

The 17th International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision

in co-operation with

EUROGRAPHICS

W S C G ' 2009

Full Papers Proceedings

University of West Bohemia
Plzen

Czech Republic

February 2 - 5, 2009

Co-Chairs
Min Chen, Swansea University, United Kingdom

Vaclav Skala, University of West Bohemia, Czech Republic

Edited by
Min Chen

Vaclav Skala

WSCG’2009 Full Papers Proceedings

Editor-in-Chief: Vaclav Skala

c/o University of West Bohemia, Univerzitni 8, Box 314
CZ 306 14 Plzen
Czech Republic
skala@kiv.zcu.cz

Managing Editor: Vaclav Skala

Author Service Department & Distribution:

Vaclav Skala - UNION Agency
Na Mazinách 9
CZ 322 00 Plzen
Czech Republic

Printed: University of West Bohemia, Plzeň, Czech Republic

Hardcopy: ISBN 978-80-86943-93-0

WSCG 2009

International Programme Committee

Adzhiev,V. (United Kingdom)

Baranoski,G. (Canada)

Bekaert,P. (Belgium)

Benes,B. (United States)

Bilbao,J. (Spain)

Biri,V. (France)

Bittner,J. (Czech Republic)

Bouatouch,K. (France)

Brodlie,K. (United Kingdom)

Buehler,K. (Austria)

Chen,M. (United Kingdom)

Chover,M. (Spain)

Coquillart,S. (France)

Crosnier,A. (France)

Csebfalvi,B. (Hungary)

Cunningham,S. (United States)

Daniel,M. (France)

de Geus,K. (Brazil)

Debelov,V. (Russia)

Feito,F. (Spain)

Ferguson,S. (United Kingdom)

Flaquer,J. (Spain)

Flusser,J. (Czech Republic)

Gallo,G. (Italy)

Groeller,E. (Austria)

Gudukbay,U. (Turkey)

Gutierrez,D. (Spain)

Havran,V. (Czech Republic)

Jansen,F. (Netherlands)

Kavan,L. (Ireland)

Klein,R. (Germany)

Klosowski,J. (United States)

Lee,T. (Taiwan)

Magnor,M. (Germany)

Mollá Vayá,R. (Spain)

Muller,H. (Germany)

Murtagh,F. (Ireland)

Myszkowski,K. (Germany)

Pasko,A. (United Kingdom)

Pedrini,H. (Brazil)

Peroche,B. (France)

Platis,N. (Greece)

Puppo,E. (Italy)

Purgathofer,W. (Austria)

Rojas-Sola,J. (Spain)

Rokita,P. (Poland)

Rosenhahn,B. (Germany)

Rossignac,J. (United States)

Rudomin,I. (Mexico)

Sakas,G. (Germany)

Schumann,H. (Germany)

Segura,R. (Spain)

Selim,B. (Turkey)

Skala,V. (Czech Republic)

Slavik,P. (Czech Republic)

Slusallek,P. (Germany)

Sramek,M. (Austria)

Stroud,I. (Switzerland)

Teschner,M. (Germany)

Theoharis,T. (Greece)

Triantafyllidis,G. (Greece)

Vergeest,J. (Netherlands)

Wu,E. (China)

Wuethrich,C. (Germany)

Zara,J. (Czech Republic)

Zemcik,P. (Czech Republic)

WSCG 2009
Board of Reviewers

Abas,M. (Malaysia)

Adzhiev,V. (United Kingdom)

Akleman,E. (United States)

Andreadis,I. (Greece)

Aspragathos,N. (Greece)

Aveneau,L. (France)

Baranoski,G. (Canada)

Battiato,S. (Italy)

Bekaert,P. (Belgium)

Bellon,O. (Brazil)

Benes,B. (United States)

Bilbao,J. (Spain)

Biri,V. (France)

Bittner,J. (Czech Republic)

Borchani,M. (France)

Bouatouch,K. (France)

Bouville,C. (France)

Brodlie,K. (United Kingdom)

Bruckner,S. (Austria)

Bruni,V. (Italy)

Brunnet,G. (Germany)

Buehler,K. (Austria)

CarmenJuan-Lizandra,M. (Spain)

Chaudhuri,D. (India)

Chen,M. (United Kingdom)

Chover,M. (Spain)

Chum,O. (Czech Republic)

Coquillart,S. (France)

Crosnier,A. (France)

Csebfalvi,B. (Hungary)

Cunningham,S. (United States)

Daniel,M. (France)

de Geus,K. (Brazil)

Debelov,V. (Russia)

Dingliana,J. (Ireland)

Drbohlav,O. (Czech Republic)

Duce,D. (United Kingdom)

Durikovic,R. (Slovakia)

Egges,A. (Netherlands)

Eisemann,M. (Germany)

Erbacher,R. (United States)

Feito,F. (Spain)

Ferguson,S. (United Kingdom)

Ferko,A. (Slovakia)

Fernandes,A. (Portugal)

Flaquer,J. (Spain)

Flusser,J. (Czech Republic)

Foufou,S. (France)

Gallo,G. (Italy)

Galo,M. (Brazil)

Ganovelli,F. (Italy)

Garcia-Alonso,A. (Spain)

Giannini,F. (Italy)

Gonzalez,P. (Spain)

Grammalidis,N. (Greece)

Groeller,E. (Austria)

Gudukbay,U. (Turkey)

Gumbau,J. (Spain)

Gupta,A. (United States)

Gutierrez,D. (Spain)

Hanak,I. (Czech Republic)

Haro,A. (United States)

Hasler,N. (Germany)

Havran,V. (Czech Republic)

Hernández,B. (Mexico)

Herout,A. (Czech Republic)

Horain,P. (France)

House,D. (United States)

Iwanowski,M. (Poland)

Janda,M. (Czech Republic)

Jansen,F. (Netherlands)

Joan-Arinyo,R. (Spain)

Jones,M. (United Kingdom)

Karabassi,E. (Greece)

Kavan,L. (Ireland)

Kimmel,B. (Canada)

Klein,R. (Germany)

Klosowski,J. (United States)

Knight,M. (United Kingdom)

Kohout,J. (Czech Republic)

Kolcun,A. (Czech Republic)

Krishnaswamy,A. (United States)

Lanquetin,S. (France)

Lee,T. (Taiwan)

Lewis,J. (New Zealand)

Lin,W. (Taiwan)

Liu,D. (Taiwan)

Maciel,A. (Brazil)

Magnor,M. (Germany)

Maierhofer,S. (Austria)

Mandl,T. (Germany)

Matey,L. (Spain)

Matkovic,K. (Austria)

Mattausch,O. (Austria)

Michoud,B. (France)

Mokhtari,M. (Canada)

Mollá Vayá,R. (Spain)

Montrucchio,B. (Italy)

Mudur,S. (Canada)

Muller,H. (Germany)

Murtagh,F. (Ireland)

Myszkowski,K. (Germany)

OliveiraJunior,P. (Brazil)

Papaioannou,G. (Greece)

Pasko,A. (United Kingdom)

Pasko,G. (Cyprus)

Paulin,M. (France)

Pedrini,H. (Brazil)

Peroche,B. (France)

Pettifer,S. (United Kingdom)

Platis,N. (Greece)

Přikryl,J. (Czech Republic)

Puig,A. (Spain)

Puppo,E. (Italy)

Purgathofer,W. (Austria)

Renaud,C. (France)

Ripolles,O. (Spain)

Ritschel,T. (Germany)

Rodeiro,J. (Spain)

Rojas-Sola,J. (Spain)

Rokita,P. (Poland)

Rosenhahn,B. (Germany)

Rossignac,J. (United States)

Rudomin,I. (Mexico)

Sakas,G. (Germany)

Sanna,A. (Italy)

Schumann,H. (Germany)

Segura,R. (Spain)

Selim,B. (Turkey)

Sellent,A. (Germany)

Sirakov,N. (United States)

Skala,V. (Czech Republic)

Slavik,P. (Czech Republic)

Slusallek,P. (Germany)

Solis,A. (Mexico)

Sousa,A. (Portugal)

Sramek,M. (Austria)

Stroud,I. (Switzerland)

SuarezRivero,J. (Spain)

Svoboda,T. (Czech Republic)

Teschner,M. (Germany)

Theoharis,T. (Greece)

Theußl,T. (Austria)

Torrens,F. (Spain)

Triantafyllidis,G. (Greece)

Tytkowski,K. (Poland)

Vanecek,P. (Czech Republic)

Vasa,L. (Czech Republic)

Veiga,L. (Portugal)

Vergeest,J. (Netherlands)

Viola,I. (Norway)

Vitulano,D. (Italy)

Wan,T. (United Kingdom)

Wu,E. (China)

Wuethrich,C. (Germany)

Yencharis,L. (United States)

You,S. (United States)

Zach,C. (United States)

Zachmann,G. (Germany)

Zalik,B. (Slovenia)

Zara,J. (Czech Republic)

Zemcik,P. (Czech Republic)

Zhu,Y. (United States)

Contents

Full Papers

Lipski,C., Berger,K., Magnor,M.: vIsage - A visualization and debugging

framework for distributed system applications
1

Engell-Norregard,M., Erleben K.: Estimation of Joint Types and Joint Limits from
Motion Capture Data

9

Jenke,P., Huhle,B., Straßer,W.: Statistical Reconstruction of Indoor Scenes

17

Lerbour,R., Marvie,J.-E., Gautron,P.: Adaptive Streaming and Rendering of Large
Terrains: A Generic Solution

25

Glanznig,M., Malik,M.M., Gröller,M.E.: Locally adaptive marching cubes through
iso-value variation

33

Lim,T., Ryu,,J. Jeong,J.: Selective Deblocking Method Using a Tranform Table of
Different Dimension DCT

41

Boesch,J., Pajarola,R.: Flexible Configurable Stream Processing of Point Data

49

Reif,R., Guenther,W.A.: Pick-by-Vision: An Augmented Reality supported Picking
System

57

Schwartz,Ch., Degener,P., Klein,R.: Interactive Editing of Upholstered Furniture

65

Pribyl,J., Zemcik,P.: User Motion Prediction in Large Virtual Environments

73

Rustico,E.: Low cost finger tracking for a virtual blackboard

81

Emelyanov,A., Astakhov,Y.: Repairing Heavy Damaged CAD-models

89

Roth,A., Juhasz,I.: Quadrilateral mesh generation from point cloud by Monte
Carlo method

97

Marzat,J., Dumortier,Y., Ducrot,A.: Real-Time Dense and Accurate Parallel Optical
Flow using CUDA

105

Lister,W., Laycock,R.G., Day,A.M.: Geometric Diversity for Crowds on the GPU

113

Ripolles,O., Gumbau,J., Chover,M., Ramos,F., Puig-Centelles,A.: View-Dependent
Multiresolution Modeling on the GPU

121

Schlattmann,M., Na Nakorn,T., Klein,R.: 3D Interaction Techniques for 6 DOF
Markerless Hand-Tracking

127

Kyriazis,I., Fudos,I., Palios,L.: Extracting CAD Features from Point Cloud Cross-
sections

137

Baudet,V., Beuve,M., Jaillet,F., Shariat,B., Zara,F.: Integrating Tensile
Parameters in Hexahedral Mass-Spring System for Simulation

145

Sharma,O., Anton,F.: CUDA based Level Set Method for 3D Reconstruction of
Fishes from Large Acoustic Data

153

Park,S., Oh,K.: GPU-Only Terrain Rendering for Walk-through

161

Nestler,S., Huber,M., Echtler,F., Dollinger,A., Klinker,G.: Development and
evaluation of a virtual reality patient simulation (VRPS)

169

Yoon,S.M., Malerczyk,C., Graf,H.: 3D Skeleton Extraction from Volume Data
Based on Normalized Gradient Vector Flow

177

Gobithaasan,R.U.,Jamaludin,M.A., Miura,K.T.: The Elucidation of Planar Aesthetic
Curves

183

Michikawa,T., Nakazaki, S., Suzuki, H.,: Efficient Medial Voxel Extraction for
Large Volumetric Models

189

Pathan,S.S., Al-Hamadi,A., Elmezain,M., Michaelis,B.: Feature-supported Multi-
hypothesis Framework for Multi-object Tracking using Kalman Filter

197

Bauman,G., Livny,Y., El-Sana J.: GPU-Based Adaptive-Subdivision for View-
Dependent Rendering

203

Holland,J., Semwal,S.K.: Flocking Boids with Geometric Vision, Perception and
Recognition

211

vIsage - A visualization and debugging framework
for distributed system applications

Christian Lipski
Computer Graphics Lab,

TU Braunschweig, Germany
lipski@cg.cs.tu-bs.de

Kai Berger
Computer Graphics Lab,

TU Braunschweig, Germany
berger@cg.cs.tu-bs.de

Marcus Magnor
Computer Graphics Lab,

TU Braunschweig, Germany
magnor@cg.cs.tu-bs.de

ABSTRACT

We present a Visualization, Simulation, And Graphical debugging Environment (vIsage) for distributed systems. Time-varying
spatial data as well as other information from different sources can be displayed and superimposed in a single view at run-time.
The main contribution of our framework is that it is not just a tool for visualizing the data, but it is a graphical interface for a
simulation environment. Real world data can be recorded, played back or even synthesized. This enables testing and debugging
of single components of complex distributed systems. Being the missing link between development, simulation and testing,
e.g., in robotics applications, it was designed to significantly increase the efficiency of the software development process.

Keywords: Visualization, Simulation, Software Development Process, Monitoring, Application

1 INTRODUCTION
In many of today’s applications, the processing of time-
varying spatial data is distributed among various com-
puters and architectures. This is the case for many
scenarios such as scientific computing, massive multi-
player online gaming or mobile robotics. With increas-
ing complexity, the need to visualize the whole system’s
state as well as the need to debug single components in
an isolated environment becomes evident.

We present a visualization, debugging and simula-
tion environment that has been used in the context of
the CarOLO project, where an autonomous vehicle has
been developed. The vehicle participated in the finals
of the Urban Challenge 2007. Initially designed as a
stand-alone visualization client, our software is also ca-
pable of recording and synthesizing data, so that it can
be used as a visual debugging tool as well. The paper
is organized as follows: After giving an overview of re-
lated work in the area of visual debugging and monitor-
ing in Section 2, the core idea of vIsage as a visualiza-
tion client for distributed systems is presented in Sec-
tion 3. Afterwards, the extensions to a simulation and
debugging environment are explained in Section 4. The
technical aspects of the overall software are regarded in
detail in Section 5. The impact of the visual debugging
tool on the software development process is discussed
in Section 6 before we conclude our work in Section 7.

2 RELATED WORK
Our visual debugging system is related to the following
previous work.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Visualizations of algorithms for debugging purposes
extend the functionality of traditional text-based
debuggers by showing data in processes in a graphical
manner. The Balsa visualization tool by Brown and
Sedgewick [BS84] names several participants in the
visual debug process: the algorithm designer, the
animator and the user. The Zeus-framework [BCA91]
introduces a system which allows different views of
the same data structure and the operating algorithms.
The Tango Framework [Sta90] defines important parts
of a debugging visualization, which are the image, its
location, its path and a transition.
These approaches concentrate on debugging single
processes and operate on a very elementary level.
From a conceptual point of view, they are quite close
to classical source code debuggers. In contrast to that,
vIsage fulfills the need to visualize and debug complex
distributed systems during run-time.

Visualizations of concurrent systems take into
account that various objects coexist in different threads
or systems. Although they are able to observe the
internal states of these objects, their main focus lies
on the information exchange among them. Jacobs
et al.[JM03] applied abstraction techniques for UML
diagrams are presented that try to reduce an object
oriented system to its essential parts. Another object
oriented debugging approach is proposed by Laffra
et al. [LM94]. It displays instances of classes as an
arrangement of animated squares. Method invocations
are made visible by a change of color. The approach
proposed by Vion-Dury et al. [VDS94] maps object
instances to various geometric bodies and arranges
them in a unique fashion. The visualization and debug-
ging of distributed multi-agent systems are presented
by Ndumu et al.[NNLC99]. Different tools are used

1

WSCG 2009 Full papers proceedings 1 ISBN 978-80-86943-93-0

Skala
Obdélník

Figure 1: Components of a distributed system: Our application scenario of vIsage is autonomous driving. Several
computers are controlling a vehicle. A vIsage client connects to the distributed system and visualizes the data. Data
may be recorded or created synthetically using a simulator and support the development and debugging process.

to create different views on the data, so that users
can concentrate on inspecting message interchange,
agent tasks, internal states of the agents and statistics.
Multi-agent systems may also be explored by exploit-
ing the third dimension to visualize time [ISMT07].
Furthermore, a trade-off between completeness and
clearness of presentation has to be considered when
single agents are hidden from the user.
These approaches succeed in visualizing complex
distributed systems, however, they do not offer any
possibility to simulate interaction among them. vIsage
enables the developers to work within a simulated
environment without the need to access the actual
working system.

Virtual or augmented reality tools are in use
for debugging in the field of robotics. As robotics
software processes primarily spatial data, it may be
argued that this kind of software is designated for
visual debugging. A selection of robotic development
tools is presented by Tick[Tic06], the most recent one
being the Microsoft Robotics Studio [CS07] which
focuses on an easily accessible development interface
and an integrated simulation environment. Robotic
development tools are also used in the RoboCup
competition, one of them is described by Penedo et
al.[PPNC03]. Collet et al.[CM06] describe a shared
perceptual space between an autonomous system and
humans, e.g. developers. In this space an augmented
reality is established, e.g. by enriching the video
stream of an input camera with projected sensor data
from the system. Obstacles can also be augmented into
a camera image to assist human drivers, [TLWK07]
uses laser scanners to detect objects in front of the car.
In automotive design the idea of a virtual dashboard
has been examined [BDGP+04], where several moni-
torable values, e.g. velocity, tire pressure and engine
temperature, are displayed on an LCD-screen mounted
at the conventional dashboard of a car. In the case of
an emergency, e.g. when a distance sensor detects a
possible impact, a warning message becomes visible

on the virtual dashboard.
The augmented and virtual reality tools mentioned
above can be seen as quite sophisticated and advanced,
because they offer the possibility to visualize complex
data in a virtual environment and may even simulate
processes. However, they lack the ability to combine
visualization, debugging, testing and simulation efforts
into one coherent workflow. vIsage is a part of a
toolchain that realizes this development paradigm.

Other aspects of the software development pro-
cess and the algorithms used in the CarOLO project
can be found in [BBR07], [LSB+08] and [BLL+08].

3 MONITORING DISTRIBUTED SYS-
TEMS

In automotive computer systems the need for a central
monitoring and visualization tool has emerged in order
to keep pace with the amount of data transferred among
distributed components. By regarding only a single
process in the system at a time, one will in most cases
fail to detect the complex cause of erroneous behavior.
In order to monitor the whole system, all relevant data
that represent the communication among the single
components and their internal processes have to be
observed. vIsage offers the possibility to visualize all
network data packages that are exchanged as well as
arbitrary information about the internal state of single
components. As all systems are synchronized in time
via ntp, the system is able to put all incoming data
packages into a well-defined temporal order. Out of
vIsage’s various possibilities to visualize data, the most
frequently used ones are as follows.

Birds-eye view with external data. All data
with a geometrical context can be displayed and
superimposed in one bird’s-eye view, Fig. 4. In our
application, this includes position, orientation and
velocity of the car, different sensor data and meta-data
about the predefined road graph. Additional input, such
as aerial or satellite photographs which match the car’s

WSCG 2009 Full papers proceedings 2 ISBN 978-80-86943-93-0

GPS position can be displayed as a background image.
WGS84 encoded data such as the car’s road network
graph are projected into a local Cartesian coordinate
system. As the test areas were limited to a few square
kilometers, projection errors have been negligible.

Log message view. System log messages of any
computer can be observed with vIsage. As text
messages are the most basic possibility to compile
debugging data, the log message view is frequently
used in early development stages. A global glimpse of
the current system processes can easily be deducted by
relating each computer’s log messages.

Camera image view. Downsampled input im-
ages of currently connected cameras are shown in
different widgets. While, developers can quickly assess
the quality of the camera output, the general user can
get a better understanding of the current situation.

CAN bus message view. Similar to the com-
puter system log messages additional communication
protocols such as the car’s CAN-bus can be monitored
in a text window view with vIsage.

Graphical representation of artificial intelli-
gence voting process. Internal processes within the
artificial intelligence system, such as the evaluation of
different steering wheel rotations or the determination
of the current speed, are represented graphically.

In order to satisfy all developers’ needs, each
data source can be displayed in several media. E.g.,
for developing the actorics software, precise numerical
values for velocity and throttle are required. For
developers of other systems, a simplified graphical
representation, such as an arrow of variable length or
color are more beneficial.
The visualization of different data can interactively be
turned on or off by the user. For some complex ob-
jects, additional information, such as acceleration and
distance to other objects, can be displayed by clicking
on their graphical representation, Fig.2. Since the
system is able to access more than a dozen data sources
that can be directed to the bird’s-eye view, a different
selection of displayed information is necessary for
each individual developer. Furthermore, developers
can define and save these visualization of the data they
want to inspect at run-time.

Watchdog functionality. Due to the probability of
faults in single hardware and software components, a
watchdog system observes the status of all vital com-
puters and processes. Local watchdog applications
monitor all vital processes on every computer and their
connected devices which have to send a so-called heart-

(a) original view (magnified)

(b) additional information (magnified)

Figure 2: By clicking on certain objects, additional in-
formation is revealed

beat in regular intervals. A dedicated watchdog com-
puter keeps contact to the local instances and detects
application crashes, application freezes and the overall
availability of each computer. The watchdog’s status
evaluation is graphically accessible via vIsage, it even
provides the possibility to manually restart the system
or its components. Other meta information such as cy-
cle times of certain processes and CPU load can also be
monitored.

4 VISUAL DEBUGGING
So far, means for monitoring and visualization have
been presented. For later development stages, more
functionality is required for an efficient workflow,
Fig.6. The visualization engine is extended as follows.

Monitoring and visualizing, as described in chapter
3, are the core functionalities of vIsage and help the
developers to identify erroneous or odd behavior.
However, the reasons for failure may not be apparent
at first sight. As the access to the working system may
be limited or expensive, solving the problem in the

WSCG 2009 Full papers proceedings 3 ISBN 978-80-86943-93-0

(a) Car (magnified) (b) Road Graph (mag-
nified)

(c) Lane (magnified) (d) Obstacle (magni-
fied)

Figure 3: Different entities are represented through dif-
ferent visualization layers: e.g. a car (red rectangle in
a), a road network with traffic priorities (b), lane mark-
ings (c) and obstacles (d)

Figure 4: The vehicle’s sensor data visualized in a
bird’s-eye view with satellite data. The red box repre-
sents the vehicle, the dotted lines recognized lane mark-
ings (cf. to Fig. 3)

lab can be very helpful. vIsage has been designed to
be used as an interface for a virtual testing environment.

Recording all the data that are visualized with
vIsage is also possible. Dedicated testers collect these
data in case of odd or unexplainable behavior and
analyze the data offline to find an explanation of the
situation. If a problem remains unresolved, the data
recordings are handed to the responsible developers,
along with a description of the problem.

