for multiple line charts. At some
point, the available display space is exhausted when
too many dimensions are combined in a multiple line
chart visualization. In projection, dense data point re-
gions are not only visual clutter. These regions rep-
resent dense regions in the input data space and offer
potential starting points for further user search and fil-
tering.
The second distinction between multiple line charts and
projection concerns the number of data attributes to
show. The projection condenses the information of all
dimensions in one time series path, providing dimen-
sionality reduction. In general, projection of multi-
variate data brings up questions about the application-
dependent choice of the projection variant (cf. Sub-
section 3.1) and the preservation of information hid-
den in the input data. As future work, we need to
compare the information preservation of multiple line
charts (considering problems for large data or many di-
mensions) and projection-based time series visualiza-
tion approaches. One first idea is to define a bench-
mark data set with periodic behavior that is compared

in multiple line charts and in projection-based visual-
ization. At present, we depict that the first two main
components of the PCA-based 2D projection approach
preserve 78% of the chosen 5D input data information
in our weather data case study. Thus, we may assume
that the amount of used information is rather high. Yet,
more precise evaluation and comparison of the infor-
mation contents and usage in parallel line charts and in
projection-based approaches is needed.

7 CONCLUSION
We presented a system for the analysis of multivariate
time-series data. The identification of relations between
multiple attributes is an intrinsically difficult problem,
even with a viable projection to 2D-space. In order to
make such a visualization understandable for domain-
experts, our system provides methods for statistical ag-
gregation and clusterings, which can be steered by the
user in a very flexible way. Beyond just showing cluster
IDs we propose a new glyph-based visualization. This
glyph shows the multivariate profiles of the clusters and
allows for an effective comparison and interpretation of
their properties. The system provides linked views to
relate different perspectives of the data to each other.
In cooperation with earth observation researchers, we
tested the usefulness of the approach with a dataset
for atmospheric weather measurements over a ten-years
time frame.
We believe that the approach presented in this paper is
easily applicable to time-series of different domains. In
future projects we will apply and test this system with
consumption data of the electric power grid. We used

Journal of WSCG, Vol.20 105 http://www.wscg.eu

Figure 10: Rollercoaster Animation on hurricane
Lothar. Air pressure coloring (blue means low).

projection techniques as an overview because of their
popularity as a method for multivariate analysis. How-
ever, the methods to calculate, steer and explore the
clusters are not restricted to a specific type of overview.
In future, we will extend the linked views by other vi-
sualizations for multivariate time-series to test for the
most effective combination of domain, overview and
aggregation methods.

ACKNOWLEDGMENTS
We thank the Alfred Wegener Insitute (AWI) in Bre-
merhaven, particularly Rainer Sieger, Hannes Grobe
and Gert König-Langlo, and everyone involved with
PANGAEA for supporting this research effort.

8 REFERENCES
[1] W. Aigner, S. Miksch, H. Schumann, and C. Tominski. Visual-

ization of Time-Oriented Data. Springer-Verlag New York Inc,
2011.

[2] Mihael Ankerst, Daniel A. Keim, and Hans-Peter Kriegel. Re-
cursive pattern: A technique for visualizing very large amounts
of data. In Proceedings of Visualization ’95, Atlanta, GA, pages
279–286, 1995.

[3] Jürgen Bernard, Jan Brase, Dieter W. Fellner, Oliver Koepler,
Jörn Kohlhammer, Tobias Ruppert, Tobias Schreck, and Irina
Sens. A visual digital library approach for time-oriented sci-
entific primary data. In Proc. European Conference on Digital
Libraries, pages 352–363, 2010.

[4] Jürgen Bernard, Nils Wilhelm, Maximilian Scherer, Thorsten
May, and Tobias Schreck. Reference list of 120 datasets
from time series station payerne used for exploratory search.
doi:10.1594/pangaea.783598, 2012.

[5] Lior Berry and Tamara Munzner. Binx: Dynamic exploration
of time series datasets across aggregation levels. In Proc. IEEE
Symposium on Information Visualization, 2004.

[6] D. Bhattarai and B.B. Karki. Visualization of atomistic simu-
lation data for spatio-temporal information. In The 14th Int’l.
Conf. on Central Europe in Computer Graphics, Visualization
and Computer Vision (WSCG’06), 2006.

[7] Trevor F. Cox and M.A.A. Cox. Multidimensional Scaling,
Second Edition. Chapman and Hall/CRC, 2 edition, 2000.

[8] Tim Dwyer and David R. Gallagher. Visualising changes in
fund manager holdings in two and a half-dimensions. Informa-
tion Visualization, 3:227–244, December 2004.

[9] Ming C. Hao, Umeshwar Dayal, Daniel A. Keim, Dominik
Morent, and Jörn Schneidewind. Intelligent visual analytics

queries. In IEEE Symposium on Visual Analytics Science and
Technology, pages 91–98, 2007.

[10] Ming C. Hao, Umeshwar Dayal, Daniel A. Keim, and To-
bias Schreck. Importance driven visualization layouts for large
time-series data. In Proc. IEEE Symposium on Information
Visualization. IEEE Computer Society, 2005.

[11] Harry Hochheiser and Ben Shneiderman. Dynamic query tools
for time series data sets: Timebox widgets for interactive ex-
ploration. Information Visualization, 3(1):1–18, 2004.

[12] Yueqi Hu, Shuangyuan Wu, Shihong Xia, Jinghua Fu, and
Wei Chen 0001. Motion track: Visualizing variations of human
motion data. In PacificVis, pages 153–160, 2010.

[13] N.K. Kasabov and Q. Song. Denfis: Dynamic evolving neural-
fuzzy inference system and its application for time-series pre-
diction. Fuzzy Systems, IEEE Transactions on, 2002.

[14] E. Keogh, J. Lin, and A. Fu. Hot sax: Efficiently finding the
most unusual time series subsequence. In Data Mining, Fifth
IEEE International Conference on, pages 226 – 233. Ieee, 2005.

[15] Teuvo Kohonen. Self-Organizing Maps. Springer, Berlin, 3rd
edition, 2001.

[16] Zoltan Konyha, Kresimir Matkovic, Denis Gracanin, Mario
Jelovic, and Helwig Hauser. Interactive visual analysis of fam-
ilies of function graphs. IEEE Transactions on Visualization
and Computer Graphics, 12(6):1373–1385, November 2006.

[17] J. Lin, E. Keogh, S. Lonardi, J.P. Lankford, and D.M. Nystrom.
VizTree: a tool for visually mining and monitoring massive
time series databases. In Proc. of the int. conf. on Very Large
Data Bases, pages 1269–1272. VLDB Endowment, 2004.

[18] Yi Mao, Joshua Dillon, and Guy Lebanon. Sequential docu-
ment visualization. IEEE Transactions on Visualization and
Computer Graphics, 13:1208–1215, 2007.

[19] Fabian Mörchen and Alfred Ultsch. Efficient mining of under-
standable patterns from multivariate interval time series. Data
Min. Knowl. Discov., 15(2):181–215, 2007.

[20] A. Ohmura, E. G. Dutton, B. Forgan, C. Fröhlich, H. Gilgen,
H. Hegner, A. Heimo, G. König-Langlo, B. mcarthur,
G. Müller, R. Philipona, R. Pinker, C. H. Whitlock,
K. Dehne, and M. Wild. Baseline surface radiation network
(BSRN/WCRP): New precision radiometry for climate re-
search. Bull. Amer. Met. Soc., 79:2115–2136, 1998.

[21] PANGAEA - Data Publisher for Earth and Environmental Sci-
ence. http://www.pangaea.de/. Last accessed on April 5, 2012.

[22] Y. Sakamoto, S. Kuriyama, and T. Kaneko. Motion map:
image-based retrieval and segmentation of motion data. In Proc.
2004 ACM SIGGRAPH/Eurographics symposium on computer
animation. Eurographics Association, 2004.

[23] Geoffroy Simon, Amaury Lendasse, Marie Cottrell, and Uni-
versité Paris. Long-term time series forecasting using self-
organizing maps: the double vector quantization method, 2003.

[24] Edward R. Tufte. The visual display of quantitative informa-
tion. Graphics Press, Cheshire, CT, USA, 1986.

[25] Jarke J. Van Wijk and Edward R. Van Selow. Cluster and cal-
endar based visualization of time series data. In Proc. IEEE
Symposium on Information Visualization, pages 4–9. IEEE
Computer Society, 1999.

[26] Matthew O. Ward and Zhenyu Guo. Visual exploration of time-
series data with shape space projections. Eurographics / IEEE
Symposium on Visualization (EuroVis), 30(3), 2011.

[27] M. Weber, M. Alexa, and W. Müller. Visualizing time-series on
spirals. In proceedings of the IEEE Symposium on Information
Visualization, pages 7 – 13, 2001.

[28] H. Ziegler, M. Jenny, T. Gruse, and D.A. Keim. Visual market
sector analysis for financial time series data. In Visual Ana-
lytics Science and Technology (VAST), IEEE Symposium on,
pages 83–90, 2010.

Journal of WSCG, Vol.20 106 http://www.wscg.eu

Design and Analysis of Visualization Techniques for Mobile
Robotics Development

Alex Kozlov
The University of Auckland, New

Zealand
akoz002@aucklanduni.ac.nz

Bruce A. MacDonald
The University of Auckland,

New Zealand
b.macdonald@auckland.ac.nz

Burkhard C. Wünsche
The University of Auckland,

New Zealand
burkhard@cs.auckland.ac.nz

ABSTRACT
Simultaneous localization and mapping (SLAM) algorithms are of vital importance in mobile robotics. This paper
presents novel Augmented Reality (AR) visualization techniques for SLAM algorithms, with the purpose of assist-
ing algorithm development. We identify important algorithm invariants and parameters and combine research in
uncertainty visualization and AR, to develop novel AR visualizations, which offer an effective perceptual and cog-
nitive overlap for the observation of SLAM systems. A usability evaluation compares the new techniques with the
state-of-the-art inferred from the SLAM literature. Results indicate that the novel correlation and color-mapping
visualization techniques are preferred by users and more effective for algorithm observation. Furthermore the
AR view is preferred over the non-AR view, while being at least similarly effective. Since the visualizations are
based on general algorithm properties, the results can be transferred to other applications using the same class of
algorithms, such as Particle Filters.

Keywords
Algorithm visualisation, augmented reality, robot programming, human-robot interfaces

1 INTRODUCTION
Simultaneous Localization and Mapping (SLAM)
[SSC90, LDW91] is a popular and important class
of estimation algorithms, addressing the challenge
of autonomous map-building for mobile robots. A
robot must have a model, or a map, of the physical
environment in order to carry out useful navigation
tasks. The robot must additionally localize itself within
the environment. In SLAM the robot autonomously
explores and maps its environment with its sensors
while localizing itself at the same time. Despite
considerable research, open challenges in SLAM
include implementations in unstructured, difficult,
and large scale environments [BFMG07], multi-robot
SLAM [NTC03] as well as SLAM consistency and
convergence [MCDFC07].

SLAM development is made more difficult by its prob-
abilistic nature. In SLAM, neither the robot location
nor the environment map are known in advance. How-
ever, in order to map the environment the robot location
needs to be known with accuracy, and in order to local-
ize the robot the environment map needs to be known

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

with accuracy. Visualizations aid the development and
testing of SLAM algorithms by revealing relationships
between robot and algorithm states and environmental
parameters. Existing SLAM visualization techniques
are purely virtual and limited to basic state information,
thus lacking perceptual and cognitive overlap between
the robot and the human developer [BEFS01].

Augmented Reality (AR) involves spatially registering
virtual objects in real time within a view of a real scene
[BR05, Azu97]. AR has been used in robotics to en-
hance the human-robot interface, but has never been ap-
plied to SLAM visualization. This paper presents and
evaluates novel AR visualization techniques for SLAM
with the purpose of assisting algorithm development
and debugging. The introduced concepts and lessons
learned are applicable to other estimation algorithms in
robotics and related fields.

Section 2 outlines the SLAM algorithms for which the
visualizations have been developed. Section 3 presents
a review of fields we draw on. Section 4 summarizes
the visualization requirements. Section 5 explains the
visualization techniques. Section 6 presents the evalu-
ation of the visualizations, and section 7 concludes our
paper.

2 SLAM BACKGROUND
The two most popular SLAM algorithm archetypes,
the Extended Kalman Filter (EKF) SLAM
[GL06, DWB06] and FastSLAM [MTKW03, Mon03],
are both based on recursive Bayesian estimation. These

Journal of WSCG, Vol.20 107 http://www.wscg.eu

algorithms were targeted for visualization because they
are the two most important and prevalent SLAM solu-
tion methods [DWB06]. The visualizations presented
in this paper would also be relevant for any modified
Kalman Filter or Particle Filter based algorithm.

2.1 EKF SLAM
In feature-based EKF SLAM the state is represented by
a multivariate Gaussian distribution with mean x and
covariance P:

x =

xr
x f1
...

x fn

 (1)

P =

Pr Pr, f1 . . . Pr, fn

Pf1,r Pf1 . . . Pf1, fn
...

...
. . .

...
Pfn,r Pfn, f1 . . . Pfn

 (2)

xr is the estimated robot pose and x fi , i = 1, . . . ,n is the
estimated position of an environment feature fi. The
main diagonal elements Pr,Pf1 , . . . ,Pfn are error covari-
ance matrices of the robot pose and the landmark loca-
tions. The off-diagonal elements are cross-covariance
matrices between the robot and feature positions. The
recursive estimation steps of the algorithm are motion
prediction, data association, observation update and
feature initialization.

2.2 FastSLAM
In FastSLAM, which is based on Rao-Blackwellized
Particle Filters, the state is represented by a set of N
particles:

{w(i),X (i)
r ,µ

(i)
f1
, . . . ,µ

(i)
fn ,Σ

(i)
f1
, . . . ,Σ

(i)
fn }

N
i (3)

where for particle i, w(i) is the particle weight, X (i)
r is

the sampled robot path, and each map feature f j is rep-
resented independently by a Gaussian distribution with
mean µ

(i)
f j

and covariance Σ
(i)
f j

. The recursive estimation
steps of the algorithm are motion prediction, weight up-
date, resampling and map update.

3 LITERATURE REVIEW
A number of Robotics Development Environments
(RDEs) are available for use in robotics programming,
but none offers visualizations for SLAM. Examples
include Player [GVS+01], CARMEN (Carnegie
Mellon robot navigation toolkit) [MRT] and Pyro
(Python Robotics) [BKMY03]. These offer purely
virtual sensor data visualizations. Possibly the most

flexible support for visualizations is offered by ROS
(Robot Operating System) [QGC+09], which includes
a variety of data-types such as point clouds, geometric
primitives, robot poses and trajectories.

No formal studies have been done for visualization
techniques in SLAM. The SLAM visualization state
of the art is inferred from the visual representa-
tions of SLAM systems and data in the literature.
The current “conventional” method of visualizing
EKF-style SLAM is by showing the mean estimates
for the robot and features, along with the covari-
ance ellipsoids showing the individual uncertainties
(e.g. [BNG+07, NCMCT07]). For Particle Fil-
ter type SLAM, all current robot poses and mean
feature locations are shown for all particles (e.g.
[MTKW03, Mon03]). Perhaps the most interesting
example of an existing SLAM visualization is the 3D
graphical representation of the robot in relation to the
mapped obstacles, with the uncertainties shown by
dotted lines around the objects [NLTN02]. Martinez-
Cantin et al. visualized a constructed 3D map from the
robot’s point of view [MW03].

None of the basic SLAM visualizations suggested so
far employs an AR environment. However, AR sys-
tems have been developed and used in robotics. An
example is ARDev [CM06, CM09]. It provides per-
ceptual overlap between the human and the robot by
visualizing sensor data within the robot’s real world en-
vironment. Nunez et al. use AR for supervision of
semi-autonomous robot navigation tasks [NBPLS06].
A topological map is generated online and visualized
with AR. Daily et al. use AR to supervise a swarm of 20
robots for search and rescue scenarios [DCMP03]. Vir-
tual arrows above every swarm member in view convey
the intention and direction of travel. AR has also seen
considerable application in mobile robot tele-operation
[BOGH+03] and manipulator robotics [NCE+07].

4 VISUALIZATION REQUIREMENTS
The underlying requirement for all of the visualiza-
tions is to embed information within the context of the
real world environment the mobile robot operates in.
This provides a qualitative comparison between the es-
timates and the ground truth, and shows sources of po-
tential errors within the real environment.

4.1 EKF SLAM Requirements
The fundamental EKF SLAM requirement is to visual-
ize the state and the individual uncertainty covariances.
The state consists of 2D robot and feature locations, and
the robot orientation in the ground plane. The 2 by 2
covariance matrices for the robot and each feature indi-
cate the positional uncertainty, together with the robot
orientation variance.

Journal of WSCG, Vol.20 108 http://www.wscg.eu

(a) (b) (c)

Figure 1: Conventional AR EKF Visualization: EKF-SLAM state and covariance visualization in AR, showing progression
over time. The AR view provides a direct comparison of the estimates against the ground truth in the real world environment;
this shows the discrepancies between the truth and the estimates.

Correlations between features are well known to be im-
portant for correct SLAM operation [DWRN96]. In
[DNC+01] feature correlations are defined as follows.
Let di j be the relative position between any two feature
estimates fi and f j. Let Pdi j be the covariance of di j as
follows:

di j = x fi − x f j (4)

Pdi j = Pfi +Pf j −Pfi, f j −PT
fi, f j

(5)

Pdi j is a measure of relative error between the two
features, and is therefore also a measure of their cor-
relation. The expected convergence property [HD07,
DNC+01] is that correlations strengthen as observa-
tions are made over time, i.e. the volume of uncertainty
in Pdi j is non-increasing. Visualization of the correla-
tion behaviour is essential. Violations of this behaviour
(i.e. weakening correlations) indicate problems in the
SLAM system, and therefore must be detected by the
user. Specifically, the 2 by 2 covariance matrix Pdi j

must be visualized for all feature pairs, together with
its non-increasing volume of uncertainty trend. Viola-
tions must be exemplified.

4.2 FastSLAM Requirements
The fundamental FastSLAM requirement is to visualize
the state represented by the set of particles. This means
visualizing 2D points for the robot and Gaussian mean
feature locations, for all particles. Additionally robot
orientations for all particles must be visualized.

Due to the Rao-Blackwellized structure of FastSLAM,
sampling is only done on the robot path. The error in
the map estimation for a given particle is dependent
on the accuracy of the robot path. For this reason, it
is important to visualize the relationship between the
robot path and map estimates within particles, or intra-
particle associations. Specifically, this refers to visu-
ally linking estimates from the same particle, and dis-
tinguishing these from other particles. Visualization of
the individual weight for each particle is also important

in order to gain insight into the resampling phase of the
algorithm.

Lastly, a more qualitative and more intuitive representa-
tion of the SLAM solution produced by the filter would
be useful. This needs to show a better overall picture of
the solution, possibly at the cost of lower information
content or being less exact.

5 AR VISUALIZATION TECHNIQUES
5.1 EKF SLAM Visualizations
5.1.1 Conventional EKF SLAM Visualization

Fig. 1 presents the state-of-the-art conventional EKF
visualization implemented in AR. The underlying real
world images present an overhead view of the robot
and its environment. The robot is a PIONEER 3-DX
[Rob08]. The map the robot is building consists of two
dimensional points in the ground plane represented by
white cardboard cylinders. The cylinders are the only
physical objects being mapped and are extracted from
raw laser rangefinder data. The robot drives around and
performs SLAM in a small 1 by 1 meter loop. The
graphical icons augmenting the video frames represent
SLAM information:

• Cyan Marker - The cyan downward pointed cone
represents the estimated robot position. The cyan el-
lipsoid underneath is the robot position covariance.
The cyan line is the robot path.

• Green Marker - The green downward pointed cone
represents the estimated feature position. The green
ellipsoid underneath is the feature position covari-
ance.

• Yellow Marker - The yellow triangular pointer rep-
resents the robot orientation estimate. A semitrans-
parent yellow circular wedge represents the orienta-
tion variance.

Journal of WSCG, Vol.20 109 http://www.wscg.eu

(a) (b)

Figure 2: EKF SLAM Correlations Clustering. (a) shows all inter-cluster correlations, (b) shows only the maximum, mean,
and minimum inter-cluster correlations. Green wireframe circles represent spatial clusters.

The markers represent the SLAM estimates for qual-
itative real-time visual comparison against the ground
truth presented in the real image, i.e. the green mark-
ers correspond to the white cardboard cylinders and the
blue marker to the physical robot. For the orientation an
“arrow” type marker was chosen, as commonly used in
SLAM and robotics visualizations. For the covariance,
the common tensor ellipsoid glyph was used, which is
superior to line or arrow type ellipsoid glyphs. Colour
was used to define specifically what the estimate refers
to, i.e. robot or features. The design follows the “Natu-
ral Scene Paradigm”, which is based on humans’ ability
to immediately perceive complex information in a nat-
ural scene [WL01].

5.1.2 Correlations Visualization

In previous work [KMW09] we presented the novel fea-
ture correlation visualization shown in Fig. 2a. It sat-
isfies the requirements discussed earlier. For every pair
of features { fi, f j} the visualization contains:

• A line linking the feature estimates fi and f j

• A yellow tensor “correlation ellipsoid” for Pdi j ren-
dered at the half-way point on the line

As Pdi j is a two-dimensional covariance, it produces a
2D tensor ellipsoid. However, the problem of visual
cluttering becomes evident when many such ellipsoids
grow in size and overlap. It becomes difficult to discern
any individual ellipsoids. To mitigate this issue the el-
lipsoids were inflated to a shaded 3D shape. The sec-
ond eigenvalue is used for the length of the axis into
the third dimension. Giving a 3D shaded volume to
the correlation ellipsoids provides better visual distinc-
tion to overlapping ellipsoids, however a limitation of

this method is that it occludes more of the background
world image.
Strengthening correlations show up as decreasing vol-
umes of the correlation ellipsoids. If the volume of
the correlation ellipsoid increases (i.e. the correlation
weakens), this is considered a violation of the expected
behaviour. This occurrence is exemplified in the visu-
alization by changing the colour of the ellipsoid to red.
Thus, the visualization allows the observation of the ex-
pected correlations trend, and the detection of its viola-
tions.
The problem of visual cluttering is resolved by spatial
clustering using the standard single-linkage hierarchi-
cal clustering method [LL98]. Features are divided into
spatial clusters, and only the correlations between fea-
tures in different clusters are shown. The green wire-
frame circles exemplify the clusters computed by the
algorithm. This image demonstrates a pure virtual sim-
ulation of the SLAM algorithm, and hence no physical
robot and environment is shown.
In order to further reduce the number of correlations
in view the user can select to only see the minimum
(yellow), mean (orange), and maximum (yellow) inter-
cluster correlations (Fig 2b). The expected correla-
tion convergence can be observed through the non-
increasing size of the minimum correlation ellipsoid
[Koz11].

5.2 FastSLAM Visualizations
5.2.1 Conventional FastSLAM Visualization
Fig. 3 presents the conventional state-of-the-art Fast-
SLAM visualization implemented for the first time in
AR. The underlying real world images present an over-
head view of the robot and the environment the robot is
working in. The graphical icons augmenting the video
frames represent SLAM information:

Journal of WSCG, Vol.20 110 http://www.wscg.eu

(a) (b) (c)

Figure 3: Conventional FastSLAM AR Visualization: particle representation for the robot pose and features, showing the
joint SLAM posterior distribution computed by the particle filter and its progression over time.