(a) Reduced Complexity

(b) Full Complexity

Figure 5: The information complexity in the top view
can be interactively adjusted by disabling (a) or en-
abling (b) particular sensor data.

Playback of the recorded data to the isolated compo-
nents, e.g., the artificial intelligence computer, may
enable the developers to debug their software more
efficiently. In combination with classical debugging
tools, they use the recorded data as input to their system
and try to discover the reasons for the behavior of their
system. To ensure that the problem was solved entirely,
the developers convert the actual data to a synthetic
what-if scenario.

What-if scenarios can be created with vIsage
and passed to the simulation framework. vIsage can be
used to synthesize spatial data such as static obstacles
and manually control dynamic objects, such as driving
vehicles, during run-time. The developers create
scenarios similar to the one recorded and provide for
a robust handling of the given situation. In contrast
to recorded data, these scenarios create the input data
for the system dynamically so that alternative decision
paths of the artificial intelligence can be examined.
The resulting behavior of the simulation is visualized
with vIsage.

WSCG 2009 Full papers proceedings 4 ISBN 978-80-86943-93-0

Figure 6: vIsage is the key link in the software develop-
ment process. During real world tests monitoring and
recording of the (odd) system behaviour are performed
within vIsage. For bugfixing and system adjustment de-
velopers use the offline playback function. Finally com-
plex what-if scenarious are created with vIsage in order
to simulate them.

Automatic Acceptance Tests are created and ex-
ecuted by the simulator to ensure that the system will
still cope with these situations during later development
stages. If necessary, the automatic simulation can be
inspected with vIsage.

It is important to note that the usage of vIsage does
not replace conventional source code debuggers. It es-
tablishes a very efficient and problem-oriented work-
flow that does not depend on or interfere with any de-
velopment environment.

5 SYSTEM OVERVIEW
The main reasons for the system concept, Fig.8 are the
requirement to access the data through a TCP connec-
tion and to allow the user to define which data are vi-
sualized in which view. To achieve these goals the
communication is handled through a local data source
which broadcasts on demand. An arbitrary number of
vIsage clients receives the data from data sinks. A data

(a) Zoom in

(b) Zoom out

Figure 7: The scale of the view can be adjusted in order
to get more detailed information (a) or to get the big
picture (b).

sink is a process running on every computer, it is ac-
cessed by the individual applications, e.g., the sensor,
artificial intelligence or actorics applications. Only the
requested data is sent over the TCP connection. This
enables a basic visualization on clients which are not
connected via a broadband connection. For each differ-
ent type of data there exists an individual filter which
transforms the data into displayable objects. These can
be either texts or geometric primitives which are dis-
played in the assigned views.

The user has the opportunity to adjust the display of
information. He may scroll or zoom the bird’s-eye view
7, data sources can be hidden or revealed via context
menus 5.

vIsage was implemented on a Debian Linux system
using the QT framework, but it can be easily ported to
other operating systems. Even on low-end laptops, the
vIsage system achieves real-time framerates.

6 RESULTS
vIsage was designed as a visual debugging and simu-
lation tool for arbitrary distributed systems. As it was
used in the CarOLO project, whose main goal was to

WSCG 2009 Full papers proceedings 5 ISBN 978-80-86943-93-0

Figure 8: A simplified depiction of the architecture.
Data sources stream their output to a data sink class,
which is accessed by separate filters. The filters
transform the received data into visualizable primitives
which are then sent to their adjacent views.

develop an autonomous car, results from this particular
software development process are given to show how
the different functionalities of vIsage are integrated in
the development toolchain. The developers of the vehi-
cle’s software system implemented the data structures
that were exchanged over the network. They used vIs-
age as a front-end for visualization and development in
the simulation environment. The testing team used vIs-
age to monitor vehicle test runs and to record single ses-
sions. The vIsage developers implemented filters and
views for all data objects and provided means to create
what-if scenarios for the simulation environment.

The first impact of vIsage on the development pro-
cess was observed in winter 2006/2007 during the early
stages of the CarOLO project. During first tests with
rather unstable software systems and hardware config-
urations, monitoring of distributed processes and com-
puters was essential for debugging. Even when the soft-
ware became more mature, hardware crashes occurred,
e.g. due to harsh weather conditions. While testing on
an abandoned military base in Germany during winter-
time, several PCs crashed due to the low temperatures.
Similar occurrences were observed on another testing
site in Texas, when the air conditioning of the vehicle
failed to sufficiently cool down the computers. In both
cases, vIsage was vital for monitoring the heartbeats of
the system and to tell apart system crashes from more
complex error sources.

Figure 9: A qualification test of the DARPA Urban
Challenge was recreated with vIsage, other dynamic
vehicles (white rectangles) were added. The concrete
barriers (red and white) were recreated using their orig-
inal positions. The red triangles indicate that they were
identified as obstacles on our vehicle’s driving lane.

Recording of data became vital when multiple soft-
ware systems worked stable and new functionality was
developed in short intervals. The time assigned to each
developer to operate on the actual vehicle was brief and
many bugs had to be found off-line. E.g., it could be
observed that the vehicle changed its driving lane mul-
tiple times without any obvious reason. Both systems
involved, i.e. the lane detection system and the artificial
intelligence, did not yield any signs of wrong behavior
when being debugged in the lab. When the testing team
recorded a session showing the erroneous lane changes,
an analysis using vIsage revealed that the error occurred
due to a receiver’s misinterpretation of the so-called
lane shift flag, that was exchanged between these two
systems. The artificial intelligence interpreted a lane
change to the left as a change to the right and tried to
get back to its original lane.

In the final project phase during fall 2007, the use
of the simulation environment in combination with vIs-
age became vital. The last and most important soft-
ware change in the project was made possible by vIs-
age, when the vehicle entered the National Qualifica-
tion Event of the DARPA Urban Challenge 2007. On
one test course the vehicle kept changing from the
outer to the inner lane, drove into oncoming traffic and
changed to the reverse driving gear unexpectedly. This
situation was recreated using vIsage and the erroneous
behavior was reproduced. The artificial intelligence de-
velopers discovered a combination of unfortunate cir-
cumstances. The concrete borders of that course were
too close to the outer lanes, so that the artificial intelli-
gence interpreted them as static obstacles. In addition,
the lanes were quite narrow and the high traffic density
diminished the vehicle’s possible paths too much. Sev-
eral parameter alterations were made so that the vehicle
managed to cope with this and similar situations. An

WSCG 2009 Full papers proceedings 6 ISBN 978-80-86943-93-0

automatic acceptance test was tailored to this particu-
lar situation. Together with previous acceptance tests it
ensured that this particular and other known situations
could be handled with the most recent parameter set-
tings.

7 CONCLUSION AND FUTURE
WORK

vIsage is a valuable tool for the visualization and de-
bugging of distributed systems that process spatial data.
It ensured the success of the CarOLO project, where
an autonomous vehicle was developed that participated
in the finals of the DARPA Urban Challenge. The
CarOLO project showed that complex systems require
more than a plain visualization tool. With the new tech-
nical features, e.g. monitoring distributed heartbeats of
the system parts and the record and replay of monitored
data, vIsage differs from state-of-the-art visualization
frameworks and is able to support the software devel-
oper in every stage of the software lifecycle.

A lot of possibilities exist when designing and ex-
tending an application such as vIsage. One question
that arose during the design phase was about the use
of three dimensional visualization modes. We decided
against it, because most data can be more easily read
and layered in two dimensions. By extending our sys-
tem to visualize three dimensional data, objects like
height fields from a laser scanner can be represented in
a more intuitive manner. In addition, different views of
the data can be realized and augmented with data such
as the camera images.

One benefit of vIsage was the display of aerial pho-
tographs composed with the live data. This enables the
use of vIsage as a tool for public demonstrations, as
many people are familiar with these kinds of images
from services like Google maps.

A very promising approach will be to extend the
system so that more sensor inputs can be simulated
in a realistic way. However, a complete simulation,
including data simulating laser scanners and cameras,
would enable a basic development of such systems
without the need of an actual hardware setup. The
time and ressource consuming test runs on the concrete
hardware, e.g. on a vehicle, can start after a mature
software revision is reached and different sensor setups
have been evaluated.

Although it was mainly used for supporting the soft-
ware development process in the CarOLO project, vIs-
age however is applicable in any geospatially related
scenario, e.g. monitoring and debugging robot systems
at the RoboCup, or integrating sensor network data,
e.g. from distributed embedded devices like Smart-Its
[BG03], into a global data map.

REFERENCES
[BBR07] C. Basarke, C. Berger, and B. Rumpe. Software & Sys-

tems Engineering Process and Tools for the Develop-
ment of Autonomous Driving Intelligence. Journal of
Aerospace Computing, Information, and Communica-
tion, 4:1158–1174, 2007.

[BCA91] M.H. Brown, D.E.C.S.R. Center, and P. Alto. Zeus: a
System for Algorithm Animation and Multi-View Edit-
ing. Visual Languages, pages 4–9, 1991.

[BDGP+04] F. Bellotti, A. De Gloria, A. Poggi, L. Andreone,
S. Damiani, and P. Knoll. Designing Configurable Au-
tomotive Dashboards on Liquid Crystal Displays. Cog-
nition, Technology & Work, 6(4):247–265, 2004.

[BG03] M. Beigl and H. Gellersen. Smart-Its: An Embedded
Platform for Smart Objects. Smart Objects Conference,
2003, 2003.

[BLL+08] K. Berger, C. Lipski, C. Linz, T. Stich, and M. Magnor.
The area processing unit of caroline - finding the way
through darpa’s urban challenge. RobVis, pages 260–
274, February 2008.

[BS84] M.H. Brown and R. Sedgewick. A system for algorithm
animation. SIGGRAPH, 18(3):177–186, 1984.

[CM06] T.H.J. Collett and B.A. MacDonald. Developer Ori-
ented Visualisation of a Robot Program. SIGCHI,
pages 49–56, 2006.

[CS07] E. Courses and T. Surveys. Microsoft Robotics Stu-
dio: a Technical Introduction. Robotics & Automation
Magazine, IEEE, 14(4):82–87, 2007.

[ISMT07] S. Ilarri, J.L. Serrano, E. Mena, and R. Trillo. 3D Mon-
itoring of Distributed Multiagent Systems. WEBIST 07,
pages 978–972, 2007.

[JM03] T. Jacobs and B. Musial. Interactive Visual Debug-
ging with UML. Software visualization, pages 115–
122, 2003.

[LM94] C. Laffra and A. Malhotra. HotWire: a visual debug-
ger for C++. Proceedings of the 6th conference on
USENIX Sixth C++ Technical Conference-Volume 6 ta-
ble of contents, pages 7–7, 1994.

[LSB+08] C. Lipski, B. Scholz, K. Berger, C. Linz, T. Stich, and
M. Magnor. A fast and robust approach to lane mark-
ing detection and lane tracking. SSIAI, page to appear,
March 2008.

[NNLC99] D.T. Ndumu, H.S. Nwana, L.C. Lee, and J.C. Collis.
Visualising and Debugging Distributed Multi-Agent
Systems. Autonomous Agents, pages 326–333, 1999.

[PPNC03] C. Penedo, J. Pavao, P. Nunes, and L. Custodio.
Robocup Advanced 3D Monitor. Proc. of RoboCup
Symposium, 2003.

[Sta90] J.T. Stasko. Tango: a Framework and System for Algo-
rithm Animation. Computer, 23(9):27–39, 1990.

[Tic06] J. Tick. Convergence of Programming Development
Tools for Autonomous Mobile Research Robots. SISY,
pages 29–30, 2006.

[TLWK07] M. Tonnis, R. Lindl, L. Walchshausl, and G. Klinker.
Visualization of Spatial Sensor Data in the Context of
Automotive Environment Perception Systems. ISMAR
07, 2007.

[VDS94] J.Y. Vion-Dury and M. Santana. Virtual Images: In-
teractive Visualization of Distributed Object-Oriented
Systems. Object-oriented programming systems, lan-
guage, and applications, pages 65–84, 1994.

WSCG 2009 Full papers proceedings 7 ISBN 978-80-86943-93-0

WSCG 2009 Full papers proceedings 8 ISBN 978-80-86943-93-0

Estimation of Joint Types and Joint Limits from Motion
Capture Data

Morten Engell-Nørregård
Department of Computer Science,

University of Copenhagen, Denmark
morten@eurobeast.dk

Kenny Erleben
eScience Center,

University of Copenhagen, Denmark
kenny@diku.dk

ABSTRACT

It is time-consuming for an animator to explicitly model joint types and joint limits of articulated figures. In this paper we
describe a simple and fast approach to automated joint estimation from motion capture data of articulated figures. Our method
will make the joint modeling more efficient and less time consuming for the animator by providing a good starting estimate
that can be fine-tuned or extended by the animator if she wishes, without restricting her artistic freedom. Our method is simple,
easy to implement and specific for the types of articulated figures used in interactive animation such as computer games. Other
work for joint limit modeling consider more complex and general purpose models. However, these are not immediately suitable
for inverse kinematics skeletons used in interactive applications.

Keywords: Joint-Limits, Joint-Types, Articulated Figures.

Figure 1: Rigging joint limits can be time-consuming
when using inverse kinematic animations as illustrated
here. Our method can be used to reduce production
time for modeling articulated figures.

1 AN ARTISTIC TIME-SAVER

Interactive applications, computer games, and virtual
reality applications often contain human characters,
creatures, and robots modeled as articulated figures.
The articulated figures are brought to life run-time
using techniques of motion blending [10], inverse
kinematics [16, 5] or forward dynamics [11]. Figure 1
shows an example using inverse kinematics. The
articulated figures must be created by an animator
before being used run-time. This is termed character
rigging. The most wide-spread technique for character
rigging consists of modeling a character skin and then

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2009 conference proceedings, ISBN XX-YYYYYY-Z-Z
WSCG’2009, February 2 – February 5, 2009
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Figure 2: The two joint types considered in this paper
are the hinge joint which rotates around a single axis
and the ball joint which rotates freely in 3 dimensions.

creating a bone skeleton which is coupled to the skin
by specifying vertex weights. Hence the two terms
boning and skinning.

Typical tools such as Autodesk Maya R©, Autodesk
3ds Max R©or Blender are used by artistic people for this
work-process [13, 1, 2]. The two most common joint
types are the hinge joint and the ball joint as shown in
Figure 2. Box-constraints for each of the degrees of
freedom are used to restrict the motion of the joints.
Character rigging can be time-consuming and difficult.
It is our goal to alleviate this problem by providing a
simple method to assist animators during the boning
process. We present a method that is able to optimize
the work-flow when modeling the joint-types and joint-
limits of a bone skeleton without restricting the artistic
freedom of the artist. Our idea is to provide the ani-
mator with a starting estimate for the two joint types
together with values for the box-constraints. The ani-
mator can then fine-tune or extend the estimate.

WSCG 2009 Full papers proceedings 9 ISBN 978-80-86943-93-0

Skala
Obdélník

Figure 3: The same pose calculated with joint limits on
the right and without on the left. Observe that the joint
limits clearly give a more realistic pose.

Joint types and joint limits are important for the im-
mersing of end-users. A realistic model will be able
to bring the characters to life as illustrated in Figure 3.
This have inspired us to use motion capture data. Mo-
tion capture data are already available in most content
pipelines and hierarchical structure and motion of the
articulated figures are in some cases already derived
from this data. We propose to use the same data for
estimating the joint types and joint limits of the articu-
lated figure.

It should be noted that our method could also be ap-
plied to exemplar based motion created by artistic peo-
ple using traditional key-framing techniques. Thus mo-
tion capture data is not a necessary condition. In Fig-
ure 1 hand animated exemplar motion was used in place
of motion capture data.

1.1 Previous Work

Estimation of skeletons and animations from marker
points are known [8, 9] . We do not consider the skele-
ton structure or the motions themselves, but rather the
motion range of the skeleton.

A qualitative kinematic model for the shoulder
complex is presented in [4]. The shoulder complex
is viewed as a two mechanism system. Articulated
human figures in computer animation typically models
the shoulder complex by two bones one “scapu-
lar/clavicular” like bone connected to the humerus
bone.

In [12] the human shoulder is modeled by a hier-
archical inverse kinematics skeleton. They model the
scapula-thoracic joint by breaking the closed chain and
using the scapula as an end-effector constrained to the
surface of an ellipsoidal thorax. Joint limits are mod-
eled using joint sinus cones. Joint sinus cones are more
general than the box-constraints used in for instance
computer games.

Shoulder joint limits are modeled in [7] using quater-
nion field boundaries. From motion capture data the
authors sample the orientation of the shoulder joint us-
ing a quaternion representation. The quaternion field
boundaries are not easily adopted to the box-constraints

and the back-projection methods used to deal with joint
limits in inverse kinematics.

In [14] a general joint component framework is de-
scribed. A joint component framework is derived and
by connecting the components in networks one cre-
ate the joint set functions. The paper presents compo-
nents corresponding to rotation joints with moving rota-
tion center and dependent joint parameters among many
others. The authors extend joint reach cones [15] to
deal with a moving rotation center. One concern is that
the rotation joint component is a non-smooth function
making it non-obvious how to use traditional inverse-
kinematics methods.

Recently [11] an implicit parameterization of the
joint motion by B-splines have been suggested for
multi-body dynamics. Due to the implicit nature of the
motion joint limits are not modeled explicitly.

In most of the work cited above the authors leave the
actual setup of the joint limits to the artist. Our work is
mostly similar to the ideas presented in [7]. Our ap-
proach differ in that we consider the bone skeletons
used in present software by artists. Further we break
down the problem into a two-phase process of first de-
termining the joint type and then the joint limits.

2 MOTION ANALYSIS AS A TWO-
PHASE PROCESS

We want to analyze the motion of a single specific bone
of an articulated figure. Our task is to describe the
bones motion relatively to its parent. For instance by
determining whether a bone is connected to its parent
through a hinge joint type and further what the physical
parameters of that hinge joint are, or phrased differently
the valid range of motion of the hinge joint.

We know the motion as a sequence of relative bone
transformation samples. The ith transformation sample
is represented as,

Ti =
[

Qi ~ti
~0T 1

]
. (1)

The bone transformation describes the relative coordi-
nate transformation between the joint frame of the bone
and the joint frame of the parent bone. Observe that we
have mis-used the usual notation of homogeneous coor-
dinate matrices by letting the rotational part of the trans-
formation matrix be represented by the unit-quaternion
Qi. The translational part is given by the vector~ti. We
are also given a unique relative transform of the bone
known as the bind pose,

Tb =
[

Qb ~tb
~0T 1

]
. (2)

One can think of the bind-pose as the default pose of
the bone. Our task is two-fold. Firstly we wish to de-
termine the joint type of the bone and secondly we wish

WSCG 2009 Full papers proceedings 10 ISBN 978-80-86943-93-0

to estimate the joint parameters once we know the joint
type.

The motion samples are obtained by sampling mo-
tion capture data using key-frame interpolation. The
skeleton and animations used, were obtained from the
Carnegie Mellon University motion capture database.

2.1 Discriminating Joints
To determine the joint-type we will try to determine
the dimensionality of the motion space of the bone.
We consider human motion it is therefore unlikely that
translational motion has any major impact and we dis-
regard it completely from further analysis. Secondly
the human body can at a coarse level be considered to
consist of only two joint archetypes: The ball joint and
the hinge joint. In conclusion we are only interested
in being able to discriminate between these two joint
types.

If we consider the motion samples then Ti can be used
to show if any motion happens. In particular the Qi
part is of interest. This is a unit quaternion and can be
interpreted as an axis-angle representation of rotation

Qi =
[

si
~vi

]
=

 cos
(

θi
2

)
~ni sin

(
θi
2

) (3)

where ~ni is a unit-vector and θi is the rotation angle
around the rotation axis defined by~ni.

Consider the behavior of ~vi. If the joint is rigid that
means we have no motion at all and we must have the
same ~vi for all values of i. Next imagine that we have
a hinge joint type. This means that the relative mo-
tion is a rotation around a fixed rotation axis. Since the
axis is unchanged all ~vi’s must be parallel. However,
the magnitudes are varying in the range [−1..1]. This
implies that looking at the ~vi’s they must all lie along
a radial line segment possible passing through the ori-
gin. Finally, in the case of a ball joint type the rotation
axis is constantly changing. Looking at the~vi’s we will
have a spherical shell. Thus the space of~vi’s now span
a volume. Observe the first case is 0-dimensional, the
second case 1-dimensional and the final case is 2 and 3
dimensional. Figure 4 illustrates the dimensions for a
hinge and ball joint.

The dimensionality can be determined by performing
an eigen-value analysis of the~vi point set. Let

~c =
1
N

N

∑
i
~vi (4)

where N is the number of samples. The covariance ma-
trix, C ∈ RN×N , is

C = PPT (5)

where
P =

[
(~v1−~c) · · · (~vN −~c)

]
. (6)

(a) Ball joint (shoulder)

(b) Hinge joint (elbow)

Figure 4: Samples of the vector part of the quaternion
Qi plotted in the motion space of the joint rotation axis.
Notice how the shoulder joint (a) extends in all 3 di-
mensions while the hinge joint (b) only extends in 1
dimension.

Next we perform an eigen-value decomposition of the
covariance matrix,

C = V DV T , (7)

where V ∈ RN×N is an othogonal matrix of unit eigen-
vectors and D ∈ RN×N is the diagonal matrix of corre-
sponding eigen-values.

If all diagonal entries of D are zero we have 0-
dimensionality. If we have 1 non-zero diagonal entry
in D then we have 1-dimensionality and so on. We have
now solved the first phase of the process, being able
to determine the joint type. In the next phase we must
estimate the joint parameters that describe the physical
range of valid motion.

2.2 Estimating Joint Parameters
Once we know the joint type it becomes easier to es-
timate the joint parameters. In the following we will
proceed by a case-by-case analysis of each joint type.

The case of the immovable joint we handle by imag-
ing that the joint is a ball joint type. We will find joint
parameter values equivalent to the fixed pose of the
joint. The joint limits will then be set equal to these
fixed joint parameter values, resulting in a fixated ball
joint.

WSCG 2009 Full papers proceedings 11 ISBN 978-80-86943-93-0

For the hinge joint type, we can easily find the rota-
tion axis as

~u = ∑
N
i=1~vi

‖ ∑
N
i=1~vi ‖

. (8)

Here we exploited the quaternion equivalence to the
axis-angle representation of rotations. The bind-pose
signifies the current pose value so we compute the cor-
responding rotation angle,

θ = 2 atan2

(
cos
(

θb

2

)
,

∣∣∣∣sin
(

θb

2

)∣∣∣∣) (9)

= 2 atan2

(
cos
(

θb

2

)
,‖~nb ‖

∣∣∣∣sin
(

θb

2

)∣∣∣∣) (10)

= 2 atan2 (sb,‖~vb ‖) , (11)

where sb and ~vb are given by Qb from (2). Next we
may compute

θmax = max
i
{2 atan2 (si,‖~vi ‖)} (12a)

θmin = min
i
{2 atan2 (si,‖~vi ‖)} (12b)

In this analysis we have overlooked two important as-
pects. Firstly, the bind-pose may not be included in
the sampled motion. Thus we can not be sure that,
θmin ≤ θ ≤ θmax. Secondly, rotation angles are peri-
odic and the usual min-max approach for getting in-
terval bounds are therefore flawed. For now we will
overlook the problems and defer them to Section 2.3
and 2.4.

Rotational joints and their limits are often descriped
by Euler parameters in motion capture formats and in-
verse kinematics methods. Thus for the ball joint type
we will work with the Euler parameters, we have cho-
sen a ZYZ convention, see Appendix A for details. The
joint parameters are computed for the bind-pose as,

(φ ,ψ,θ) = ZYZ(Qb) (13)

Currently our joint-limit functions only allow for a
boxed domain. This is of course a crude approxima-
tion to real-world ball joint types of humans. However,
it greatly simplifies our task. We proceed by converting
all rotational motion samples into the equivalent Euler
parameters,

(φi,ψi,θi) = ZYZ(Qi) (14)

Next one can find a tight fitting box around the Euler
samples

φmin = min
i
{φi} and φmax = max

i
{φi} (15a)

ψmin = min
i
{ψi} and ψmax = max

i
{ψi} (15b)

θmin = min
i
{θi} and θmax = max

i
{θi} (15c)

Again the above analysis is over-simplified and we have
done the same two mistakes as we did for the hinge

(a) Intervals appear non-contiguous

(b) Intervals appear contiguous

Figure 5: Contiguous intervals may appear non-
contiguous if one analyze the numerical values of the
angles. However, if one changes the interval on which
angles are represented the intervals will appear contigu-
ous.

joint type. However, note that the ZYZ convention is
the savior. It means that each of the Euler parameters
can be analyzed independently of each other.

2.3 The Agony of Rotation Angles
Human motion is piecewise continuous. Thus it is a fair
assumption that the range of motion can be considered
as being a contiguous interval. However, when dealing
with rotational motion it is not straightforward to obtain
the contiguous interval. This is illustrated in Figure 5.
The figure suggests that one solution may be to change
an interval range [−π..π] into the range [0..2π] or vice
versa. However, not knowing which case we are dealing
with makes it difficult to decide if the interval range
should be changed. Thus we will consider a different
approach.

Assume the θ -values are sorted in ascending order,
θ1 < θ2 < · · · < θN . Now we can compute the angle
difference between two consecutive angle values i and
j = (i⊕ 1) in counter-clock-wise direction, here ⊕ is
defined as addition modulus N,

∆θi =

{
θ j−θi ;θ j > θi

θ j +2π−θi ;otherwise
. (16)

The largest angle difference,

∆θm = max
i
{∆θi}, (17)

will contain the angle values outside the contiguous in-
terval. Figure 6 illustrates the method. Having found k
we now have

θmin = θm⊕1 (18a)
θmax = θm (18b)

We test if
θmin < θmax (19)

if the test fails then we keep adding 2π to θmax until the
test passes.

2.4 Bind-pose is Infeasible
Note that the joint parameter value of the bind-pose can
be computed correctly as well. One can obtain the bind-
pose angle, θ as we described earlier in Section 2.2.

WSCG 2009 Full papers proceedings 12 ISBN 978-80-86943-93-0

Figure 6: Angle intervals (blue) shown on the unit-
circle. Sorting angle values in ascending order makes
it easy to search for the largest difference between
two consecutive angles in a counter-clock-wise manner.
The largest difference will be the empty gap (green)
bounding the interval we are searching for.

However, one needs to make sure that θ is feasible with
respect to the minimum and maximum values. Thus we
test

θmin ≤ θ (20)

If not we add 2π to θ until the test succeeds. Finally we
test if

θ ≤ θmax (21)

If this test fails our bind-pose is not feasible with re-
spect to the motion capture data we have analyzed.

This may appear strange but imagine we have a hu-
man figure, and we are analyzing a running motion.
During running the shoulder complex will never lift the
arms above the head even though this would be a le-
gal motion for a shoulder. In fact it is likely that in
this case our analysis will suggest a hinge joint type for
the shoulders and set joint limits such that the arms are
never lifted above horizontal level. The bind-pose is
often a pose similar to Leonardo Da-vincis "Vitruvian
man" where the arms are kept horizontally.

When failure of the test θ ≤ θmax occurs then the next
problem is to decide how to solve the problem? We pro-
pose to pick one of the poses from the motion capture
sequence and use this as the initialization pose. An-
other obvious choice is to use the mean angle for the
initialization,

θ =
θmax +θmin

2
. (22)

(a) Before joint estimation

(b) After joint estimation

Figure 7: Illustration of 3 dimensional distribution of
Euler-parameters before and after the contiguous angle
analysis has been performed. The chosen example joint
is a ball joint, the left shoulder joint.

This will definitely be a feasible value. Alternatively
we can compute the mean point

~m =
[

mx
my

]
=

1
N

[
∑

N
i=1 cos(θi)

∑
N
i=1 sin(θi)

]
(23)

if ~m is zero then we must give up since that would in-
dicate that the motion is unlimited or not sampled suf-
ficiently. Otherwise we convert the mean point to an
angle

θmean = atan2 (my,mx) . (24)

The mean angle would be feasible and would in a sense
yield the most likely pose.

3 RESULTS
The system was tested using a number of different mo-
tion capture animations of gymnastics exercises. Some
of the exercises are shown in figure 8. Some of these
yielded restrictive bounds while some gave more gen-
eral bounds. This depended of the local motion of the
individual joints. The motions where chosen so all joint
where moved in at least some of the motions.

In Figure 7 we have shown the result of performing a
contiguous angle analysis on a shoulder joint. For this
example 100 key-frame samples were used for a mo-
tion of 2 seconds of duration. Observe that after the

WSCG 2009 Full papers proceedings 13 ISBN 978-80-86943-93-0

estimation the motion trace is contiguous and not dis-
connected.

Our method is intended as a pre-processing tool dur-
ing modeling of characters and hence no real-time per-
formance requirements are needed to be fulfilled. Thus
we only need to consider a performance good enough
for not stalling the animation tool used by an artist.

For 100 motion samples the joint type discrimination
and angle analysis is computationally fast enough not
to be noticed by the end-user. For a 30 bone charac-
ter as shown in Figure 8 the analysis takes less than 50
ms and 20 ms on average on a modest laptop computer
(Pentium R©core duo T5500 1.66 GHz).

If the number of samples are too few it may become
difficult to determine a contiguous interval. Also the
tightness of the limits may be too tight if the motion
samples are not taken from extreme poses.

The joint estimation is data driven and the model is
local. Surely bad motions can be picked yielding over-
restricted motion ranges. However, due to the local
modeling the overall motion-type is insignificant to the
results in the individual joints. The motion samples are
not used to perform a motion reconstruction. There-
fore we only need samples close enough to the minimim
and maximum bounds and a few in between samples to
make out which parts of the angle intervals corresponds
to the contiguous part of the motion.

The system supports arbitrary tight sampling by in-
terpolation of the given motion capture values. Thus to
few samples are rarely a problem. A minimum of 4-6
samples are necessary to make this interpolation feasi-
ble though.

Figure 8 and the supplementary video shows the
quality achieved by estimating joint limits on several
different motions using only 100 samples for the anal-
ysis. The usual way of handling joint limits in industry
is to design joint limits for specific animations, thus
joint limits which are much more restrictive than real
human joint limits are obtained. The reason for this is
that the inherent redundancy of human motion makes
it difficult to control animations using general joint
limits. Our system makes it possible for an animator
to make the joint limits as general or as specific as he
or she sees fit, Based on the generality of the chosen
reference animations. Thus the animator is given
explicit control, without losing generality.

Figure 9 shows motion samples of a shoulder joint
for three different motions. As illustrated the 100 sam-
ples appear to capture the overall motion of the shoulder
joint. Thus in practice we find this number of samples
to be sufficient.

4 DISCUSSION
Human motion is piecewise continuous and non-linear
in position and velocity. Thus it is questionable whether
an eigen-value analysis is useful. A more advanced

(a) Jumping motion

(b) Knee bending motion

(c) Arm swinging motion

Figure 8: Examples of the impact of joint limits. The
top rows of each motion example shows a sequence
without joint limits, the bottom rows shows the same
sequence, using joint limits calculated with our method.
The red skeleton is the motion capture reference while
the green is the inverse kinematics solved. Observe
that the inverse kinematic solution resembles the mo-
tion capture motion better using our joint estimation
method.

WSCG 2009 Full papers proceedings 14 ISBN 978-80-86943-93-0

Figure 9: We use 100 motion samples for discriminat-
ing joint types and finding contiguous angle intervals
for motions of roughly 2 seconds of duration. The re-
sulting samples of three different shoulder motions are
shown.

analysis such as principle geodesics analysis [6] should
be able to deal inherently with the fact that rotational
angles lies on a rather complex hypersphere. We have
reformulated the dimensionality problem to fit an Eu-
clidean space.

Our problem is that of determining the dimension of
a sub-set of a motion space for a single joint. The ac-
tual motion analysis we perform to describe the phys-
ical boundaries of motion is independent of the eigen-
value analysis. We could perhaps limit the dimensional-
ity even more by only considering the dimensions that
account for say 95% of the variation [3]. This would
perhaps be better than our approach of using a small
threshold on the absolute value of the eigen-values. The
dimension analysis is simplified by having a low dimen-
sional explicit parameterized model which we seek to
fit motion capture data with. As such our problem can
be understood as a regression of real world data onto a
much simpler and more primitive model. In general the
dimension analysis seems reasonable.

A weak point of our method is that we only consider
a local analysis of each joint independently of other
joints. In fact the motion analysis is further localized
to deal with each joint parameter independently of each
other. This is a crude simplification. For more accu-
rate modeling of human motion one should consider a
global analysis. However, this is not warranted in case
of inverse kinematics skeletons for interactive applica-
tions.

In future work it could be interesting to learn the
manifold of the feasible motion space including the de-
pendencies between joint parameters and augment the
simple inverse kinematic skeleton with a more complex
joint limit model. For instance by tessellation of the
motion samples and form a boundary representation of
the configuration space. They could be used to infer lin-
ear approximations to joint limits for a current iterate of
the joint parameters.

ACKNOWLEDGMENTS

We wish to thank Kim Steenstrup Pedersen and Jon
Sporring for valued input and discussions on our work.
This research was done as part of the HUMIM project
under the eScience Centre, Faculty of Science, Univer-
sity of Copenhagen. The data used in this project was
obtained from mocap.cs.cmu.edu. The database was
created with funding from NSF EIA-0196217.

REFERENCES
[1] Jaejin Choi. Maya Character Animation. Sybex Books, De-

cember 2002.

[2] Yancey Clinton. Game Character Modeling and Animation with
3ds Max. Focal Press, October 2007.

[3] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Ac-
tive shape models—their training and application. Comput. Vis.
Image Underst., 61(1):38–59, 1995.

[4] Z. Dvir and N. Berme. The shoulder complex in elevation of
the arm: A mechanism approach. Journal of Biomechanics,
11(5):219–225, 1978.

[5] Martin Fêdor. Application of inverse kinematics for skeleton
manipulation in real-time. In SCCG ’03: Proceedings of the
19th spring conference on Computer graphics, pages 203–212,
New York, NY, USA, 2003. ACM Press.

[6] Thomas P. Fletcher, Conglin Lu, and Sarang Joshi. Statistics
of shape via principal component analysis on lie groups. In
In Conference on Computer Vision and Pattern Recognition
(CVPR), volume 1, pages 95–101, Los Alamitos, CA, USA,
2003.

[7] Lorna Herda, Raquel Urtasun, Andrew Hanson, and Pascal Fua.
Automatic determination of shoulder joint limits using quater-
nion field boundaries. International Journal of Robotics Re-
search, 22(6):419–434, June 2003.

[8] O’Brien J., Bodenheimer R., Brostow G., and Hodgins J. Auto-
matic joint parameter estimation from magnetic motion capture
data. Graphics Interface, pages 53–60, 2000.

[9] Adam Kirk, James F. O’Brien, and David A. Forsyth. Skeletal
parameter estimation from optical motion capture data. In SIG-
GRAPH ’04: ACM SIGGRAPH 2004 Sketches, page 29, New
York, NY, USA, 2004. ACM.

[10] Lucas Kovar and Michael Gleicher. Flexible automatic mo-
tion blending with registration curves. In SCA ’03: Proceed-
ings of the 2003 ACM SIGGRAPH/Eurographics symposium
on Computer animation, pages 214–224, Aire-la-Ville, Switzer-
land, Switzerland, 2003. Eurographics Association.

[11] Sung-Hee Lee and Demetri Terzopoulos. Spline joints for
multibody dynamics. In SIGGRAPH ’08: ACM SIGGRAPH
2008 papers, pages 1–8, New York, NY, USA, 2008. ACM.

[12] Walter Maurel and Daniel Thalmann. Human shoulder model-
ing including scapulo-thoracic constraint and joint sinus cones.
Computers & Graphics, 24(2):203–218, 2000.

[13] Tony Mullen. Introducing Character Animation with Blender.
John Wiley & Sons, February 2007.

[14] Wei Shao and Victor Ng-Thow-Hing. A general joint compo-
nent framework for realistic articulation in human characters.
In I3D ’03: Proceedings of the 2003 symposium on Interactive
3D graphics, pages 11–18, New York, NY, USA, 2003. ACM.

[15] Jane Wilhelms and Allen Van Gelder. Fast and easy reach-cone
joint limits. J. Graph. Tools, 6(2):27–41, 2001.

[16] Jianmin Zhao and Norman I. Badler. Inverse kinematics posi-
tioning using nonlinear programming for highly articulated fig-
ures. ACM Trans. Graph., 13(4):313–336, 1994.

WSCG 2009 Full papers proceedings 15 ISBN 978-80-86943-93-0

A OBTAINING ZYZ EULER ANGLES
Extracting ZYZ Euler angles robustly and directly from a unit-
quaternion is not trivial. Of course one can convert to another
representation such as rotation matrices. Below we outline our
approach which is based completely on quaternions and explicitly
takes Gimbal lock into account.

Here φ , ψ and θ defines the rotation given by the unit-quaternion,
Q, such that

Q≡ Rz(φ)Ry(ψ)Rz(θ); (25)

Our task is to find φ , ψ , and θ given Q. We exploit the following
idea below to reduce the problem. We use a clever test-vector, ~k =[
0 0 1

]T and try to rotate this vector with the given rotation. That
is

Q~kQ∗ ≡ Rz(φ)Ry(ψ)Rz(θ)~k = Rz(φ)Ry(ψ)~k, (26)

where Q∗ is the conjugated quation of Q. Denoting Q~kQ∗ =~u, a unit
vector, we no longer need to worry about θ . Now we must have

~u =

ux
uy
uz

= Rz(φ)Ry(ψ)

0
0
1

=

cos(φ)sin(ψ)
sin(φ)sin(ψ)

cos(ψ)

 (27)

From the z-component we solve

ψ = cos−1(uz) (28)

This forces ψ to always be in the interval [0..π]. We know that sin(ψ)
is always going to be positive, which mean that we can divide the
second equation by the first equation and obtain

sin(φ)
cos(φ)

= tan(φ) =
uy

ux
(29)

From this we have
φ = atan2(uy,ux) (30)

That means that φ will always be in the interval [−π..π]. Observe if
ψ is zero then uy and ux is both zero and our approach will always
compute φ to be the value zero. The case is actually worse than it
seems. Because with ψ = 0 the ZYZ Euler angles are in a Gimbal
lock where the two Z-axis transformations are completely aligned.
Thus we test for Gimbal lock if ψ < ε where ε is a small user selected
threshold. In case of Gimbal lock we use a unit test-vector along the
x-axis

~w =

wx
wy
wz

= Q

1
0
0

Q∗ (31)

and compute
φ = atan2 (wy,wx) (32)

and set ψ = θ = 0. We now know how to compute φ and ψ even in
case of a Gimbal lock. So now we can compute

Qzy ≡ Rz(φ)Ry(ψ) (33)

and from this we know

Q = QzyQz(θ) (34)

so

Q∗zyQ = Qz(θ) =
[

cos(θ

2)
sin(θ

2)~k

]
(35)

and we get θ by

θ = 2 atan2

(
sin
(

θ

2

)
,cos

(
θ

2

))
(36)

WSCG 2009 Full papers proceedings 16 ISBN 978-80-86943-93-0

Statistical Reconstruction of Indoor Scenes
Philipp Jenke, Benjamin Huhle, Wolfgang Straßer

University of Tuebingen
Sand 14, 72076 Tuebingen, Germany

{jenke|huhle|strasser}@gris.uni-tuebingen.de

ABSTRACT
In this paper we consider the problem of processing scanned datasets of man-made scenes such as building interiors and office
environments. Such datasets are produced in huge quantity and often share a simple structure with sharp crease lines. However,
their usual acquisition with mobile devices often leads to poor data quality and established reconstruction methods fail – at least
at reconstructing sharp features. We propose to overcome the lack of reliable information by using a strong shape prior in the
reconstruction method: we assume that the scene can be represented as a collection of cuboid shapes, each covering a subset
of the data. The optimal configuration of cuboids is found by formulating the reconstruction problem as a discrete maximum a
posteriori (MAP) optimization in a statistical sense. We propose a greedy algorithm which iteratively extracts new shape can-
didates and optimizes over the shape of the cuboids. A new candidate is selected by scoring its ability to reconstruct previously
uncovered data points. The iteration converges at the first significant drop in the score of new candidates. Our method is fast and
extremely robust to noisy and incomplete data which we show by applying it to scanned datasets acquired with different devices.

Keywords
Surface Reconstruction, Statistical Methods, Bayesian Methods

1 INTRODUCTION
An ever-increasing number of more powerful 3D scan-
ning devices are being constructed (e.g. [BFW+05]),
leading to a huge number of datasets of many different
environments. One class of scenes, which has gained a
specifically great attention, especially in the computer
graphics and the robotics communities, is the class of
building interiors and office environments. However,
since most scanning devices focus on fast and easy
acquisition, the resulting data quality is often limited.
Many systems have in common, that they capture the
general structure of a scene very well, but fail to scan
the fine details in a sufficient resolution. On the other
hand, many applications, including surveillance sys-
tems, cultural heritage projects, path planning for au-
tonomous robots or emergency and evacuation simula-
tions require high-quality models of the general struc-
ture of a scene.

Recently, some authors proposed to use statistical
surface reconstruction methods building upon Bayes’

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

theorem which allow to include external knowl-
edge about the scene into the reconstruction process
(e.g. [DTB06, JWB+06, HAW07]). However, since
these methods are usually applied on a local scale,
they pose strong requirements on the quality of the
data which the previously mentioned datasets rarely
meet (non-uniform sampling, low signal-to-noise ratio,
holes). In such cases, the methods tend to fall back
to a smooth reconstruction such as Moving Least
Squares (MLS, [ABCO+03]). For the reconstruction
of man-made scenes, however, this is not desirable,
since the sharp creases, which are very descriptive for
the structure of the scene, are then lost. We preserve
this information by putting more knowledge about the
scene into the reconstruction. In the Bayesian setting
this means that a stronger prior has to be used. Jenke et
al. [JWB+06], for instance, only provide priors on the
local smoothness and density of their reconstruction.

When selecting a strong prior for a reconstruction
system, one therefore has to balance it between two
poles. On the one hand, the statistical model has to be
general enough to fit to all the scenes of the type one
addresses. On the other hand, it has to encode as much
external knowledge about the scene structure as possi-
ble in order to overcome the limitations of the data. For
the scans of building interiors, the general structure of
the scenes can often be assembled from a combination
of cuboids. We therefore describe our reconstruction
model as a set of cuboids of unknown size, orientation

WSCG 2009 Full papers proceedings 17 ISBN 978-80-86943-93-0

and scale: each cuboid is parameterized via a rotation
R ∈ R3×3, an anisotropic scaling S ∈ R3×3 and a trans-
lation t ∈ R3, leading to the 9-dimensional parameter
vector (α,β ,γ,sx,sy,sz, tx, ty, tz). These parameters in
combination with the unknown number of cuboids are
the free variables of our reconstruction model.

We formulate the reconstruction problem as an iter-
ative optimization process. At each iteration, we add
a new cuboid candidate which covers a previously un-
covered subset of the data points to the model and opti-
mize for the parameters of all cuboids. For each candi-
date, we compute a score, based on its power to explain
data points which were previously not covered by other
cuboids. We run the iteration until the score drops sig-
nificantly compared to scores of cuboids which are al-
ready in the model. In order to find good initializations
for new cuboid candidates, we detect planes in the un-
covered data points by using a RANSAC (random sam-
ple consensus) approach. Then, we establish a topol-
ogy graph over the planes and connect spatially close
planes with perpendicular normals. From all the sub-
graphs which match the graph generated from a cuboid
(Figure 1), we choose the one that best fits into the un-
covered data points.

(a) template graph of a cuboid
(6 nodes)

(b) primitive graph P created
from adjacent planes of a fictive
dataset

Figure 1: Graph matching.

The remainder of the paper is structured as follows:
Section 2 describes work related to our reconstruction
method, Section 3 presents the reconstruction pipeline
in detail and Section 4 discusses results we were able to
produce. Finally, Section 5 concludes the paper.

2 RELATED WORK
Due to its comparatively long history, the literature
in the field of surface reconstruction is very rich.
It includes implicit methods [HDD+92], Moving
Least Squares [ABCO+03] and Multilevel Partition
of Unity [OBA+03] approaches, Poisson Surface
Reconstruction [KBH06] methods as well as sta-
tistical techniques [DTB06]. However, most of
these traditional approaches fail to handle datasets
of poor quality such as the ones addressed here.
They make implicit assumptions about the sam-
pling quality which datasets of real environments
rarely meet. Especially feature-preserving methods
(e.g. [FCOS05, JWB+06, DHOS07]) are only applica-
ble to datasets which meet stringent sampling spacing
requirements and have a high signal-to-noise ratio.

Debevec and colleagues addressed the problem
of reconstructing building exteriors in [DTM96].
They merge geometric components computed from
photogrammetric modeling from images with an
image-based analysis-by-synthesis approach. The
main reason for the astonishingly good reconstructions
is that the general geometry is created in a manual
modeling process. Overcoming the limitation of poor
depth data has been addressed by some authors by
focusing on the type and properties of specific datasets
– especially for the reconstruction of buildings. Most
of them approach the problem from an outside per-
spective since aerial images are broadly available.
The group of Vosselman (see e.g. [SV02]), use a
parametric model to describe buildings as a set of
basic building blocks in a Constructive Solid Geometry
(CSG) representation, which they try to fit into the
aerial images. Similarly, Hu et al. [HYNP04] represent
building facades as cuboids, which they fit into edges
detected in aerial images combined with depth values
from registered airborne 2 1

2 D LiDAR height field
data. Another approach for building reconstruction
has been proposed by Lafarge et al. [LDZD06]: from
stereo satellite images of cities they extract candidate
positions for buildings. Then, they fit a simple model
of buildings consisting of rectangular ground shapes
with a roof to the height field data in a Bayesian sense.
Compared to our method, these systems operate on 2D
input (height field data or images), while we use 3D
point clouds from scanners within the scene as input.