• Cyan Marker - The cyan downward pointed cone
represents the sampled robot location for a given
particle.

• Yellow Marker - The yellow arrow-type marker
represents the sampled robot orientation for a given
particle.

• Green Marker - The green downward pointed cone
represents a Gaussian mean feature location for a
given particle.

The visualization shows the joint SLAM posterior
probability distribution of the robot pose and the
feature map. As for the EKF, the markers represent
the SLAM state for qualitative visual comparison
against the ground truth presented in the real image, i.e.
the green markers correspond to the white cardboard
cylinders and the blue marker to the physical robot.

5.2.2 Colour Mapping Visualizations
Fig. 4 presents a colour-mapping visualization tech-
nique addressing the requirements of intra-particle as-
sociations and particle weights, as discussed earlier.
First the centroid and maximum distance from the cen-
troid are computed for the current robot positions in the
particles. This creates a local polar coordinate frame for
the robot positions (and thus the particles they belong
to), originating at the centroid. Then each particle’s po-
lar coordinates are mapped directly onto the Hue and
Saturation parameters in the HSV colour model. Thus,
each particle which has a unique robot position is as-
signed a unique colour. This colour is used to encode
members of the same particle (intra-particle associa-
tions), e.g. a red feature and a red robot pose belong
to the same particle. This shows the important rela-
tionship between the map and robot path estimations.
In the final step, the particle weight is encoded into
the Value (brightness) parameter of the HSV model.
Lighter coloured markers indicate higher weights, and
darker colours indicate lower weights. Fig. 5 shows the

Figure 4: The colour-mapping technique.

colour-mapping visualization applied in SLAM. The
colour-coded relationship between the robot position
and feature errors is clearly visible.

5.2.3 Surface Density Visualization

Fig. 6 presents a novel surface density visualization
technique developed for FastSLAM. The purpose of
this visualization is to present a better overall qualita-
tive picture of the SLAM solution produced by the filter.
Here the joint SLAM posterior probability of the robot
and the features is represented by a smooth, shaded 3D
surface. The mapping area is divided into an uniform
(customizable) grid, where the density of a given cell is
given by the number of particle members (robot pose or
features) within that cell. Then the surface is interpo-
lated over the grid using a Radial Basis Function (RBF)
[Buh03], with the density giving the surface height. If
colour-mapping is enabled, the colour for each cell is
the average of the particle colours within it. Other-
wise, the cyan surface represents the robot pose and the
green surfaces the features. In addition, a single arrow
is drawn above each cell of the robot pose surface. This
is the average robot orientation within the cell.

Journal of WSCG, Vol.20 111 http://www.wscg.eu

(a) (b) (c)

Figure 5: Intra-particle Associations Visualization: colour-mapping used to show members belonging to the same given
particle, showing progression over time. Brightness indicates particle weights.

Figure 6: The surface colour-mapping technique.

Fig. 7 shows the surface density visualization with-
out the colour mapping. Intuitively the height of the
surface indicates the SLAM posterior probability. The
shape of the surface provides a good qualitative picture
of the uncertainty spread of the distribution, as com-
pared to rendering each individual marker. Fig. 8 shows
the colour-mapped surface density visualization. This
offers the benefits of both the surface and the colour-
mapping techniques. The visualization shows both the
shape of the uncertainty spread and the colour-mapped
intra-particle associations.

6 EVALUATION
6.1 Experimental Setup
The visualization system was implemented with a ceil-
ing mounted Prosilica EC 1350C Firewire camera for
image capture. Registration was done using ARToolK-
itPlus and a fiducial marker mounted on the robot. The
robot’s initial position is registered in the AR coordi-
nate frame as the origin of the SLAM map. This allows
the registration of the SLAM data in the AR coordinate
frame. Videos were taken of the robots SLAM per-
formance using different visualization techniques for
correctly implemented SLAM algorithms and versions
with typical errors we inferred from the literature and a
previous user survey [Koz11].

6.2 Methodology
We performed five experiments summarised in table 1
in order to investigate the effectiveness of the visual-

Fault Detection Experiments
Experiment Vis 1 Vis 2
EKF Exp 1 Conventional

AR
Conventional
non-AR

EKF Exp 2 Correlations AR Conventional
AR

FastSLAM
Exp 1

Conventional
AR

Conventional
non-AR

FastSLAM
Exp 2

Colour-mapping
AR

Conventional
AR

FastSLAM
Exp 3

Surface density
AR

Conventional
AR

Table 1: Fault detection experiments summary. Each experi-
ment compared Vis 1 with Vis 2.

izations for assisting SLAM development. In partic-
ular we evaluated AR-based visualisation techniques
versus non-AR visualisation techniques and novel AR
visualisation versus AR-implementations of techniques
considered current state-of-the-art. The purpose of the
study was to compare the effectiveness of the visualiza-
tion techniques for SLAM algorithm development, i.e.
fault detection and fault correction.

The experiments were performed as a web-based
survey questionnaire. Participants were invited over
email, through the major international robotics mailing
lists. These included Robotics Worldwide, Australian
Robotics and Automation Association (ARAA) and
European Robotics Research Network (EURON).
Ideally the desired population of the participants would
be SLAM developers; but in practice to obtain suffi-
cient participants the population scope was widened to
robotics developers. The experiments involved partici-
pants watching online videos of the visualizations and
answering questions about the visualizations.

Within the questionnaire document, the concepts of
SLAM and AR were first explained, along with in-

Journal of WSCG, Vol.20 112 http://www.wscg.eu

(a) (b) (c)

Figure 7: Surface Density Visualization: the surface density visualization without the colour-mapping, showing progression
over time. The shape and height of the surface conveys the joint SLAM posterior distribution computed by the particle filter.

(a) (b) (c)

Figure 8: Colour Mapped Surface Visualization: the surface density visualization with the colour-mapping, showing pro-
gression over time. The visualization shows both the shape of the joint SLAM posterior distribution and the associations within
particles.

troductory videos and explanations about the visual-
izations. Each AR visualization was presented with a
video of it being used for SLAM with a real robot and
cylindrical point features, along with a written explana-
tion. To present the non-AR visualization, two videos
were used. One was the virtual SLAM visualization,
and the other was the video of the physical robot per-
forming SLAM corresponding to the SLAM visualiza-
tion.

After showing correct operation, artificial faults were
introduced into the SLAM systems. Within each exper-
iment the same fault was used to compare the visual-
izations, however the visualizations showed the fault in
different ways. For each visualization, the participants
were asked as a multi choice question what SLAM fault
is present in the visualization (if any). For each pair
of visualizations compared, the participants were also
asked in a short answer question which visualization
they felt was more effective (Vis 1, Vis 2, or neither)
and why. Details of the study are found in [Koz11].

6.3 Results
There were 24 participants in the EKF evaluation, and
14 participants in the FastSLAM evaluation.

In EKF Exp 1 users detected 75% of errors with the AR
visualization and 70% of errors with the non-AR visual-
ization. Users liked that the AR visualization combined
a view of the real environment with the SLAM infor-
mation. Reasons for prefering non-AR were perception
difficulties in AR due to the 3D camera perspective,
deformation, depth and projection, and the real-world
camera image. In FastSLAM Exp 1 all of the partic-
ipants preferred the AR visualization. In terms of ef-
fectivness both visualisations resulted in 57% of errors
being detected.

In EKF Exp 2 our new correlation visualization allowed
users to detect 79% of errors, whereas the traditional
visualization only allowed detection of 50% of errors.
Users liked in the correlation visualization the explicit
representation of correlation faults enabling a faster de-
tection. Reasons for prefering the conventional AR vi-
sualization were clearer, more intuitive representation
of robot pose/landmarks and faults therein, the correla-
tion ellipsoids being hard to understand and occluding
the landmark/robot markers, and robot/landmark co-
variances being more representative of the estimation
process.

Journal of WSCG, Vol.20 113 http://www.wscg.eu

In FastSLAM Exp 2 users were able to detect 64% of
errors using colour mapped particles and 35% of er-
rors using the conventional visualization. Users liked
about colour-mapping the clear representation of par-
ticle weighting and the resampling process, and that
colour mapping offers more information in a compact
representation allowing for better fault detection.

In FastSLAM Exp 3 users identified 42% of errors us-
ing the surface density visualization and 71% of errors
using the conventional visualization. Users liked the
compact and effective representation of the particle set
distribution in the surface density AR visualization, and
that the peak of the surface indicates the most likely es-
timate position whereas the spread shows the amount
of divergence in the estimates. However, users com-
plained that the surface representation is too opaque and
obscures the true landmarks, and that the surface view
does not show the robot orientation clearly. Users stated
that the conventional AR visualization is easier to ana-
lyze in order to detect errors.

7 CONCLUSIONS
This paper presented novel AR visualization techniques
for SLAM algorithms. The visualization requirements
were challenging because SLAM algorithms are de-
tailed, complex, and must address real world uncertain-
ties. To address the requirements, visualizations were
developed in AR to target the most important aspects of
the SLAM algorithms, including feature correlations,
particle weights and relationships.

Our Evaluation shows that AR visualizations are pre-
ferred over non-AR visualizations, and that the novel
techniques for feature correlations is more effective
than the existing state of the art for SLAM fault de-
tection. The visualizations are effective because they
target specific aspects of the algorithm and because
AR enables visualization of the real world and asso-
ciated uncertainties. The correlation visualization can
be adapted to any application requiring representation
of correlations between physical entities. Care must be
taken that visualization icons do not obscure relevant
real-world information in the camera view and that vi-
sual complexity does not put undue stress on the user.
Hence small point based icons are preferable over more
complex and information rich surface representations.
The presented visualizations perform differently well
for different types of errors. Ideally the user should be
able to swap interactively between all of the presented
techniques.

8 REFERENCES
[Azu97] R.T. Azuma. A survey of augmented

reality. Presence: Teleoperators and Vir-
tual Environments, 6(4):355–385, 1997.

[BEFS01] C. Breazeal, A. Edsinger, P. Fitzpatrick,
and B. Scassellati. Active vision for so-
ciable robots. IEEE Trans. Syst., Man,
Cybern., 31(5):443–453, 2001.

[BFMG07] J.L. Blanco, J.A. Fernandez-Madrigal,
and J. Gonzalez. A New Approach for
Large-Scale Localization and Mapping:
Hybrid Metric-Topological SLAM.
In IEEE International Conference on
Robotics and Automation (ICRA), pages
2061–2067, 2007.

[BKMY03] D. Blank, D. Kumar, L. Meeden, and
H. Yanco. Pyro: A python-based versa-
tile programming environment for teach-
ing robotics. Journal on Educational Re-
sources in Computing (JERIC), 3(4):1–
15, 2003.

[BNG+07] T. Bailey, J. Nieto, J. Guivant,
M. Stevens, and E. Nebot. Consis-
tency of the EKF-SLAM algorithm. In
Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on,
pages 3562–3568. IEEE, 2007.

[BOGH+03] V. Brujic-Okretic, J.Y. Guillemaut, L.J.
Hitchin, M. Michielen, and G.A. Parker.
Remote vehicle manoeuvring using aug-
mented reality. In International Confer-
ence on Visual Information Engineering,
pages 186–189, 2003.

[BR05] O. Bimber and R. Raskar. Spatial Aug-
mented Reality : Merging Real and Vir-
tual Worlds. A K Peters, Limited, 2005.

[Buh03] M. Buhmann. Radial basis functions
theory and implementations. Cambridge
University Press, 2003.

[CM06] T.H.J. Collett and B.A. MacDonald. De-
veloper oriented visualisation of a robot
program. In ACM SIGCHI/SIGART
Human-Robot Interaction, pages 49–56,
2006.

[CM09] T. H. J. Collett and B. A. MacDonald. An
augmented reality debugging system for
mobile robot software engineers. Journal
of Software Engineering for Robotics,
1(1):1–15, 2009.

[DCMP03] M. Daily, Y. Cho, K. Martin, and D. Pay-
ton. World embedded interfaces for
human-robot interaction. In Annual
Hawaii International Conference on Sys-
tem Sciences, pages 6–12, 2003.

[DNC+01] M. W. M. Gamini Dissanayake, Paul
Newman, Steven Clark, Hugh F.
Durrant-Whyte, and M. Csorba. A so-
lution to the simultaneous localization

Journal of WSCG, Vol.20 114 http://www.wscg.eu

and map building (slam) problem. IEEE
TRANSACTIONS ON ROBOTICS AND
AUTOMATION, 17(3):229–241, 2001.

[DWB06] H. Durrant-Whyte and T. Bailey. Simul-
taneous localisation and mapping: Part
1. IEEE Robotics and Automation Mag-
azine, 13(2):99–108, 2006.

[DWRN96] H. Durrant-Whyte, D. Rye, and E. Nebot.
Localisation of automatic guided vehi-
cles. In Robotics Research: The 7th In-
ternational Symposium (ISRR’95), pages
613—-625, 1996.

[GL06] S. Ge and F. Lewis. Autonomous mobile
robots : sensing, control, decision- mak-
ing, and applications. Boca Raton, FL
CRC/Taylor and Francis, 2006.

[GVS+01] B.P. Gerkey, R.T. Vaughan, K. Stoy,
A. Howard, G.S. Sukhatme, and M.J.
Mataric. Most valuable player: a robot
device server for distributed control. In
IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages
1226–1231, 2001.

[HD07] Shoudong Huang and Gamini Dis-
sanayake. Convergence and consistency
analysis for extended kalman filter based
slam. Robotics, IEEE Transactions on,
23(5):1036–1049, 2007.

[KMW09] Alex Kozlov, Bruce MacDonald, and
Burkhard C. Wünsche. Covariance Visu-
alisations for Simultaneous Localisation
and Mapping. In Proceedings of the Aus-
tralasian Conference on Robotics and
Automation (ACRA 2009), pages 1 – 10,
December 2009. http://www.cs.
auckland.ac.nz/~burkhard/
Publications/ACRA2009_
KozlovMacDonaldWuensche.
pdf.

[Koz11] Alex Kozlov. Augmented Reality Tech-
nologies for the Visualisation of SLAM
Systems. PhD thesis, The University of
Auckland, 2011.

[LDW91] J.J. Leonard and H.F. Durrant-Whyte.
Simultaneous map building and localisa-
tion for an autonomous mobile robot. In
Proc. IEEE Int. Workshop Intell. Robots
Syst. (IROS), pages 1442–1447, 1991.

[LL98] Pierre Legendre and Louis Legendre.
Numerical ecology. New York : Else-
vier, 1998.

[MCDFC07] R. Martinez-Cantin, N. De Freitas, and
J.A. Castellanos. Analysis of particle
methods for simultaneous robot localiza-

tion and mapping and a new algorithm:
Marginal-slam. In IEEE International
Conference on Robotics and Automation
(ICRA), pages 2415–2420, 2007.

[Mon03] M. Montemerlo. FastSLAM: A factored
solution to the simultaneous localiza-
tion and mapping problem with unknown
data association. PhD thesis, Carnegie
Mellon University, 2003.

[MRT] M. Montemerlo, N. Roy, and S. Thrun.
Carmen, Robot Navigation Toolkit.
Retrieved June 2007 from http://
carmen.sourceforge.net/.

[MTKW03] M. Montemerlo, S. Thrun, D. Koller,
and B. Wegbreit. Fast-slam 2.0: An im-
proved particle filtering algorithm for
simultaneous localization and mapping
that provably converges. In Proceedings
of the International Joint Conference on
Artificial Intelligence, pages 1151–1156,
2003.

[MW03] I. Mahon and S. Williams. Three-
dimensional robotic mapping. In Aus-
tralasian Conference on Robotics and
Automation (ACRA), 2003.

[NBPLS06] R. Nunez, J.R. Bandera, J.M. Perez-
Lorenzo, and F. Sandoval. A human-
robot interaction system for navigation
supervision based on augmented reality.
In IEEE Mediterranean Electrotechnical
Conference, pages 441–444, 2006.

[NCE+07] A. Nawab, K. Chintamani, D. Ellis,
G. Auner, and A. Pandya. Joystick
mapped Augmented Reality Cues for
End-Effector controlled Tele-operated
Robots. In IEEE Virtual Reality Confer-
ence, pages 263–266, 2007.

[NCMCT07] J. Neira, J.A. Castellanos, R. Martinez-
Cantin, and J.D. Tardos. Robocentric
map joining: Improving the consis-
tency of EKF-SLAM. Robotics and Au-
tonomous Systems, 55(1):21–29, 2007.

[NLTN02] P. Newman, J. Leonard, J.D. Tardos, and
J. Neira. Explore and return: experi-
mental validation of real-time concurrent
mapping and localization. In IEEE In-
ternational Conference on Robotics and
Automation (ICRA), pages 1802–1809,
2002.

[NTC03] J. Neira, J.D. Tardos, and J.A. Castel-
lanos. Linear time vehicle relocation
in SLAM. In IEEE International Con-
ference on Robotics and Automation
(ICRA), pages 427–433, 2003.

Journal of WSCG, Vol.20 115 http://www.wscg.eu

[QGC+09] M. Quigley, B. Gerkey, K. Conley,
J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng. ROS: an open-
source Robot Operating System. In IEEE
International Conference on Robotics
and Automation (ICRA), 2009.

[Rob08] ActivMedia Robotics. PIONEER P3-
DX. Retrieved January 2008 from
http://www.activrobots.com/
ROBOTS/p2dx.html, 2008.

[SSC90] R. Smith, M. Self, and P. Cheeseman. Es-
timating uncertain spatial relationships
in robotics. Autonomous Robot Vehicles,
pages 167–193, 1990.

[WL01] Burkhard C. Wünsche and Richard
Lobb. A scientific visualiza-
tion schema incorporating percep-
tual concepts. In Proceedings of
IVCNZ ’01, pages 31–36, 2001.
http://www.cs.auckland.ac.
nz/~burkhard/Publications/
IVCNZ01_WuenscheLobb.pdf.

Journal of WSCG, Vol.20 116 http://www.wscg.eu

An Applied Approach for Real-Time Level-of-Detail Woven Fabric
Rendering

Wallace Yuen
The University of Auckland,

New Zealand
wyue013@aucklanduni.ac.nz

Burkhard C. Wünsche
The University of Auckland,

New Zealand
burkhard@cs.auckland.ac.nz

Nathan Holmberg
77-Pieces Ltd,
New Zealand

nathan@77-pieces.com

ABSTRACT
Photorealistic rendering of fabric is essential in many applications ranging from movie special effects to e-
commerce and fashion design. Existing techniques usually render the fabric’s microscale structure. However,
this can result in severe aliasing and is unsuitable for interactive cloth simulation and manipulation. In this pa-
per we describe a novel real-time level-of-detail fabric rendering technique. The algorithm adjusts geometry and
texture details with changing viewpoint by using a mipmapping approach, in order to obtain a perceptually con-
sistent representation on the screen. Compared to previous work we also introduce more parameters allowing the
simulation of a wider range of fabrics. Our evaluation demonstrates that the presented approach results in realis-
tic renderings, increases the shader’s run-time speed, and reduces aliasing artifacts by hiding the underlying yarn
geometry.

Keywords: fabric rendering, anisotropic materials, real-time rendering, cloth simulation, anti-aliasing, level-of-
detail methods

1 INTRODUCTION
Realistic fabric rendering addresses many different ar-
eas and industries in computer games and fashion ap-
plications. It is a challenging research field due to the
complexity of the underlying fabric structure, textures,
and materials, which results in complex light interac-
tions and aliasing problems when using a raster rep-
resentation. Fabric structures vary depending on the
manufacturing process, such as weaving and knitting,
and the desired fiber properties. Previous research in
this field has explored different aspects of this problem,
such as rendering complex weaving and knitting pat-
terns, and developing specialized lighting models that
simulate light interaction with the yarn geometry and
its microstructure.

The modeling of complex weaving patterns and yarn
geometry can result in aliasing when the screen resolu-
tion is lower than the perceived color variations on the
material (caused by the geometry, lighting and texture).
This is particularly problematic when animating the
fabric using cloth simulations, which creates conspic-
uous temporal aliasing artifacts. In recent years, many
hardware anti-aliasing techniques have been developed
for real-time applications such as computer games, but

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

are mainly used as a post-processing remedy. In this pa-
per, we describe a level-of-detail fabric rendering tech-
nique for reducing the aliasing artifacts with minimal
impact on computation time. This method can be used
in conjunction with post-processing anti-aliasing tech-
niques to further reduce the aliasing artifacts.

We want to create a parameterized fabric shaders for
fashion design and e-commerce applications. This fun-
damentally requires fast interactive speed, high mem-
ory efficiency, and high robustness to support for a wide
range of woven fabrics. We found that the model pro-
posed by Kang [Kan10] would be the most suitable for
our needs with several extensions and modifications to
the original algorithm [YW11]. We adopted this model
and implemented it in OpenGL Shading Language to
support real-time parameterization of weaving pattern
and yarn geometry.

Section 2 reviews existing fabric rendering techniques.
Section 3 introduces previously presented techniques
for modeling light interaction and rendering fabric,
which form the foundation of our fabric rendering
framework. Section 4 proposes our level-of-detail
algorithm and improvements to the existing algorithm
for real-time fabric rendering. Section 5 presents an
evaluation of our framework and Section 6 draws
conclusions and suggests directions for future work.

2 LITERATURE REVIEW
Fabric rendering techniques have been an active area
of research since the early 1990s. We classify exist-
ing techniques into two categories, example-based and

Journal of WSCG, Vol.20 117 http://www.wscg.eu

procedural-based models. Example-based models fo-
cus on capturing reflectance information of specific ma-
terial and use the captured data for rendering virtual
fabrics. Procedural-based models are empirical math-
ematical models that use various parameters to control
the appearance of fabrics.

2.1 Example-Based Models
Example-based cloth rendering techniques require
the capturing of reflectance information of materials.
This usually requires modification of the lightings,
sensors, and planar examples of the corresponding
materials. The reflectance properties of a material
for different viewpoints and light directions can be
encoded in a Bidirectional Reflectance Distribution
Function (BRDF), which is often obtained with a
gonioreflectometer [War92].
Daubert et al. [DLH01] proposed a Spatially-Varying
Bi-directional Reflection Distribution Function
(SVBRDF) specifically for cloth rendering using
the Lafortune reflection model. It is designed to
render clothes with repeating patterns such as knitting
and weaving patterns. A texture map is used as a
look-up table, for storing precomputed parameters of
the Lafortune reflection model. This method works
for both knitted and woven clothes by modeling the
structure explicitly through the generation of new
triangle meshes, but the computation consists of
several rendering passes. Even though many methods
have been proposed to obtain a SVBRDF using only a
single view of a material sample [WZT+08], SVBRDF
is generally very memory intensive, which makes it
impractical for real-time applications where material
parameters are interactively changed.
Another popular example-based model is the Bidirec-
tional Texture Function (BTF), which captures a ma-
terial’s light interaction for varying light source and
camera positions. The BTF captures more effects than
the SVBRDF including self-shadowing, occlusion, and
inter-reflection effects, and is used for many surface re-
flectance data measurements. The actual textures of the
cloth samples are used and stored as texture maps, and
they are used at render time with different parameters
such as the illumination, camera position, and the tex-
ture coordinates of the object. Due to the higher num-
ber of parameters, the BTF suffers from high memory
requirements and acquisition costs. Kautz [Kau05] in-
troduced a compression method for the BTFs. He ac-
quires a lower number of images and interpolates be-
tween them. Despite these compression approaches,
example-based methods still require an over-abundant
storage capacity for practical use, and they do not of-
fer enough flexibility for rendering different types of
clothes with different weaving patterns.
A volumetric approach that uses the microflake model
was proposed by Zhao et al. [ZJMB11]. The ap-

proach acquires a volume model of the material that
needs to be rendered using a X-ray computed tomog-
raphy (CT) scanner. The volumetric data acquired is
post-processed for orientation extraction and noise re-
moval, and is matched to a photograph of the same ma-
terial captured to obtain the optical properties for fab-
ric rendering [ZJMB11]. This approach suffers from
high memory requirements, due to the size of volumet-
ric data, where each fabric sample takes approximately
7.26GB [ZJMB11]. It is also difficult to acquire equip-
ments for this approach, due to the cost of CT scanners,
thus making it difficult to capture different fabrics.