Some authors tried to infer semantic knowledge
about a scene from connected components in a graph
structure over extracted primitives. Nüchter et al.
[NSH03] suggest a model for building interiors con-
sisting of floors, ceilings, walls and doors. In order
to classify the different entities, they encode the rela-
tionship between the classes (e.g. ’a ceiling is always
above a wall’). The additional information gained from
this process is used to improve the quality of the input
data. Schnabel and colleagues extend their previous
system [SWK07] to detect primitive shapes in point
clouds in [SWWK08]. They enrich the primitives with
topological connectivity. Upon the resulting topology
graph they build a query-interface to allow for the
recognition of user-specified patterns (e.g. of windows
or roofs) in the data. We use a similar query method
for our template matching (see Section 3.3).

An alternative is to approach building reconstruction
from a 2D perspective. Schindler and Bauer [SB03] de-
tect planes and principle directions in scans of building
facades and afterwards employ the specific characteris-
tics of facades such as 2D features and 2D primitives
to reconstruct the fine details. Jenke and colleagues
[JKS08] assemble a reconstruction directly from prim-
itive structures which they detect using the RANSAC
approach. For datasets of low quality, our method is

WSCG 2009 Full papers proceedings 18 ISBN 978-80-86943-93-0

more stable, since the lack of information in poorly
sampled facets can be compensated for by the infor-
mation in adjacent facets in a cuboid shape. The ap-
proach of Chen and Chen [CC08] works rather sim-
ilar: they extract planar regions in range images by
normal clustering and afterwards extract simple poly-
hedrons by computing the intersections between adja-
cent planes. In cases, where this approach fails, they
propose a user-guided process.

Bahmutov et al. presented a combined acquisition
and reconstruction system in [BPM06] in an operator-
guided system. Similar to our system, they employ
external knowledge about the scene: they assume that
each room can be represented as a box and addition-
ally provide a set of construction blocks for all other
parts of the building (e.g. hallways). However, this lim-
its the shape space of their system, e.g. they would not
be able to reconstruct the cuboids of different height
as in Figures 2 and 3. The impressive results they are
able to get come at the cost that their method is lim-
ited to their self-made acquisition device and requires
for some user-intervention.

3 ALGORITHM
We formulate our surface reconstruction method as an
optimization problem on the free parameters of the
cuboid shapes. However, due to the discrete nature of
the problem (unknown number of cuboids) we run the
optimization in an iterative manner. At each iteration,
we add a new cuboid to the model. A new candidate
is selected by scoring its ability to reconstruct previ-
ously uncovered data points. The iteration converges at
the first significant drop in the score of new candidates.
The pipeline of our method is shown in Figure 2.

Following the ideas of Jenke et al. [JKS08], we com-
pute a sampling estimate ε j and a noise standard de-
viation σnoise, j for each data point d j ∈ D (set of all
input data points) in a preprocessing phase: we em-
ploy an extended definition of sampling which goes be-
yond the average spacing of a point towards the near-
est neighbors. Instead, with the term sampling we de-
note the radius of the minimal influence sphere required
for a stable normal estimation. This also takes the lo-
cal signal-to-noise ratio and sampling anisotropy into
consideration. The size of this sampling is determined
by iteratively growing the sampling radius and com-
paring the eigenvalues and eigenvectors of the covari-
ance matrices of the data points in the environments.
The process stops when the eigenvalues are sufficiently
anisotropic and the direction of the eigenvector corre-
sponding to the smallest eigenvalue (normal direction)
does not change any more. Then, we fit a second-order
polynomial to the points within sampling-radius and
infer the local noise level from the offsets of the data
points to the polynomial surface. We use this estimate
later to determine if a data point d j fits into a primitive

(distance to the primitive is smaller than 3σnoise, j, corre-
sponding to a 99% probability in an assumed Gaussian
noise distribution).

3.1 Model Description
Our scene model assumes that the general structure of
all (indoor building) scenes can be assembled from a
combination of a finite and small number of cuboid
shapes. The number of parameters in the reconstruction
is 9|M|, where M is the set of cuboids. For each cuboid i
we maintain a list of assigned data points Di ⊂ D. A
point x in each cuboid’s local coordinate system can be
transformed into world coordinates via

x→ RiSix+ ti,

with rotation Ri, scaling Si and translation ti. For the
optimization we use its inverse to transform a point x
into the corresponding cuboid coordinate system:

x→ S−1
i R−1

i (x− ti).

Cuboids with parallel facets, which are close to each
other, most likely result from a surface structure which
consists of a combination of several cuboids – e.g. an
L-shaped object. In order to enforce consistency con-
straints in such an arrangement, we need to track the
connectivity between the cuboids. We organize this
connectivity in a shape graph structure S . Parallel
facets of cuboids which are close to each other (distance
< 3σi; σi is the average noise standard deviation of the
data points in cuboid i) are connected in the graph. Two
facets are considered parallel, if the absolute dot prod-
uct of the normals is larger than 0.9 (≈ 25 degrees). For
such connected facets, we check if either corner points
of the connected cuboids are close or if a corner point
of one cuboid is close to a facet of the other cuboid. We
denote the shape graph storing the corner to corner con-
nections by SCC and the graph storing the connections
between corner points and facets SCF . Figure 3 shows
this connectivity between facets and corner points (cor-
ner to corner connections are visualized as red cubes,
corner to facet connections as blue spheres).

3.2 Bayesian Problem Formulation
We use a statistically motivated formulation similar to
[JWB+06, DTB06] based on Bayes rule:

p(M|D) =
p(D|M)p(M)

p(D)
, (1)

where our model M is the set of cuboids represented via
their free parameters (rotation, translation and scaling).
The term p(M|D) is the posterior, p(D|M) the likeli-
hood and p(M) the prior. In the optimization process,
we maximize the right-hand side of Equation 1, leading

WSCG 2009 Full papers proceedings 19 ISBN 978-80-86943-93-0

Figure 2: Reconstruction pipeline: data preprocessing, plane detection (extent of planes is downscaled), cuboid
candidate extraction, optimization, meshing.

to the maximum a posteriori (MAP) optimization prob-
lem. For the sake of stability and simplicity, we dis-
card the constant evidence term p(D) and transform the
formulation into negative log-space. Therefore, from
now on, we will denote the resulting potentials with
φ =− log p:

φmap(M|D) = argmaxM(φ(D|M)+φ(M)). (2)

The likelihood potential φ(D|M) models the attrac-
tion between each cuboid i and its associated data
points Di:

φ(D|M) =
1
|M|

|M|

∑
i=1

1
|Di| ∑

j∈Di

1
σ2

noise, j
τ

2
i (d j),

where τi(x) is a function which computes the distance
to the closest projection of the point x onto the facets of
cuboid i.

The prior potential φ(M) ensures consistency be-
tween connected cuboids. It attracts corners connected
in the shape graph SCC and corners connected to facets
in SCF towards each other:

φ(M) = 1
|E (SCC)| ∑(k,l)∈E (SCC)

1
σ2

noise,k,l
||ck− cl ||22

+ 1
|E (SCF)| ∑(k,l)∈E (SCF)

1
σ2

noise,k
d2

l (ck),

where σnoise,k,l = σnoise,k+σnoise,l
2 is the average noise of

the cuboids and dl(x) is the distance of point x from
facet l. The set of edges in SCC|CF is denoted by
E (SCC|CF).

3.3 Detection of Cuboids
Equation 2 can not directly be solved, because it is nei-
ther known in advance, how many cuboids are optimal
to cover the input data points, nor which data point is
represented by which cuboid. We propose an iterative
greedy algorithm to determine this information. In each
iteration, we use the RANSAC principle as presented in
[SWK07] to automatically detect plane primitives in the
data (Figure 2, second step). From this forwards, by the
term plane we will mean a bounded planar surface. The

extent of a plane is given by the lengths of the tangents
tu and tv:

x = pplane +λutu,plane +λvtv,plane,

with λu,λv ∈ [−1,1]. The scaling of the planes is re-
quired to determine distances between planes. We align
the tangent vectors of each plane to the principle axes
of the corresponding data points and scale them such
that the projections of the associated data points fit into
the span of the tangent vectors. The planes are then
organized in a primitive graph structure P: we insert
an edge for each pair of perpendicular planes (absolute
value of the dot product is smaller than 0.1, which cor-
responds to approx. 85 degrees). In order to avoid con-
nections between nodes which are not reasonable, we
prune connections between planes k and l if their short-
est distance d is larger than the smaller diagonal of the
area spanned by the tangent vectors of the planes:

d > min(
√
||tu,k||22 + ||tv,k||22,

√
||tu,l ||22 + ||tv,l ||22).

In the assembled graph structure, we search for the
graph pattern of a cube (Figure 1a). For most datasets,
this pattern can be found several times in P . However,
not all of these combinations lead to cuboid shapes ex-
isting in the data. In order to only extract the candidate
with the highest probability, we rerun the pattern ex-
traction process several times (50 in all our examples)
and compute a score δ for each candidate:

δ =
∑ j∈Dcand

exp(− τ2
cand(d j)
σ2

noise, j
)

Acand
,

where τcand(x) is the distance function of the candidate
shape, Dcand denotes the set of data points represented
by the planes in the current pattern. Acand is the sur-
face area of the candidate cuboid which can easily be
computed from its scaling parameters. Deprecated can-
didate shapes with small volume due to close parallel
planes (distance between opposite planes smaller than
noise level) are automatically pruned. In order to cor-
rectly evaluate the score for a candidate, it has to be (at
least roughly) fitted to its final shape. This is done by

WSCG 2009 Full papers proceedings 20 ISBN 978-80-86943-93-0

initializing the rotation parameters from the perpendic-
ular normals of the planes in the pattern and adjusting
the scaling and translation to best fit the cuboid’s facets
to the planes. For the subgraph-matching we use a sim-
ple randomized approach which randomly chooses a
seed node and then grows along the primitive graph P
– if possible – until all nodes and edges of the template
are matched.

The cuboid with the highest score is then added to
the set of cuboids M. After each iteration, we rerun the
optimization of Equation 2 and update the data point as-
signment. Therefore, we compute the distance of each
data point d j to all cuboids in M and assign it to the
cuboid with the smallest distance, if this distance is
smaller than 2σnoise, j. The RANSAC plane detection
is only applied to data points which have not previously
been assigned to a cuboid. We also insert a plane node
for each facet of already detected cuboids into the prim-
itive graph P . This is especially required for structures
where cuboids share a facet. In order to be able to also
handle surfaces with open ends, we additionally use a
template of a cube with a missing facet which consists
of 5 nodes only.

Finding an automatic iteration stopping criterion is
generally hard and very much depends on the expecta-
tions one has of the reconstruction. Some might only be
interested in the general interior structure of a building,
while others might want to extract each cuboid-shaped
small box in a room. A good compromise in our expe-
rience is to stop the process when a significant drop of
the score of a newly inserted cuboid appears (we set this
threshold to 0.25 times the average score of the shapes
which are already in the model M). In all our tests, this
criterion found all the cuboids expected in a dataset.

Figure 3: Connectivity between cuboids: corner-corner
(red cubes), corner-facet (blue spheres).

3.4 Meshing
The final step in the reconstruction process is the ex-
traction of a triangle mesh (Figure 2, right). For a single
cuboid, this is rather simple: two triangles are created
for each facet. However, for cuboids, which are con-
nected in the shape graph S , parts of some facet area
need to be left open. In such cases, we use the Geo-

metric Tools1 library, to intersect the polygons of adja-
cent facets and triangulate the resulting polygons with
holes. However, the intersection routine runs into sta-
bility problems for polygons with parallel edges. We
solve this problem by slightly extruding the subtrahend
polygon along such edges. Cuboid facets which ac-
count for less than 1% of the data points assigned to a
cuboid are completely left open, since they most likely
result from open ends in the data.

For the textured meshes in Section 4, we created a
texture image for each facet from the color information
given at the data points. Please note, that incorrect col-
ors (Figure 4 d) result from calibration errors in the data
and cannot be corrected by our reconstruction method.

4 RESULTS
In this section, we present reconstruction results pro-
duced with the described method. Our prototype imple-
mentation was written in C++ using Visual Studio 2008
on the Windows XP platform. The timings in Table 1
were performed on an Intel Core 2, 2.4 GHz system
with 4 GBs of RAM. We optimize the energy function
with the Polak-Ribiere conjugate gradient optimization
routine described in the Numerical Recipes [PTVF07].
The threshold on the minimal number of points required
to accept a plane candidate in the RANSAC detection
phase nRANSAC is a user parameter which we set to 3000
in the examples in the paper. A data point j is consid-
ered to fit into a plane, if its distance is smaller than
3σnoise, j.

The dataset in Figure 4 was acquired with a mobile
device based on a laser-scanner setup mounted on a cart
which is dragged through the scene. 2D scans are con-
tinuously acquired and registered into a global coordi-
nate system solving the self-localization and mapping
(SLAM) problem with the data from a second, horizon-
tally oriented 2D laser scanner [BFW+05]. This setup
on the one hand allows for the reconstruction of large
scenes, but on the other hand produces data of poor
quality. Especially, frequently occurring 2D scans for
which the registration into the world coordinate system
was incorrect, pose a great challenge to any reconstruc-
tion system (Figure 4a). Figure 4b shows the recon-
structed cuboid shapes and their connectivity between
adjacent facets (red and blue spheres). Especially in
the detail view one can see, that the consistency con-
straints between adjacent facets from different cuboids
cannot perfectly be met. This results from the slightly
incorrect global registration during the data acquisition.
However, our reconstruction method is still able to find
an optimal alignment of the cuboid shapes. Figures 4c
and d show renderings of the extracted meshes. Please
note, that some facets seem to be tessellated with too

1 http://www.geometrictools.com

WSCG 2009 Full papers proceedings 21 ISBN 978-80-86943-93-0

(a) input data

(b) extracted shapes with shape graph S (c) created mesh

(d) textured mesh

(e) remaining uncovered data points

Figure 4: Dataset floor (detail views as sub-images).

WSCG 2009 Full papers proceedings 22 ISBN 978-80-86943-93-0

many triangles which is due to the polygon intersec-
tion routine, which sometimes produces unnecessary
additional polygon points. Finally, Figure 4e shows the
points remaining unassigned during the reconstruction
process. Most of them belong to small objects in the
scene which are not scanned with a sufficient resolution
or are outlier points created outside of windows. The re-
maining points either result from incorrectly registered
frames during the acquisition or from parts of the build-
ing interior which were only partly acquired (center part
of the left wing). There, no primitive planes could be
detected by the RANSAC method which would allow
for the extraction of cuboid shape candidates.

The scanning system used to assemble the corner
dataset in Figure 5 consists of a 2D laser scanner and
a color camera mounted on a pan-tilt unit. Compared to
the floor dataset, its data quality is significantly better
allowing the system to correctly reconstruct the room
and a doorway. In order to improve the performance of
the method, we down-sampled the original datasets to
the sizes provided in this section and used the original
point cloud for the texture-creation only.

Considering the huge number of data points, our re-
construction method is comparatively fast. However,
it is very hard to compare either the timings or the re-
construction quality with previous work. To our knowl-
edge, no previous method is able to automatically re-
construct sharp crease lines in datasets of the quality
presented here. The reconstruction times for the pre-
processing phase are roughly linear in the number of
data points, however, the absolute timings strongly de-
pend on the local characteristics of the data (stronger
noise requires for larger influence radii which makes
the point neighborhood queries more expensive). The
overall time consumptions are quite acceptable since
we use the efficient method of [SWK07] to improve a
naive RANSAC plane detection. The randomized ap-
proach to detect the template cuboid shapes in the plane
primitive graph P is rather fast, however, the itera-
tively computed score for new cuboid shape candidates
makes the candidate selection process the most time-
consuming part. The time required to extract the mesh
for the final reconstruction is negligible and the time re-
quired to create the textures is linear in the resolution of
the textures created. For all the renderings in the paper,
we extracted textures of the size 512× 512 pixels. Ta-
ble 1 lists the timings required for the datasets in this
section.

4.1 Limitations
Our method is not capable of analyzing holes in the
data: while the intersection of cuboids is correctly
handled, missing data resulting from scanning errors
(e.g. due to occlusions) as well as holes in the scene
(e.g. windows or doors in a room) will completely be
filled by the algorithm. Also, large rectangular furni-

(a) input data

(b) extracted shapes with shape graph S

(c) extracted mesh

Figure 5: Dataset corner.

ture pieces will be reconstructed as cuboids, which can
be considered incorrect if one only looks for building
geometry. We believe that distinguishing between such
cases can be done within the same model by more care-
fully analyzing the scene semantics. Another limitation
results from the fact that we only reconstruct cuboids if
at least 5 facets have been detected as planes. Conse-
quently, some doors in Figures 4 and 5, where the scan-
ner acquired too few points at the door frames for the
detection of a planar structure, cannot be reconstructed.

WSCG 2009 Full papers proceedings 23 ISBN 978-80-86943-93-0

#data prepro- plane/cand. optimi-
points cessing extraction zation

floor (5) 509k 461.8s 96.7s/108.3s 9.4s
corner (3) 106k 28.9s 11.8s/8.6s 1.2s

Table 1: Timing results in seconds: name (number
of extracted shapes), input data points, preprocessing
time, plane detection (RANSAC) and the candidate ex-
traction time, parameter optimization time.

5 CONCLUSIONS
We have presented a robust and fast method to ex-
tract the general structure of indoor-scans of many man-
made scene environments such as office or department
buildings. We cast the surface reconstruction problem
to a discrete optimization problem which we solve in
an iterative manner. The underlying energy function is
motivated in a statistical Bayesian sense and consists of
a data fitting and a consistency potential. At each iter-
ation, we add one more cuboid shape until the recon-
struction does not improve any more. From the recon-
structions, we extract a textured triangle mesh which
can be used for many further processing applications
including efficient rendering of the scene and compres-
sion of the point-based datasets to a representation us-
ing only few triangles.

6 REFERENCES
[ABCO+03] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman,

D. Levin, and C. T. Silva. Computing and ren-
dering point set surfaces. IEEE Transactions on
Visualization and Computer Graphics, 9:3–15,
2003.

[BFW+05] P. Biber, S. Fleck, M. Wand, D. Staneker, and
W. Straßer. First experiences with a mobile
platform for flexible 3d model acquisition in in-
door and outdoor environments – the wägele. In
3D-ARCH ’05, 2005.

[BPM06] G. Bahmutov, V. Popescu, and M. Mudure. Ef-
ficient large scale acquisition of building interi-
ors. Computer Graphics Forum, 25/3, 2006.

[CC08] Jie Chen and Baoquan Chen. Architectural
modeling from sparsely scanned range data.
Int. J. Comput. Vision, 78(2-3):223–236, 2008.

[DHOS07] J. Daniels, L. K. Ha, T. Ochotta, and C. T.
Silva. Robust smooth feature extraction from
point clouds. In Proceedings Shape Modelling
International (SMI ’07), 2007.

[DTB06] J. R. Diebel, S. Thrun, and M. Bruenig. A
bayesian method for probable surface recon-
struction and decimation. ACM Transactions
on Graphics, 25:39–59, 2006.

[DTM96] Paul E. Debevec, Camillo J. Taylor, and Jiten-
dra Malik. Modeling and rendering architec-
ture from photographs: a hybrid geometry- and
image-based approach. In Proceedings ACM
Siggraph ’96, 1996.

[FCOS05] S. Fleishman, D. Cohen-Or, and C. T. Silva.
Robust moving least-squares fitting with sharp
features. In Proceedings SIGGRAPH ’05,
2005.

[HAW07] Q. Huang, B. Adams, and M. Wand. Bayesian
surface reconstruction via iterative scan align-
ment to an optimized prototype. In Proceed-
ings Symposium on Geometry Processing (SGP
’07), 2007.

[HDD+92] H. Hoppe, T. DeRose, T. Duchamp, J. McDon-
ald, and W. Stuetzle. Surface reconstruction
from unorganized points. In Proceedings SIG-
GRAPH ’92, 1992.

[HYNP04] J. Hu, S. You, U. Neumann, and K. K. Park.
Building modeling from lidar and aerial im-
agery. In Proceedings ASPRS ’04, 2004.

[JKS08] P. Jenke, B. Krückeberg, and W. Straßer. Sur-
face reconstruction from fitted shape primi-
tives. In Proceedings Vision, Modeling and Vi-
sualization (VMV ’08), 2008.

[JWB+06] P. Jenke, M. Wand, M. Bokeloh, A. Schilling,
and W. Straßer. Bayesian point cloud recon-
struction. Computer Graphics Forum (Proceed-
ings EG ’06), 25(3):379–388, 2006.

[KBH06] M. Kazhdan, M. Bolitho, and H. Hoppe.
Poisson surface reconstruction. In Proceed-
ings Symposium on Geometry Processing (SGP
’06), 2006.

[LDZD06] F. Lafarge, X. Descombes, J. Zerubia, and M.-
P. Deseilligny. An automatic 3d city model :
A bayesian approach using satellite images. In
Proceedings IEEE Acoustics, Speech and Sig-
nal Processing (ICASSP ’06), 2006.

[NSH03] A. Nuechter, H. Surmann, and J. Hertzberg.
Automatic model refinement for 3d reconstruc-
tion with mobile robots. In Proceedings 3DIM
’03, 2003.

[OBA+03] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and
H.-P. Seidel. Multi-level partition of unity im-
plicits. In Proceedings SIGGRAPH ’03, 2003.

[PTVF07] W. H. Press, S. A. Teukolsky, W. T. Vetterling,
and B. P. Flannery. Numerical Recipes: The Art
of Scientific Computing. Cambridge University
Press, August 2007.

[SB03] K. Schindler and J. Bauer. A model-based
method for building reconstruction. In Pro-
ceedings HLK ’03, 2003.

[SV02] I. Suveg and G. Vosselman. Automatic 3d
building reconstruction. Photonics West 2002:
Electronic Imaging, 4657 - 4677:59–69, 2002.

[SWK07] R. Schnabel, R. Wahl, and R. Klein. Efficient
ransac for point-cloud shape detection. Com-
puter Graphics Forum, 26:214–226, 2007.

[SWWK08] R. Schnabel, R. Wessel, R. Wahl, and R. Klein.
Shape recognition in 3d point-clouds. In
Prodeedings WSCG ’08, 2008.

WSCG 2009 Full papers proceedings 24 ISBN 978-80-86943-93-0

Adaptive Streaming and Rendering of Large Terrains:
A Generic Solution

Raphaël Lerbour
THOMSON R&D France

raphael.lerbour@thomson.net

Jean-Eudes Marvie
THOMSON R&D France

jean-eudes.marvie@thomson.net

Pascal Gautron
THOMSON R&D France

pascal.gautron@thomson.net

ABSTRACT
We describe a generic solution for remote adaptive streaming and rendering of large terrains. The challenge is to
ensure a fast rendering and a rapidly improving quality with any user interaction, network capacity and rendering
system performance. We adapt to these constraints so loading and rendering speeds do not depend on the size of
the database. We can thus use any database with any client device. Our solution relies on a generic data structure to
adaptively handle data from the server hard disk to the client rendering system. The same methods apply whatever
is done with these data: only the data themselves and the rendering system vary. We base our data structure
on existing solutions with good properties and add new methods to handle it more efficiently. In particular we
avoid loading irrelevant or redundant data and we request the most important data first. We also avoid costly data
structure operations as much as possible, in favor of “in-place” data updates and selection using sample masks.

Keywords
Planetary terrain, adaptive rendering, adaptive streaming, generic data structure, level of detail.

1 INTRODUCTION
Remote adaptive streaming and rendering of large ter-
rains can be used, for instance, to visualize the Earth in
3D with great detail while loading required data over
the Internet. The challenge is to ensure a fast rendering
with a rapidly improving quality on any client device
when a user moves freely over the terrain. Figure 1
presents the result with two example databases.
The terrain surface is uniformly discretized into 2D
maps of digital samples. They are usually elevation
maps used to reconstruct the relief in 3D along with
color maps like photographs. Those maps are huge: a
map of the Earth with a precision of 500 meters be-
tween samples is over 10 gigabytes. In most cases, such
a large amount of data can neither entirely be loaded in
memory nor interactively rendered. We thus need to use
specifically designed data structures and algorithms.
We propose a solution that relies on a generic data struc-
ture to adaptively handle data from a server hard disk
to a client rendering system as Figure 2 shows. We
base this structure on well tried principles and improve
its efficiency with new properties and techniques. Our
method can be split into two parts:
First, we adaptively stream the data from the server
to the client (“progressive loading” step in Figure 2).

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

(a) Earth (b) Puget Sound

Figure 1: 3D renderings at 60 frames per second.
Top: after streaming data for 40 seconds at 1Mbps.

Bottom: after moving towards terrain features:
a) The Alps, b) Mount Rainier.

The main challenge is to continuously update a partial
database within the client. Our technique avoids load-
ing irrelevant or redundant data and adapts to the net-
work speed. The only task of the server is to read re-
quested data from a specifically designed file and trans-
mit them to the client (“requests management” step).
Second, we adaptively select the data to render in the
partial database of the client and the missing data to re-
quest from the server (“adaptive selection” step). A user
can move the viewpoint unpredictably and any render-
ing system may be used. In all cases, our method adapts
to the rendering speed using a measure of importance.

WSCG 2009 Full papers proceedings 25 ISBN 978-80-86943-93-0

Requests
management

Complete
database

Rendering
system

Server Client

Progressive
loading

Network
Adaptive
selection

Partial
database

request

reply (data)

importance

new data

Figure 2: Architecture for adaptive streaming and
rendering of terrain data. The user guides rendering on
the client. Selected available data are rendered while

missing data are requested from the server. The server
transmits these data from its database to the client.

2 RELATED WORK
The first solutions for adaptive terrain rendering
[LKR+96, DWS+97, RHSS98] minimize the number
of geometric primitives to render an elevation map
at each frame while ensuring that quality fits very
strict criteria. These methods need to store the entire
database in memory and require complex computations
at runtime. Furthermore, as modern graphics hardware
offer high rendering speed it became a better choice to
compute geometry faster and use batched primitives.
The method proposed by Hoppe [Hop98] paves the ter-
rain with blocks of polygons inside which data are or-
dered. These data are progressively added or removed
in this order to get the desired quality. Unfortunately,
this solution was not generalized to support progressive
transmission and does not scale to very large terrains.
Similarly, de Boer [dB00] uses a discrete set of uniform
resolution levels of detail in fixed-size blocks.
Lindstrom and Pascucci [LP01] perform data fetching
and rendering asynchronously, allowing for a smoother
rendering. Smart data organization in a file ensures fast
access to different levels of detail. However, no solu-
tion is proposed to handle distant loading and the data
selection for rendering is complex.
Levenberg [Lev02] organizes the data in a hierarchical
tree of blocks: it is possible to split a block in two if
a better quality is desired. This solution, like [dB00],
directly deals with blocks instead of samples, consider-
ably reducing the number of objects to handle.
Cignoni et al. [CGG+03] use a similar solution and
add support for progressive loading. Blocks are loaded
one by one, progressively descending the tree. This al-
lows using arbitrarily large terrains: a basic representa-
tion of the terrain is first rendered using the first level
of the tree and only desired areas are refined. How-
ever, blocks representing the same terrain area at dif-
ferent tree levels contain and need loading redundant
data. Also, the fixed-contents blocks they use require
changing tree level whenever different quality is de-
sired: costly database updates are frequent.
The clipmap [LH04] is based on the mipmap solution
for texture maps. It is extended with progressive load-

ing to support very large maps. However, the clipmap
inherits mipmap drawbacks. Levels of detail are neces-
sarily centered around the viewpoint so we cannot se-
lect the rendering quality for any terrain area based on
any set of criteria. In addition, rendering a level of de-
tail requires loading its data all around the viewpoint,
although those behind the viewpoint are not rendered.
The solution proposed by Schneider and Westermann
[SW06] divides blocks into several levels of detail, each
of which using the previous one’s data and adding its
own with an “in-place” update in the graphics hardware
memory. Switching between levels is done directly
with masks defining which samples are used [PM05].
However, no solution is brought concerning remote
loading and very large terrains are not supported.
A complete solution for terrain streaming and render-
ing is proposed by Gobbetti et al. [GMC+06] based on
[CGG+03]. It adds wavelet data compression to man-
age the progressive data update. However, database up-
dates are still frequent and even more costly because of
compression, thus harming rendering adaptivity espe-
cially on slow client devices.
Livny et al. [LKES07] propose combining the tree of
blocks structure with the idea of using multiple levels
of detail per block. However, the tree structure is im-
plicit and is used only to select data for rendering: no
progressive loading solution is proposed.
Commercial applications for terrain streaming and
rendering like the successful Google Earth and NASA
World Wind have existed for a few years. They rely
mostly on their user interface features and the great de-
tail of their databases. In contrast, their terrain-related
technologies do not bring significant improvements.
We note that most adaptive rendering solutions are not
useable in a remote database context, and solutions that
address progressive loading do it at the cost of render-
ing adaptivity. In this paper, we propose a generic adap-
tive data structure and the techniques to handle it effi-
ciently at every step of data loading and selection.

3 OVERVIEW
Adaptively streaming and rendering huge terrain maps
require using specifically adapted data structures and
algorithms. After taking note of previous solutions (see
Section 2), we choose to base our structure on certain
existing points. We subdivide the sample map into a
complete and uniform tree of blocks, then organize the
samples of these blocks in a succession of levels of de-
tail (LODs) of increasing resolution (see Section 4). We
first add new properties then use new techniques to han-
dle this structure faster and more adaptively.
Our first contribution concerning the data structure is
the non-redundancy of data: successive blocks and
LODs share their data instead of replacing them. In
fact, the new samples of a LOD are spatially interleaved
between the previous ones and we implicitly use all of

WSCG 2009 Full papers proceedings 26 ISBN 978-80-86943-93-0

them. This minimizes the amount of data to store and
load, and keeps a better coherency of data among the
entire tree. The other contribution is that a block may
be rendered when not all of its LODs are available. This
offers the possibility to progressively load the LODs of
a block. These new points are described in Section 4.2.
Once we have defined our data structure, we can use it
in the different steps presented in Figure 2:
We first store the complete tree of blocks in a single file
on the server’s hard disk as described in Section 5. Our
file organization guarantees that the data for any client
request are contiguous and that we can directly obtain
the position of this data chunk.
In a second step, we progressively load data to the
client as explained in Section 6. A measure of impor-
tance guides the order in which data loading requests
are transmitted to the server. We optimize the relevance
of loaded data and prevent overloading the network by
continuously updating the queue of pending requests
and by transmitting only a few requests at a time.
On the client side, we explicitly store an incomplete tree
of blocks in memory as Section 7 describes. When a
block is created, we allocate a single 2D array of sam-
ples in memory and initialize it with partial data from its
parent. We then progressively load new LODs and copy
their samples “in-place” in previously unused array po-
sitions. These methods, enabled by the non-redundancy
of data, reduce the number of data copies in memory.
The last step is the selection of data to render on the
client, described in Section 8. We first cull invisible
blocks, then choose a LOD for each visible block using
a measure of importance. This measure, presented in
Section 9, depends on the rendering performance and
on interactive user requirements so it can adapt to the
application. If a desired LOD is unavailable, we re-
quest it from the progressive loading step and we use
one with lower quality instead. Once a LOD is selected
for rendering, we extract the data to render using a mask
that references its samples in the array of the block.
Section 10 introduces results on two example applica-
tions: 3D rendering of planetary and non-planetary ter-
rains. Note that only the rendering system differs: no
specific methods are used in the main solution.

4 GENERIC DATA STRUCTURE
We base our solution on a generic data structure that
combines two commonly used methods: the terrain
map is subdivided into a complete and uniform tree of
blocks [Lev02], and each of these blocks has a set of
levels of detail with increasing resolution [dB00].
Blocks are uniform 2D arrays of samples with a con-
stant resolution. Each one represents a specific square
area of the terrain and can be rendered on its own.
The tree is a multi-resolution hierarchical structuring of
the terrain map. Each level of the tree covers the entire
terrain, with increasing resolution and quality as one

gets lower in the tree. Starting with a single root node,
the nodes of the tree are blocks with a constant number
of children – the minimum is four and corresponds to
a quad-tree. The children’s covered terrain areas uni-
formly subdivide the parent’s one as shown in Figure 3.
The tree can have any depth, as long as one can subdi-
vide the terrain map with enough blocks.

(a)

(b)

2
3

2

3

1

1

Figure 3: Construction of a three-level quad-tree of
blocks. a) Successive uniform subdivisions of the

terrain map. Red frames cover the same terrain area.
Block 1 is the root and covers the entire terrain.
b) Corresponding tree with the same numbers.

Levels of detail (LODs) are successive subsets of the
sample array of a block as shown in Figure 4. Each
LOD contains the previous one and adds new samples;
the last LOD uses the full sample array of the block.
Array subsets of the LODs are uniform over the blocks
to allow using generic methods for storage, update and
selection. In our application, each LOD doubles the
resolution of the array subset in both dimensions com-
pared to the previous one – minus one row and one col-
umn when using odd-resolution blocks: see Section 8.2.
The number of children per block is thus defined by the
number of LODs: for instance when using three LODs,
the last one has sixteen times more samples than the
first, hence the block has sixteen children.

1 2 3
Figure 4: Successive LODs of a block (example of a

9×9 sample array with three LODs). Full black
samples are used, unfilled ones are not.

4.1 Advantages
The data structure was chosen for its properties in adap-
tive streaming and rendering, described hereafter.
The tree structure allows us to use only a few blocks
in the upper tree levels to render terrain areas with
low quality requirements, and inversely. This technique
minimizes the total amount of rendered data and better

WSCG 2009 Full papers proceedings 27 ISBN 978-80-86943-93-0

distributes these data over the terrain. Similarly, with
the LOD structuring of blocks, we can choose a LOD to
render for each block based on the desired quality. This
makes the data selection adaptive not only in the tree of
blocks but also within these blocks, thus lowering the
number of costly data structure update operations.
Another property is that the terrain can always be en-
tirely rendered at a minimum quality even if not all the
tree levels are loaded. We may thus progressively load
the tree, starting with the root block then descending
where needed. When a block is loading, we continue
rendering the terrain area using upper tree levels. In ad-
dition, the tree structure simplifies the culling of invisi-
ble blocks using a classical depth-first walk-through.

4.2 New Properties
To better adapt the structure to our needs and improve
its general efficiency, we add two new properties:
First, a block and its children share samples because
they cover the same terrain area: this avoids loading
redundant data. When a block in the partial client tree
splits, it gives the samples of its last LOD to its children,
creating their first LODs. Reciprocally, it gets these
samples back from the children when they are merged.
Split and merge operations are described in Section 7.1.
Second, we allow rendering a block even if its sample
array is not fully loaded: only the samples of the se-
lected LOD need to be available. Consequently, we can
progressively load the LODs of a block into a common
sample array (with the refine operation: see Section 7.2)
while using this array to render previous LODs.
Using these properties, we can get one level down in the
tree with no need to load all the data of the new blocks.
They get their first LOD from the parent and only those
who need more quality start loading their next LODs.

5 SERVER DATABASE
The first place where the data are located is a pre-
computed file on the server’s hard disk. Many clients
can connect to the server at the same time and request
data corresponding to any terrain area: hard disk ac-
cesses are random and very frequent. In order to mini-
mize disk activity, we optimize the organization of the
data in the file when constructing it.
The file first contains a header with characteristics of
the database like the resolution of the blocks and their
number of LODs. Then, the contents of the tree are
“flattened” as shown in Figure 5, LOD by LOD. Load-
ings are done one LOD at a time, hence ensuring that all
the data for a single request are contiguous in the file.
The size of each file element is known in advance: all
blocks and LODs have uniform resolutions and samples
are stored on a constant number of bytes. Furthermore,
the tree is uniform and complete and the blocks of each
level are stored in order. Consequently, we can get the
file position for any request in constant time.

header 1 2

1

2

(a)

(b)

(d)

(c)
Not stored:

comes from parent
(block 1)

Figure 5: File organization (example of a two-levels
tree with three-LODs blocks). a) Original tree
structure. b) Block structuring with LODs (see

Figure 4). c) Redundancy-free LOD storage. d) Final
data order in the file with the same numbers as in (a).

Non-redundancy of data is clearly visible in Figure 5.
First, we do not store the first LOD of any block be-
cause it comes from its parent. The root block does
not have a parent, we thus store its first LOD in the file
header. Second, a LOD implicitly reuses the previous
ones so we store only the new samples.

6 PROGRESSIVE LOADING
In our solution, the server only reads and transmits data
“as is” to clients on demand. We manage progressive
data loading on the client side as Figure 2 shows. At
any given time, our method streams the most important
data: it implicitly adapts to the network speed and the
rendering quality constantly improves.
When the adaptive selection step (presented in Sec-
tion 8) needs a new LOD for a block, it sends a loading
request to the progressive loading step while rendering
continues in parallel with the available data.
The server usually may not respond quickly to all re-
quests because the network can have any speed and la-
tency and there may be other clients asking for data.
Unfortunately, the longer a request is pending the more
it is probable that this request is no longer relevant
at data reception, for instance if the user viewpoint
has moved. To avoid overloading the network and the
server with irrelevant loadings, we restrict the number
of pending server requests using a fixed-size queue on
the client. When the client receives data from the server,
we update the partial database with a refine operation
and we remove the request from the queue.
To choose the requests to queue, the adaptive selec-
tion step gives an importance value along with each
request (see Section 9) and continuously updates this

WSCG 2009 Full papers proceedings 28 ISBN 978-80-86943-93-0

value. When room is available in the queue, the pro-
gressive loading step selects the request with the high-
est importance, adds it into the queue, and transmits it to
the server. The adaptive selection step then sends again
requests that were not selected if they are still relevant.

7 CLIENT DATABASE
The client database is an incomplete and unbalanced
tree of blocks. The very first data loading contains
the first LOD of the root block: we can immediately
start rendering the terrain with the lowest quality. The
adaptive selection step then triggers specific database
update operations as explained in Section 8.1, progres-
sively expanding the tree as Figure 6 shows. All data
copies are performed in parallel with selection and ren-
dering so they do not harm rendering smoothness, espe-
cially on multi-core architectures. Only the tree struc-
ture changes and data deletion are protected.

(b)(a)

Figure 6: Progressive loading of a quad-tree. a)
Successive subdivisions of the terrain map (red, green,

then blue). b) The corresponding incomplete tree.

We store the samples of a block in a single array with
the resolution of its last LOD. This array is present in
memory only for the leaves of the tree in order to reduce
memory consumption on the client. Reciprocally, all
leaves of the tree have a sample array: we thus ensure
that any terrain area has a representation on the client.

7.1 Split and Merge Operations
When a fully loaded block needs to be rendered with
higher quality than it can offer, we use its children in-
stead. If the block is a leaf, we have to load the children
in memory with the split operation. The sample array of
the parent is uniformly subdivided into square subsets
corresponding to its children as Figure 7 shows. Sam-
ples of each subset are copied into the child’s previously
empty sample array to build its first LOD. The parent fi-
nally deletes its own sample array. Once the split oper-
ation is done, each child can progressively load its own
LODs and eventually split itself independently from the
others: that is how the tree gets unbalanced, and thus
how we get local adaptivity.
When a previously split block needs to be rendered with
lower quality than its children can offer, it gets back
its data from these children with the merge operation.
As Figure 7 shows, we recreate the block’s sample ar-
ray and get all of its samples from the first LOD of its
children. The children are merged recursively when

Figure 7: Block split and merge in a quad-tree.
Split — Left: Parent block with the array subsets of its

four children. Right: Children blocks with their first
LOD. Unfilled samples are not loaded yet. Merge —
Right: The four blocks to merge. Left: Parent block
fully reconstructed from the children’s first LODs.

needed. Once the merge operation is done, we delete
the children blocks because they are no longer used
for rendering. One can note that we could cache those
blocks in case they are needed again some time later,
as long as enough memory is available. We plan to im-
plement this in the future, although our solution already
offers some caching by using multiple LODs per block.

7.2 Refine Operation
When a partially loaded block needs to be rendered with
higher quality than its maximum available LOD can of-
fer, we load the next LOD with the refine operation.
Refining first requires loading data from the server: see
Section 6. At data reception, we add the new samples of
the LOD in the corresponding unused positions of the
sample array of the block as Figure 8 shows.

(a) (b)

Figure 8: Block refinements (same example as
Figure 4). a) Red samples (second LOD) are

interleaved between black ones (first LOD). b) Green
samples (third LOD) are added, the array is now full.

For rendering speed reasons, it is possible that samples
received from the server need transforming their for-
mat or mode of representation once for all before being
stored in the sample array. For instance, in the case of
3D rendering of planetary data, quantified elevation val-
ues relative to a reference ellipsoid may be translated
into 3D floating-point coordinates in a global coordi-
nate system. As for other data update operations, this
is done in parallel with rendering. Note that only the
samples in the client database change: two clients us-
ing two different rendering systems can use the same
methods and data, connecting to the same server.

WSCG 2009 Full papers proceedings 29 ISBN 978-80-86943-93-0

8 ADAPTIVE RENDERING
We can render the partial database of the client at any
moment. According to a measure of importance, we
first trigger database updates and select a LOD to render
for each visible block. We then send the samples of
those LODs to the rendering system with a set of masks.

8.1 Data Selection
To select data to render in the partial database of the
client, we first compute an importance value for all
blocks as explained in Section 9. Second, we select
the blocks to render. Only leaves of the tree can be ren-
dered because they have sample arrays. However, the
view frustum usually does not include the entire terrain
and some blocks are thus invisible: we cull them using
a classical depth-first tree walk-through. Finally, for
each block we choose the LOD to render. Each LOD
has an associated importance value: when this thresh-
old is reached, the LOD is selected if available.
When a required LOD is not available, we trigger the
corresponding database update operation. First, this
LOD may be of higher resolution than the maximum
available one. In that case, we send a request the pro-
gressive loading step. Second, the block may have been
split before because more quality was once required,
but now one LOD of this block is enough to render the
same terrain area. In that case we trigger a merge op-
eration, except when the desired LOD is the last one:
the first LODs of the block’s children contain the same
samples and we prefer to avoid data structure operations
when possible. Merge operations are triggered the same
way for invisible blocks in order to save memory.
Unlike the other operations, we trigger the split of a
fully loaded block when one of its children needs to
load its second LOD. Children are not in the tree yet,
so we guess their importance based on the parent’s one.
We use this guard because splitting blocks as soon as
they are fully loaded could lead to tree structure insta-
bilities when the importance of a block varies slightly,
uselessly harming the overall performance.

8.2 Masks for Level of Detail Rendering
Once we selected an available LOD to render for each
visible block, we send the corresponding samples to the
rendering system. We do this by applying a mask on the
sample array of the block; it defines the subset used by
the LOD. There is one mask per LOD computed only
once, common for all the blocks because the sample
array subsets are uniform. We thus do not have to store
or compute many masks for different blocks.
When using 3D graphics hardware to render elevation
data, masks can be implemented using triangle strips
[PM05]. This standard structure defines a set of con-
tiguous polygons to render with a succession of indices
pointing on an array of 3D vertices. In our case, each
triangle strip mask points on vertices computed from
the samples of the desired LOD as Figure 9 shows. This

way, the sample mask is applied directly in the graphics
hardware with no additional data copy.

Figure 9: Triangle strips for 3D rendering of a block
with elevation samples (same example as Figure 4).

For each LOD, the corresponding samples in the array
are linked to create triangles. Elevation values can be

used to compute 3D vertices coordinates.

Note that we use odd-resolution blocks with common
boundary samples so that adjacent triangles in neighbor
blocks stitch together. However, discontinuities appear
when those blocks are not rendered at the same LOD.
This paper does not present the details of this method,
but we can avoid such gaps using additional triangle
strip masks on block boundaries [LKES07].

9 MEASURE OF IMPORTANCE
We use a measure of importance to select the LOD to
render for visible blocks, to trigger updates of the par-
tial database, and to define the order in which we trans-
mit requests to the server. It ensures good adaptivity for
both loading and rendering. We can get an importance
value for any block at any time; it represents the quality
desired for the terrain area that this block covers.
Any measure of importance can be used, based on the
rendering system and the application. However, it al-
ways depends on a generic quality factor ensuring that
the solution adapts to the rendering speed. In practice,
the user selects the number of frames per second he or
she wants for rendering. Whenever the rendering speed
gets over or under this value – given or taken a variation
tolerance threshold to minimize instability –, the quality
factor respectively increases or decreases in proportion
until the target frame rate is obtained.
We know that the quality increases as one descends the
tree, so we give lower importance to blocks with a small
radius. In most cases we also want to give higher im-
portance to blocks close to the viewpoint. Other infor-
mation can be used to get a more specific measure of
importance, like the viewpoint’s incident angle and the
block’s geometry roughness. Equation 1 is an example
measure of importance, and Figure 10 shows its impact
on our 3D rendering application.

importance = log2

(
qualityFactor× radius

viewpointDistance

)
(1)

We select LODs using their numbers as importance
thresholds: the log2 function reflects that a LOD has
twice the samples of the previous one in both dimen-
sions. In addition, to get the importance of a loading

WSCG 2009 Full papers proceedings 30 ISBN 978-80-86943-93-0

Figure 10: Impact of the measure of importance on
3D rendering. Importance values define the colors: red
is more important than green and the brighter, the more
important. Using two LODs per block, we can select

them as in the picture: green for the first LOD and red
for the second. Color layers around the viewpoint

correspond to the levels of the tree: blocks split as they
get close, the terrain areas covered by their children are

smaller so they have lower importance.

request, we also want to take into account that a lower
LOD of the block is already available. We thus subtract
the number of this LOD from the computed importance.