2.2 Procedural-Based Models
Procedural-based cloth rendering techniques are mod-
els that are designed based on the analysis of fabric
structure. Yasuda et al. [YYTI92] developed shading
models for woven cloth by analyzing fiber properties
and weaving patterns. The authors proposed a tiny facet
model for fabric materials taking into consideration re-
flection and refraction of multiple fabric layers. Using
a multiple layer model, they simulated the scattering ef-
fects of fabrics by calculating the light refraction at dif-
ferent layers [YYTI92]. The reflection model assumes
a simple percentage of warp and weft yarns in woven
clothes and used a non yarn-based reflection. The light
interaction with a small area of fabric is calculated by
obtaining the total reflections [YYTI92]. Hence, this
approach does not explicitly model the weaving pat-
terns, but simulates the appearance of the fabric at a
higher level where the weaving patterns are not visible.
Ashikhmin et al. [AS00] developed a microfacet-based
anisotropic model that can be used for general materi-
als, and was tested by simulating satin and velvet. The
authors take into account the weaving pattern of satin
and velvet. For example, satin is modeled by weight-
ing the BRDF values of weft and warp yarns [AS00].
Due to a lack of self-shadowing and light interaction
at the yarn-level, this microfacet anisotropic model is
too generic to be used directly for fabric rendering, but
it formed the foundation for many subsequently devel-
oped techniques.
Adabala et al. [AMTF03] use a weaving pattern input
defined by the user, and generate a corresponding
Anisotropic BRDF, texture, and horizon map for
the clothing material. The authors render the fabric
based on the weaving pattern input provided by the
user to generate the overall appearance of the cloth
[AMTF03]. This approach extends previous fabric
models and allows more complicated weaving patterns
to be defined. However, the authors applied the
Ashikhmin-Shirley BRDF [AS00] on the object-level
rather than the yarn-level, thus the modeling of light
interaction with the fabric lacks realism compared to
techniques which calculate light interaction based on
yarn material and weaving patterns.

Journal of WSCG, Vol.20 118 http://www.wscg.eu

Kang [Kan10] proposed a procedural method that mod-
els the reflectance properties of woven fabric using al-
ternating anisotropy and deformed microfacet distribu-
tion function. The proposed method is based on the
microfacet distribution function (MDF) along with the
Ashikhmin-Shirley [AS00] anisotropic shading model.
Each sample point on the cloth is classified as a weft
or warp yarn, and a corresponding distribution function
is used accordingly to calculate the reflectance of that
point [Kan10]. The alternating anisotropy approach al-
lows the lighting to be defined for weft and warp thread
by rotating the microfacet distribution function. Fur-
ther deformation of the MDF enables the elaboration of
yarn geometries and twisted appearances on the surface
of each yarn. This approach enables not only the ren-
dering of anisotropic clothes, but also the rendering of
bumpy surfaces created by the weaving structure of the
fabrics [Kan10].

Irawan [Ira08] developed a reflectance model and a tex-
ture model for rendering fabric suitable for distant and
close-up views. The reflectance model is defined by the
scattering effect of the fabric, while the texture model
incorporates highlights calculated from the reflectance
model. The texture model (BTF) is generated on the fly
using parameters to control the types of yarn (i.e. staple
or filament), and the appropriate weave pattern, and the
yarn geometry is captured by using the fiber twisting
angle to render the highlight on each yarn. A downside
of this approach is the lack of shadowing and the mask-
ing effects to render some types of fabrics realistically,
such as denim. However, the results look convincing
and the approach is fully procedural, with intuitive vari-
ables at the fiber level, the yarn level, and the weaving
pattern level.

3 FABRIC RENDERING MODEL
This section explains two techniques adopted by us in
more detail: Kang’s fabric rendering model [Kan10]
and the Ashikhmin-Shirley anisotropic shading model
[AS00] for capturing anisotropic reflections.

3.1 Ashikhmin-Shirley BRDF
The Ashikhmin-Shirley BRDF [AS00] is given by the
following equation:

ρ(k1,k2) =
p(h)P(k1,k2,h)F(k1h)

4(k1n)(k2n)(nh)
(1)

This equation represents the illumination of a point
with the incoming light vector k1 and outgoing light
vector k2 where additional functions explained below
describe the effect of the microfacet structure. The
vector n represents the surface normal at a point, and
the vector h describes the half vector obtained from
the incoming and outgoing light vector. The func-
tion P(k1,k2,h)F((kh)) captures the shadowing effects

caused by microfacets. The function F(kh) is the Fres-
nel reflectance that describes the amount of incoming
light that is reflected off the surface specularly. The
function p(h) is the MDF given by Equation 2. It de-
scribes the illumination effects of weaving patterns in
Kang’s model [Kan10].

3.2 Microfacet Distribution Function
The microfacet distribution function characterizes a
surface’s distribution of microfacets, by encoding their
normal direction relative to the underlying surface.

p(h) =

√
(x+1)(y+1)

2π
(h ·n)xcos2φ+ysin2φ (2)

The microfacet distribution function in Equation 2 is
used to generate the BRDF. The function captures the
visual effects of microgeometry, where the reflected
specular light on the surface is proportional to the
probability of the microfacet surface normals that are
aligned to the half vector. Variables x and y controls
the shape of the specular highlight and the intensity in
anisotropic reflection.

Figure 1: Our generated images using the Ashikhmin-
Shirley BRDF [AS00] for visualizing the difference in
specular highlights with varying parameters x and y.
Top row: x = 10, 30, 50, while y stays constant equal to
1. Bottom row: y = 10, 30, 50, while x stays constant
equal to 1.

A visualization of the microfacet distribution is shown
in Figure 1. When the x and y values are close to each
other, then the distribution of microfacets aligning to h
is spread more evenly across the surface. The top row
of the diagram demonstrates that if the x-value in the
MDF increases from 10 to 50, then the distribution of
microfacets becomes denser in the center, thus resulting
in a less spread specular lobe on the object surface. This
results in an increasingly narrow highlight stretched in
y-direction.

3.3 Weaving Pattern Rendering
Kang [Kan10] proposed an alternating anisotropy so-
lution to render weaving patterns by using Equation 2

Journal of WSCG, Vol.20 119 http://www.wscg.eu

to generate the specular highlight that can be seen on
weaving pattern [Kan10]. Using the fact that weaving
patterns are only made of weft and warp yarns, the spec-
ular highlight of weft yarns must therefore be obtained
by rotating the microfacet distribution by 90◦. This is
again shown in Figure 1. The rotated microfacet dis-
tribution is seen on the second row, and is done by ex-
changing the values of x and y to create such rotation.

Figure 2: Weave pattern generated by using the alter-
nating anisotropy method showing the closer view (left)
and distant view (right).

An example of a weaving pattern generated using the
alternating anisotropy method is shown in Figure 2.
Without the yarn geometry the weaving pattern looks
like a checkerboard pattern, thus the yarn geometry has
to be defined for close-up viewpoints.

3.4 Yarn Geometry
The yarn geometry is generated after the weaving pat-
tern by normal perturbation at run-time. Kang [Kan10]
proposed that the yarn geometry can be specified by
several parameters including: number of threads for
each strand of yarn Nξ, fiber curvature of each strand
c f , and the yarn curvature cy. Therefore, the normal
of each point is altered using these parameters and its
sampling position on the weft or warp yarn [Kan10].

weft:(δx,δy) = (c f (2fract(Nξ(uw− s f σ
u))−1,cyσ

v)
(3)

warp:(δx,δy) = (cyσ
u,c f (2fract(Nξ(vw− s f σ

v))−1)
(4)

Equations 3 and 4 show the changes made to the x-
and y-coordinates of the normal. The z-coordinate
of the perturbed normal is generated by calculating√

1.0−δx−δy. This achieves yarn based lighting by
taking into account different user-defined parameters
including: fiber curvature (c f), yarn curvature (cy),
slope of fibers (s f), offsets in yarn space (σu and σv),
and number of fiber strands (Nξ) used to make up each
yarn. The variables uv and vw are texture coordinates of
the model, and the function fract() calculates the frac-
tion component of a floating point.

Figure 3 shows a fabric model with weaving pattern and
yarn geometry. The image on the left of Figure 3 shows

a rendering of the fabric seen from a distance, with the
microscale details well below an individual pixel size.
The results are not significantly different to the version
of rendering without yarn geometry as shown in Fig-
ure 2. The difference between the two fabric models
becomes more visible when rendering a close-up view.
The image on the right of Figure 3 illustrates that each
yarn is constructed by several threads, as specified by
the variable Nξ, with a high yarn curvature resulting in
large shaded areas on the sides of the yarns.

4 DESIGN
Fabric rendering techniques often suffer from strong
aliasing effects if the resolution of the fabric mi-
crostructure is higher than the screen resolution it is
displayed on. While post-processing can soften these
effects, the solution is inefficient and artifacts can
remain, especially for interactive applications such as
cloth simulations. Some solutions use large weave
sizes to reduce aliasing effects, but this is not suitable
for fashion applications where realism is essential.
We analyzed existing cloth rendering techniques and
found that the method from Kang [Kan10] is the most
promising one [YW11]. A major advantage of this
algorithm is its speed, which was shown to be only
1.846 time more expensive than Gouraud shading
[Kan10]. The approach also displays a high level of
realism, as the results of rendered woven fabrics look
realistic in close-up. However, this approach lacks a
coloring scheme at the yarn level to render fabrics such
as denim, and it also displays blatant aliasing artifacts
on the fabric surface.

4.1 Level-of-detail Fabric Rendering
We propose a level-of-detail design for the fabric model
proposed by Kang [Kan10], which removes unneces-
sary detail, and only renders the detailed fabric struc-
ture in close-up views.

Our design consists of two levels of visually perceiv-
able fabric details: weave structure and yarn geome-
try. The visibility of yarn geometry is determined by
the mipmap level, which is calculated with the use of
derivative functions on texture coordinates. We explic-
itly render two mipmap levels for the general weave
structure and the underlying yarn geometry. We limit
the mipmap levels to between 0 and 1, and uses it as
an alpha value for blending between the two layers of
mipmap. This concept is shown in Figure 4, for those
fragments that are highlighted in lighter colors, they
are rendered with the general weave structure, whereas
for those that are highlighted in darker colors, they
are rendered with more detailed yarn geometry. This
means that if the texture coordinates between neighbor-
ing fragments are changing quickly, then a higher level

Journal of WSCG, Vol.20 120 http://www.wscg.eu

Figure 3: Rendering of weave pattern with yarn geometry seen from distance (left), and from close-up (right).

mipmap (less detail) is used, thus avoiding the render-
ing of unnecessary detail when the fabric is observed in
a larger distance.

Figure 4: Visualization of mipmap level selection from
far view point to close view point (left to right).

In essence, two MDFs are calculated, one using the pre-
perturbed normals for weaving pattern rendering, and
the other using the perturbed normals for yarn geome-
try rendering. The yarn geometry is obtained from the
normal perturbation using Equations 3 and 4, which is
then used as an input to the MDF. In practice, however,
only the dot product between the halfway vector h and
the normal vector n has to be recalculated two times for
each values, with the rest of the calculations in Equation
2 only calculated once. Equation 5 shows the calcula-
tion of the final MDF, which is done by using the two
previously mentioned MDFs, and weighting them with
the α value obtained from the mipmap calculation that
determines which level of mipmap should be used for
rendering.

p(h) = (1.0−α)p(h1)+αp(h2) (5)

4.2 Extensions for Real-time applications
We also extend the model developed by Kang [Kan10]
to support more types of fabrics.

4.2.1 Extended Fabric Coloring Scheme

For our system, we require the visualization of fabrics
such as denim. Denim is often constructed from fiber
using the twill-weaved weaving pattern. In contrast to
ordinary cotton twill, denim uses different colors for the
weft and warp yarn, with the most popular combination
being white for the warp yarn and blue for the weft yarn.

We define extra parameters to specify the base color of
individual weft and warp yarns, both in terms of diffuse
and specular colors. Using these base colors, we apply
Kang’s algorithm [Kan10] to generate the procedural
textures with weaving patterns and yarns to simulate the
virtual fabrics.

4.2.2 Ambient Occlusion

The original method by Kang [Kan10] introduced an
ambient occlusion term defined by the z value of the
perturbed normal. Since the perturbed normal is gen-
erated to define the yarn geometry at the micro-level,
the ambient occlusion term only works for scaling
the anisotropic reflection at the yarn level to create a
shadow effect on the reflection.

The self-shadowing effects at a higher level are not cap-
tured due to the lack of indirect lighting involved in cal-
culating the overall reflectance of the fabric. However,
self-shadowing is common in practice, e.g. when cloth
is folded. Hence, we use Screen-Space Ambient Occlu-
sion (SSAO) [Mit07] as a real-time ambient occlusion
method to introduce self-shadowing effects to the exist-
ing fabric rendering method.

In the initial pass, we render our fabric at the same time
as normal buffer and position buffer to avoid render-
ing the same object in multiple passes. We store fabric
rendering results in a color buffer, and the color buffer
is referred to for scaling its values using the calculated

Journal of WSCG, Vol.20 121 http://www.wscg.eu

ambient occlusion from the normal buffer and position
buffer.

ao = max(0.0,
dot(N,V)

1.0+d
) (6)

Equation 6 describes the calculation of the ambient oc-
clusion of a pixel. A point (occluder) occludes another
point (occludee) if the dot product between the normal
of the ocludee and the vector from the ocludee to oc-
cluder is greater than zero, i.e if the point is located at
the front face of the occludee, then it contributes some
amount of occlusion scaled by the dot product and the
distance between two points. In order to calculate the
ambient occlusion at each pixel of the screen, neighbor-
ing pixels are sampled randomly using a noise function
and the ambient occlusion value is averaged according
to the number of sample points [Mit07].

4.2.3 Anti-Aliasing
The original implementation of the renderer produced
clearly visible aliasing effects and moire patterns due to
high frequency textures. These artifacts are caused by
the microscopic details of the procedural textures gen-
erated in real-time. When the object is in motion, the
aliasing artifacts become even more visible to temporal
aliasing.

Figure 5: Aliasing of weave patterns. Comparison of
fabric being viewed from a distance (left) and from
close-up (right). The fabric was rendered with the orig-
inal implementation by Kang [Kan10] without any anti-
aliasing or level-of-detail algorithm

The left image of Figure 5 displays the distortion of
weaving patterns when the viewpoint is located far
away from the object. The moire patterns on the sur-
face of the fabric are clearly visible as distorted curve
lines. The fabric on the right in Figure 5 shows the
weaving pattern when the viewpoint is at a closer dis-
tance to the object - no moire pattern is visible. Another
example is given by Figure 6, which shows a denim fab-
ric rendered without any underlying textures, but using
blue colored weft yarns and white colored warp yarns.
When the fabric is viewed from a distance (left image
of Figure 6), the aliasing artifacts are more visible with
this fabric due to the highly contrasted yarn colors be-
tween weft and warp yarns, also causing moire patterns
to appear on the surface of the fabric. Furthermore, the

twill-weave on the denim fabric is clearly distorted and
unrecognizable from this distance. The aliasing arti-
facts are significantly reduced on the right of Figure 6,
but still exist in high frequency areas such as regions
where the fabric is bent around the underlying cuboid
object.

Figure 6: Aliasing of weave patterns of denim fab-
ric. Comparison of distant viewpoint in magnified view
(left) and close viewpoint (right)

An anti-aliasing method is required to reduce the moire
effects on the surface of the fabric. While a level-of-
detail scheme was proposed in Section 4.1, the size of
the weaving patterns still introduces a high level of tex-
ture frequency on the fabric surface.
Traditionally, oversampling methods such as su-
persampling anti-aliasing (SSAA) and its variation,
multisampling anti-aliasing (MSAA) were used to
handle aliasing for graphics applications and computer
games. SSAA is known to incur large bandwidth and
shading cost, due to multiple numbers of samples being
taken inside each pixel [HA90, Mam89], while MSAA
improves on SSAA’s performance by only evaluating
each fragment value once and only supersampling
depth and stencil values [Ake93].
Recently, post-processing anti-aliasing methods have
become more popular for reducing aliasing artifacts.
Methods such as morphological anti-aliasing (MLAA)
[Res09] and fast approximation anti-aliasing (FXAA)
[Lot09] have the advantage that they are independent to
the rendering pipeline. The methods are applied at the
last stage as an image-based post-processing technique.
While MLAA resolves many edge aliasing problems,
it is unable to handle pixel-sized features, and fails to
reduce the moire-effects from high frequency textures
[Res09]. FXAA employs a similar anti-aliasing pro-
cedure, where the image is used to detect edges using
highly contrasting areas of each pixel, with an addi-
tional sub-pixel offset from the detected edge for low-
pass filtering to achieve anti-aliasing in the sub-pixel
level [Lot09]. Therefore, FXAA can be considered as
a sub-pixel anti-aliasing technique and is hence poten-
tially useful for our fabric shader. However, MSAA is
the preferred choice due to its proven anti-aliasing per-
formance over the entire object surface.
Despite the popularity of these methods, we found that
they did not alleviate the high frequency aliasing prob-

Journal of WSCG, Vol.20 122 http://www.wscg.eu

lem we faced with texture aliasing from our imple-
mentations. Therefore, we decided to simply use an
adaptive prefiltering approach [Ros05] inside our GLSL
shader for averaging the pixel with its neighbors. The
filter is adaptive such that the number of surrounding
colors it calculates depends on the degree of similar-
ity in each iteration. This algorithm is shown in Al-
gorithm 1, which shows an overview of the algorithm
for each fragment in calculating its final color. Essen-
tially, the final color is iterated until its difference with
other colors between neighboring fragments is less than
a threshold, defined by the inverse distance of the frag-
ment from the view point.

Algorithm 1 Prefiltering for fabric shader
count← 1
ddx← dFdx(worldPos)∗0.5
ddy← dFdy(worldPos)∗0.5
while true do

lastColor← color
color← color + calcFragmentColor(worldPos

+ ddx∗ rand()+ddy∗ rand())
count← count +1
if count > 5 then

δcolor← lastColor− color
if length(δcolor)< (1 / viewDistance) then

break
end if

end if
end while
f inalColor← color/count

5 RESULTS
This section evaluates the effectiveness and efficiency
of the improvements proposed by us. The following
tests were performed:

• LOD fabric rendering quality test

• LOD fabric rendering performance test

• Denim Rendering

With rendering quality, we compare and contrast the
quality of several images with real fabrics. To com-
pare the effects of using level-of-detail rendering, we
compare rendering results with and without the im-
provements, and we also compare their effects on alias-
ing artifacts. For rendering performance we compare
the frame rates achieved with the different implemen-
tations. All tests were performed on a PC with In-
tel Core i7 2600k,12 GB memory at 1600 MHz with
an AMD Radeon HD 6950 graphics card with 2GByte
GPU memory.

5.1 Level-of-Detail Rendering
5.1.1 Rendering Quality
The level-of-detail rendering of woven fabric was tested
by comparing the rendering quality of fabrics with and
without our level-of-detail fabric rendering algorithm.
Figure 7 shows that without level-of-detail rendering
(left) many aliasing artifacts are seen, which they are
not visible using level-of-detail rendering (right). The
observations are confirmed by a second example shown
in Figure 8, which represents a red twill-weaved woven
fabric.

Figure 7: Level-of-detail rendering, without LOD (left)
and with LOD (right).

Figure 8: Level-of-detail rendering, without LOD (top)
and with LOD (bottom).

The denim fabric still displays some aliasing artifacts
with high frequency weaving pattern that is rendered
on polygons facing away from the screen. This is due
to the high contrast in color in the underlying weaving
construct, coupled with the projection of weaving pat-
tern to a much smaller projected area, thus making it
difficult to smooth the high frequency changes in color
at the micro-level. An example of this problem is shown
in Figure 9, where the left image is a magnification
of the small rectangle section in the right image. The
left image illustrates some aliasing artifacts close to the
edge of the fabric, with white lines going against the
flow of the twill-weaved weaving pattern. These arti-
facts are not clearly noticeable in static images, but they

Journal of WSCG, Vol.20 123 http://www.wscg.eu

Implementation Performance (ms) Std. dev (ms)
Original 5.9302 0.0346
LOD 4.4037 0.04115

Table 1: Table comparing performance and standard de-
viation of the two algorithms in milliseconds per frame.

become very conspicuous in temporal aliasing when the
fabric is in motion.

Figure 9: An example of aliasing problem due to texture
projection. The left image is a magnification of the red
square in the right image.

5.1.2 Performance Analysis
The performance of the two algorithms (the original
algorithm and the LOD algorithm) was analyzed us-
ing an identical camera position and view, cloth model,
texture, and input parameters for the rendering model.
Both algorithms were tested along with the prefiltering
approach, as we have decided to incorporate it to reduce
the procedural texture aliasing.

Table 1 shows the results of the two algorithms, per-
formed with a 3D model as shown in Figures 7 and 8,
which contains 18892 vertices and 37566 triangles. Our
level-of-detail fabric rendering algorithm is faster than
the original algorithm. Given the improved rendering
quality and reduced artifacts our new approach is hence
preferable.

5.2 Denim Rendering
By extending the model to allow the specification of
coloring of yarns, we managed to procedurally generate
fabrics such as denim using the twill-weaved weaving
pattern coupled with blue colored weft yarns and white
colored warp yarns. Figure 10 provides a comparison
between our results and a close-up of real worn denim
fabric. The rendering results look realistic in terms of
fabric structure, but more randomness and tear and wear
needs to be incorporated into our model in the future.

We adopted the noise function proposed by Kang
[Kan10]. The noise function generates random illumi-
nation at different yarns, which enhances the realism of
our rendering. Note that some white warp yarns look
brighter than others as is the case for real denim. So far
our framework does not simulate washed denim fabric

Figure 10: Denim fabric rendered with our framework
(left) and a photo of real denim (right).

and hence we cannot replicate the random whitish
patches in the image of real denim fabric.

Figure 11: Close-up view of denim fabric rendered with
our framework.

Figure 11 shows a close-up view of our rendering re-
sults. Our model renders the twill-weave too uniformly,
lacking the natural imperfection found in real denim.
When the denim is being viewed from a larger distance,
the yarn geometry and weaving pattern gets aggregated
and only the dominating color in the weaving pattern is
visible to the user.