10 APPLICATIONS AND RESULTS
The structure and methods presented in this paper are
generic: we deal with maps of samples, but those may
be rendered in multiple ways. We have implemented
two 3D rendering applications: one handles bounded
terrains with elevation relative to a plane; the other han-
dles planets mapped onto a cube with elevation relative
to a reference ellipsoid.
We tested both applications using real-world databases
and user interactions. The planetary terrain is the Earth
(Figures 1a, 11a) and the local terrain is the Puget
Sound (Figures 1b, 11b). Samples are made of 2 bytes
for elevation and 3 bytes for RGB color. The client runs
on a computer with a 2.4GHz Core 2 Duo CPU, 2GB
of RAM and a GeForce 8800 GTS graphics card. Data
are streamed uncompressed over a 1Mbps ADSL con-
nection and rendered on a window of 1600× 900 pix-
els. The target rendering speed is 60 frames per second
(FPS) and corresponds to around one million polygons
per frame with our rendering system and hardware.

10.1 Earth
The Earth database is a 13GB file built from the NASA
BMNG [SVS+05], a set of color and elevation maps
with 500m precision at the equator. We use six ten-level
quad-trees of 43×43 sample blocks with two LODs.
Figure 12 presents runtime results with an example tra-
jectory. We can see that loading stops as soon as the
frame rate gets below the given threshold: the quality
factor adapts so the importance of the blocks decreases.
No new request is added in the fixed-size queue and,
because data were loaded in importance order, no more
loading is needed to better distribute samples over the
terrain surface. In standard conditions starting at sec-
ond 180, the network is not fast enough to provide max-

(a) Earth (b) Puget Sound

Figure 11: 3D renderings after streaming data for 2
seconds (top) and 10s (bottom) at 1Mbps. See

Figure 1 for desired 60 FPS renderings after 40s.

imum quality at a stable 60 FPS, but 99.5% of received
data are immediately relevant for rendering. View-
frustum culling and importance computation take less
than 5% of the time for each frame.
We also ran the same test with the client located on
the same computer as the server. In these conditions,
the initial loading until achieving the target frame rate
takes less than five seconds. The rendering speed then
stays stable at 60 FPS for the remaining of the test. This
configuration can be used, for instance, to compute and
broadcast in real-time a terrain walk-through video.

10.2 Puget Sound
The Puget Sound database is a 16385×16385 samples
map with 10m precision and false color, for a total of
1.27GB. We use a nine-level quad-tree of 65×65 sam-
ple blocks with two LODs.
Results of the test are shown in Figure 12. When
quickly moving forward, most of the available data are
no longer rendered because they get behind the view-
point. The network delay prevents us from immediately
replacing them with higher quality data for visible ar-
eas: this explains the large frame rate increase. How-
ever in standard conditions starting at second 155, this
does not apply and the frame rate is stable while loading
because less data are required at once. When moving
backwards, the adaptive quality factor compensates for
the network delay: we continue to render areas getting
farther in high quality until the frame rate gets too low.

11 CONCLUSION
We proposed a generic solution for remote adaptive
streaming and rendering of large terrains. Our meth-
ods apply whatever is done with the data: only the data
themselves, the rendering system and the measure of
importance vary. We can, for instance, stream an aerial

WSCG 2009 Full papers proceedings 31 ISBN 978-80-86943-93-0

0

30

60

90

120

150

0 60 120 180 240

Frame rate (FPS)

Loaded data
(1:100 KB)

Earth

Waiting
(Figure 12a)

Zooming

Jumping to
other side

then waiting
Looking around

and walking Waiting
0

30

60

90

120

150

0 60 120 180 240

Puget Sound

Waiting
(Figure 12b)

Moving fast
forward

Looking around
and walkingWaiting

Moving
backwards

Figure 12: Statistics for interactive 3D rendering of the Earth and Puget Sound databases, streaming data over a
1Mbps connection. The horizontal axis is the time in seconds. The gray line is the target frame rate of 60FPS.

photography for 2D rendering with zoom or render the
Earth in 3D for a geo-positioning application. We adapt
to the loading and rendering speeds so they do not de-
pend on the size of the database. We can thus use
a single database on a single server with any kind of
client, like a smartphone with 3G connection or a desk-
top computer with 3D graphics hardware and broad-
band connection: only the rendering quality varies.
We based our data structure on existing solutions with
good properties and added new methods to handle it
more efficiently. We use this structure to manage the
data from the server hard disk to the client rendering
system trying to be as fast as possible. In particular
we avoid loading irrelevant data, for instance by en-
suring that data are not redundant between successive
loadings and by always sending the most important data
requests. We also avoid costly data structure operations
as much as possible, in favor of “in-place” data updates
and selection using sample masks.
In the future, we plan to produce results with low per-
formance devices and present specific features based on
the generic solution, like our method to render planetary
terrains. In addition, we are working to handle texture
and elevation maps concurrently, fix geometry gaps and
avoid down-sampling artifacts.

REFERENCES
[CGG+03] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton,

F. Ponchio, and R. Scopigno. BDAM – batched
dynamic adaptive meshes for high performance
terrain visualization. Computer Graphics Fo-
rum, 22(3):505–514, 2003.

[dB00] W. H. de Boer. Fast terrain rendering using ge-
ometrical mipmapping. Unpublished, available
at: http://www.flipcode.com/articles/

article_geomipmaps.pdf , 2000.

[DWS+97] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C.
Miller, C. Aldrich, and M. B. Mineev-Weinstein.
ROAMing terrain: real-time optimally adapting
meshes. In VIS ’97: Proceedings of the confer-
ence on Visualization ’97, pages 81–88, 1997.

[GMC+06] E. Gobbetti, F. Marton, P. Cignoni, M. Di
Benedetto, and F. Ganovelli. C-BDAM – com-

pressed batched dynamic adaptive meshes for
terrain rendering. Computer Graphics Forum,
25(3), 2006.

[Hop98] Hugues Hoppe. Smooth view-dependent level-
of-detail control and its application to terrain
rendering. In VIS ’98: Proceedings of the con-
ference on Visualization ’98, pages 35–42, 1998.

[Lev02] Joshua Levenberg. Fast view-dependent level-
of-detail rendering using cached geometry. In
VIS ’02: Proceedings of the conference on Visu-
alization ’02, pages 259–266, 2002.

[LH04] F. Losasso and H. Hoppe. Geometry clipmaps:
terrain rendering using nested regular grids.
ACM Transactions on Graphics, 23(3):769–776,
2004.

[LKES07] Y. Livny, Z. Kogan, and J. El-Sana. Seamless
patches for GPU-based terrain rendering. In Pro-
ceedings of WSCG ’07, pages 201–208, 2007.

[LKR+96] P. Lindstrom, D. Koller, W. Ribarsky, L. F.
Hodges, N. Faust, and G. A. Turner. Real-time,
continuous level of detail rendering of height
fields. In Proceedings of ACM SIGGRAPH 96,
pages 109–118, 1996.

[LP01] P. Lindstrom and V. Pascucci. Visualization of
large terrains made easy. In VIS ’01: Pro-
ceedings of the conference on Visualization ’01,
pages 363–371, 2001.

[PM05] J. Pouderoux and J.-E. Marvie. Adaptive stream-
ing and rendering of large terrains using strip
masks. In Proceedings of GRAPHITE 05, pages
299–306, 2005.

[RHSS98] S. Roettger, W. Heidrich, P. Slusallek, and
H. Seidel. Real-time generation of continuous
levels of detail for height fields. In Proceedings
of WSCG ’98, pages 315–322, 1998.

[SVS+05] R. Stockli, E. Vermote, N. Saleous, R. Simmon,
and D. Herring. The Blue Marble Next Gener-
ation - a true color earth dataset including sea-
sonal dynamics from MODIS. NASA Earth Ob-
servatory, 2005.

[SW06] J. Schneider and R. Westermann. GPU-friendly
high-quality terrain rendering. Journal of
WSCG, 14(1-3):49–56, 2006.

WSCG 2009 Full papers proceedings 32 ISBN 978-80-86943-93-0

Locally Adaptive Marching Cubes through Iso-Value
Variation

Michael Glanznig Muhammad Muddassir Malik M. Eduard Gröller

Vienna University of Technology, Institute of Computer Graphics and Algorithms
Karlsplatz 13, A-1040 Vienna, Austria

michael.glanznig@student.tuwien.ac.at mmm@cg.tuwien.ac.at groeller@cg.tuwien.ac.at

ABSTRACT
We present a locally adaptive marching cubes algorithm. It is a modification of the marching cubes algorithm
where instead of a global iso-value each grid point has its own iso-value. This defines an iso-value field, which
modifies the case identification process in the algorithm. The marching cubes algorithm uses linear interpolation to
compute intersections of the surface with the cell edges. Our modification computes the intersection of two general
line segments, because there is no longer a constant iso-value at each cube vertex. An iso-value field enables the
algorithm to correct biases within the dataset like low frequency noise, contrast drifts, local density variations,
and other artefacts introduced by the measurement process. It can also be used for blending between different
isosurfaces (e.g., skin, veins, and bone in a medical dataset).

Keywords
marching cubes, contouring, iso-value field, isosurface correction, blending between isosurfaces

1. INTRODUCTION

The extraction of a constant density surface from a
dataset (contouring) is used in many disciplines. In
medical environments it has opened new ways for radi-
ologists and physicians to visualize and interact virtu-
ally with the human body. In metrology (the science of
measurement) industrial Computed Tomography (CT)
scanners are used for specimen measurements and non-
destructive-testing (NDT).

The most well-known algorithm for extracting a polyg-
onal representation (e.g., set of triangles) of a constant
density surface (isosurface) from a 3D dataset is march-
ing cubes and was published by LORENSEN and CLINE

in 1987 [Lor87]. The marching cubes algorithm works
on the divide and conquer principle. The volumetric
dataset is divided into cells and the isosurface within
each cell is calculated. It uses a global threshold called
iso-value to determine the interior and exterior of the
isosurface in each cell.

A volumetric dataset often is subject to biases. Such
biases can be low frequency noise, contrast drifts, lo-

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee.

cal density variations and other artefacts introduced by
the measurement process. Examples are noise-induced
streaks, aliasing, beam-hardening, scattered radiation
effects, cupping etc. [Hei07]. When performing con-
touring on a biased dataset with a global iso-value the
result may not be satisfactory. The isosurface may con-
tain holes, thinned regions, or regions where volume
is added. An iso-value field where every vertex has
its own iso-value enables the contouring algorithm to
compensate for flaws. We want to locally modify the
iso-value and with it the surface in those regions of the
dataset where measurement errors would cause an un-
satisfactory surface to be generated. Additionally an
iso-value field supports blending between various iso-
surfaces by linearly interpolating between iso-values.

Our presented locally adaptive marching cubes al-
gorithm modifies the marching cubes algorithm and
allows the specification of an iso-value field. The
modifications to the marching cubes algorithm include
a slightly different case identification process and a
changed computation of intersections between the
surface and cell edges. Marching cubes uses linear
interpolation to compute intersections. In the modified
algorithm we intersect two general line segments that
are defined by two density values and two iso-values.

In the following we list some related work on isosur-
face correction. Then we provide a brief overview on
the marching cubes algorithm and present our modifi-
cations to transform it into the locally adaptive march-
ing cubes algorithm. In the implementation section we

WSCG 2009 Full papers proceedings 33 ISBN 978-80-86943-93-0

present a reference application that supports the speci-
fication of iso-value fields on volumetric datasets. An-
other application visualizes the surface in the interior
of a single cell. We conclude with discussing simple
and more complex iso-value fields on various volumet-
ric datasets.

2. RELATED WORK

Common approaches to correct isosurfaces are either to
modify the input dataset and perform contouring with a
global iso-value or optimize the isosurface after gener-
ation.

HEINZL ET AL. [Hei07] use Dual Energy Computed
Tomography (DECT) and image fusion to reconstruct
a dataset before extracting an isosurface. As input im-
ages they use a high-energy macro focus image, which
is blurry but less affected by artefacts, and a low-energy
micro focus image, which is precise but artefact-prone.
The overall structure of the specimen is taken from the
low precision dataset while the sharp edges are derived
from the high precision dataset. For contouring a lo-
cal surface extraction approach is used. First an iso-
surface is extracted from the dataset, which describes
the real surface in good approximation. In the next step
the isosurface is corrected by moving each surface ver-
tex along the direction of the surface normal until the
gradient magnitude in the volume reaches a maximum.
The gradient magnitude is computed from the low en-
ergy dataset.

For variance comparison HEINZL ET AL. [Hei06] de-
veloped a pipeline, which uses a watershed filter on the
gradient information of the smoothed volumetric data
to create a binary dataset. This dataset is then taken
to create the surface model by using constrained elastic
surface nets. With this pipeline they try to compensate
for artefacts that are present in the dataset.

KOBBELT ET AL. [Kob01] developed an extended
marching cubes algorithm to compensate for alias
artefacts at sharp features of the extracted surfaces.
First, their algorithm detects those grid cells that are
intersected by a sharp feature of the surface. Then it
computes additional sampling points that lie on the
feature and inserts them into the mesh. Additional
sampling points are retrieved from a local distance field
and its gradient.

MATYAS ET AL. [Mat05] present an automated con-
touring approach with locally changing iso-values to
contour anatomic branching structures. They first seg-
ment the dataset and determine the appropriate iso-
value in each segment. Iso-values do not vary continu-
ously but in discrete steps, which requires to blend to-
gether the extracted isosurfaces of the segments. They
named the resulting surface “metasurface”.

ŠEREDA [Ser07] proposes local transfer functions to
adapt to locally modified data values in the dataset. A
transfer function (TF) is used to transform density val-
ues into optical properties such as color and opacity.
Typically a global TF is defined. In his work he dis-
cusses how the definition of TFs can be automated and
how local TFs produce better results on datasets with
local data variations.

3. LOCALLY ADAPTIVE MARCHING
CUBES

In the following subsections we first briefly describe the
marching cubes algorithm and then present the neces-
sary modifications to transform it into our locally adap-
tive marching cubes algorithm.

3.1 The Marching Cubes Algorithm

The algorithm as published by LORENSEN and
CLINE [Lor87] subdivides the volumetric dataset into
cubical cells and processes each of them separately.
To identify the triangulation of the isosurface inside a
cell, the density value at each vertex is compared with
the global iso-value to check if the vertex lies inside or
outside the isosurface. The possible triangulations of
a cell are stored in a case lookup table. There are 256
possible cases, which can be reduced by topological
and rotational symmetry to 15 cases. In the original
algorithm there exist ambiguous cases where more
than one triangulation is possible. This can lead to
holes in the isosurface. A method to overcome this
problem is the asymptotic decider which was proposed
by NIELSON and HAMANN [Nie91]. A simple solution
adds six additional cases to the case table to avoid
holes [Sch02]. After retrieving the triangles for a case
from the lookup table, the positions where the triangle
vertices lie on the cell edges have to be calculated. This
is done with linear interpolation.

Roughly four steps are performed for each cell:

1. identify the appropriate index case

2. look up triangles in the case lookup table

3. interpolate intersection points along the cell edges

4. compute surface normals for triangle vertices (re-
quired for shading)

3.2 Modified Algorithm: Support of Iso-
Value Fields

Our locally adaptive marching cubes algorithm uses
one iso-value per cell vertex instead of a single global
iso-value. Each cell has eight iso-values, one at each

WSCG 2009 Full papers proceedings 34 ISBN 978-80-86943-93-0

vertex of the cube. Trilinearly interpolating these vary-
ing iso-values produces a continuous iso-value field.
This alters how the index cases are identified and also
how the intersection points along the cell edges are cal-
culated.

In the case identification process the marching cubes al-
gorithm compares every cell vertex value to the global
iso-value. In the modified algorithm every vertex has
its own iso-value to which the cell vertex value is com-
pared. It is then decided whether the vertex is consid-
ered to be zero or one in the index, i.e., inside or outside.
The remaining part of the case identification process is
similar to the original algorithm.

The marching cubes algorithm uses linear interpolation
to interpolate triangle vertices along the edges. Since
both vertices of an edge have now different iso-values,
the intersection point of two arbitrary line segments has
to be found (Figure 1).

(a) linear interpolation

(b) arbitrary line intersection

Figure 1: Linear interpolation in the original algorithm
(a) and arbitrary line intersection in the modified algo-
rithm (b). In (a) the slope of the iso-value line is always
zero. In (b) it can have any value.

We assume that the line segment of density values is
defined by the two cube vertices V1 and V2 and the line
segment of iso-values is defined by I1 and I2. In the
following x corresponds to the spatial position along an
edge and y corresponds to density values or iso-values.

Line equations are of the form A j · x + Bj · y = Cj, j =
1,2. V x

j refers to the x-component of V j.

We assign:
A1 = V y

2 −Vy
1

B1 = V x
1 −Vx

2

C1 = A1 ·Vx
1 +B1 ·Vy

1

A2, B2 and C2 are derived in the same way.

When solving our linear system:

A1 · x+B1 · y = C1 (1)

A2 · x+B2 · y = C2 (2)

we get:

x =
C1 ·B2 −C2 ·B1

A1 ·B2 −A2 ·B1

y =
C2 ·A1 −A2 ·C1

A1 ·B2 −A2 ·B1

If A1 ·B2 equals A2 ·B1 the lines are parallel and do not
intersect. Even if an intersection point between the two
lines exists, it may not lie on the line segments them-
selves. Hence we have to check if the intersection point
lies between the line segment’s endpoints:

min(V x
1 ,V x

2) ≤ x ≤ max(V x
1 ,V x

2)

It is sufficient to check only the x-values of one line
segment to decide if the intersection point is valid since
the line segments are correlated (see Figure 1).

4. IMPLEMENTATION

We implemented the algorithm with the proposed
changes and created two basic applications to show
the algorithm’s possibilities. One application (Locally
Adaptive Marching Cubes, Figure 2) allows the speci-
fication of iso-value fields on volumetric datasets. The
second one (Cube Insight) visualizes the interior of a
single cubical cell using trilinear interpolation.

The graphics and visualization part of the applications
is handled by The Visualization Toolkit (VTK) [Sch96].
Using VTK for the reference applications has several
advantages. First, the toolkit is popular in the visual-
ization community and is open source. Second, an im-
plementation of the marching cubes contouring filter is
already available and can be easily modified.

The generation of iso-value fields requires user interac-
tion. There exist various possibilities to alter the iso-
value field. Our application supports fields with linear
iso-value gradients and isotropic 3D Gaussian distribu-
tions of iso-values centered at specific sampling points
of the dataset (Figure 3).

WSCG 2009 Full papers proceedings 35 ISBN 978-80-86943-93-0

Figure 2: Locally Adaptive Marching Cubes allows the specification of iso-value fields on volumetric datasets. It
is possible to specify homogeneous iso-value fields, fields with linear iso-value gradients in coordinate directions,
and isotropic 3D Gaussian distributions of iso-values centered at specific sampling points of the dataset.

(a) (b)

Figure 3: (a) Isotropic Gaussian distribution added to
a homogeneous iso-value field. (b) Linear gradient in
x-direction with range [0.3, 0.7].

5. RESULTS

We now discuss several iso-value fields on various volu-
metric datasets. First, we show how iso-value fields im-
pact the appearance of simple objects. Then we present
a biased dataset and discuss how the surface can be cor-
rected with our method. Furthermore we show how our
technique supports blending between different isosur-
faces and discuss how the surface inside a cell is modi-
fied when iso-values at the cell vertices are altered.

5.1 Simple Objects

In Figure 4 the volume is a Euclidean distance trans-
form of a sphere. The distance transform is generated
by computing the Euclidean distance of each sample
point from the centre of the dataset. Distance trans-

WSCG 2009 Full papers proceedings 36 ISBN 978-80-86943-93-0

(a)

(b)

Figure 4: Euclidean distance transform of a sphere
(64×64×64). In (a) the iso-value field is divided into
two halves. In (b) it has been modified with Gaussian
distributions of standard deviation 5 at four locations.

forms of simple objects like a sphere are well suited to
show how different iso-value fields change the appear-
ance of the surface. Continuous iso-value modifications
must lead to continuous changes in the surface of the
sphere (bulges and dents). Since we have a distance
field, increasing iso-values lead to an increased sphere
radius, decreasing iso-values lead to a decreased radius
of the resulting surface. In Figure 4a the iso-value field
is divided into two halves, one with a lower and one
with a higher iso-value which leads to two half-spheres.
Figure 4b shows the sphere with a more complex iso-
value field. Gaussian distributions of standard devia-
tion 5 have been added to a homogeneous iso-value
field at three locations and one Gaussian distribution
has been subtracted from it. This leads to three bulges
and one dent in the surface. Modifying the iso-value
field in such a way can be considered as digitally paint-
ing in the 3D iso-value field, where the brush is given
by the Gaussian distribution. Various extensions and

variations to this painting metaphor and brush types are
easily conceivable.

5.2 Correcting the Isosurface of a Biased
Volumetric Dataset

(a)

(b)

Figure 5: A volumetric dataset (164× 263× 90) that
contains artefacts. (a) shows the isosurface extracted
with a global iso-value of 0.65. There are several flaws
visible in the surface especially at the smaller hole. (b)
depicts the surface that was extracted with a modified
iso-value field and has most of the flaws corrected.

The specimen depicted in Figure 5 has severe scattered
radiation and beam hardening artefacts in the area of

WSCG 2009 Full papers proceedings 37 ISBN 978-80-86943-93-0

the drill holes and also at the rectangular milling. The
isosurface in Figure 5a shows several errors especially
at the smaller hole where the geometry of the object
is changed. Given that there exists an iso-value field
where the surface is appropriate in that area of the
dataset, it is possible to correct the surface with our
method. The iso-value field is modified in those areas
where flaws are present. To assure a continuous transi-
tion between iso-values an isotropic 3D Gaussian dis-
tribution is used. Figure 5b shows the resulting surface.
Several Gaussian distributions of various kernel sizes
have been subtracted from the homogeneous iso-value
field of value 0.65. The flaws at the drill holes and at
the corners of the milling are thus corrected.

The approach described here requires user interaction
to generate the iso-value field. The user introduces his
knowledge about the object geometry into the process.
One can think also of automated approaches to surface
correction using iso-value fields. By generating special
(e.g., data-dependent) iso-value fields the information
that corrects artefacts can be passed to the extracting
algorithm as input instead of changing/correcting the
extracted surface afterwards.

5.3 Blending Between Isosurfaces

Figure 6: A human left hand (244×124×257)with lin-
ear blending between the isosurfaces of skin and bone.

Linear gradients in iso-value fields can be used to blend
between different isosurfaces in one processing step.
The interpolation of iso-values in a dataset region leads
to a continuous transition between isosurfaces. In Fig-
ure 6 a human left hand is shown. A linear iso-value
gradient in the x-range [0.25, 0.6] with iso-value range
[0.15, 0.4] is used to visualize the surface of skin on one
half and the surface of bones and veins on the other half
of the dataset. A contrast medium has been injected into
the veins, since there is almost no difference between
their density value and the density value of bone. In the
result image it becomes visible how the skin gets thin-
ner, dissolves and then exposes the bones in a smooth
way.