Figure 12 shows another close-up appearance of the
denim fabric using a model of a pair of jeans.. The
weaving pattern is defined to closely simulate the struc-
ture of a pair of real jeans. In order to render jeans re-
alistically, we modified our fabric shader so that it sup-
ports the input of wash maps. Wash maps are used to
define the patterns of washes for a pair of jeans, where
washes are patterns of white patches on the jeans as
shown in Figure 12. In Figure 12, a pair of rendered
jeans is shown on the left with a pair of real jeans on the
right. This close-up view demonstrates that the weav-
ing pattern of the rendered jeans closely resembles the
weaving pattern of the real jeans, as they are both sim-
ilar in structure and size relative to the jeans model.
Furthermore, at this viewing distance, the appearance
of both jeans is very similar to each other.

A comparison of an entire pair of real jeans and our ren-
dered jeans using a distance view is shown in Figure 13.

Journal of WSCG, Vol.20 124 http://www.wscg.eu

Figure 12: Jeans comparison when viewed from close-up: rendered jeans (left) and real jeans (right).

The rendered jeans (left) in Figure 13 closely resembles
the real jeans (right) in Figure 13. From this distance,
the weaving pattern is completely invisible to the ob-
server, and aliasing artifacts are also unrecognizable on
the fabric surface with the use of our LOD algorithm
and prefiltering approach.

Figure 13: Jeans comparison when viewed from a dis-
tance: rendered jeans (left) and real jeans (right).

In our results, we found that that the use of direct light-
ing often makes the resulting rendered object too bright
in areas that are occluded by the object itself. An ex-
ample is shown in Figure 14, where the left image is

Figure 14: Effect of ambient occlusion, before ambient
occlusion (left), and after ambient occlusion (right)

the rendered jeans without ambient occlusion, and the
right image is the rendered jeans with ambient occlu-
sion. In this scene, the light is positioned to the left of
the jeans, hence the inner thigh area should be dark as
it is not directly illuminated by the light source. How-
ever, without ambient occlusion the rendered jeans still
seems to be too bright around this area, and we found
that the SSAO approach results in a more natural ap-
pearance of occluded areas.

6 CONCLUSION
In this paper, we analyzed several existing fabric ren-
dering techniques. We chose to use the method pro-
posed by Kang [Kan10] as a basis for our fabric shader,
due to its rendering quality and performance. Several
extensions were proposed to improve the robustness of
the model and for supporting fabrics such as denim, and

Journal of WSCG, Vol.20 125 http://www.wscg.eu

ambient occlusion for enhancing the realism of self-
occlusion of the cloth model. Furthermore, we pro-
posed a level-of-detail approach in visualizing the ag-
gregation of details with the use of a mipmap LOD se-
lection mechanism, to help reduce aliasing artifacts re-
sulting from high frequency textures. Overall, our ex-
tension to the model enabled us to successfully render
denim fabric with an unwashed look and it significantly
reduced aliasing problems. With the incorporation of
wash maps to specify areas of washes, we have success-
fully replicated the overall and close-up appearance of
actual jeans.

7 FUTURE WORK
The weave-based level-of-detail algorithm only reduces
parts of the aliasing caused by high frequency textures.
It still suffers from aliasing from small scaled weav-
ing pattern and highly contrasting weft and warp yarns’
colors, such as for denim fabric, depending on the size
of weft and warp segments. Our approach rectified the
aliasing problem that is often seen in weave-based fab-
ric rendering approaches, but a better algorithm can be
investigated in the future to reconstruct the appearance
of high-detail level from lower levels, rather than filter-
ing these details away.

8 REFERENCES
[Ake93] Kurt Akeley. Reality engine graphics. In

Proceedings of the 20th annual confer-
ence on Computer graphics and interactive
techniques, SIGGRAPH ’93, pages 109–
116, New York, NY, USA, 1993. ACM.

[AMTF03] N. Adabala, N. Magnenat-Thalmann, and
G. Fei. Real-time rendering of woven
clothes. In Proceedings of the ACM sympo-
sium on Virtual reality software and tech-
nology, pages 41–47. ACM, 2003.

[AS00] M. Ashikhmin and P. Shirley. An
anisotropic phong BRDF model. Jour-
nal of graphics tools, 5(2):25–32, 2000.

[DLH01] K. Daubert, H.P.A. Lensch, and W. Hei-
drich. Efficient cloth modeling and ren-
dering. In Rendering techniques 2001:
proceedings of the Eurographics work-
shop in London, United Kingdom, June 25-
27, 2001, page 63. Springer Verlag Wien,
2001.

[HA90] Paul Haeberli and Kurt Akeley. The ac-
cumulation buffer: hardware support for
high-quality rendering. SIGGRAPH Com-
put. Graph., 24(4):309–318, September
1990.

[Ira08] Piti Irawan. Appearance of woven cloth.
PhD thesis, Ithaca, NY, USA, 2008.
AAI3295837.

[Kan10] Y.M. Kang. Realtime rendering of real-
istic fabric with alternation of deformed
anisotropy. Motion in Games, pages 301–
312, 2010.

[Kau05] J. Kautz. Approximate bidirectional tex-
ture functions. GPU Gems, 2:177–187,
2005.

[Lot09] T. Lottes. FXAA. 2009. Also available as
http://developer.download.nvidia.
com/assets/gamedev/files/sdk/11/
FXAA_WhitePaper.pdf.

[Mam89] Abraham Mammen. Transparency and an-
tialiasing algorithms implemented with the
virtual pixel maps technique. IEEE Com-
put. Graph. Appl., 9(4):43–55, July 1989.

[Mit07] Martin Mittring. Finding next gen:
Cryengine 2. In ACM SIGGRAPH 2007
courses, SIGGRAPH ’07, pages 97–121,
New York, NY, USA, 2007. ACM.

[Res09] A. Reshetov. Morphological antialiasing.
In Proceedings of the Conference on High
Performance Graphics 2009, pages 109–
116. ACM, 2009.

[Ros05] R.J. Rost. OpenGL (R) shading language.
Addison-Wesley Professional, 2005.

[War92] G.J. Ward. Measuring and modeling
anisotropic reflection. ACM SIGGRAPH
Computer Graphics, 26(2):265–272, 1992.

[WZT+08] J. Wang, S. Zhao, X. Tong, J. Snyder, and
B. Guo. Modeling anisotropic surface re-
flectance with example-based microfacet
synthesis. In ACM SIGGRAPH 2008 pa-
pers, pages 1–9. ACM, 2008.

[YW11] W. Yuen and B. Wünsche. An eval-
uation on woven cloth rendering tech-
niques. In Proceedings of the 26th In-
ternational Image and Vision Comput-
ing New Zealand Conference (IVCNZ
2011), pages 7–12, Auckland, New
Zealand, November 2011. Also available
as http://www.cs.auckland.ac.nz/
~burkhard/Publications/IVCNZ2011_
YuenWuensche.pdf.

[YYTI92] T. Yasuda, S. Yokoi, J. Toriwaki, and
K. Inagaki. A shading model for cloth
objects. Computer Graphics and Applica-
tions, IEEE, 12(6):15–24, 1992.

[ZJMB11] S. Zhao, W. Jakob, S. Marschner, and
K. Bala. Building volumetric appearance
models of fabric using micro ct imaging.
ACM Trans. Graph, 30(44):1–44, 2011.

Journal of WSCG, Vol.20 126 http://www.wscg.eu

Error Metrics for Smart Image Refinement

Julian Amann Matthäus G. Chajdas Rüdiger Westermann
CG/Vis Group, CS Departement
Technische Universität München

Boltzmannstrasse 3
85748 Garching, Germany

amannj@in.tum.de chajdas@tum.de westermann@tum.de

ABSTRACT
Scanline rasterization is still the dominating approach in real-time rendering. For performance reasons, real-
time ray tracing is only used in special applications. However, ray tracing computes better shadows, reflections,
refractions, depth-of-field and various other visual effects, which are hard to achieve with a scanline rasterizer.
A hybrid rendering approach benefits from the high performance of a rasterizer and the quality of a ray tracer.
In this work, a GPU-based hybrid rasterization and ray tracing system that supports reflections, depth-of-field
and shadows is introduced. The system estimates the quality improvement that a ray tracer could achieve in
comparison to a rasterization based approach. Afterwards, regions of the rasterized image with a high estimated
quality improvement index are refined by ray tracing.

Keywords
hybrid rendering, reflection error metric, depth-of-field error metric

1 INTRODUCTION
Nowadays, rasterization based graphic pipelines domi-
nate real-time 3D computer graphics, because graphics
hardware is highly optimized for this rendering algo-
rithm. Many years of research have been spent on de-
veloping massive parallel processing units that are able
to process complete pixel quads in a fast way by ex-
ploiting frame buffer locality and coherence [KMS10].

Even though rasterization has a lot of advantages, it also
has some limitations. It performs well evaluating local
illumination models, however there are problems with
global effects like reflections. Because rasterization is
limited to local illumination models, it is hard to com-
pute physically correct reflections of the environment.
For that reason, approximations like environment maps
[Gre86] are used, which can result in visually plausible
reflections.

Shadows are also a very challenging problem for
rasterization. Although there are numerous shadow
mapping and shadow volume techniques, they all have
some inherent problems that arise from the local view
of shading in the rasterization process. For example,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

most shadow mapping techniques suffer from the
well-known biasing problems or have shadow mapping
artifacts due to a too small shadow map resolution
[ESAW11]. The number of annually appearing publi-
cations to shadow topics proves that the generation of
shadows is still a challenging subject.

Besides reflections and shadows, it is also hard to simu-
late a correct thin-lens camera with rasterization. Most
depth-of-field techniques which are rasterization based
compute the circle of confusion and then just blur the
image with the computed radius, which results in an in-
correct depth-of-field effect [Pot81].

Secondary effects, like shadows or reflections are hard
to achieve with a rasterization approach. A ray tracer
can natively handle shadows and multiple reflections
just by sending additional secondary rays. With a ray
tracer it is not hard to simulate these effects. A thin-
lens camera model can also be easily implemented in a
ray tracer to get a nice depth-of-field effect.

2 MOTIVATION
Because ray tracing is computationally very expensive,
rasterization is still used for games today. Another rea-
son is that under some circumstances a rasterizer can
produce exactly the same image as a ray tracer could.
Figure 1 compares a scene rendered with ray tracing to
a scene rendered with rasterization.

Remarkable is the fact that the rasterized image took
about 7 ms to render with precomputed environment
maps on commodity hardware (NVIDIA GeForce GTX

Journal of WSCG, Vol.20 127 http://www.wscg.eu

(c) Difference image

(a) Rasterized image

(b) Ray traced image

High
Error

Low
Error

Figure 1: A difference image of scene (a) that has been rendered with rasterization (b) and ray tracing (c). The
temperature scale on the left shows how to interpret the colors of the difference image. Blue colors mean a low
difference and red colors mean a high difference. For example high differences can be seen in the reflecting object
in the center of scene.

460) at a resolution of 762 x 538 pixels with no scene
graph optimizations. However, the ray traced image
with the same image quality and resolution and a highly
optimized scene graph took roughly 976 ms to render
(the performance measurements were made with the
render system described in section 7).

Being given the choice of those techniques, one has to
weigh the speed up against the high image quality. In
order to profit from the advantages of rasterization and
ray tracing, a hybrid approach is preferable. For ex-
ample, a hybrid technique can just use ray tracing to
compute reflections while the rest of the scene can be
conservatively rasterized. This helps to get high quality
reflections at the cost of only ray tracing the parts of the
scene that have reflecting materials.

Ideally, one would estimate beforehand how big the dif-
ference between the rasterized and ray traced image is.
This difference (see Figure 1c) could be used as a hint
to find out where it is most appropriate to send some
rays to improve the image quality.

3 CONTRIBUTIONS
This paper describes an error metric for reflections,
shadow mapping and depth-of-field, which estimates
the expected pixel error between the rasterized and the
ray traced scene. The error metric is a heuristic one,
which yields an expected but not an absolutely correct
error value. During the rasterization of the scene, the
error value is calculated and stored in an additional ren-
der target. After a first approximation of the current
scene by rasterization, the error value of each pixel can

be used to find out where it is most appropriate to refine
the rasterized image by ray tracing.
This paper also presents a scheduling strategy that de-
termines in which order the parts of the image are get-
ting refined via ray tracing, so the scene converges
quickly. This means that parts of the scene with high
error get ray traced first and more often than parts of the
scene with a low error. This helps to prevent wasting a
lot of computation time on parts of the image where no
difference or only a slight difference between the ray
traced and the rasterized version is observable.
Furthermore, the implementation of a hybrid raster-
ization and ray tracing framework that is based on
Microsoft Direct3D 11, NVIDIA CUDA Toolkit and
NVIDIA OptiX 2.51 ray tracing engine is described,
which demonstrates the feasibility of the described
smart image refinement system. The system is called
smart, because it refines the image according to the
error estimate.

4 RELATED WORK
In the following section related work is briefly pre-
sented. Contributions made by other researchers reach
from simple hybrid rendering systems to sophisticated
perceptually-based techniques.

1 NVIDIA OptiX is a freely available low level ray tracing
engine that runs entirely on the GPU. Currently OpitX is
only supported by NVIDIA GPUs. Similar as Direct3D or
OpenGL provides an interface to an abstract rasterizer which
can be used to implement various rasterization-based algo-
rithms, OptiX provides an interface to an abstract ray tracer.

Journal of WSCG, Vol.20 128 http://www.wscg.eu

Perceptually-based techniques try to shortcut the render
process by computing a perceptually indistinguishable
solution instead of a fully converged one. In [YPG01],
a perceptually-based technique is described that calcu-
lates a spatio–temporal error tolerance map. The com-
putation of the error map takes a few seconds and is
targeted at offline renderers. Each pixel of the error
map indicates how much effort should be spent on the
respective pixel. The error value is determined by har-
nessing knowledge about the human visual system and
a model which predicts visual attention. For example,
the eye is less sensitive to areas with high spatial fre-
quency patterns or movements. Alongside with a pre-
diction on where the viewer directs his or her attention,
an estimate is computed that describes how important
a pixel will be. This estimate is saved in the error map
and is used during the render process to spend more
time on important regions of the image. The paper’s
authors achieved on their test rendering system a 6× to
8× speedup.

[Cab10] uses a simple error metric. The metric consists
of only a binary decision if ray tracing or rasterization
is to be used. If the rasterizer renders a triangle with
a transparent or reflecting material, a flag is set in a
ray casting buffer. Afterwards all pixels marked with
the flag get ray traced and combined with the rasterized
image. They use a CPU-based ray tracer.

In [KBM10], a hybrid approach is shown that combines
shadow mapping and ray tracing to render shadows. In
a direct render pass and from a small number of shadow
maps that are used to approximate an area light source
by several point lights, a shadow refinement mask is de-
rived. The mask is used to identify the penumbra region
of an area light source. A pixel is classified as inside the
penumbra when it cannot be seen from all point lights.
Afterwards, the penumbra pixels are dilated by a 5×5
structuring element. The dilated region is then rendered
by a CPU-based ray tracer to compute accurate shad-
ows.

5 ERROR METRICS
This section describes different error metrics for reflec-
tions, depth-of-field and soft shadows. The presented
error metrics are used by the smart image refinement
system to find out in which regions refinement by ray
tracing is most appropriate. An error value is estimated
for each pixel and is stored in an additional render tar-
get. The error metric is used as a heuristic that indicates
how likely the calculated pixel is wrong in comparison
to a pure ray traced version of the scene.

A high error value indicates that the approximation by
the rasterizer contains a high error, whereas a small er-
ror value indicates low errors in the approximation by
the rasterizer. The error value is just based on heuris-
tics, which means that in certain circumstances, a high

error value refers to a pixel that has only a small real or
no approximation error at all compared to the ray traced
scene. Conservative error metrics were chosen, so no
pixels get estimated as correctly approximated, even if
they are not correct.

Each error metric is normalized, which means it gener-
ates an error value in the range of [0,1].

Reflections
Reflections can be approximated by environment maps
in a rasterization based environment. Figure 2 com-
pares reflections rendered by rasterization to reflections
rendered by a recursive ray tracer.

(a) Rasterized

(b) Ray traced (c) Difference

Figure 2: The rasterized image (a) approximates reflec-
tion with an environment of the scene. Figure (b) shows
the same scene rendered with a recursive ray tracer. The
difference image (c) visualizes the difference between
Figure a and b. A red value indicates a high difference
and a blue value a small difference.

As can be seen from the difference image, the approx-
imated rasterized image is far from perfect. It contains
several regions with wrong reflections.

The simplest to think of error heuristic is one that just
makes a binary decision, depending on the criterion if
a fragment is part of a reflection object or not [Cab10].
Assuming it is part of the reflecting material, the error
metric returns 1, in all other cases it returns 0:

Ere f lection1 =

{
1 : reflecting material
0 : else

The previous classification is a very simple one. A more
sophisticated error metric can be derived, if we try to
understand why the approximation of an environment
is wrong. Figure 3 shows two major problems of envi-
ronment mapping.

Put the case that we want to rasterize a reflecting sphere
with the help of environment mapping. For a point P

Journal of WSCG, Vol.20 129 http://www.wscg.eu

on the sphere (see Figure 3) we need to look up the cur-
rent reflection from the environment map. For the look
up in the environment texture, we first need to com-
pute the reflection vector. The look up vector is then
transformed to texture coordinates which are afterwards
used to access the reflection map. The problem with
this approach is that the environment map has usually
been rendered from the center of the reflecting object.
This means, we get the color that is seen from the cen-
ter of the environment map towards the direction of the
reflected vector. Instead of this color, the correct color
would be the color that can be seen from the point P
towards the direction of the reflected vector. Figure 3
illustrates this. From point P, the reflection direction
points toward the colored sphere (r2). So we expect to
see a colored sphere in the reflection of P. But in fact,
the environment map technique uses the center of the
environment map to look up the color of the reflected
object. Looking from the center of the environment
map into the direction of the reflection vector, a yellow
cube can be seen instead of a colored sphere.

n

eye

e

r

 center of
environment map

A
B

r

P

1 2

Figure 3: Environment mapping has two major prob-
lems: First of all each reflection is computed as if the
reflecting point (P) would lie in the center of the en-
vironment map. Also it cannot handle self-reflections,
which leads to incorrect shading results at point A.

The environment map technique would result in a cor-
rect shading, if the shaded point is located directly in
the environment map center. For points that only have
a very small distance to the environment map center,
this approximation works as well. But for points with
a further distance to the environment map center, the
approximation by an environment map gets worse.
From this observation, a simple heuristic can be de-
rived: The further a point is away from the environ-
ment map center, the more likely an environment map
technique results in an incorrect approximation. This
means that the distance between a point (p) of a reflect-
ing object and the environment map center (c) needs to

incorporate in the approximating environment map er-
ror metric:

Ere f lection2 =

{
distance(p,c)
maxDistance : reflecting material
0 : else

Another error metric can be deduced from the incident
vector and reflection vector, as Figure 4 illustrates. As-
suming that there is a scene with a reflecting sphere
where the center of the environment map has been
placed at the center of the sphere, this would mean that
the environment map has been rendered from the cen-
ter of the sphere. Looking at the reflecting sphere in a
way that the incident ray (the ray from the eye point to
a point in the scene) is hitting directly the center of the
sphere, as this is the case for the incident vector I1, the
look up in the environment map will yield the correct
reflection color.

I1

2

eye

n

r1

2r

I2

P

P

P

2

1

3

Figure 4: Incident and corresponding reflected vectors

The returned reflection color is correct because the
given incident vector I1 leads to the reflection vector r1,
which means we want to know what can be seen from
the intersection point P1 into the direction r1. But this
is exactly the same question as what can be seen from
the center of the environment map into the direction of
r1. If we look from the eye point into the direction of a
point that is near to P1 like point P2, the incident vector
narrowly misses a hit with the center of the environment
map, but the looked up direction in the corresponding
environment map is approximately not too far from be-
ing correct.

It seems that for small angles between the incident and
the reflection vector, the approximated reflection vector
is almost correct, but for bigger angles like the angle be-
tween incident vector I2 and r2 it gets worse. From this
property, the following error heuristic can be derived:

Ere f lection3 =

{
〈−i,r〉 : reflecting material
0 : else

It is assumed the reflection vector r and the incident
vector (vector from eye point to shaded point) i in the

Journal of WSCG, Vol.20 130 http://www.wscg.eu

above equation are normalized. The angle between the
vector r and −i is always in the range [0◦,90◦]. Since
the angle can be in the range [0◦,180◦) the dot product
fails for greater than 90◦ angles. To circumvent this
problem instead of considering the reflected vector the
normal can be considered which leads to the following
equation:

Ere f lection4 =

{
〈−i,n〉 : reflecting material
0 : else

This works because the angle between the incident and
reflected vector is directly proportional to angle be-
tween the reflected and the incident vector. The angle
between the negative incident vector and the normal can
never exceed 90◦.

E reflection1

Ereflection2

E reflection4

Ereflection 5
Figure 5: Displays the different reflection error metrics
applied to a scene with sphere (left) and a scene with a
more complex shape (right)

Another not yet considered problem of the error met-
ric that is also related with environment maps are self-
reflections. Concave objects are displayed incorrectly
by an environment map technique. Figure 3 shows the
reason for this. Assuming we want to compute the re-
flection of the point A in Figure 3 given the reflection
vector r1. In a look up in the environment, the yel-
low color from the yellow cube is returned. However
in fact the reflection ray intersects the reflecting object
itself (a so-called self-reflection) in point B and despite
of this, the yellow color from the environment map is
nonsense. Self-reflections can probably not be handled
by environment maps. We can take care of this in our
error metric by using an ambient occlusion map. The
ambient occlusion map can be interpreted as a descrip-
tion of the curvature of the reflecting object. This infor-
mation can be directly used in a heuristic that estimates
the possibility of self-reflections:

Ere f lection5 =

{
ka(p) : reflecting material
0 : else

ka(p) refers here to the ambient occlusion term.

Figure 5 shows the different error metrics applied to two
sample scenes.

Depth-of-Field
Most rasterization based depth-of-field techniques are
image based and use only the depth buffer and color
buffer to compute a depth-of-field effect. Thereby, the
information about the scene is lost. In a ray tracer, the
lens is sampled at different locations. Each sample on
the lens has a different view of the current scene. In the
rasterizer approach, we have only one view at the scene
from the center of the lens. This can lead to missing
objects, because in some cases from some points on the
lens, objects can be seen that cannot be seen from the
center of the lens.

Another problem of most depth-of-field techniques is
color leaking. Color leaking can be seen around sharp
edges that are in focus in which other blurry objects
from the background bleed into [LU08]. The other way
around, objects in the foreground can bleed into objects
in the background. Figure 6 shows this effect.

As demonstrated in Figure 7, rasterization based depth-
of-field have problems in regions with high depth dis-
continuities. This knowledge can be exploited to con-
struct an error metric for the depth-of-field.

To find depth discontinuities, an edge filter, like the So-
bel filter, can be applied. A problem with this approach
is that the founded edges have to be dilated by a struc-
turing element, since the artifacts do not only occur at
the identified edge pixels, but also in the neighborhood
of the edge pixel according the circle of confusion. The

Journal of WSCG, Vol.20 131 http://www.wscg.eu

(a) Rasterized (b) Raytraced

Figure 6: A blurry foreground object bleeds into the
focused background object.

(b) Rasterized

(c) Ray traced(a) Difference

Figure 7: Difference image of scene (with applied depth
of field effect) (a) that has been rendered with rasteri-
zation (b) and ray tracing (c). Regions with high depth
discontinuities are problematic for rasterization based
rendering techniques.

maximal radius of the circle of confusion Cmax for the
dilation can be determined for a point p by the follow-
ing equation with image distance VP, focal length F and
aperture number n (zp is the distance between the point
p and the image plane):

Cmax(p) = max(C(zp),C∞)

C∞ = lim
z→∞

C(z) = |F−Vp| 1n

For simplicity reasons, we use a quad shape structuring
element in our implementation to approximate the cir-
cle of confusion. Figure 8 shows the error metric for
depth-of-field.