(a) (b)

Figure 7: A human tooth (256×156×161). (a) With a
global iso-value of 0.7 only the enamel part of the tooth
is displayed. (b) An iso-value field with a linear gradi-
ent in the z-range [0.7, 0.75] is used to blend between
the isosurface of the dentine part and the isosurface of
the enamel part of the tooth.

In Figure 7 a human tooth is depicted which roughly
consists of the enamel (top part of the tooth) and the
dentine (bottom part of the tooth). We assume that the
enamel should be visualized with an iso-value of 0.7.
With that value it is not possible to visualize the den-
tine because it starts to dissolve at iso-values greater
than 0.6 (Figure 7a). A solution for this problem could
be to generate isosurfaces for the dentine with iso-value
0.5 and for the enamel with iso-value 0.7 and then com-
bine both isosurfaces. With our method this is not nec-
essary. A linear iso-value gradient in the z-range [0.7,
0.75] with iso-value range [0.5, 0.7] can be used to visu-
alize the entire tooth in one processing step (Figure 7b)
without the need to combine two generated isosurfaces.

5.4 Surface in the Interior of a Cell

Figure 8 shows the surface in the interior of a cell
for three index cases. Generally modifications of iso-

WSCG 2009 Full papers proceedings 38 ISBN 978-80-86943-93-0

values result in the movement of intersection points on
the cell edges. There can also be topology changes and
the index case might change as well. Increasing the iso-
value at the circled vertex in Figure 8a alters the index
case. An opening in the surface appears. In Figure 8b
the index case is not changed, but intersection points
are moved. First both “wings” of the surface have equal
height. After increasing the iso-value at the circled ver-
tex one “wing” is lower than the other. The modifica-
tion of the iso-value in Figure 8c connects both com-
ponents of the surface and changes its topology while
leaving the index case unchanged.

6. SUMMARY AND CONCLUSIONS

This paper describes locally adaptive marching cubes,
a modification of the marching cubes algorithm. It al-
lows the usage of an iso-value field instead of a single
global iso-value. Iso-value fields are generated by user
specification and are independent from the volume data.
Surfaces are extracted, which are a continuous blend
between various isosurfaces. The necessary modifica-
tions to the algorithm are simple. First, the case identi-
fication process has to be altered since we now have a
different iso-value for each cell vertex. Second, when
finding the intersection points of the surface with the
cell edges, we now have to compute the intersection of
two general line segments. Modifications of iso-values
can impact the surface in the interior of a cell in three
ways. First, the modification of iso-values can change
the index case as in Figure 8a. When the index case is
not changed, the modification of iso-values moves in-
tersection points of the surface with the cell edges as
in Figure 8b. There can also be topology changes as in
Figure 8c.

Locally adaptive marching cubes can be used for the
correction of isosurfaces with flaws like low frequency
noise, contrast drifts, and local density variations. The
iso-value field is appropriately modified in those re-
gions of the dataset where flaws are present (Figure 5).
Our technique also supports blending between different
isosurfaces by specifying iso-value gradients in the iso-
value field. This is useful when the entire dataset can
not be visualized with one global iso-value (Figure 7),
or when different isosurfaces should be visualized in
different regions of the dataset (Figure 6). Blending be-
tween isosurfaces normally requires to first extract all
isosurfaces and then combine them in an additional pro-
cessing step. Our algorithm supports blending directly
in the contouring process.

Two reference applications have been presented. One
application allows the specification of iso-value fields
and volumetric datasets. A second application visual-
izes the interior of a single cell. Possibilities to enhance
our system include improving the user interface and im-

proving the process of defining modifications to the iso-
value field. When correcting isosurfaces with flaws due
to artefacts there may be automated ways to specify the
iso-value field.

7. REFERENCES
[Hei06] C. Heinzl, R. Klingesberger, J. Kastner and

E. Gröller. Robust Surface Detection for Variance
Comparison and Dimensional Measurement. In
Eurographics/IEEE-VGTC Symposium on Visual-
ization, 75–82, 2006.

[Hei07] C. Heinzl, J. Kastner and E. Gröller. Surface
Extraction from Multi-Material Components for
Metrology using Dual Energy CT. IEEE Trans-
actions on Visualization and Computer Graphics,
13(6):1520–1527, 2007.

[Kob01] L. P. Kobbelt, M. Botsch, U. Schwanecke and
H.-P. Seidel. Feature Sensitive Surface Extraction
from Volume Data. In SIGGRAPH ’01, 57–66,
2001.

[Lor87] W. E. Lorensen and H. E. Cline. Marching
cubes: A high resolution 3D surface construction
algorithm. In SIGGRAPH ’87, 163–169, 1987.

[Mat05] N. M. Matyas, L. Linsen and B. Hamann.
Metasurfaces: Contouring with Changing Iso-
value. In VMV 2005, 147–154, 2005.

[Nie91] G. M. Nielson and B. Hamann. The asymp-
totic decider: resolving the ambiguity in marching
cubes. In VIS ’91, 83–91, 1991.

[Ser07] P. Šereda. Facilitating the Design of Multidi-
mensional and Local Transfer Functions for Vol-
ume Visualization. PhD thesis, Eindhoven Univer-
sity of Technology, 2007.

[Sch96] W. J. Schroeder, K. M. Martin and W. E.
Lorensen. The design and implementation of an
object-oriented toolkit for 3D graphics and visu-
alization. In VIS ’96, 93–101, 1996.

[Sch02] W. J. Schroeder, K. M. Martin and W. E.
Lorensen. The Visualization Toolkit, An Object-
Oriented Approach To 3D Graphics, Third Edi-
tion. Kitware, Inc., 154–159, 2002.

WSCG 2009 Full papers proceedings 39 ISBN 978-80-86943-93-0

(a) (b) (c)

(1)

(2)

(3)

(4)

(5)

Figure 8: Visualization of the surface in the interior of a cell for three index cases. (1) depicts the index case. A cell
vertex marked with a dot indicates that the density value exceeds its iso-value.The surface intersects those edges
where one vertex is marked with a dot while the other one is not. (2) and (3) show the case from two different
viewpoints while (4) and (5) show corresponding views where the iso-value of a vertex is modified. Vertices with
modified iso-values are circled. Density values are set to 0.1 for non-marked vertices and are set to 0.25 for marked
vertices. The iso-values are set to 0.15.

WSCG 2009 Full papers proceedings 40 ISBN 978-80-86943-93-0

Selective Deblocking Method Using

a Transform Table of Different Dimension DCT

Taehwan Lim Jiman Ryu Jechang Jeong
Department of electronics and computer engineering, Hanyang University

17 Haengdang-dong, Seongdong-gu
133-791, Seoul, Korea

taehwan.lim@ece.hanyang.ac.kr

ABSTRACT
In this paper, we propose a selective deblocking algorithm that reduces block discontinuities in DCT domain.
Our algorithm applies a deblocking procedure to each line of adjacent 3 blocks, so the block is divided into
several line vectors. There are three Low Pass filters that are applied differently to 1×24 DCT values according
to each condition of adjacent 3 vectors for conserving image details, and we use a transform table between
different dimension DCTs (1×8 and 1×24 DCT) for reducing a computational cost. The experimental results
show that the proposed algorithm makes good results on an improvement of subjective image quality and a
computational efficiency.

Keywords
Blocking artifacts, post-processing, DCT domain, transform table.

1. INTRODUCTION
Because the discrete cosine transform (DCT)
provides a good compromise between an information
packing ability and computational complexity, the
discrete cosine transform is a kernel in many industry
standards of image and video compression, such as
JPEG, MPEG, and H.26x [Gon02]. Images are
divided into blocks of a size N×N in most standards.
The blocks are transformed from the spatial domain
to the frequency domain by DCT, and the DCT
coefficients are quantized by a quantization table.
Because the original values of the DCT coefficients
are necessarily changed by inverse quantization, the
quantization is a lossy step. Each block is separately
encoded and transmitted. Since blocks are treated as
single objects, compression coding ignores a
correlation of neighboring blocks.

It brings about a degradation of the block based
transform coding, and the blocking artifact appears at
block boundaries. It is visible when the decoded
image is reconstructed. For example, a smooth
change of a luminance across a border can result in a
step in the decoded image if neighboring samples fall
into different quantization intervals [Tri02].
To overcome a block based transform coding’s
weakness, “Blocking artifact”, numerous methods
have been researched. These can be classified into
two groups: The in-loop processing uses different
encoding schemes, such as the interleaved block
transform, the lapped transform, and the combined
transform. The other method is a post-processing
which uses a reconstructed image. Because the post-
processing does not require a change of the existing
standards, it attains more practical solutions [Gao02].
The post-processing should preserve object edges
and keep the sharpness of image and be simple for
real-time applications, which are important features
of the post-processing. In [Luo03], a classification
procedure is used for distinguishing between a
smooth region and a non-smooth region. The non-
smooth region is not regulated because humans are
more sensitive to a low frequency than to high
frequency information. In deblocking processing,
they change only 5 coefficients, so they prevent
over-blurring and save computation efforts. However,
there are still some blocking artifacts which are
unprocessed. Signal decomposition is used in

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2009 Full papers proceedings 41 ISBN 978-80-86943-93-0

[Wan06] to cope with a over-blurring. However, it
loses some signal information because of discarding
of high frequency values. Furthermore, it ignores
new blocking artifacts that are produced in a next
vector processing.
In this paper, we propose a DCT based algorithm to
reduce both computational cost and over-blurring
using transform table of different dimension DCT.
We decompose images to two vectors, a low-
frequency (LF) vector and a high-frequency (HF)
vector, and adjust only a LF vector to preserve image
details because the HF coefficients have lots of
image detail. Our proposed method also uses
selective filters in a selected region instead of
discarding of high frequency coefficients. With such
a process, the edges are preserved while the blocking
artifacts are removed. We consider three 1×8 DCT
vector as a one 1×24 DCT vector, so we use a
transform table of different dimension DCT for high
computational efficiency. This helps us remove
meaningless calculations that exist in a
transformation between 1×8 DCT vector and 1×24
DCT vector. Finally, we add some refined values
determined by a difference of pixel to remove new
blocking artifacts that produced in next vector
process.

2. PROPOSED ALGORITHM

2. 1. Overview of the proposed algorithm
We explicate a proposed algorithm only in the
horizontal direction because the blocking artifacts
have similar properties in the horizontal and vertical
direction. Below, the uppercase X[n] and the
lowercase x[n] represent a DCT coefficient and its
pixel value, respectively.
The deblocking process has a trade-off between
edge-preserving and a over-blurring. To overcome it,
we decompose images into two vectors. Most high-
frequency DCT coefficients contain image details;
therefore, we decompose an image into two domains,
LF and HF, using either an 8×8 DCT domain image
data or a spatial domain image data as Fig. 1, and our
proposed algorithm changes only the LF data for
preserving image details.
The LF and HF data are vector sets that consist of
1×8 DCT vectors because our procedure deals with
the image as a line instead of a block. The line level
procedure is more complex than the block level
procedure, but it helps conserve image details. The
LF data contains only the adjusted first 2 coefficients
in each 1×8 DCT vector; otherwise, the HF data
consists of adjusted 8 coefficients in each vector.
This will be presented later in Section 2.2.
Every deblock procedure regards adjacent 3 vectors
(1×8) as one long vector (1×24) like Fig. 2, and the

proposed method deblocks these connecting vectors
whose centers are located at the even vectors. This
means that the C vector will become the first vector
when the deblock procedure starting at the vector A
is ended.
After deblocking, we overwrite the LF vectors that
are used in processing. The new A and B vectors are
overwritten by 8 new coefficients whereas the new C
vector has only the first 3 coefficients computed by
deblock process. This C vector will become an A
vector when we deblock next H; therefore, we get 7
coefficients from 3 vectors used in next deblock
process.
Fig. 3 is a flowchart of the proposed algorithm. If the
differences among the vectors are larger than a
threshold T1 after obtaining 7 coefficients, it means
that they may contain two real edges at their
boundaries. In this condition, we skip these vectors.
Otherwise, we examine whether these vectors have
one or no real edge. If they have a real edge, we
deblock using Filter3. The other cases operate
Filter1 or Filter2 according to the AC coefficients.
Following the filtering, we refine the first vector and
overwrite the LF vectors. After all deblock process
of the LF data, we summate the LF and the HF data
and deblock vertical direction the same way.

Figure 1. Image Decomposition Block Diagram.

LF Data
(adjusted 2
coefficients)

A(1×8) B(1×8) C(1×8)

Current H(1×24)

D(1×8) E(1×8) ………

new B new C

Next H(1×24)

new A

Figure 2. Horizontal vectors and their
combination H

WSCG 2009 Full papers proceedings 42 ISBN 978-80-86943-93-0

7 Coefficients from
3 Vectors

Measurement two differences
A vector & B vector = Dif1
B vector & C vector = Dif2

Dif1 > T1 and Dif2 > T1 NOP
(may be two real edge)

Dif1 < T1 and Dif2 < T1

3 vectors are
almost DC ?(T2)

Filter 3Filter 1

Refinement

Filter 2

 3 coefficients from A vector
 2 coefficients from B vector
 2 coefficients from C vector

Y

N

Y

N

Y

N

FIGURE 3. FLOWCHART OF THE PROPOSED
DEBLOCKING ALGORITHM

2. 2. Image decomposition
Our method uses only the LF vectors and reduces a
discontinuity of LF vector; hence, there must be no
discontinuities in the HF vectors. In the method
presented in [Wan06], they divide original 1×8 DCT
vectors into first 2 coefficients (LF) and the others
(HF). Then they set the first and last pixel values of
the HF vector to zero by using the resultant average
and difference of the HF coefficients. If there is an
original 1×8 DCT vector, X[n], then we decompose
as

2,4 ,6

3,5,7

[] cos(/16)
2

[] cos(/16)
2

_ [0] [0] 8
_ [1] [1] 2 / cos(/16)
_ [] 0, 2 7

_ [0] 8
_ [1] 2 / cos(/16)
_ [] [], 2 7

n

n

X n n

X n n

LF X X
LF X X
LF X n n

HF X
HF X
HF X n X n n

πη

πλ

η
λ π

η
λ π

=

=

⋅
=

⋅
=

= + ⋅
= +
= ≤

= − ⋅
= −
= ≤

∑

∑

≤

≤

. (1)

2. 3. Selecting filter step
There are 3 filters in our algorithm, Filter1, Filter2,
and Filter3. To prevent over-blurring, Filter1 is
designed for a smooth region that has almost only
DC coefficients and Filter2 is used for a non-smooth

region that has high AC values. If there is a real edge
at boundaries, we use Filter 3. Therefore, each filter
is selected by the differences between vectors (Dif1
and Dif2) and AC coefficients of the LF vectors.
There are 3 horizontal neighboring vectors in Fig. 2.
We take 7 values from 3 LF DCT vectors. The A
vector gives us three values, A[0], A[1], and A[2],
and the other vectors transfer two coefficients each,
B[0], B[1], C[0], and C[1]. From these values, we
can find boundary pixel values of each vector and
differences (Dif1, Dif2) using (2).

[0] [1] cos(15 /16) [2] cos(30 /16)[7]

2 28
[0] [1] cos(/16)[0]

28
[0] [1] cos(15 /16)[7]

28
[0] [1] cos(/16)[0]

28
1 [7] [0]

2 [7] [0]

A A Aa

B Bb

B Bb

C Cc

Dif a b

Dif b c

π π

π

π

π

⋅ ⋅
= + +

⋅
= +

⋅
= +

⋅
= +

= −

= −

 (2)

Two thresholds, T1 and T2, are needed for a filter

selection, and if they are adapted to image, we get
enhanced results. We measure optimal thresholds
according to an image quality to find threshold
curves, and we have thresholds as (3) by fitting the
data with a line formula.

1 ((0,0) /T qt 8)α= ⋅ (3)

The qt(0,0) is the quantization table’s first value

which is used in DC quantization. If the DC
coefficient of vector A has a one interval difference
from other vector (they have no AC coefficients)
then the pixel of A has a difference as qt(0,0)/8. In
our simulation, α is 3.5 and the other threshold (T2)
is 25, which was founded to give best results. We
select between Filter1 and Filter2 according to the
T2, and the filter selection is shown as follows.

Step 1) Calculate Dif1 and Dif2
Step 2) Comparing T1 with Dif1 and Dif2
 if Dif1 > T1 and Dif2 > T1 then NOP

 else if Dif1 < T1 and Dif2 < T1 then step 3)
 else Filter3

Step 3) Comparing AC values with T2
 if abs(A[1]) < T2 and abs(B[1]) < T2

 and abs(C[1]) < T2 then Filter1
else Filter2

WSCG 2009 Full papers proceedings 43 ISBN 978-80-86943-93-0

2. 4. Transform of different dimension DCT
Our filters use a 1×24 DCT vector; therefore, we
should infer a 1×24 DCT vector from three 1×8 DCT
vectors as Fig. 2. There is a matrix that transforms
DCT dimensions in [Jia02]; thus, we use it to make
our transform matrix, and we optimize the matrix
calculations for saving computational efforts. First,
we make two matrices according to (4).

24

8

1/ 24, 0, 0 23,
[,] 1 (2 1)cos(), 1 23, 0 23

4812

1/ 8, 0 7, 0,
[,] 1 (2 1)cos(), 0 7, 1 7

2 16

i j
T i j j i i j

i j
T i j i j i j

π

π

⎧ = ≤ ≤
⎪=⎨ + ⋅ ⋅

⋅ ≤ ≤⎪
⎩
⎧ ≤ ≤ =
⎪= ⎨ + ⋅ ⋅
⋅ ≤ ≤⎪⎩

≤ ≤

≤ ≤

 (4)

T24 is a 24×24 matrix and T8 is a 8×8 matrix;
however, the Filter1 has 6 valid coefficients, and the
Filter2 and the Filter3 have 12 valid coefficients.
The filters are presented in Section 2.5. We discard
T24’s lower 12 rows because we are only concerned
with the first 12 coefficients; therefore, the T24

becomes a 12×24 matrix. We split the T24 into three
12×8 matrices (T24a, T24b, and T24c) and multiply by
the T8.

24 24

24 24

24 24

24 8 24 8 24 8

[,] [,],
[,] [, 8],
[,] [, 16],

0,1, ,11 0,1, , 7
, ,

a

b

c

A a B b C c

T i j T i j
T i j T i j
T i j T i j

i j
T T T T T T T T T

=
= +
= +

= =
= ⋅ = ⋅ = ⋅

 (5)

These matrices (TA ,TB, and TC) represent relation
factors between a 1×24 DCT vector and a 1×8 DCT
vector. Each ith row stands for the relation factors
that show how the 1×24 DCT’s ith coefficient has an
effect on the each coefficient of 1×8 DCT vector.
Likewise, each ith column signifies how the ith
coefficient of 1×8 DCT contributes to coefficients of
a 1×24 DCT vector.

7

0

11

(/ /)
0

[] ([,] [] [,] [] [,] []),

0,1, ,11

(/ /)[] [,] [], 0,1, ,7

A B C
i

A B C
j

H j T j i A i T j i B i T j i C i

j

A B C i T j i H j i

=

=

= ⋅ + ⋅ + ⋅

=

= ⋅ =

∑

∑

 (6)

Finally, we have a transform method among the
different dimension DCTs as above (6). At the same

time, we know that there are many zero coefficients
in TA ,TB, and TC; furthermore, we only have 7 values
from three 1×8 DCT vectors, A, B, and C. Due to
these reasons and the similarity between TA and TC,
we diminish a lot of computations. For example, we
get H[6], and B[0] as (7).

[6] [6,2] [2]
[0] [0,0] [0] [2,0] [2] [4,0] [4]

[8,0] [8] [10,0] [10]

A

B B B

B B

H T A
B T H T H T H

T H T H

= ⋅
= ⋅ + ⋅ + ⋅
+ ⋅ + ⋅

 (7)

2. 5. Filter stage
Removing the high frequencies is very powerful to
eliminate blocking artifacts. However, it has a loss of
image information and an unwanted overshoot like a
Gibbs’ phenomenon. Because of these reasons, we
apply a kind of average filter instead of discarding
high frequency coefficients. The average or
smoothing function (f’(t)) is mentioned below.

1'() ()

2
s i n'() ()

t T

t T
f t f

T
TF F

T

dτ τ

ωω ω
ω

+

−
=

=

∫ (8)

We assume the blocking artifacts vectors have a
discontinuity of less than T1, and this means that
there are no huge high frequency coefficients. In this
respect, we can adaptively discard some values of
high frequency components. If the Fourier transform
of f’(t) is truncated above |ω| = Ω, the truncated
function F’Ω(ω) is F’(ω)PΩ(ω), PΩ(ω) is the
rectangular pulse function, and its inverse transform
f’Ω(t) is the weighted average of f’(t) [Pap62]. Hence,
we can obtain a good result through adaptive
decisions of a truncated frequency ω and an
averaging period T.

1

2

3

1
1 0

[] sin(10 / 48) 1, 2, , 5
(10 / 48)

2
1 0

[] sin(3 / 48) 1, 2, ,11
(3 / 48)

3
1 0

[] sin (/ 48) 1, 2, ,11
(/ 48)

F ilter
i

F i i i
i

F ilter
i

F i i i
i

F ilter
i

F i i i
i

π
π

π
π

π
π

=⎧
⎪= ⋅⎨ =⎪ ⋅⎩

=⎧
⎪= ⋅⎨ =⎪ ⋅⎩

=⎧
⎪= ⋅⎨ =⎪ ⋅⎩

 (9)

WSCG 2009 Full papers proceedings 44 ISBN 978-80-86943-93-0

If there is a strong edge inside of vector, which is
determined by T2, we should conserve this
information, and the human eyes are more sensitive
to find errors in smooth region. Because of these
reasons, Filter 2 has no need to be much rougher
than Filter1. Since we consider these conditio
filters are expressed by using (9).
The filters apply DCT coefficients of H vector as
(10), and not-defined values of filters are zero. This
helps to reduce the amount of calculation.

 (10)

wo vector
istances, so we deal with only three vectors in each

execution. This might create a new blocking artifact
between the vector B and C as shown in Fig. 2. It
omes from changes of the vector C when the next

 (11)

 deblock process starts at

ns, our

1 / 2 / 3'[] [] [],
0,1, , 5 0,1, ,11

H i H i F i
i or

= ⋅
=

Each filtering stage makes a new H vector (H’), and
it is separated into new three vectors (A’, B’, and C’).
This procedure uses the transform of different
dimension DCTs in Section 2.4. After filtering stage,
vector A’ and vector B’ have 8 coefficients;
otherwise, vector C’ has only first 3 coefficients
(remained 5 coefficients are discarded).