The Error metric for depth of field can be expressed as:

Edo f =

{
1 : Vicinity of a depth discontinuity
0 : else

The described error metric is not absolutely conserva-
tive, which means that errors can also occur in regions

(a) Rasterized (b) Dilated

Figure 8: After the depth discontinues have been
marked, they need to be dilated according to the circle
of confusion.

that were not classified with an error value of 0. How-
ever, it can give a smart image refinement system a good
hint where to start the refinement process.

Shadows
In [GBP06], an algorithm has been described that can
be modified to estimate where the penumbra of a given
area source light will be projected onto the scene. In
Figure 9, the estimated penumbra region is shown in
green color.

Figure 9: The estimated penumbra region is shown in
green color.

The algorithm described in [GBP06] makes a conserva-
tive estimation of the penumbra region, and is therefore
perfectly appropriate to be used as an error metric. The
difference between the shadow generated by the ras-
terization system and the ray tracer is only notable in
the penumbra region. In umbra regions and in regions
where the area light source is not occluded by other ob-
jects (so that the scene is fully lit by the light source) no
difference between the rasterizer and ray tracer is no-
ticeable (see Figure 1 - only the penumbra region needs
to be refined).

In [Mic07], an improved algorithm is presented which
can estimate a tighter, conservative penumbra estima-
tion than the algorithm described by [GBP06]. Even
though it requires more memory, the tighter estimation
reduces the amount of pixels that have to be refined,
resulting in an overall improved performance.

The corresponding error metric for soft shadow is there-
fore quite simple:

Journal of WSCG, Vol.20 132 http://www.wscg.eu

Eshadow =

{
1 : Pixel resides in penumbra region
0 : else

Combination of Error Metrics
The different error metrics can be combined in multiple
ways. A naive idea is to calculate an averaged sum:

Ecombined1 =
∑

n
i=1 Ei(p)

n

Figure 10 shows the quality of the average sum metric.

(a) (b) (c)

Figure 10: Quality of averaged sum metric. (a) shows
the real error, (b) the estimated error and (c) the differ-
ence image.

For a better estimation, a more complex combination
is required. A simple, yet effective approach is to
use a linear combination of the different error metrics
(i.e. Ere f lectioni , Edo f , Eshadow) and let the smart image
refinement system automatically determine the coeffi-
cients λi by rendering multiple views of a scene with
the goal of minimizing the difference between the esti-
mated and the real error:

Ecombined2 = ∑
n
i=1 λiEi(p)

The determination of the factors λi is done as a pre-
process for each different scene. In this pre-process a
certain number of screenshots from the scene is taken
(with pure rasterization and pure ray tracing). Then a
random tuple of λi coefficients is chosen and the com-
bined metric Ecombined2 is then compared with the real
error. We repeat this step multiple times and choose the
λi coefficients which result in the best approximation
for all test images.

6 SCHEDULING STRATEGY
This section describes how the error value is used to
direct the rendering process of the smart image refine-
ment system.

First the scene is rasterized by the rasterization system.
During rasterization, an error value is also computed
as described in the previous section about error met-
rics. After the rasterization pass, the color buffer and
the error color buffer are filled. Now post-processing
effects are applied to the previously rendered scenery.
The post-processing result is written to the post-process
color buffer; after this, the post-process error buffer is

computed. Then the error buffer and the post-process
error buffer get composed in a combined error buffer.
For each pixel, an error value is computed and stored
in the combined error buffer. After composing the er-
ror buffers, the next step is to sort the pixels. The error
buffer also stores, besides the error value, the position
for each pixel. The position is needed to find out to
which pixel a corresponding error value belongs to af-
ter reordering them according their error values. After
sorting the error pixels, they are gathered in the request
buffer. Additionally to the position, a sample count
value is also stored in the request buffer for each pixel
that determines how many rays should be traced for the
corresponding pixel. The sample count is determined
by an estimation pass that fills the request buffer. Af-
ter the request buffer is filled, it is handed over to the
ray tracing system. The ray tracing system reads the
first entry from the request buffer and samples the cor-
responding pixel according to the sample count. The
ray tracer proceeds this process for a user-defined max-
imum number of pixels. After the maximum number
is reached, the ray tracing process stops and the smart
image refinement system continues with blending the
current ray traced image with the computed rasterized
image. The blending factor of each pixel depends on
the total number of samples that were computed for the
corresponding pixel by this time. Figure 11 gives an
overview of this process. This process is repeated until
the whole image is refined.

7 IMPLEMENTATION
For the implementation of the smart image refine-
ment system Direct3D 11, CUDA 4.1 and OptiX 2.5
([Ste10]) have been used. Direct3D is used for the
rasterization part and analogously OptiX is used for the
ray tracing part. Thus all rendering is done on the GPU.
Optionally the system can perform pure rasterization
with Direct3D or pure ray tracing with OptiX. In
the case of pure ray tracing Direct3D is needed only
to show the generated OptiX output buffer. Pure
ray tracing and rasterization is used for comparison
purposes like the time measurements in section 2 or in
table 1.
The ray tracing subsystem uses a SBVH acceleration
structure [SFD09] provided by OptiX to accelerate ray-
triangle intersections. The rasterizer subsystem renders
without any scene graph optimizations in a brute force
manner.
A pixel shader is used to write the error values dur-
ing rasterization to an additional render target (the error
buffer). Some error values can be only determined af-
ter post-processing so there is an additional error buffer
(post-process error buffer) which stores the error values
determined during applying post-processing effects like
depth-of-field. The combined error buffer which con-
tains the unsorted error values is shared with CUDA.

Journal of WSCG, Vol.20 133 http://www.wscg.eu

Color Buffer

Error Buffer

rasterize scene

Post-Process Error Buffer

post-processing
Post-Process Color Buffer

+
 combine
error buffers

sort

ray trace pixels

Back Buffer

+ composite

Figure 11: Overview of the smart image refinement sys-
tem. During rasterization an error buffer is generated.
The error buffer is sorted to give the ray tracing subsys-
tem information where refinement makes most sense.

Thrust [HB10], a CUDA library is then used to sort all
error values. The error values are encoded in such a
way that the radix sort algorithm of Thrust can be used.
After sorting the pixel values according their error val-
ues a full screen quad is drawn with the size of the
sorted error buffer. In this step all pixel are gathered
in a request buffer which is implemented as an struc-
tured buffer. The request buffer is list with the pixels
that need to be refined. Since the error buffer has been
sorted the list is also sorted according to the error value.

8 RESULTS
Table 1 shows a performance comparison of pure ray
tracing and the prototypically implemented smart im-
age refinement system.

Resolution PRT in ms SIR in ms Error pixel (%)
800×600 440 406 188023 (39)
800×600 312 230 100934 (21)
800×600 203 79 20158 (0.4)
800×600 145 45 4181 (0.01)
1024×768 640 587 290542 (36)
1024×768 305 185 88063 (11)
1024×768 238 84 32889 (4)
1024×768 201 52 32889 (1)
1920×1080 1510 1463 805368 (39)
1920×1080 1107 901 499369 (24)
1920×1080 639 243 145239 (7)
1920×1080 484 113 44140 (2)

Table 1: Performance comparison of pure ray tracing
(PRT) and smart image refinement (SIR). In the SIR
implementation, one primary ray is traced for each error
pixel. Also a shadow and reflection ray is cast per in-
tersection. This is done recursively for reflections three
times.

As can be seen from Table 1 smart image refinement is
faster than pure ray tracing and at the same time it has
the same image quality, provided that conservative er-
ror metrics are used. All measurements in this section
were made with a NVIDIA GeForce GTX 560 Ti. As
a test scene, the extended Atrium Sponza Palace scene
that was originally created by Marko Dabrovic and ex-
tended by Frank Meinl has been chosen.

The sorting only has to be performed when the scene
or camera orientation/position changes. In the imple-
mentation of the smart image refinement system a user-
defined number of rays are always traced. For instance,
the tracing of 8192 rays and the composition of the ray
traced and rasterized image takes about 30 ms, depend-
ing on the current scene on camera view. This makes it
possible to show the user first results after a short render
time. Something that has be taken into consideration as
well is the fact that in a pure ray traced based approach,
the same number of samples is computed for each pixel,
no matter if refinement makes sense for the correspond-
ing pixel.

The performance of the smart image refinement sys-
tem drops with higher error pixel rates. The major
reason for this is that resources (e.g. error buffer,
request buffer) have to be copied between Direct3D
11, CUDA and OptiX because they cannot be directly
shared (some API extensions to improve the interop-
erability between OptiX, CUDA and Direct3D could
avoid these copying steps). For example to hand over
the error pixels that should be refined by OptiX, a re-
quest buffer has to be filled with the sorted data from
a CUDA buffer. The CUDA buffer cannot be directly
accessed by OptiX. The data has to be copied first.

Journal of WSCG, Vol.20 134 http://www.wscg.eu

9 CONCLUSIONS AND FUTURE
WORK

In this work, a GPU-based hybrid rasterization and ray
tracing system was presented that is able to direct the
render processes to regions with high relevance. Re-
gions with a high error are getting refined first and more
often than regions with a small error value. This helps
to converge fast to a stable image and avoids at the same
time the waste of computing time in regions that do not
need any refinement.

There is some scope for improvements of the described
error metrics.

Besides reflections, shadows and depth-of-field, it
would also be interesting to see how other effects like
ambient occlusion (AO) or refractions can be integrated
into a smart image refinement system. In the case
of AO, a screen based ambient occlusion technique
can be employed in the rasterizer to compute a fast
approximation of an occlusion term.

Another interesting aspect that has not been considered
in this work is global illumination. Global illumination
could be approximated with light propagation volumes
and refined with a more sophisticated ray tracing tech-
nique like path tracing.

There are several real-time perceptually based ap-
proaches like [CKC03] which try to cut down
rendering time by focusing on important parts. These
ideas can be combined with our approach.

10 REFERENCES
[Cab10] Cabeleira Joǎo. Combining Rasteriza-

tion and Ray Tracing Techniques to Ap-
proximate Global Illumination in Real-Time.
http://www.voltaico.net/files/article.pdf, 2010.

[CKC03] Cater, K., Chalmers, A., and Ward, G. Detail
to attention: exploiting visual tasks for selective
rendering. Proceedings of the 14th Eurographics
workshop on Rendering, Eurographics Associa-
tion, 270-280, 2003.

[ESAW11] Eisemann, E.; Schwarz, M.; Assarsson, U.
& Wimmer, M., Real-Time Shadows A. K. Peters,
Ltd., 2011.

[GBP06] Gaël Guennebaud, Loïc Barthe, and Math-
ias Paulin. Real-time soft shadow mapping by
backprojection. In Eurographics Symposium on
Rendering (EGSR), Nicosia, Cyprus, 26/06/2006-
28/06/2006, pages 227-234. Eurographics, 2006.

[Gre86] Ned Greene. Environment mapping and other
applications of world projections. IEEE Comput.
Graph. Appl., 6:21-29, November 1986.

[HB10] Jared Hoberock and Nathan Bell. Thrust:
A parallel template library, Version 1.3.0.
http://www.meganewtons.com/, 2010.

[KBM10] Erik Knauer, Jakob Bärz, and Stefan Müller.
A hybrid approach to interactive global illumina-
tion and soft shadows. Vis. Comput., 26(6-8):565-
574, 2010.

[KMS10] Jan Kautz Kenny Mitchell, Christian Ober-
holzer and Peter-Pike Sloan. Bridging Ray and
Raster Processing on GPUs. High-Performance
Graphics 2010 Poster, 2010.

[LU08] Per Lönroth and Mattias Unger. Advanced
Real-time Post-Processing using GPGPU tech-
niques, Technical Report, No. 2008-06-11,
Linköping University, 2008.

[Mic07] Michael Schwarz and Marc Stamminger. Bit-
mask soft shadows. Computer Graphics Forum,
Vol. 26, No. 3, pages 515-524, 2007.

[Pot81] Potmesil, Michael and Chakravarty, Indranil.
A lens and aperture camera model for synthetic
image generation. In SIGGRAPH 81: Proceed-
ings of the 8th annual conference on Computer
graphics and interactive techniques, pages 297-
305, New York, NY, USA, 1981. ACM.

[SFD09] Martin Stich, Heiko Friedrich, and Andreas
Dietrich. Spatial splits in bounding volume hierar-
chies. In Proceedings of the Conference on High
Performance Graphics 2009, HPG 09, pages 7-13,
New York, NY, USA, 2009. ACM.

[Ste10] Steven G. Parker, James Bigler, Andreas Di-
etrich, Heiko Friedrich, Jared Hoberock, David
Luebke, David McAllister, Morgan McGuire,
Keith Morley, Austin Robison and Martin Stich.
OptiX: A General Purpose Ray Tracing Engine.
ACM Transactions on Graphics, August 2010.

[YPG01] Hector Yee, Sumanita Pattanaik, and Donald
P. Greenberg. Spatiotemporal sensitivity and vi-
sual attention for efficient rendering of dynamic
environments. ACM Trans. Graph., 20:39-65,
January 2001.

Journal of WSCG, Vol.20 135 http://www.wscg.eu

Journal of WSCG, Vol.20 136 http://www.wscg.eu

Multi-View Random Fields and Street-Side Imagery

Michal Recky
ICG TUGraz

Graz University of Technology
Inffeldgasse 16

 A-8010 Graz, Austria
recky@icg.tugraz.at

Franz Leberl
ICG TUGraz

Graz University of Technology
Inffeldgasse 16

A-8010 Graz, Austria
leberl@icg.tugraz.at

Andrej Ferko
FMFI UK

Mlynská dolina

842 48 Bratislava, Slovakia
ferko@sccg.sk

ABSTRACT
In this paper, we present a method that introduces graphical models into a multi-view scenario. We focus on a
popular Random Fields concept that many researchers use to describe context in a single image and introduce a
new model that can transfer context directly between matched images – Multi-View Random Fields. This
method allows sharing not only visual information between images, but also contextual information for the
purpose of object recognition and classification. We describe the mathematical model for this method as well as
present the application for a domain of street-side image datasets. In this application, the detection of façade
elements has improved by up to 20% using Multi-view Random Fields.

Keywords
Random Fields, Context, Redundancy, Image Stacks

1. INTRODUCTION
In a current computer vision research input data is
often represented as large, redundant datasets with
hundreds or even thousands of overlapping images.
As the volume and complexity of data increases, it is
no longer meaningful to employ manual inputs in
any step of the process. This constraint on the work
automation leads to a need to utilize as much
information from images as possible. One potential
approach is to employ “context”. Most popular
methods of context application are graphical models,
specifically Random Fields. However, general
Random Fields models are defined such that they
allow observations only from a single image. This
approach is limiting context as a feature of a single
image, but the context is derived from objects in a
real scene, from which an image is only one
projection. How is this limiting context application
and how can we expand the Random Fields model to
cope with the presence of multi-view dataset is the
topic of this paper.
The basic element in a Random Field model is a
“site”. This is generally a patch of image area

Figure 1: The application of Multi-View Random
Fields for labeling of the façade elements. Top left
– set of blocks that divide building façade into a
set of sites for a graphical model. Bottom – final

labeling is achieved as a combination of
information from multiple overlapping images

(for color-coding, see Figure 7).
ranging from a single pixel to a larger segment. In
our application in a street-side images domain, a site
is a rectangular area (block) of a building façade (see
Figure 1). Each site has to be labeled according to
visual data and a context in which it is observed.
Context is defined as relations (spatial relations,
similarity…) between sites. In a multi-view scenario,
we have multiple matched images, each with its own
set of sites. Extension of Random Fields into a multi-
view is not straightforward, as the two sets of sites
from matched images are typically overlapping.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

Journal of WSCG, Vol.20 137 http://www.wscg.eu

Simple merging of these two sets would cause
double detections of same objects and unresolved
relations between sites. To solve both problems, we
introduce a new concept – Multi-View Random
Fields.
In this paper, the “Background” and “Graphical
Models” sections are outlining a context of our work
in a computer vision community and in a Random
Fields models research. The “Context in Multi-View”
section explains what type of context is relevant in
multi-view and how it can be utilized. In the “Multi-
View Random Fields” section the new graphical
model is introduced and the “Application of MVRF”
section present the illustrational application of the
model in a street-side images domain.

2. BACKGROUND
The last decade saw growing interest in multi-view
methods. With the introduction of a new generation
of high resolution digital cameras and with rapid
improvements in storage and computing hardware,
multi-view imagery advanced from a source for the
computation of point clouds by two-image stereo
methods to a broad range of vision problems
employing thousands of overlapping images. Open
online image hosting sites (Flickr, Picasa,
Photobucket…) have added interesting vision
opportunities. While the basic principles for
matching images remain applicable to such datasets
[Har04a] [Leo00a], new problems needed to get
solved, such as the organization and alignment of
images without any knowledge about camera poses
[Sna06a]. The resulting resource need in computing
gets addressed by means of graphical processing
units GPUs, or with distributed approaches [Fra10a].
Therefore current computer vision can cope with this
avalanche of imagery and multi-views are becoming
a common reality.
Extending the concept of Random Fields into such
multi-view scenario comes from an idea that given
more images of the same scene, more contextual
relations can be examined. In this work, we present a
mathematical model for Multi-View Random Fields
that allows transferring contextual relations between
matched images. We also present the application of
Multi-View Random Fields in a domain of street-side
images. This domain is useful for a demonstration, as
there are large datasets of matched street-side images
for the purpose of urban modeling (virtual cities,
GIS, cultural heritage reconstruction) that establish a
multi-view scenario. Urban scenes also exhibit strong
contextual relations, as man-made objects adhere to
an inherent organization. We show how façade
elements can be classified, using both context and
multi-view principles in one model.

Figure 2. The typical application of MRF in
computer vision. At each node (site) i, the

observed data is denoted as yi and the
corresponding label as xi. For each node, only
local observations are possible. Generally each

node represents a pixel in an image and observed
data pixel’s features.

3. GRAPHICAL MODELS
The most common non-causal graphical models in
computer vision are Markov Random Fields (MRF).
MRF have been used extensively in labeling
problems for classification tasks in computer vision
[Vac11a] and for image synthesis problems. In a
labeling task, MRF are considered to be probabilistic
functions of observed data in measured sites of the
image and labels assigned to each site. Given the
observed data y = {yi}iϵS from the image, and
corresponding labels x = {xi}iϵS, where S is the set of
sites, the posterior distribution over labels for MRF
can be written as:

() () ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= ∑ ∑∑

∈ ∈ ∈Si Si Nj
jimii

m i

xxxp
Z

P β|logexp1| yyx ,(1)

where Zm is the normalizing constant, βm is the
interaction parameter of the MRF and Ni is the set of
neighbors of a site i. The pairwise term βmxixj in
MRF can be seen as a smoothing factor. Notice that
the pairwise term in MRF uses only labels as
variables, but not the observed data from an image.
In this arrangement, the context in a form of MRF is
limited to be a function of labels, thus allowing for
semantic context (context between classes) and
limiting geometric context to a structure of MRF
graph (see Figure 2). This makes the MRF applicable
mainly for simpler forms of local context.
To cope with such limitations, the concept of
Conditional Random Fields (CRF) was proposed by
J. Lafferty [Laf01a] for the segmentation and
labeling of text sequences. The CRF are
discriminative models that represent the conditional
distribution over labels. Using the Hammersley-
Clifford theorem [Ham71a], assuming only pairwise
cliques potentials to be nonzero, the conditional
distribution in CRF over all labels x given the
observation y can be written as

Journal of WSCG, Vol.20 138 http://www.wscg.eu

() () ()⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑ ∑∑

∈ ∈ ∈Si si Nj
jiijii

i

xxIxA
Z

P yyyx ,,,exp1| ,(2)

where Z is the normalizing constant, -Ai is the unary
and -Iij pairwise potential. The two principal
differences between conditional model (2) and MRF
distribution (1) are that the unary potential Ai(xi, y) is
a function of all observations instead of only one
observation yi in a specific site i and the pairwise
potential in (2) is also the function of observation,
not only labels as in MRF. In CRF, the unary
potential Ai(xi, y) is considered to be a measure of
how likely a site i will take label xi given the
observation in a image y. The pairwise term is
considered to be a measure of how the labels at
neighboring sites i and j should interact given the
observed image y. This concept of CRF allows for
use of more complex context derived from larger sets
of observations in the image and employing
geometric context (e.g. spatial relations between
objects). It is extended even more in a concept of
Discriminative Random Fields [Kum06a], where an
arbitrary discriminative classifier can be applied in a
form of unary/pairwise potential.
However, in all concepts of Random Fields, the set
of sites S (and thus the observations) is limited to a
single image. How to extend these models into a
multi-view is explained in subsequent sections.

4. CONTEXT IN MULTI-VIEW
Before the definition of a new Random Field model
in multi-view, we must consider what type of context
can be transferred between images. The most
common type of context applied for classification is a
local pixel context. In general, a small neighborhood
around an examined pixel is taken as a context area
and a graph structure of a model is placed in this
neighborhood (one node per pixel). However, this
approach is not suitable for multi-views, as
neighborhoods around matched pixels in two images
are in general uniform and will not present much
useful additional information. Alternatively we can
consider global context, which examines
relationships between all objects in the images. In
this type of context, we can observe different
relations in different images, thus transferring such
context would provide additional information for
recognition and classification (see Figure 3). If
spatial relations between objects are examined in this
manner, graphical models are approximating spatial
relations between objects in a real 3D scene.
In a standard Random Fields (RF) model, each image
is considered a unique unit of information. Thus, we
can consider a global context to be a specific feature
of each image - the global context is a set of relations
between all sites detected in a single image.

Figure 3. Building façade projected in slightly

different views. Red lines (graph edges) represent
spatial relationships between objects detected in
the images, indicating different context in two

projections for the same objects. For better
overview, only some relations are visualized.

Typically, sites are either pixels or segments.
Construction of a global model with node in each
pixel would significantly increase the complexity of
computation; therefore we consider segments as the
representation of sites in our model.
Subsequently a site is represented by a specific area
(segment) in a digital image. Such area represents an
object (or part of object) and areas from two sites are
not overlapping. In a general RF model, a set of all
sites in one graph is denoted as S. In a local model,
one set S include sites from a small patch of the
image, however in a global model, S includes all
sites from the entire image. Visual features of the
area assigned to a specific site are denoted as image
observation ys from site sϵS. In a graphical model, if
there is an edge between nodes assigned to sites s1
and s2, let’s denote this relation as Φ(s1, s2) = 1 and
consequently if there is no edge between s1 and s2,
denote this as Φ(s1, s2) = 0.

Transferable Sites
Consider one image from the dataset as “examined
image” to which we would like to transfer context
from other matched images. Let’s call any site sϵS
from an examined image a “native site”. If the image
matching is established in a dataset (we have a set of
corresponding points that link images), we can look
for any sites from other images that are
corresponding to native sites. In most cases, sparse
point cloud of matched points is enough to establish
correspondence between site. Relative poses between
images and camera parameters are not required.
Definition of corresponding sites can vary in
different applications. In general, corresponding sites
are two sites from different images that share some
subset of corresponding points;

Journal of WSCG, Vol.20 139 http://www.wscg.eu

Figure 4. Transfer of sites from the image lϵ I to
the image kϵI, as presented in Definition 1. Only

sites from l that are not corresponding to any sites
from k are transferred. This figure demonstrates

only transfer between two images.
each site from matched images can have only one
corresponding site in the examined image – the
example of this relation is provided in the application
section of this paper.
Given that corresponding sites usually represent the
same objects, transferring such information between
images would be redundant. Therefore we transfer
sites that have no correspondences in the examined
images to provide new information. We denote such
sites as “transferable sites”. For a single, examined
image from the image stack, let’s define the set of
transferable sites as:

Definition 1: If Sk = {s1, s2, … , sn} is the set of sites
for single image kϵ I, where I is the set of images and
correspondences have been established between the
images from I such that ϵS'

is l is a site from image
lϵ I-{k} corresponding to a site si. Than the Rk = {r1,
r2, … , rm} is the set of transferable sites for the
image k if and () 1SR =∈∃∈∀ ',Φ| ijkikj srsr

kjkj rr SR ∈¬∃∈∀ ' . Rk is constructed such that

kji rr R∈∀ , , ri and rj are not correspondent to each
other in any two images from I
Thus the Rk is the set of sites from other images than
k, that are in the relationship in graphical model with
some corresponding site to sites from Sk, but
themselves have no correspondences in Sk (see
Figure 4). The set of transferable sites can be seen as
a context information, that is available in the image
stack, but not in the examined image. If sites are the
representations of objects, than in a transferable set,
there are objects in context with the scene of the
image that are currently not located in the projection,

thus are occluded, out of the view or in different
timeframe. This also means that the visual
information from the sites in Rk are not present in the
image k. If the sites from Rk are included in the
vision process, they can provide additional context
and visual information that is not originally present
in the examined image.
Note that a transferable site is not equivalent to a
native site in an examined image. Even though
transferable sites have the same set of visual features
as sites native to the image and they can be assigned
the same set of spatial and contextual relations in a
graphical model, transferable sites lost all original
contextual relationships except the relationships to
the sites they are connected within the examined
image. This makes them harder to label. But the
labeling of transferable sites is not the aim in the case
of examined image (the goal is to label only native
sites), thus transferable sites can contribute
information for image labeling, but the labeling of
themselves is usually irrelevant.

5. MULTI-VIEW RANDOM FIELDS
Given a non-equality of transferable sites to native
sites, standard RF models are not compatible with
this extended set. For this reason, we introduce a new
model denoted as Multi-View Random Fields
(MVRF). This model is derived from a CRF,
described in Section 2; however we extend the
posterior probability distribution into MVRF model
framework as follows:

Given the observed data y = {yi}iϵS from the image,
corresponding labels x = {xi}iϵS, where S is the set of
native sites from the image and observations from
transferable set z = {zi}iϵR with corresponding labels

{ } R∈= iix~~x , where R is the set of transferable sites,
the posterior distribution over labels is defined as:

,(3)

where Z is the normalizing constant, Ni is the set of
native sites neighboring site i and Ki is the set of
transferable sites neighboring site i. - Ai and - are

unary potentials, - I

'
iA

ij and - are pairwise potentials
(for native sites and transferable sites respectively).
The differences between potentials for transferable
sites and for native sites are as follows:

'
ijI

- In the unary potential for a transferable site,
only observations from the site itself are

Journal of WSCG, Vol.20 140 http://www.wscg.eu

considered, instead of observation from the
entire image for native sites. This is due to
the fact, that a transferable site does not
have any connections to the image except
for the site it is neighboring. Even if other
connections exist (with other sites in the
image), it is a hard task to establish
relationships. For native site, there are no
changes to a standard conditional model.

- In the pairwise potential, in addition to
observation from the image, local
observation from the transferable site is
considered, when relations are examined
between a native site and transferable site.
The inclusion of all image observation grant
at least the same level of information in
pairwise computation as in a standard CRF
model and the additional observation form
transferable site represent extended context
for native image observation. The pairwise
potential for two native sites is the same as
in a standard CRF model.

This model has some additional unique
characteristics. For example, no pairwise relations
are considered between two transferable sites. This is
based on the construction of transferable sites set. A
site from such set can be neighboring several native
sites, but not any other transferable site. This can be
seen as a limitation for the model, however without
additional high frequency information about the
scene (as a prior knowledge), it is virtually
impossible to establish relationships for transferable
sites.
The computational complexity of the model is not
increased significantly. Pairwise potentials are
computed only for native sites, as it is in the standard
CRF model. The difference is in the number of
neighbors for each site, however even this number
should not increase significantly. When considering
a global model, each new neighbor (transferable site
in relation to the native site) represents a new object
in the projection. This is dependent on the
differences between projection parameters – camera
positions, optical axes…, but even for very different
parameters, the number of objects should not differ
significantly for the same scene. From the general
observation, the number of neighboring transferable
sites is notably lower than the number of neighboring
native sites.

Potentials Modifications
Unary potential for native image sites, similar to a
standard CRF is a measure of how likely a site i will
take label xi given the observations in image y. A
standard approach described in a work of S. Kumar
is to apply Generalized Linear Models (GLM) as

local class conditional [Kum06]. In that case, given
the model parameter w and a transformed feature
vector at each site hi(y), the unary potential can be
written as:

() ()()()ywy i
T

iii xxA hlog, σ= ,(4)

For the transferable sites, the feature vector is limited
to the observations from single site. This limitation
defines a new expression for unary potential,
exclusive to transferable sites as

() (())()ii
T

iiii xxA zwz h~log,~' σ= ,(5)

The feature vector hi(zi) at the transferable site i is
defined as a nonlinear mapping of site feature vectors
into high dimensional space. The model parameter w
= {w0, w1} is composed of bias parameter w0 and
model vector w1. σ(.) is a local class conditional, that
can be any probabilistic discriminative classifier.
The pairwise potential for two native sites from the
image remains the same as in CRF model, given the
GLM are applied to compute the class conditional:
() () ()()()()121 −−+= yvy ij

T
jijijiij xxKxKxxxI µ,, σβ

,(6)
where 0 ≤ K ≤ 1, v and β are the model parameters
and µij(y) is a feature vector. For transferable sites,
we introduce the additional feature vector in a form
of observations from specific site:

() () ()()()()121 −−+= jij
T

jijijjiij xxKxKxxxI zyvzy ,µ~~,,~,' σβ

,(7)
where µij(y,zi) is a feature vector defined in a domain

such that observations are
mapped from the image/sites related to site s into a
feature vector with dimension γ. Note that the
smoothing term is the same as in a standard
CRF definition. Thus if K = 1, the pairwise potential
still performs the same function as in a MRF model,
however given new transferable sites, the smoothing
function will depend also on their classification .
In this case, visual information from transferable
sites is not involved in the pairwise term and is only
applied in the unary term. If K<1 the data-dependent
term

qµ ℜ→ℜ×ℜ γγ:

ji xKx ~

jx~

()() 12 −jij
T

ji xx zyv ,µ~σ is included in a
pairwise potential. Observations from the image
related to the examined native site and observation
from transferable site are transformed into feature
vector and involved in computation.

Parameter Learning and Inference
In this work, we constructed an MVRF model to be
as compatible with other RF models as possible. This
approach is observed also in a parameter learning
process, as any standard method used for learning of

Journal of WSCG, Vol.20 141 http://www.wscg.eu

CRF model can be also used for MRVF model. To
further simplify the process, we observed that
learning from single (un-matched) images is feasible
without the loss of strength of the model. This is due
to the construction of potentials - in a unary
potential, visual features do not change for
transferable sites, therefore they can be learned
directly from single images in training dataset. The
spatial relations defined for a pairwise potential also
do not change significantly for the pair native-
transferable site. For such reasons, we can assume
that the MVRF model can be learned even directly
from single images without dataset matching.
Therefore, methods such as pseudo-likelihood can be
applied for learning.
Similarly, parameter inference can be performed,
using any standard method applied in CRF. In our
application, we use Belief Propagation, but other
possible methods are Tree-Based Reparameterization
or Expectation Propagation for example.

6. APPLICATION OF MVRF
In this section we present the application of MVRF
in the building façades dataset for the purpose of
façade elements detection and classification. This
application is based on the dataset provided by a
vehicle-based urban mapping platform. Sparse image
matching is applied (see Figure 5), using the
Structure-from-Motion method [Irs07a]. We
selected the left camera subset, since it provides a
clear view of the building façades, not distorted by
the perspective (which, however, is easy to rectify)
and with good visual cues. This setting will
demonstrate the advantages of MVRF in cases when
a site was misdetected and presents lost contextual
information in standard models. In most images, the
building façade is not projected in its entirety and
parts are located in other images. Therefore in such
cases, the MVRF will also provide new contextual
and visual information in a form of transferable sites
based on the objects that are not located in the
original image.
In each image, separate facades are detected. This
can be achieved when the wire-frame models of the
scene are available, or using visual cues, such as
repetitive patterns [Rec11a]. Subsequently, a
modified gradient projection is applied to segment
each façade into a set of blocks. This method is based
on a standard gradient projection approach [Lee04a]
designed for the detection of windows with
following modifications:
First, we vertically project gradients to establish a
horizontal division of the façade into levels (level
borders are located at the spikes of the projection).
Subsequently, we compute horizontal gradient
projections in each level separately.

Figure 5. Top row: two examples of the same

façade, matched with a sparse point cloud (red
dots). Middle row: set of blocks located in each
façade (left image show façade detail for better

overview, right image entire facade). Bottom row:
set of blocks from the first image projected into a

second image and a set of transferable sites
(highlighted blocks) that is derived from the

projection (as sites that have no correspondence
in second set).

This process will yield a set of blocks bordered by
level borders horizontally and spikes in projection
vertically (see Figure 5). Second, we consider each
block as a site for a graphical model, thus we
compute visual features for each block and consider
spatial relationships between blocks. Visual features,
such as texture covariance, or clustering in a color
space are used for classification [Rec10a]. For
example, clusters in a CIE-Lab color space are
computed for each block and are compared to class
descriptors.
When the segmentation of a façade into a set of
block is established, we can define a global graphical
model in this structure. Each block is considered a
site, thus each node of the graph is placed in a
separate block. We define neighborhood relation
such that for each block, its neighbors are all blocks
located in areas above, below, left and right from
itself (see Figure 6). This definition allows
considering all objects at the same level and column
to be involved in contextual relations, accounting for
relations, such as rows and columns of windows, or
window-arch. An edge of a graphical model is placed
between each two neighboring blocks. In this
approach, a separate graph is created for each façade
in the image.

Journal of WSCG, Vol.20 142 http://www.wscg.eu

Figure 6. Example of site neighborhood, as

defined in this application. Green block is the
examined site and highlighted blocks are defined

as its neighborhood.

Multi-View Scenario
To establish a multi-view, we use a sparse point
cloud. We match blocks between images such that
we interpolate between detected corresponding
points to achieve rough point-to-point matching. If
two blocks in different images share at least 2/3 of
matched points (detected and interpolated), we define
these as corresponding blocks. Given one image as
“examined”, we can label all blocks from the same
façade in other images as either corresponding or
non-corresponding. Subsequently, transferable sites
are blocks that are from the same façade as in an
examined image, but are non-corresponding to any
block from the examined set (see Figure 5).
Establishing the relations between native and
transferable sites is straightforward, as we can still
consider up, down, left, right directions. With these
definitions, we can construct the MVRF model from
our dataset.

Experiments
We use the described model for the purpose of
façade elements detection and classification. The set
of classes with corresponding color coding is
displayed in Figure 7. Our testing dataset consists of
44 matched images. This dataset covers three full
building façades and one half façade. A sparse point
cloud of 1429 3D points is used to match images.
Approximately 800 points are projected into each
image. In the testing process, we compare the
number of façade elements to the number of detected
elements with the applied method. We counted
overall numbers of elements through the entire
dataset, as displayed in Table 1. For example, total
number of 536 “window centre” elements can be
observed in all images, that is approximately 12
“window centers” per image.

Figure 7. Set of classes: a) clear façade; b) brick

façade; c) window centre; d) window top; e)
window bottom; f) window margins; g) arch top;
h) arch bottom; i) basement window; j) door; k)
ledge; l) ledge ornament; On the right side, color

representation of each class is displayed.
Each façade was processed separately, that is if there
were two façades in one image, such image was
processed two times (each time for different façade).
After running the algorithm, a number of detected
elements is counted visually. The façade element is
defined as detected, if at least 2/3 of its area is
labeled with the corresponding class. For the training
purpose, we used the subset of 3 images from the
dataset and other 5 unrelated images as labeled
ground truth. This proved to be sufficient, as the
spatial relations between classes are in general stable
through different facades and a certain visual
features variability

Class # el single multi
/native

multi
/trans

clear façade 61 61 61 61
brick façade 54 54 54 54
win. centre 536 485 531 531
window top 311 270 303 308
win. bottom 300 227 273 288
win. margin 683 572 618 654

Arch top 199 176 189 192
Arch bottom 199 184 194 194
Basem. win 121 98 115 117

Door 34 32 33 33
Ledge 90 90 90 90

Ledge orna. 34 32 34 34
Table 1. The Results for the MVRF application.
“# el” displays the overall number of each class
for entire dataset (44 images). “single” displays

detected elements in MVRF single image scenario
(equivalent to CRF), “multi/native” displays

results for multi-view scenario with only native
sites in results and “multi/trans” display results
for multi-view scenario with transferable sites
labels in results. Numbers displayed are the

detected façade elements in all images of dataset.

Journal of WSCG, Vol.20 143 http://www.wscg.eu

Figure 8. Two examples of classification results.
Classes are labeled according to color scheme

explained in Figure 7. Colors are superimposed
over original images in the bottom row.

was allowed by the use of descriptors (e.g.
clustering). We trained on single images without the
use of matching. For the parameter inference, we
used a Belief Propagation method. Initial
classification was performed based on only visual
features and in each iterative step of the method, it
was refined by pairwise relations and site features
described in a model. In each step, we also refined
visual descriptors for each class to better
approximate features in each unique façade. Results
can be observed in the Table 1. We included results
for scenarios, where no transferable sites were used
(single), and the MVRF model is equivalent to CRF
in this case, results when only labels of native sites
were considered and results were labels of
transferable sites were included. Notice a significant
improvement in detection for classes that are visually
ambiguous, but have strong contextual relations (e.g.
window margins, window tops). For a “win. bottom”
class, the correct detection rate improved from 76%
in a single-view to a 96% in a multi-view with
transferable sites projected, thus achieving a 20%
improvement. Results illustrated in Figure 8.

7. CONCLUSION
In this paper, we addressed a common problem in a
current research – how to work with context
information in matched datasets and to alleviate an
artificial limitation of graphical models to single
images. We introduced a new MVRF model directly
applicable in a multi-view scenario. We extended the
standard CRF model such that it can work with
overall context of the scene present in the multi-view
dataset, but it still retains the same properties for
processing visual and contextual information in a
single image. Validity of this model is subsequently

demonstrated in the application in street-side image
domain – detection of façade elements. However the
new MVRF model is applicable in same situations as
a standard CRF model, provided that appropriate
image matching is available. For example, the
MVRF model was also used for a super-pixel based
semantic segmentation of outdoor images in our
other work.

8. REFERENCES
 [Fra10a] Frahm, J. M., et al. Building Rome on a

Cloudless Day. European Conference on
Computer Vision, pp. 368–381, 2010

[Ham71a] Hammersley, J. M., Clifford, P. Markov
field on finite graph and lattices. Unpublished,
1971

[Har04a] Hartley, R. and Zisserman, A. Multiple
View Geometry in Computer Vision. Cambridge
University Press, ISBN: 0521540518, 2004

[Irs07a] Irschara, A., et al. Towards wiki-based
dense city modeling. International Conference on
Computer Vision, pp. 1-8, 2007

[Kum06a] Kumar, S. and Herbert, M. Discriminative
random fields. International Journal of Computer
Vision, 68(2), pp. 179–201, 2006

[Laf01a] Lafferty, J., et al. Conditional Random
Fields: Probabilistic models for segmenting and
labeling sequence data. International Conference
on Machine Learning, pp. 282-289, 2001

[Lee04a] Lee, S. C. and Nevatia, R. Extraction and
integration of window in a 3d building model
from ground view images. Computer Vision and
Pattern Recognition, pp. 112-120, 2004

[Leo00a] Leonardis, A., et al. Confluence of
computer vision and computer graphics. NATO
science series, Kluwer Academic Publishers,
ISBN 0-7923-6612-3, 2000

[Rec11a] Recky, M,. et al. Façade Segmentation in a
Multi-View Scenario. International Symposium
on 3D Data Processing, Visualization and
Transmission, pp. 358-365, 2011

[Rec10a] Recky, M. and Leberl, F. Windows
Detection Using K-means in CIE-Lab Color
Space. Internation Conference on Pattern
Recognition, pp. 356-360, 2010

[Sna06a] Snavely, N., et al. Photo tourism:
Exploring photo collections in 3d. ACM
Transactions on Graphics, pp. 835 – 846, 2006

[Vac11a] Vacha, P., et al. Colour and rotation
invariant textural features based on Markov
random fields. Physical Review Letters, No. 6, pp.
771-779, 2011

Journal of WSCG, Vol.20 144 http://www.wscg.eu

Collision Detection on Point Clouds Using a 2.5+D
Image-Based Approach

Rafael Kuffner dos Anjos

Inesc-ID
Av. Prof. Dr Anibal Cavaco Silva
 Portugal 2744-016, Porto Salvo

rafaelkuffner@gmail.com

João Madeiras Pereira

IST/Inesc-ID
Rua Alves Redol, 9

Portugal 1000-029, Lisboa,

jap@inesc-id.pt

João Fradinho Oliveira

C3i/Inst. Politécnico de Portalegre
Praça do Município

Portugal 7300, Portalegre

joaofradinhooliveira@gmail.com

ABSTRACT

This work explores an alternative approach to the problem of collision detection using images instead of

geometry to represent complex polygonal environments and buildings derived from laser scan data, used in an

interactive navigation scenario. In a preprocessing step, models that are not point clouds, are sampled to create

representative point clouds. Our algorithm then creates several 2.5+D maps in a given volume that stacked

together form a 3D section of the world. We show that our new representation allows for realistic and fast

collision queries with complex geometry such as stairs and that the algorithm is insensitive to the size of the

input point cloud at run-time.

Keywords
Collision Detection, Point-based Graphics, Navigation

1. INTRODUCTION
Collision detection is normally a bottleneck in the

visualization and interaction process, as collisions

need to be checked at each frame. Traditionally, the

more complicated and crowded is our scene, the

more calculations need to be done, bringing the

frame-rate down. Therefore the optimization of this

process, gaining speed without losing quality in the

simulation, is something that has been researched for

years. Although several different techniques and

approaches have been developed, and showed good

performance in specific scenarios, these approaches

rely on object topology information which is easily

extracted from polygonal models. However with

point cloud models, the classical approaches either

will not work, or will have to heavily adapt to this

specific scenario, compromising their optimizations.

Using images as an alternative way of executing the

task of collision detection might just be the answer.

Image-based techniques can have their precision

easily controlled by the resolution of the used

images, and the algorithms are completely

independent of the object's topology and complexity

at run-time. It does not matter whether an object has

sharp features, round parts, or even whether it is a

point cloud, as all we are dealing with is the object's

image representation. Being a scalable and promising

technique, Image-based collision detection seems to

be a plausible alternative to the classical approaches.

Our approach focuses in a virtual reality navigation

scenario, where the scene is derived from the real

world via devices such as laser scanners, which tend

to generate enormous point clouds. Also, the

hardware at hand might not fit the basic requirements

for most algorithms and techniques, a situation that

commonly will happen in tourism hotspots,

museums, or other places where we would like

ordinary people to be able to interact with the system.

The developed application enables them to control an

avatar on a static environment, a point cloud or

polygonal model.

The main contribution of our research is a new 3D

world representation for environment and buildings

which is completely image-based with information

that enables realistic and robust collision detection

with underlying complex geometry such as slopes

and stairs. Slicing a given structure along the Z axis

(Using Cartesian coordinates as illustrated in Figure

1); we create a discrete set of images containing

height information about the surface, and possible

collidable frontiers. It is a flexible format that is able

to represent either point clouds or polygonal models.

This representation allows us to perform collision

detection with user chosen precision, and high

scalability.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

Journal of WSCG, Vol.20 145 http://www.wscg.eu

2. RELATED WORK
The problem of collision detection is present in

several areas of research and applications, each of

them having different concerns, requirements and

desired results. This necessity has prompted the

creation of several techniques that try to deliver these

results using varied approaches, each one fitting to

specific problems.

Feature based: Famous examples are the Lin-Canny

algorithm [MLJC] and its more recent related

algorithm, V-Clip [BMM], which keeps track of the

closest features between two objects, deriving both

the separation distance, and the vertices that have

possibly already penetrated the other object.

Bounding Volume Hierarchies: Different volumes

have been developed to envelop the basic features,

such as Spheres [PMH], Oriented Bounding Boxes

(OBB) [SGMCLDM], or Axis Aligned Bounding

boxes (AABB) [TLTAM] [MJBJ] [XZYJK], each of

them has its advantages over the others; Spheres are

easier to fit, OBBs have faster pruning capabilities,

and AABBs are quicker to update, therefore being

very popular in deformable body simulation.

Also, different tree traversing and creation techniques

[TLTAM] [SGMCLDM] have been developed to

optimize these expensive operations, taking into

account each specific kind of application.

Stochastic algorithms: Techniques that try to give a

faster but less exact answer have been developed,

giving the developer the option to trade accuracy in

collisions with computing power. The technique

based on randomly selected primitives, selects

random pairs of features that are probable to collide,

and calculates the distance between them. The local

minima is kept for the next step and calculations are

once again made. The exact collision pairs are

derived with Lin-Canny [MLJC] feature based

algorithm. With a similar idea, Kimmerle et. al

[SKMNFF] have applied BVH's with lazy hierarchy

updates and stochastic techniques to deformable

objects and cloth, where not every bounding box is

verified for collision, but it has a certain probability.

Image-based algorithms: These solutions

commonly work with the projection of the objects, in

contrast with previous techniques that work in object

space, meaning that they are not dependent of the

input structure, and as such are more suitable to point

clouds. However to our knowledge they have not yet

been applied to point clouds.

RECODE [GBWHS] and several other works

[DKDP] [KMOOTK], [GBWSW] take advantage of

the stencil buffer and perform collision detection on

it by using object coordinates as masks, and thus

detecting possible penetrations.

CULLIDE [NSRMLDM] uses occlusion queries only

to detect potentially colliding objects, and then

triangle intersection is made on the CPU. They

render the bounding volumes of the objects in normal

and reverse list storage order, and remove the objects

that are fully visible in both passes, meaning that

these objects are not involved in any collision.

Heidelberger et. al [BHMTMG] uses simple AABB's

as bounding volumes for the objects in the scene.

Potentially colliding objects are detected, and a LDI

(Layered Depth Image [JSLR]) of the intersection

volume between the two objects is created. That is, a

volumetric representation of an object across a

chosen axis. At each rendering step, as a polygon is

projected into the LDI, the size of the intersubsection

volume is computed. Faure et. al [FSJF] [JFHFCP]

addresses not only collision detection, but also its

response by using this same principle.

On a collision avoidance scenario, we want to predict

an upcoming collision, and use this information to

prevent it from happening. It is used mostly in

artificial intelligence to control intelligent agents or

robots. Loscos et. al [CLFTYC] represent the

environment as patches to where the agent can or

cannot go according to its occupation. It can be

considered a basic but robust image based approach

since it uses a 2D map to represent the environment.

Collision detection on point clouds: Algorithms

using feature based techniques, bounding volumes,

and spatial subdivision have been developed. Klein

and Zachmann [JKGZ] create bounding volumes on

groups of points so collision detection can be

normally applied. Figueiredo et. al [MJBJ] uses

spatial subdivision to group points in the same voxel,

and BVHs to perform collision detection. The main

issue while dealing with point clouds is the absence

of closed surfaces and object boundaries. Ordinary

BVH or stochastic techniques have to heavily adapt

to this scenario, normally leading to not so efficient

hierarchies. Feature-based techniques that work at

vertex level are not scalable enough to be suited to

these scenarios, since point clouds are normally

massive data sets. Image-based techniques have the

Figure 1. Slices creation process, and

camera variables.

Journal of WSCG, Vol.20 146 http://www.wscg.eu

Figure 2. Points Coloring and Obstacle

Detection Algorithm

disadvantage of sometimes requiring special graphic

card capabilities, but only for some implementations.

Overall, their properties make them the best suited

for the proposed scenario of the tourism kiosk.

For further information on collision detection and

avoidance techniques we suggest the following

surveys: [NMAS] [SKTGKICB] [MT].

3. IMPLEMENTATION
Image-based algorithms that have been presented in

the community ([NSRMLDM] [GBWHS] [DKDP]

[NBJM] [JFHFCP] [FSJF]) perform very well in

various kinds of scenarios, but some features of our

set scenario (described on Section 1) make them hard

or impossible to be applied (e.g. our data is

unstructured, not all objects are closed or convex).

Our work extends the idea of a 2.5D map presented

on the work of Loscos et. al [CLFTYC] by using

enhanced height-maps, where the pixel color not only

represents the height on that point, but also contains

obstacle information, while at the same time

overcoming the limitations of only supporting single

floor environments. We call these enhanced maps,

2.5+D maps. Instead of having just one height map,

we create a series of enhanced maps along intervals

sized on the axis, thus enabling the storage of

more than a single value for each () pair.

Unlike LDI’s, our representation does not combine

several images into a volumetric representation, but

separates each slice into a single image so we can

easily perform memory management, and apply

image comparison and compression techniques to

have a better performance. Using the color of each

pixel as a representation of a voxel, we write height

information on the red channel, and identify

obstacles on the blue channel. By adding these

variables, we can determine not only the height level

where the avatar should be standing, but also if he is

colliding with any obstacle in several different

heights.

Slices Creation
The creation of this representation is executed in a

pre-processing stage, which is composed of several

steps that must be performed from the input of the

model until the actual rendering to create the

snapshots that will be the used as collision maps.

These slices are created as following. The camera is

first set up according to the previously calculated

bounding boxes of the input model on an orthogonal

projection. After rendering that projection, a snapshot

sized is created and saved into the disk for further

use. The camera then is moved along the axis, and

the process is repeated until the whole extension of

the model has been rendered into images. A visual

representation of the described variables along with

the slices computed on an example model can be

seen on Figure 1 and two real slices can be seen on

Figure 4.

Polygonal Model Oversampling
We aim for a solution that accepts both polygonal

models and point clouds. However these

representations are inherently different and cannot be

processed initially in the same way. Hence we

created a solution that approximates the polygon

models with a synthetic point cloud thus enabling

later steps to be processed in the same way. We apply

a simple oversampling operation that operates at

triangle level transforming a polygonal model into a

point cloud with a user-choice level of precision.

After oversampling and discarding the polygons, the

rendering of the produced point cloud has exactly the

same shape and fill as if rendering the polygonal

representation to the height map.

Information Processing and Encoding
Since all of our collision information will be written

on collision maps as colors, we must assign each

point on the point cloud a color representing its

collision information. This will not replace the

original color of that point in question. When writing

these points on the output image, each pixel will

represent a voxel sized () on object space. So

the painted color on that pixel will represent all the

points contained in that volume. The algorithm on

Figure 2 performs both the operation of height map

information encoding, and obstacle detection. We

define as , so as to ensure that one has more than

one point on each slice, to properly perform the

obstacle detection, as will be described later.

The first operation is executed as follows: We

calculate the difference between the current point

coordinate and the model's lower bounding box ,

and apply the modulo operator with . This

remainder represents the points coordinate on an

Journal of WSCG, Vol.20 147 http://www.wscg.eu

Figure 3. Technique for surface orientation

detection. Red points belong to a vertical

structure, grey points to the floor.

Figure 4. Two slices of an office environment,

where walls (white/blue) and floor (green) are

clearly distinguished, as well as a subsection

of a roof (green to yellow) on the entrance.

interval . To be used as a color value, this

difference must belong to the interval , so we

calculate ⁄ thus deriving finally the red channel

value. The simplified formula is given by

()

As navigation on a real-world scenario is normally

performed horizontally on the plane, we classify

an obstacle as a surface that is close to being

perpendicular to , parallel to . So our obstacle

collision technique simply estimates how parallel to

the axis a certain surface is. Figure 3 illustrates how

potential obstacles and floor are classified using the

coloring algorithm (Figure 2). Points lined up

vertically on the same pixel most likely belong to a

vertical surface. Diagonal structures like ramps are

climbable up to a certain degree. The closer to a wall

they are, the greater the probability is that its points

are considered to be obstacles.

In order to keep track of point information that will

be stored in the slices we use an auxiliary structure, a

3D array , after processing each point,

we keep its color value on the position of the array

representing the voxel on object space from where it

came from. If there is already a stored value in this

voxel, the difference between both red values is

calculated, and transformed into an object-space

distance
 ()

.

If this difference is bigger than a certain small

percentage (e.g. 7%) of the size of the slice, we

assume that the points are vertically aligned,

belonging to a vertical surface. These points are

marked on their blue channel with the value 1, and

we slightly increase its coordinate so that the point

is not occluded when rendering the maps. Typical

output slices produced in the pre-processing stage

can be seen in Figure 4, an office environment, where

the floor has been correctly labeled as green, and all

the walls are labeled as white or light blue.

Collision Detection
The developed representation provides us with

enough information to perform quick collision

detection on the navigation scenario given on section

1 where we consider point clouds as a viable input. In

the accompanying video we show precise collision

detection between rigid bodies and point clouds.

We divide the task of collision detection into two

steps: a first step, that we call Broad phase, where we

verify the occurrence of collisions between any

objects in the scene, and a second step called narrow

phase, where we perform collision response.

3.1.1 Broad Phase and Collision Detection
This task consists on identifying possible collisions

between all objects on the scene. By representing the

avatar that will be navigating on the environment by

an Axis Aligned Bounding Box (AABB), we first

calculate its size in pixels by calculating

and

, where threshold is calculated as

the pixel size. This will be the number of pixels

checked for collision on each slice, around the center

of the avatar. If any checked pixel is not black, we

mark the object as colliding, and they will be further

processed in a narrow phase.

The only images we will need to load into the

memory at the same time in order to perform

collision detection between the given avatar and the

environment are the ones located between

 and

, where

represents the z coordinate of the avatar. These slices

contain collision detection information about the

location where the pawn currently is.

New slices that are needed, are loaded into memory

until a user defined constant of number of slices

() is reached. New slices beyond this point,

replace an already loaded slice that has the furthest

value from the avatar's own value, meaning it is not

needed at this point of the execution. In practice we

found that six slices covered well the avatar's

Journal of WSCG, Vol.20 148 http://www.wscg.eu

potential waist, shoulders, head, knees, and feet

collisions with the scene.

3.1.2 Narrow Phase and Collision Response
In our current version, the sole purpose of our

collision response algorithm was to simply avoid

objects from overlapping, and provide a basic

navigation experience on the given environment. Any

other more complex technique could be applied here,

but this simple solution fulfills the requirements for

our navigation scenario. We focused on an efficient

broad phase algorithm, and a flexible representation

so we could apply any chosen image-based technique

on the narrow phase. This was achieved with a

straightforward extension of our broad-phase

algorithm, by applying the concepts of collision

response from height maps, and collision avoidance

[CLFTYC]. Instead of simply returning true when we

find pixels that are not black, we gather information

for collision response each time we find colored

pixels. Pixels with the blue channel set to always

represent an obstacle, except on applications where

we want to enable the avatar to climb small

obstacles, as the agents from Loscos et.al [CLFTYC].

On these situations, we may ignore these pixels up

until the height we want to be considered as

climbable. As our avatar moves on fixed length steps,

and each time it collides we correct it to the place it

was on the previous check, we thus ensure that the

avatar is always on a valid position. We apply this

() correction each time an obstacle pixel is found

until all the pixels representing the avatar's bounding

box are verified.

Height is defined exactly as it is when precomputing

height maps. By multiplying the coded height

information on the red channel by and adding the

base coordinate of the given slice, we have precise

information about a given point's height. Collision

response can be made by setting the final height to

the average height of the points on the base of the

bounding box, or by the adopted strategy, the

maximum value. Here we also check for surface

height values from the first slice until the height we

want to consider as climbable.

The complexity of this operation is exactly (
) where and are the number of

pixels ocuppied by the base of the avatar and is the

number of slices encompassed by the avatar's height.

We point however, that these checks are already

performed in the broad phase, and hence can be re-

used in the narrow phase without adding any extra

operations.

4. EXPERIMENTAL RESULTS
We have implemented the whole algorithm using

OpenGL 2.1.2, C and the OpenGL Utility Toolkit

 (GLUT) to deal with user input and the base

application loop management. The platform used for

tests was a computer with an Intel core 2 Duo CPU at

2 GHz with 2GB of RAM, a NVIDIA GeForce 9400

adapter, running Microsoft Windows Seven x86.

Table 2 shows the time taken on the whole

preprocessing stage for each model and

configuration. Polygon sampling during the

preprocessing of polygonal models is clearly the

most computationally intensive task in the pipeline,

as the two higher complexity point cloud models

(Entrance and Room as seen on Table 1 and Figure

7) that did not require sampling had a faster

performance. In the preprocessing phase the increase

on processing time with point clouds is linear to point

complexity. This linear growth is expected since each

point must be checked for coloring once, and also for

common input processing tasks such as file reading

and display list creation.

Regarding the results of the overall memory cost

specifically in the preprocessing phase, Table 2

shows that memory scales almost linearly according

to the input size of the point cloud (Entrance versus

Room in Table 1). This memory is needed

temporarily for allocating the auxiliary 3D array for

obstacle detection in the slice creation phase.

Similarly, tests have shown that this memory

consumption also grows linearly with the number of

points produced in the polygon sampling phase.

During the application runtime, the average memory

consumption varies according to the number of

loaded slices into RAM, and according to the size of

the loaded model used for rendering (Figure 5 and

Table 1). On a 700x700 resolution, the peak minimal

value found in any model we experimented was

50,07MB (Office) and the peak maximum 168,08MB

(Street), with 6 slices loaded in memory. Table 2

shows how much memory the application consumes

when only rendering the models and the total

memory with collision detection, while having 6

slices loaded in memory. By controlling we

can avoid this value from going over the memory we

wish the
Figure 5. Memory load at a given moment

during runtime on a 700x700 configuration, 6

slices, with and without collision detection.

Journal of WSCG, Vol.20 149 http://www.wscg.eu

application to consume, since all other memory

required for the application is for tasks unrelated to

collision detection.

We were interested in studying the direct behavior of

our algorithm and did not wish to mask performance

with asynchronous I/O threads. Results on collision

detection have been verified through establishing a

fixed route to navigate with the pawn avatar where it

goes through different situations and scenarios, such

as "climbing" single steps, "traversing" planar areas,

going "near" cylindrical or square shaped columns

and "falling" from a height. Whilst the number of

created collision maps for a scene can affect collision

results, the actual number of buffer slices will

only affect potentially the performance, as the system

checks all slices at the avatar´s current height. Tests

on Cathedral 700x700 with 130 slices and set

to 10 have showed us that reading from the disk at

runtime has a bigger impact on efficiency than

storing a higher number of images on commodity

RAM. For instance, when using a maximum buffer

of 10 slices and reading a high resolution image from

the disk, we notice a sudden drop in frame-rate

(Figure 6), and this can also be noticed when the

pawn falls from a higher structure, and needs to

rapidly load a series of maps on his way to the

ground. By increasing to 16 on this scenario,

we ensure the storage of enough slices to represent

the ground floor and the platform on top of the steps

(Experiment B in the accompanying video). Little

difference was noticed on memory load (5,33MB),

and the interaction was much smoother.

Results also show that our algorithm did not affect in

any way the rendering speed of the interactive

application. Figure 6 shows that the frame-rate was

nearly identical in the same scenario with and

without collision detection using 16 slices.

Although we did not aim for high precision on

collision response, our technique has presented

precise results on different resolutions. We note that

point clouds are themselves approximations to

surfaces, and as such a collision amongst points is an

unlikely event, Figueiredo et. al use the average

closest point to point distance divided by two to

establish a conservative bounding box around each

point, which can generate false collisions when close.

With our approach, instead of a box, we use the

pixels of a zoomed out view which is also

conservative. Precision results with the different

algorithms were verified empirically by changing the

Model Type
Original

Complexity
Details

Office Polygonal 17.353 pts. Office environment with cubicles and hallways

Church Polygonal 26.721 pts. Simple church with stairs and columns

Sibenik Polygonal 47.658 pts. Cathedral of St. James on Sibenik, Croatia

Columns Polygonal 143.591 pts. Big environment with localized complexity.

Room 3D laser scan 271.731 pts. 3D Scan of a room with chairs and several objects.

Street Polygonal 281.169 pts.
Outside street environment with an irregular floor,

houses, and several objects

Entrance 3D laser scan 580.062 pts. Entrance of the Batalha monastery in Portugal.

Model Time

(s)

Total

Complexity

Memory

Office 41,23 9.349.585 pts 610,3 MB

Church 58,14 6.475.125 pts 536,58 MB

Sibenik 78,87 5.199.093 pts 532,48 MB

Columns 42,92 2.612.303 pts 241,66 MB

Street 114,75 7.142.361 pts 598,02 MB

Entrance 13,9 580.062 pts. 122,88 MB

Room 6,96 271.731 pts. 67,58 MB

Table 1. Features of the models used for evaluation

.

Table 2. Time, Total complexity (with

generated points) and Memory consumption

on the pre-processing stage for a 700x700

resolution.

Figure 6. Average frame rate and memory

consumption comparison between different

𝒏𝒔𝒍𝒊𝒄𝒆𝒔 configurations with 700x700 images,

and no collision detection scenario.

(Experiment B, Cathedral)

Journal of WSCG, Vol.20 150 http://www.wscg.eu

color of the avatar when a collision occurs. We found

that using collision maps with a resolution of

700x700 enabled one to lower the number of false

collisions from other methods when close to

obstacles.

Floor collision has been performed perfectly in all

resolutions, since its precision is defined by the rgb

value of the point. Collisions with obstacles are more

affected by resolution as is to be expected, since we

rely on pixel finesse to precisely know the position of

a given surface. Tests on office and street (Figure 7)

have showed the same errors of small object

interference or fake collisions due to diffuse

information about object boundaries. These are more

noticeable on the interactions with round objects on

Street (Figure 7) where we can notice the aliasing

creating invisible square barriers around a perfectly

round object.

Table 3 compares our technique with the work from

Figueiredo et. al [MJBJ], which has been tested on

one of our experimental scenarios (Figure 7), the

walkthrough in the point cloud of the Batalha

Monastery (Experiment A in the accompanying

video, 700x700 resolution set to 10), on a

machine with a slightly faster processing speed and

RAM than the one used for our walkthroughs. We

compared our results with their best performance

alternative, that bases the surface partition on 4096

cells of the octree.

Frame-rate was disturbed during the collision

detection process on the R-tree approach, while it

remained steady at the 30 fps during the whole

execution of our application. Also, the image-based

technique has required much less memory to be

executed, even with a significantly high number of

slices loaded in memory. The biggest difference is in

the pre-processing times. Our approach was executed

107 times faster than the BVH approach. The pre-

processing stage must only be performed once for

each configuration, since the representation is written

and loaded to the hard-drive for further interactions.

As stated in section 2 the research on point cloud

collision detection is recent, and non-existent

regarding image-based techniques. Our pioneer

solution has presented excellent results, not only

performing better than other works on point clouds

published in the scientific community, but also being

flexible enough to be applied on models from CAD,

or combined with precise collision response

techniques. Our technique can be performed with our

representation on any computer that can render the

input model at an acceptable frame-rate, without

requiring much processing from the CPU or GPUs.

5. CONCLUSION AND FUTURE

WORK
A new image-based environment representation for

collision detection has been presented, using 2.5+D

slices of an environment or buildings across the

axis. These images contain at each pixel, information

about a given voxel, representing i's contents with

colors. Height map information is stored on the red

channel, and obstacles are indicated on the blue

channel. This allows us to have a Broad phase

collision detection stage that is performed with high

efficiency and scalability, where the user can choose

the precision according to the computing power at

hand by simply adjusting the resolution of the

produced images. Point clouds and polygonal models

are ubiquitously processed, making our approach

currently the best suited for fast interaction with

massive laser-scan data. This work fills a gap in the

area of collision detection, exploring a scenario that

has been receiving more attention recently.

Future Work
Using graphic card capabilities such as the stencil

buffer for broad-phase collision detection and vertex

shaders for point coloring could greatly speed up

these operations, and also, calculations would be

moved to the GPU, taking away some work from the

CPU. Applying this representation of environments

also on objects of the scene, or even applying it to the

avatars we're using on the interaction, could present

interesting results. Using non-uniform resolution

images on environments where we do not have a

uniform complexity, would also help us achieve

more precision on our narrow phase, or on these

presented situations.

Image comparison techniques and compression can

also be applied to the generated images in order to

decrease the number of times we need to load a slice,

and also the number of collision detection checks we

must do. In several man-made structures such as

buildings, many slices tend to be identical; intra-slice

compression also presents itself as an interesting

avenue of research.

6. ACKNOWLEDGMENTS
We would like to thank Artescan for the point clouds

provided.

 Image-based

(700x700)

BVH Oct 4096

Frame-rate 30 fps 16 to 30 fps

Total

Memory

143.36 MB 225,44 MB

Pre. proc.

time

13.9 s 1500 s

Table 3. Comparison between point-cloud

techniques (Experiment A)

Journal of WSCG, Vol.20 151 http://www.wscg.eu

7. REFERENCES
 [BHMTMG] Bruno Heidelberger, Matthias

Teschner, and Markus Gross, Real-Time

Volumetric Intersections of Deforming Objects,

Proceedings of Vision, Modeling, and

Visualization 2003,461-468,2003

[BMM] Brian Mirtich, V-clip: fast and robust

polyhedral collision detection, ACM Trans.

Graph., 17:177--208, July 1998.

[CLFTYC] Céline Loscos, Franco Tecchia, and

Yiorgos Chrysanthou, Real-time shadows for

animated crowds in virtual cities, In Proceedings

of the ACM symposium on Virtual reality

software and technology, VRST '01, pages 85--

92, New York, NY, USA, 2001. ACM.

[DKDP] Dave Knott and Dinesh K. Pai, Cinder -

collision and interference detection in real-time

using graphics hardware, Proceedings of Graphics

Interface, pages 73--80, 2003.

[FSJF] François Faure, Sébastien Barbier, Jérémie

Allard, and Florent Falipou, Image-based

collision detection and response between arbitrary

volume objects, In Proceedings of the 2008

ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, SCA '08, pages 155--162,

Aire-la-Ville, Switzerland, Switzerland, 2008.

Eurographics Association.

[GBWHS] G. Baciu, Wingo Sai-Keung Wong, and

Hanqiu Sun, Recode: an image-based collision

detection algorithm, In Computer Graphics and

Applications, 1998. Pacific Graphics '98. Sixth

Pacific Conference on, pages 125 --133, oct 1998.

[GBWSW] George Baciu and Wingo Sai-Keung

Wong, Hardware-assisted self collision for

deformable surfaces, Proceedings of the ACM

symposium on Virtual reality software and

technology, 2002.

[JFHFCP] Jérémie Allard, François Faure, Hadrien

Courtecuisse, Florent Falipou, Christian Duriez,

and Paul G. Kry, Volume contact constraints at

arbitrary resolution, ACM Trans. Graph.,

29:82:1--82:10, July 2010.

[JKGZ] Jan Klein and Gabriel Zachmann, Point

cloud collision detection, Computer Graphics

Forum, 23(3):567--576, 2004.

[JSLR] Jonathan Shade, Steven Gortler, Li wei He,

and Richard Szeliski, Layered depth images,

Proceedings of the 25th annual conference on

Computer graphics and interactive techniques,

1998.

[KMOOTK] Karol Myszokowski, Oleg G. Okunev,

and Tosiyasu L. kunii, Fast collision detection

between complex solids using rasterizing

graphics hardware, The Visual Computer,

11(9):497 -- 512, 1995.

[MJBJ] Mauro Figueiredo, João Oliveira, Bruno

Araújo, and João Pereira, An efficient collision

detection algorithm for point cloud models, 20th

International conference on Computer Graphics

and Vision, 2010.

[MLJC] M.C. Lin and J.F. Canny, A fast algorithm

for incremental distance calculation, In Robotics

and Automation, 1991. Proceedings., 1991 IEEE

International Conference on, pages 1008 --1014

vol.2, apr 1991.

[MT] M. Teschner, S. Kimmerle, G. Zachmann, B.

Heidelberger, Laks Raghupathi, A. Fuhrmann,

Marie-Paule Cani, François Faure, N. Magnetat-

Thalmann, and W. Strasser, Collision detection

for deformable objects, Computer Graphics

Forum,24(1):61--81,2005

[NBJM] Niels Boldt and Jonas Meyer, Self-

intersections with cullide, Eurographics, 23(3),

2005.

 [NMAS] Noralizatul Azma Bt Mustapha Abdullah,

Abdullah Bin Bade, and Sarudin Kari, A review

of collision avoidance technique for crowd

simulation, 2009 International Conference on

Information and Multimedia Technology,

(2004):388--392, 2009.

[NSRMLDM] Naga K. Govindaraju, Stephane

Redon, Ming C. Lin, and Dinesh Manocha,

Cullide: interactive collision detection between

complex models in large environments using

graphics hardware, In Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS conference on

Graphics hardware, HWWS '03, pages 25--32,

Aire-la-Ville, Switzerland, Switzerland, 2003.

Eurographics Association.

[PMH] Philip M. Hubbard, Approximating polyhedra

with spheres for time-critical collision detection,

ACM Transactions on Graphics, 15(3):179--210,

July 1996.

 [SGMCLDM] S. Gottschalk, M. C. Lin, and D.

Manocha. 1996. OBBTree: a hierarchical

structure for rapid interference detection. In

Proceedings of the 23rd annual conference on

Computer graphics and interactive techniques

(SIGGRAPH '96). ACM, New York, NY, USA,

171-180.

[SKMNFF] Stephan Kimmerle, Matthieu Nesme, and

François Faure, Hierarchy Accelerated Stochastic

Collision Detection, In 9th International

Workshop on Vision, Modeling, and

Visualization, VMV 2004, pages 307-312,

Stanford, California, États-Unis, November 2004.

Journal of WSCG, Vol.20 152 http://www.wscg.eu

(a) Church

[SKTGKICB] S. Kockara, T. Halic, K. Iqbal, C.

Bayrak, and Richard Rowe, Collision detection:

A survey, In Systems, Man and Cybernetics,

2007. ISIC. IEEE International Conference on,

pages 4046 --4051, oct. 2007.

[TLTAM] Thomas Larsson and Tomas Akenine-

Möller, Collision detection for continuously

deforming bodies, Eurographics 2001.

 [XZYJK] Xinyu Zhang and Y.J. Kim, Interactive

collision detection for deformable models using

streaming aabbs, Visualization and Computer

Graphics, IEEE Transactions on, 13(2):318 --329,

march-april 2007.

(b) Street

(c) Sibenik (d) Room

(e) Columns (f) Office

(e) Batalha

Figure 7. Pictures of all the tested input

polygonal models and point clouds. Environments

with different topologies were chosen for this

purpose.

Journal of WSCG, Vol.20 153 http://www.wscg.eu

Journal of WSCG, Vol.20 154 http://www.wscg.eu

Color Preserving HDR Fusion for Dynamic Scenes

Gökdeniz Karadağ
Middle East Technical University, Turkey

gokdeniz@ceng.metu.edu.tr

Ahmet Oğuz Akyüz
Middle East Technical University, Turkey

akyuz@ceng.metu.edu.tr

ABSTRACT
We present a novel algorithm to efficiently generate high quality high dynamic range (HDR) images. Our method
is based on the idea of expanding the dynamic range of a reference image at granularity of tiles. In each tile, we
use data from a single exposure, but different tiles can comefrom different exposures. We show that this approach
is not only efficient and robust against camera and object movement, but also improves the color quality of the
resulting HDR images. We compare our method against the commonly used HDR generation algorithms.

Keywords: High dynamic range imaging, image fusion, color quality

1 INTRODUCTION
The interest in HDR imaging has rapidly gained pop-
ularity in recent years. This has been accompanied by
the development of various methods to create HDR im-
ages. While it is believed that using dedicated HDR
capture hardware will be the de-facto way of generat-
ing HDR images in future [Rei10a], software solutions
are still commonly used in today’s systems. Among
these multiple exposure techniques (MET) are the most
dominant [Man95a, Deb97a].

In METs, several images of the same scene are captured
by varying the exposure time between the images. This
ensures that each part of the captured scene is properly
exposed in at least one image. The individual images
are then merged to obtain the HDR result. Although
variations exist, the equation below is typically used for
the merging process:

I j =
N

∑
i=1

f−1(pi j)w(pi j)

ti

/ N

∑
i=1

w(pi j). (1)

HereN is the number of LDR images,pi j is the value
of pixel j in imagei, f is the camera response function,
ti is the exposure time of imagei, andw is a weighting
function used to attenuate the contribution of poorly ex-
posed pixels.

In Equation 1, a weighted average is computed for ev-
ery pixel. While this may be desirable for attenuating
noise, it introduces unwanted artifacts due to ghosting
and misalignment problems. In this paper, we show that
this approach also results in the desaturation of colors

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

making the HDR image less saturated than the its con-
stituent exposures.

Computing a weighted average for every pixel also re-
quires that the individual pixels are perfectly aligned.
Otherwise, pixels belonging to different regions in the
scene will be accumulated resulting ghosting and align-
ment artifacts.

In this paper, we propose a method that largely avoids
both of these problems. Our method is underpinned by
the idea that instead of computing an average for ev-
ery pixel, one can use the pixels from a single properly
exposed image. A different image can be used for dif-
ferent regions ensuring that the full dynamic range is
captured. We also introduce the concept of working in
tiles instead of pixels to make the algorithm more robust
against local object movements.

2 PREVIOUS WORK
Starting with the pioneering works of Mad-
den [Mad93a] and Mann and Picard [Man95a], various
algorithms have been developed to create HDR images.
The early work focused on recovering the camera re-
sponse function and choosing an appropriate weighting
function [Deb97a, Mit99a, Rob03a, Gro04a]. These
algorithms assumed that the exposures that are used
to create an HDR image are perfectly aligned and the
scene is static.

Ward developed a method based on median thresh-
old bitmaps (MTBs) to allow photographers use
hand-held images of static scenes in HDR image
generation [War03a]. His alignment algorithm proved
to be very successful and is used as an initial step
of more advanced alignment and ghost removal
algorithms [Gro06a, Jac08a, Lu09a].

In another alignment algorithm, Cerman and Hlaváč es-
timated the initial shift amounts by computing the cor-
relation of the images in the Fourier domain [Cer06a].
This, together with the initial rotational estimate which

Journal of WSCG, Vol.20 155 http://www.wscg.eu

was assumed to be zero, was used as a starting point for
the subsequent iterative search process.

Tomaszewska and Mantiuk employed a modified scale
invariant feature transform (SIFT) [Low04a] to extract
local features in the images to be aligned [Tom07a].
The prominent features are then selected by the
RANSAC algorithm [Fis81a]. This refined set of
features are then used to compute a homography
between the input images.

Several methods have been proposed to deal with ghost-
ing artifacts. These algorithms usually pre-align the in-
put exposures using MTB or other algorithms to sim-
plify the ghost detection process. Some of these algo-
rithms avoid merging suspicious regions where there is
high variance [Kha06a, Gal09a, Ram11a]. Other algo-
rithms try to detect the movement of pixels and perform
pixel-wise alignment [Zim11a]. A recent review of
HDR ghost removal algorithms can be found in Srikan-
tha and Sidibé [Sri12a].

There are also existing algorithms that attempt to
combine data from multiple exposures for the purpose
of generating a single low dynamic range (LDR)
image. Among these, Goshtasby first partitions the
images into tiles [Gos05a]. For each tile, he then
selects the image that has the highest entropy. The
tiles are blended using smooth blending functions to
prevent seams. Mertens et al., on the other hand, do
not use tiles but utilize three metrics namely contrast,
saturation, and well-exposedness to choose the best
image for each pixel [Mer07a]. Similar to Goshtasby,
Várkonyi-Kóczy et al. propose a tile based algorithm
where tiles are selected to maximize detail using image
gradients [Var08a]. In another tile based algorithm,
Vavilin and Jo use three metrics; mean intensity,
intensity deviation, and entropy to choose the best
exposure for each tile [Vav08a]. In contrast to previous
tile based studies, they choose tile size adaptively
based on local contrast. Finally, Jo and Vavilin propose
a segmentation based algorithm which allows choosing
different exposures for different clusters [Jo11a].
Unlike previous methods they use bilateral filtering
during the blending stage.

It is important to note that existing tile-based algorithms
attempt to generate LDR images with more details and
enhanced texture information, whereas our goal is to
generate HDR images with natural colors. Our ap-
proach alleviates the need for explicit ghost detection
and removal procedures. If the dynamic parts of a scene
do not span across regions with significantly different
luminance levels, no ghost effects will occur in the out-
put. Also, we avoid redundant blending of pixels that
can result in reduced color saturation.

L LL

LLL

L L L

S

S

SS

S SS

Figure 1: We partition the images into tiles and deter-
mine which exposure to use for each tile.

3 ALGORITHM

The first step of our algorithm is to align the input expo-
sures using the MTB algorithm [War03a]. In this part,
both the original MTB or the MTB with the rotation
support can be used.

Once the images are aligned, we partition each expo-
sure into tiles. Our goal then becomes to choose the
best image that represents the area covered by each tile.
A sample image is shown in Figure 1 to illustrate this
idea. In this image, the under-exposed tiles are marked
with L indicating that these tiles should come from a
longer exposure. Similarly, over-exposed regions are
marked byS suggesting that shorter exposures should
be used for these tiles. Unmarked tiles can come from
the middle exposures.

To make these decisions, we need to define a quality
metric that indicates whether a tile is well-exposed. To
this end, we experimented with the mean intensity as
well as the number of under- and over-exposed pixels
within a tile as potential metrics. Our results suggested
that using the mean intensity gives better results. There-
fore, we marked a tile as agoodtile if its mean intensity
is in the range[Imin, Imax]. Imin andImax are user param-
eters, but we found thatImin= 50 andImax= 200 can be
used as reasonable defaults.

Based on this criteria, we compute the number of good
tiles for each exposure. We choose the exposure with
the maximum number of good tiles as the reference ex-
posure. This exposure serves as thedonor which pro-
vides data for all tiles whose mean intensity stays in
the aforementioned limits. This leniency allows us to
use the same image as much as possible and provides
greater spatial coherency. For the remaining tiles, we
choose the second reference exposure and fill in the
tiles which are valid in this exposure. This process is

Journal of WSCG, Vol.20 156 http://www.wscg.eu

(a) Standard MET (b) LDR reference (c) Our result

Figure 2: (a) HDR image created by using the standard MET. (b)Selected individual exposure from the bracketed
sequence. (c) HDR image created using our algorithm. The toprow shows the full images. The middle row shows
the close-up view of a selected region. The bottom row shows the color of a single pixel from the region indicated
in the middle row. Both HDR images are tone mapped using the photographic tone mapping operator [Rei02a].
As can be seen in the zoomed views, the color quality of our result is closer to the selected reference image.

recursively executed until a source image is found for
all tiles1. This process can be represented as:

I j =
N

∑
i=1

f−1(pi j)Wi j

ti
, (2)

Wi j =

{

1 if pixel j comes from imagei,

0 otherwise.
(3)

Note that we no longer have thew(pi j) term from Equa-
tion 1 as we do not compute a weighted average.

Finally, we use a blending strategy to prevent the visi-
bility of seams at tile boundaries. For this purpose, we
create Gaussian pyramids of weights (Wi j) and Lapla-
cian pyramids of source images. We then merge the
images by using Equation 2 at each level of the pyra-
mid and collapse the pyramid to obtain the final HDR
image. We refer the reader to Burt and Adelson’s orig-
inal paper for the details of this process [Bur83a].

Since the tiles are not overlapping our algorithm en-
sures that within each tile data from only a single source
image is used. As we demonstrate in the next section,
this improves the color saturation of the resulting HDR
images. A second observation is that each tile is spa-
tially coherent. This means that motion related artifacts

1 It is possible that the a tile is under- or over-exposed in all
input images. In this case, we choose the longest exposure if
the tile is under-exposed and shortest exposure otherwise.

will not occur within tiles. However, such artifacts can
still occur across tiles. Thus our algorithm reduces the
effect of motion artifacts but does not completely elim-
inate them.

4 RESULTS AND ANALYSIS

We present the results of our color preserving HDR fu-
sion algorithm under three categories namely: (1) Fixed
camera & static scene, (2) hand-held camera & static
scene, and (3) hand-held camera & dynamic scene. For
the first configuration, we illustrate that the color qual-
ity of the HDR image created by our method is supe-
rior to the output of the standard HDR fusion algorithm
shown in Equation 1. A sample result for this case is
depicted in Figure 2 where the output of the standard
MET is shown on the left and our result is shown on the
right. A selected exposure from the bracketed sequence
is shown in the middle for reference.

For the image on the left, we used the tent weight-
ing function proposed by Debevec and Malik [Deb97a].
We used the sRGB camera response function for both
images, and a tile size of 64×64 for our result. It can be
seen that, due to the pixel-wise averaging process, the
output of the standard MET has a washed-out appear-
ance. Our result, on the other hand, is colorimetrically
closer to the selected exposure. This is a consequence
of avoiding unnecessary blending between images.

Journal of WSCG, Vol.20 157 http://www.wscg.eu

Figure 3: The colors show the correspondence between the tiles in the HDR image and the source images that
they were selected from. We can see that most tiles were selected from the fourth image. Figure courtesy of Erik
Reinhard [Rei10a].

Figure 3 shows which tiles in the output HDR image
came from which images in the exposure sequence. The
correspondence is shown by color coding the individual
exposures. As we can see from this figure, the major-
ity of the tiles were selected from the fourth exposure.
The tiles that correspond to the highlights on the plants
came from the darker exposures. On the other hand, the
tiles that correspond to the crevices on the rock and the
shadow of the lizard came from the lighter exposures.
We can also see that the last three exposures were not
used at all.

At this point, it would be worthwhile to discuss why
the standard MET gives rise to a washed-out appear-
ance and our algorithm does not. We would not ex-
pect to see this problem if all exposures were perfect
representations of the actual scene. However, in real-
ity, there are slight differences between exposures that
are not only due to changing the exposure time. Slight
camera movements, noise, and inaccuracies in the cam-
era response curve can all cause variations between the
actual observations. The combined effect of these vari-
ations result in reduced color saturation. By avoiding
unnecessary blending, we also avoid this artifact.

The second test group consists of images of a static
scene captured by a hand-held camera (Figure 4). In
this figure, the left column shows the unaligned result
created by directly merging five bracketed exposures.
The middle column shows the tone mapped HDR out-
put after the exposures are aligned by using the MTB al-
gorithm. The right column shows our result obtained by
first aligning the exposures using the MTB algorithm,
and then merging them using our tile-based technique.
As can be seen from the fence and the sign in the in-
sets, our result is significantly sharper than that of the
MTB algorithm. However, we also note that small ar-
tifacts are visible in our result on the letters “R” and
“E”. Further examination reveals that these artifacts are
due to using tiles from different exposures that are not
perfectly aligned.

As the color map indicates, the majority of the final
HDR image is retrieved from the exposure coded by
red (exposures not shown). The darker regions retrieved
data from the lighter (gray) exposure. The highlights at
the top left corner received data from the darker (green)
exposure. In fact, in this example, all five exposures
contributed to the final image but the majority of the
contribution came from these three exposures.

In the final category, we demonstrate the performance
of our algorithm using scenes that have both global and
local movement. To this end, we used the hdrgen soft-
ware2 which implements the MTB alignment algorithm
and a variance based ghost removal method explained
in Reinhard et al. [Rei10a]. In Figure 5, the left column
shows the output obtained by only image alignment but
without ghost removal. The middle column shows the
result of alignment and ghost removal. Although the
majority of the ghosts are removed, some artifacts are
still visible on the flag as shown in the close-ups. The
right column shows our result where these artifacts are
eliminated. The color map indicates the source images
for different regions of the HDR image.

We also demonstrate a case where our algorithm intro-
duces some unwanted artifacts in high contrast and high
frequency image regions as the window example in Fig-
ure 6. The bright back light and window grates cause
high contrast. If the tile size is large, blending tiles from
different exposures produces sub-par results. A reduced
tile size eliminates these artifacts.

Our choice of prioritizing the reference image increases
success in image sets where ghosting effects would nor-
mally occur. If the object movements are located in
regions with similar lighting conditions, our algorithm
prefers the image closer to reference image while con-
structing tiles, preventing ghosting effects. It is possi-
ble that an object moves between regions of different
lighting conditions, and our algorithm may choose tiles

2 http://www.anyhere.com

Journal of WSCG, Vol.20 158 http://www.wscg.eu

Figure 4: Left: Unaligned HDR image created from hand-held exposures. Middle: Exposures aligned using the
MTB algorithm. Right: Our result. The close-ups demonstrate that our algorithm produces sharper images. The
color map shows the source exposures for different regions of the HDR image.

(a) Alignment (b) Alignment and ghost removal (c) Our result

Figure 5: Left: Aligned HDR image created from hand-held exposures using the MTB algorithm. Middle: Aligned
and ghost removed HDR image. Right: Our result. The insets demonstrate that ghosting artifacts are eliminated in
our result. The color map shows the source exposures for different regions of the HDR image.

from different images where the moving object can be
seen. In this case different copies of the object may be
present in multiple locations in the output image.

Finally, we report the running times of our algorithm.
An unoptimized C++ implementation of our algorithm
was able to create high resolution (18 MPs) HDR im-
ages from 9 exposures within 30 seconds including all
disk read and write times. We conducted all of our
test on an Intel Core i7 CPU running at 3.20 GHz and
equipped with 6 GBs of memory. This suggests that our
algorithm is practical and can easily be integrated into
existing HDRI workflows.

5 CONCLUSIONS

We presented a simple and efficient algorithm that im-
proves the quality of HDR images created by using
multiple exposures techniques. By not redundantly av-
eraging pixels in low dynamic regions, our algorithm

preserves the color saturation of the original exposures,
and reduces the effect of ghosting and alignment arti-
facts. As future work, we are planning to make the
tiling process adaptive instead of using a uniform grid.
This would prevent artifacts that can be caused by
sudden illumination changes between neighboring tiles
coming from different exposures. We are also planning
to perform blending using edge-aware Laplacian pyra-
mid [Par11a] to avoid blending across sharp edges. Im-
proved quality of our results can also be validated by a
user study.

ACKNOWLEDGMENTS
This work was partially supported by METU BAP-08-
11-2011-123.

6 REFERENCES
[Bur83a] P. Burt and E. Adelson. The laplacian pyramid as a com-

pact image code.Communications, IEEE Transactions on,
31(4):532 – 540, apr 1983.

Journal of WSCG, Vol.20 159 http://www.wscg.eu

Figure 6: Top: A tone-mapped HDR image with
128x128 tile size. Tile boundaries are highly visible in
the close-up. Middle: Changing the tile size to 32x32
removes most of the artifacts, but some remain in di-
agonal lines. Bottom: Using a 2x2 tile size eliminates
remaining artifacts.

[Cer06a] Lukáš Cerman and Václav Hlaváč. Exposure time estima-
tion for high dynamic range imaging with hand held camera.
In Computer Vision Winter Workshop, Czech Republic, 2006.

[Deb97a] Paul E. Debevec and Jitendra Malik. Recovering high
dynamic range radiance maps from photographs. InSIG-
GRAPH 97 Conf. Proc., pages 369–378, August 1997.

[Fis81a] Martin A. Fischler and Robert C. Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography.Commun. ACM,
24(6):381–395, 1981.

[Gal09a] O. Gallo, N. Gelfandz, Wei-Chao Chen, M. Tico, and
K. Pulli. Artifact-free high dynamic range imaging. InCom-
putational Photography (ICCP), 2009 IEEE International
Conference on, pages 1 –7, april 2009.

[Gos05a] A. Ardeshir Goshtasby. Fusion of multi-exposure images.
Image and Vision Computing, 23(6):611 – 618, 2005.

[Gro04a] M.D. Grossberg and S.K. Nayar. Modeling the space of
camera response functions.Pattern Analysis and Machine
Intelligence, IEEE Trans. on, 26(10):1272 –1282, 2004.

[Gro06a] Thorsten Grosch. Fast and robust high dynamic rangeim-
age generation with camera and object movement. InProc.
of Vision Modeling and Visualization, pages 277–284, 2006.

[Jac08a] Katrien Jacobs, Celine Loscos, and Greg Ward. Automatic
high-dynamic range image generation for dynamic scenes.
IEEE CG&A, 28(2):84–93, 2008.

[Jo11a] K.H. Jo and A. Vavilin. Hdr image generation based on in-
tensity clustering and local feature analysis.Computers in
Human Behavior, 27(5):1507–1511, 2011.

[Kha06a] Erum Arif Khan, Ahmet Ŏguz Akyüz, and Erik Rein-
hard. Ghost removal in high dynamic range images.IEEE
International Conference on Image Processing, 2006.

[Low04a] David G. Lowe. Distinctive image features from scale-
invariant keypoints.Int. J. Comput. Vision, 60(2):91–110,
2004.

[Lu09a] Pei-Ying Lu, Tz-Huan Huang, Meng-Sung Wu, Yi-Ting
Cheng, and Yung-Yu Chuang. High dynamic range image
reconstruction from hand-held cameras. InCVPR, pages
509–516, 2009.

[Mad93a] B. C. Madden. Extended dynamic range imaging. Techni-
cal report, GRASP Laboratory, Uni. of Pennsylvania, 1993.

[Man95a] S Mann and R Picard. Being ’undigital’ with digitalcam-
eras: Extending dynamic range by combining differently
exposed pictures, 1995.

[Mer07a] T. Mertens, J. Kautz, and F. Van Reeth. Exposure fusion.
In Computer Graphics and Applications, 2007. PG ’07. 15th
Pacific Conference on, pages 382 –390, 29 2007-nov. 2 2007.

[Mit99a] T. Mitsunaga and S. K. Nayar. Radiometric self calibra-
tion. In Proceedings of CVPR, volume 2, pages 374–380,
June 1999.

[Par11a] Sylvain Paris, Samuel W. Hasinoff, and Jan Kautz. Local
laplacian filters: edge-aware image processing with a lapla-
cian pyramid.ACM Trans. Graph., 30(4):68:1–68:12, July
2011.

[Ram11a] Shanmuganathan Raman and Subhasis Chaudhuri. Re-
construction of high contrast images for dynamic scenes.
The Visual Computer, 27(12):1099–1114, 2011.

[Rei02a] Erik Reinhard, Michael Stark, Peter Shirley, and Jim Fer-
werda. Photographic tone reproduction for digital images.
ACM Transactions on Graphics, 21(3):267–276, 2002.

[Rei10a] Erik Reinhard, Greg Ward, Sumanta Pattanaik, and Paul
Debevec.High Dynamic Range Imaging: Acquisition, Dis-
play and Image-Based Lighting. Morgan Kaufmann, San
Francisco, second edition edition, 2010.

[Rob03a] Mark A. Robertson, Sean Borman, and Robert L. Steven-
son. Estimation-theoretic approach to dynamic range en-
hancement using multiple exposures.Journal of Electronic
Imaging 12(2), 219 228 (April 2003)., 12(2):219–228, 2003.

[Sri12a] Abhilash Srikantha and Désiré Sidibé. Ghost detection and
removal for high dynamic range images: Recent advances.
Signal Processing: Image Communication, (0):–, 2012.

[Tom07a] Anna Tomaszewska and Radoslaw Mantiuk. Image reg-
istration for multi-exposure high dynamic range image ac-
quisition. InWSCG: Proc. of the 15th Intl. Conf. in Central
Europe on Computer Graphics, Visualization and Computer
Vision, 2007.

[Var08a] A. R. Varkonyi Koczy, A. Rovid, and T. Hashimoto.
Gradient-based synthesized multiple exposure time color
hdr image.Instrumentation and Measurement, IEEE Trans-
actions on, 57(8):1779 –1785, aug. 2008.

[Vav08a] A. Vavilin and K.H. Jo. Recursive hdr image generation
from differently exposed images based on local image prop-
erties. InControl, Automation and Systems, 2008. ICCAS
2008. International Conference on, pages 2791–2796. IEEE,
2008.

[War03a] Greg Ward. Fast, robust image registration for composit-
ing high dynamic range photographs from hand-held expo-
sures.Journal of Graphics Tools, 8(2):17–30, 2003.

[Zim11a] Henning Zimmer, Andrés Bruhn, and Joachim Weickert.
Freehand hdr imaging of moving scenes with simultane-
ous resolution enhancement.Computer Graphics Forum,
30(2):405–414, 2011.

Journal of WSCG, Vol.20 160 http://www.wscg.eu

	C29-full.pdf
	C43-full.pdf
	D02-full.pdf
	D03-full.pdf
	D05-full.pdf
	D13-full.pdf
	D17-full.pdf
	ABSTRACT
	Keywords
	INTRODUCTION
	BACKGROUND
	GRAPHICAL MODELS
	CONTEXT IN MULTI-VIEW
	Transferable Sites

	MULTI-VIEW RANDOM FIELDS
	Potentials Modifications
	Parameter Learning and Inference

	APPLICATION OF MVRF
	Multi-View Scenario
	Experiments

	CONCLUSION
	REFERENCES

	D41-full.pdf
	D71-full.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