2. 6. Refinement stage
Our deblocking function is applied every t
d

c
deblocking executes with starting at the vector C, and
the pixels that are close to the vector B are especially
important causes. For reducing this new artifact, we
define a pixel vector, Refine, as (11), and its DCT
transform coefficients are Rp[i].

[] 2 , 0 ,1, , 7i

e fineR i i−= =

We suppose that our next
vector A after former deblock process ended. Before
the filtering, we calculate the vector A’s first pixel
value.

[0] [1] cos(/16) [2] cos(2 /16)[0]

2 28
A A Aa π π⋅ ⋅

= + + (12)

After the filtering, we calculate the new vector A’s
first pixel value a’[0] using (13), and we refine the
vector A following (14).

7

1

'[0] '[] cos(/16)'[0a

[] '[] ([0] '[0]) [],

0,1, , 7
refine pA i A i a a R i

i

= + − ⋅

=
 (14)

Cl rly, the refined vector A has no change at the
first pixel value, and other pixels are ad
according to a difference between the a[0] a

’[0].
s a result of refinement process, we get refined

After horizontal deblock
process, we summate the HF DCT data and the LF
DCT data.

3. EXPERIMENT RESULT
e applied our proposed algorithm on 512×512

monochrome images that are compressed b
First, we demonstrate the computational per

f the proposed algorithm. And then the
ffectiveness of the blocking artifacts reducing

omputational cost performance

period of 2 vector distances. In the case of comparing
if we regard a

ter1 and Filter2 needs 2A more. After
iltering, 15A and 16M are needed to set the a’[0]

ded for

ea
justed
nd the

a
A
vector A and filtered vector B and C, which are not
refined, and these three deblocked vectors overwrite
on the LF DCT data.

W
y JPEG.

formance
o
e
algorithm is explained and compared with other
algorithms.

3. 1. C
First of all, we will make an inquiry into our
proposed algorithm’s computational cost. The image
decomposition needs 6 additions (A) and 8
multiplications (M) at every 1×8 vector. It also takes
7A and 9M to obtain the Dif1 and the Dif2 at every

the Dif1 and the Dif2 with the T1,
comparing function as an addition function, it takes
2A when the algorithm chose between NOP and
Filter choice stage, and the next choice stage also
spends 2A.
Before the filtering, it needs 2A and 3M to compute
the a[0] for a refinement. The last choice stage
between Fil
f
and to refine a vector, and 8A are nee
summation of the LF_vector and the HF_vector.
Now, we conclude our proposed algorithm’s
computation amount with estimates of filters. Every
filter must have a procedure of the different
dimension DCT transform, and the coefficients that
are used in each filter are different. In addition, we
can reduce the addition function by the preceding
addition calculations of A[0] and C[0] because of the
similarity that is exited in TA and TC.
In this condition, our filter procedures have a low
computation cost such as – Filter 1 : 65A and 90M,]

28 i

A A i i π
=

⋅ ⋅
= + ∑ (13)

Filter 2 and Filter3 : 142A and 178M. Finally, the
computational cost for one row deblocking process,

WSCG 2009 Full papers proceedings 45 ISBN 978-80-86943-93-0

CCrow, is (15). The α, β, and γ are the number of
times each filter is executed. In Fig. 4, there are the
Lena images of each filter classification. As you
know, our method has different computation amounts
according to image conditions because each filter has
a different computational cost. There are totally
32564 times for application of filters in 0.247bpp
Lena image. The Filter1 is 20064; Filter2 is 10132,
and Filter3 is 2368.

1 () 2
rowCC decompose

select select
() 3

1 2 3

()

select
Filter Filter Filter

summate
refinement

α β
α β γ

α β γ

+ +
+ ⋅ + ⋅ + ⋅
+
+ + +

 (15) α β γ
=
+ + + +

 (a) (b)

 (c) (d)
Figure 4. Filter Classification of Lena (0.247bpp),

(a) JPEG original image, (b) Filter1 region,
(c) Filter2 region, (d) Filter3 region.

From this result, we can calculate a cost for a one

e I is a
a comes

from [Wan06]. It is easy to find that the proposed
algorithm has much lower addition computations
than [Wan06], but the computation of multiplication
increase slightly.

 [Wan06] [Pae98] [Pae00] proposed

row deblocking: 4918.2A and 5340.5M. Tabl
comparison of ours with others whose dat

One
row

11136A
4224M

13608A
12096M

27720A
28224M

4918.2A
5340.5 M

Table 1. Comparison of computational cost
(8×8 DCT based 512×512 image)

Most processors take more time for executing
multiplications than for addition computations.
However, the proposed algorithm reduces additions
by 55 percent (6210.6 times) while the
multiplications are increased by just 26 percent
(1124.96 times). Therefore, we have an advantage of
a low computing cost where the multiplication does
not take about sextuple times more than the addition.

3. 2. Performance of deblocking
In this part, we examine the deblocking effectiveness
of our proposed algorithm and compare it with the
JPEG decoded image and others. The traditional way
to evaluate the quality of the reconstructed image is
the peak signal-to-noise ratio (PSNR), which uses the
mean squared error as the distortion measure.
However, it is obvious th the PSNR is not always a

cause of

MS tes
the inte jacent

lgorithm has higher performances
an other methods in [Luo03] and [Wan06] under

all mp w c a d it
per pixel (bpp), and the intersection which is
between the JPEG decoded im an r
li as b h
In the M s
MS G
decoded t is

age in the results of Barbara.
as both higher

at
good measurement of the image quality. Be
this, we also use another measurement, MSDS. The

DS, which was introduced in [Min95], calcula
nsity gradient of the boundary of the ad

two blocks. It is used to evaluate the outcome of
reducing blocking artifacts.
The experiment images are three JPEG coded
images, Lena, Barbara, and Pepper which are
512×512 monochrome images. The simulation
results of PSNR and MSDS are shown in Fig. 5 and
Fig. 6, respectively. As shown in Fig. 5, The PSNR
of our proposed a

th
sa le images hich are oded by ifferent b

age line d the othe
nes h a higher

SDS resul
pp value t

ts, the proposed
an the other’s one.

algorithm’
DS is more than [Wan06] but is less than JPE

image and [Luo03]. However, this resul
acceptable and is not a defect of our algorithm
because we propose our algorithm to conserve the
details of image. In high bpp image, most deblocking
algorithms are used to lose image’s detail
information, but the proposed algorithm preserves
the image’s detail. As shown in Fig. 6, every MSDS
result increases according to image’s bpp increases,
and they even follow the MSDS line of the original
decoded im

Finally, the proposed algorithm h
PSNR results than other algorithms and enough
MSDS results to reduce the block discontinuities at
the boundaries. This means that our method has
smoother boundary conditions than other comparable
methods and conserves more image details. We can
also confirm visual effectiveness from Fig. 7-9.

WSCG 2009 Full papers proceedings 46 ISBN 978-80-86943-93-0

(a)

(a)

(b)

(b)

(c)

Figure 5. PSNR versus bpp : (a) Lena,
(b) Barbara, (c) Pepper.

(c)
Figure 6. MSDS versus bpp : (a) Lena,

(b) Barbara, (c) Pepper.

(a) (b) (c) (d)
Figure 7. Enlarged Lena : (a) JPEG decoded (0.233bpp), (b) deblocked by [Luo03],

(c) deblocked by [Wan06], (d) deblocked by proposed algorithm.

(a) (b) (c) (d)

Figure 8. Enlarged Barbar : (a) JPEG decoded (0.306bpp), (b) deblocked by [Luo03],
(c) deblocked by [Wan06], (d) deblocked by proposed algorithm.

WSCG 2009 Full papers proceedings 47 ISBN 978-80-86943-93-0

(a) (b) (c) (d)
igure 9. Enlarged Pepper : (a) JPEG decoded (0.236bpp), (b) deblocked by [Luo03], F

4. CONCLUSION
When images are coded by the block based DCT
transform, the reconstructed images mainly include
blocking artifacts caused by coarse quantization.
There have been many suggestions to overcome this
problem, but it is a very hard work to reduce both the
over-blurring and computational cost. This paper
proposes a novel coding artifact reduction method
based on b
image dec
preserve the details
classification has functions to avoid over-blurring
and to reduce unnecessary computational cost. The
refinement stage makes a deblocking process to
eliminate the new discontinuity which occurs in next
deblocking process. The experimental results show
that the proposed algorithm decreases the
computational cost while still achieving both a
reducing blocking artifacts and preserving image
details. Finally, all processing are carried out in DCT
domain, so
processing

5. ACKNOWLE
This research was supported by Seoul Future

SFCC) Cluster established

[Luo03] Y. Luo, and R. K. Ward, "Removing the Blocking

Artifacts of Block-Based DCT Compressed Images,"
IEEE Trans. Image Process., vol. 12, no. 7, pp. 838-
842, Jul. 2003.

[Wan06] C. Wang, P. Xue, W. Lin, W. Zhang, and S. Yu,
"Fast Edge-Preserved Postprocessing for Compressed
Image," IEEE Trans. Circuits Syst. Video Technol.,
vol. 16, no. 9, pp. 1142-1147, Sep. 2006.

he spatial
 block and

gnal process., vol. 50,
no. 5, pp. 1160-1169, May. 2002.

[Pap62] A. Papoulis. The Fourier integral and its
applications. New York: McGraw-Hill, 1962.

[Pae98] H. Paek, R. C. Kim, and S. U. Lee, “On the POCS-
based postprocessing technique to reduce the blocking
artifacts in transform coded images,” IEEE Trans.
Circuits Syst. Video Technol., vol. 8, no. 3, pp. 358-
367, Jun. 1998.

[Pae00] H. Paek, R. C. Kim, and S. U. Lee, “A DCT-based
e to reduce
 images, ”
ol. 10, no.

(c) deblocked by [Wan06], (d) deblocked by proposed algorithm.

oth a specific region classification and [Jia02] J. M. Jiang and G. C. Feng, "T
omposition. The decomposition helps to

that mostly exist in HF. The
relationship of DCT coefficients between a
its sub-blocks," IEEE Trans. Si

they are particularly suitable for image spatially adaptive post-processing techniqu
the blocking artifacts in transform coded in the compressed domain.

DGMENTS
IEEE Trans. Circuits Syst. Video Technol., v
1, pp. 36-41, Feb. 2000.

Contents Convergence (
by Seoul R&BD Program.

6. REFERENCES
[Gon02] R. C. Gonzalez and R. E. Woods, Digital image

Processing. NJ: Prentice Hall, 2002.
[Tri02] G. A. Triantafyllidis, D. Tzovaras, and M. G.

Strintzis, "Blocking Artifact Detection and Reduction
in Compressed Data," IEEE Trans. Circuits Syst. Video
Technol., vol. 12, no. 12, pp.877-890, Oct. 2002.

[Gao02] W. F. Gao and Y. M. Kim, "A de-blocking
algorithm and a blockiness metric for highly
compressed images," IEEE Trans. Circuits Syst. Video
Technol., vol. 12, no. 12, pp. 1150-1159, Dec. 2002.

[Min95] S. Minami and A. Zakhor, "An optimization
approach for removing blocking effects in transform
coding," IEEE Trans. Circuits Syst. Video Technol.,
vol. 5, pp. 74-82, Apr. 1995.

WSCG 2009 Full papers proceedings 48 ISBN 978-80-86943-93-0

Flexible Configurable Stream Processing of Point Data
Jonas Boesch & Renato Pajarola

Visualization and MultiMedia Lab, University of Zürich
Binzmühlestrasse 14, 8050 Zürich, Switzerland

ABSTRACT

To efficiently handle the continuously increasing raw point data-set sizes from high-resolution laser-range scanning devices
or baseline stereo and multi-view 3D object reconstruction systems, powerful geometry processing solutions are required.
We present a flexible and run-time configurable system for efficient out-of-core geometry processing of point cloud data that
significantly extends and greatly improves the stream-based point processing framework introduced in [29]. In this system
paper we introduce an optimized and run-time extensible implementation, a number of algorithmic improvements as well as
new stream-processing functionality. As a consequence of the novel and improved system architecture, implementation and
algorithms, a dramatically increased performance can be demonstrated as shown in our experimental results.

Keywords graphics, point-based, geometry processing, streaming

1 INTRODUCTION
Points as rendering and modeling primitives have be-
come a powerful alternative to polygonal object repre-
sentation [34, 13, 14]. Note that point samples are the
natural raw output data primitives of 3D scanning and
reconstruction systems. In fact, 3D point samples are
the fundamental geometry-defining entities. Satisfying
provably correct sampling criteria as discussed in [26],
a set of 3D points fully defines the geometry as well as
the topology of a surface including boundaries, compo-
nents and genus. Here we assume that input point data
sets reasonably sample the represented surfaces.

With the continually increasing density and extent
of raw point cloud data, effective algorithms and sys-
tems are required to cope efficiently with the massive
amounts of point samples. Basic data and geome-
try processing operations must be supported such as
smoothing, outlier detection, normal estimation, or data
decimation with many more being conceivable. These
operations can only be performed efficiently on large
data if memory trashing [9] is avoided. Therefore, data
must be paged efficiently into main memory and pro-
cessed coherently with respect to randomly accessing
memory locations.

In [29] the concept of stream-processing point data
was introduced, which we will discuss and extend in
Section3. The basic idea was to sequentialize the unor-
ganized raw input point data and then feed the resulting
point stream through a pipeline of local stream opera-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2009 conference proceedings, ISBN
Copyright UNION Agency – Science Press

tors. While the approach in [29] is conceptually well
designed and showed promising results, it nevertheless
has a number of limitations that we address in this work.
First of all, the configuration of the pipeline (chain)
of stream operators had to be defined at compile-time,
and in fact, all selectable operators had to be known
and implemented as well at that time. Furthermore,
there was no concept of an operator-chain overarching
data structure to maintain any global information about
all points currently residing in main memory. Third,
the previous implementation left some room for perfor-
mance improvements, e.g. pooling of dynamic memory
resources. Also, the initial organization of point data
for stream-processing has been left to an offline pre-
process, which has now been integrated seamlessly into
the system. Hence in this system paper we present an
improved stream-processing framework that addresses
all these issues, and eventually also introduces some
new stream-processing functionality. The main tech-
nical contributions are:

i) A novel flexible C++-classes framework that defines
run-time configurable geometry processing stream
operators.

ii) New concept of chain-operators overarching a chain
of individually configured stream operators.

iii) Improved implementation of neighborhood search
operator and dynamic memory handling.

iv) Seamless integration of the previously separate pre-
processing stage.

2 RELATED WORK
Points as 3D surface modeling and rendering primitives
have been introduced as early as in [23] and [15]. A
number of efficient hardware supported rendering algo-
rithms such as [36, 35, 5, 4, 30] have been proposed and

WSCG 2009 Full papers proceedings 49 ISBN 978-80-86943-93-0

Skala
Obdélník

subsequently further improved. The fundamental the-
ory and algorithms for point-based modeling and ren-
dering are described in [14], and surveys on point-based
rendering (PBR) have been presented in [39, 38] and
[22]. Apart from rendering which has been well stud-
ied and extended to out-of-core [37, 12, 31] or trans-
parent rendering [45, 46], low-level geometry process-
ing techniques for point data have been discussed in
[32, 25, 33, 20, 43]. However, these methods are aimed
at processing only moderately sized point sets that fit
into main memory.

Sequential organization of point data has been ad-
dressed specifically for rendering and network trans-
mission in [7, 31] and [37]. More general low-level
geometric operations are applied to a stream of points
in [29], which we will discuss in the following section.

Streaming has chiefly been used in processing digital
audio and video data which in contrast to 3D geom-
etry is inherently sequentially organized, i.e. in time.
The sweep-line concept in geometry processing [8] is
conceptually closer than multimedia streaming, since
our basic stream-processing follows a similar idea of
sweeping a plane over the point cloud data. In the con-
text of 3D geometry, streaming has been introduced for
simplification and compression operations on polygo-
nal meshes [17, 44, 18, 42], which generally grow and
process mesh regions sequentially in an order that lim-
its main memory usage. Specifically for rendering,
a streaming mesh layout has been proposed in [16].
These streaming approaches on meshes, however, do
not support low-level geometry processing operations,
and more importantly, do not directly apply to raw point
data processing as mesh connectivity is required.

Recently, different streaming frameworks for surface
reconstruction from points have been presented. In [3]
a Poisson-based multi-resolution streaming framework
based on an sparse octree is used in which multiple
streams are processed concurrently. In [19] and [2]
slice-based streaming algorithms are proposed for De-
launay triangulations. There, the space is partitioned
into explicit regions as opposed to the implicit region
partitioning used in this paper by using a sweep plane.

Finally, in graphics the concept of streaming images
and geometry data has been used in the context of re-
mote rendering where 3D data is to be displayed on a
remote display (e.g. [10], [27] or [6]). Again, low-level
data processing is not the focus in these approaches but
the network transmission of data to a remote device.

3 STREAM-PROCESSING
3.1 Sequential Processing
The basic idea behind stream-processing point data as
introduced in [29] is to order and process the data se-
quentially in such a way that: (1) points can be read
from an input-stream into main memory one at a time,

(2) the so called active points in main memory can effi-
ciently be processed independently1 from others given
only some local spatial information, and (3) points are
written to an output-stream as soon as they have been
fully processed. Since all data processing is limited to
the points in the active working set A , at any time only
a very limited fraction of data is kept in main memory,
which together with the sequential processing supports
efficient out-of-core operation on huge point data sets.

Since raw point data sets rarely come in a spatially
ordered sequence, a sorting process is required to lin-
early order them. Given an ordering measure along one
direction in space, such sorting can be achieved effi-
ciently for very large data by external sort techniques
[24, 21, 41]. Our solution is presented in Section 3.3.

3.2 Stream Operators
The operations supported in the above described stream-
processing framework are defined in [29] as local oper-
ators Φ(pi) that perform a computation on a point pi
and its attributes only taking the point pi itself and a
limited set of neighbors p j into account. The neighbor-
hood Ni is typically defined as a k-nearest neighbors
or points p j within a given range r. The attributes Ai
associated with a point pi can include a wide range of
parameters such as color, normal orientation or curva-
ture. From this definition it is clear that a local operator
Φ(pi) can be applied to any point if pi itself as well as
all neighbors Ni are part of the current working set A .
This includes a large group of important geometry pro-
cessing operators ranging from surface parameter esti-
mation to filtering operations.

Furthermore, the stream-processing framework is de-
signed to chain together a series of stream operators
Φ1, . . . ,Φp that are applied in succession to a stream of
points as illustrated in Figure 1. Each stream operator
Φk itself acts as a FIFO queue, passing the points from
one to the next operator. The so defined concept then
postulates that a stream operator Φk(pi) can be exe-
cuted on pi as soon as no preceding operator Φl<k mod-
ifies any neighbor points p j ∈Ni anymore, or still de-
pends on pi for its completion. Moreover, each stream
operator Φk only passes a point pi to the next opera-
tor Φk+1 if the point and its attributes have fully been
processed. More details are given in [29].

The fundamental stream operators introduced in [29]
include the basic I/O operators for reading (ΦR) and
writing (ΦW) points from and to the input and output
streams respectively, as well as a neighborhood opera-
tor (ΦX) that generates the nearest neighbor sets Ni for
any incoming point pi. Additional geometry process-
ing operators that have been presented include surface
normal estimation (ΦN), curvature estimation (ΦC), el-

1 or more exactly the dependency is strictly limited to a well defined
local spatial neighborhood relation

WSCG 2009 Full papers proceedings 50 ISBN 978-80-86943-93-0

output stream active set A input stream

p1 pj pn

pj-m

sweep-direction

y

z

x

Φp(p) Φ…(p) Φ2(p) Φ1(p)

Figure 1: Chain of streamable operators acting on the
points passing through the active set.

liptical point splat extent determination (ΦE) as well as
feature preserving surface smoothing (ΦS).

3.3 Sorting
As for sweep-plane algorithms in computational geom-
etry [8], a stream-processing framework requires the
points to be ordered along a spatial direction. In princi-
ple, any direction could be used as for example any of
the three principal axis of the point data’s modeling co-
ordinate system. However, it is typically advantageous
to align the data such that the sweep-plane intersection
with the object exhibits a smaller outline. Hence for
objects with a biased spatial extend, the sweep direc-
tion should be aligned accordingly.

Sorting in the direction of the longest axis of a data-
aligned tight bounding box can efficiently be achieved
in two phases as follows. In the first linear pass over
the data points p1, . . . ,pn ∈ IR3, a generic homogeneous
covariance M̂ = ∑

n
i=1 p̂i · p̂T

i and center of mass of the
points c = 1

n ∑
n
i=1 pi are accumulated, with p̂ denoting

the homogeneous coordinate extension of p. As shown
in [28, 30] this allows us to express and post-compute
the actual covariance matrix M = 1

n ∑
n
i=1(pi− c) · (pi−

c)T elegantly and efficiently in homogeneous space by
M = 1

n T(−c) ·M̂ ·TT(−c) with T(−c) being the trans-
lation matrix moving the center of mass c to the origin.
The sorting axis is now given by the eigenvector v cor-
responding to the largest eigenvalue of M. In the second
phase, the points are transformed and sorted along their
projection onto v.

Instead of applying the above transformation and
sorting offline as in [29], we have integrated it into the
stream-processing framework as an online preprocess.
For this purpose we have implemented an efficient out-
of-core sorting algorithm based on the radix-sort tech-
nique. Besides supporting out-of-core sorting on very
large data, a major goal of the sorting preprocess was to
provide an incrementally growing sorted stream of data.
With radix-sort we can choose to inspect the next bit of
one partition first, in a depth-first way, before continu-
ing work on the other partition. Hence sorting can com-
plete and progress from one end of the data range to the
other, which is why it was chosen over other out-of-core
sorting algorithms. For performance reasons, insertion-

sort is used when the partially-sorted partitions fall be-
low a certain size.

Taking advantage of this progressive online sorting
approach, the stream-processing pipeline can be fed
with the early available sorted data partitions. Thus
point processing operations, e.g. such as the costly
neighborhood search, can be overlapped with the sort-
ing phase and can start with only minimal latency be-
fore the whole data has been preprocessed.

Furthermore, in order to utilize the common avail-
ability of multiple cores, the sorting preprocess was
not only integrated into the main stream processor, but
also adapted to use threadpool-based efficient multi-
threading. This improves performance as well as sim-
plifies usage of the stream processor.

4 SYSTEM ARCHITECTURE
4.1 Run-time Configurability
In the original stream-processing approach [29], the op-
erator chain was set up at compile-time. A stream oper-
ator defined a set of per-point attribute parameters that
it depends on or modifies, some auxiliary data fields
used while executing the operator and some attributes
that it adds permanently to a point element, which are
added to the output stream at the end of the stream op-
erator chain. Every stream operator defines a struct that
contains members variables for all required data, and
the temporary as wellas the final stream-point structures
are defined by multiple inheritance. While the main ad-
vantage of this approach is its simplicity, it also lacks
in flexibility and consistency. Separate executables for
all possible combinatorial configurations of the differ-
ent stream operators are necessary, which grows expo-
nentially by 2p with the number p of operators. For
an increasing and extensible library of stream operators
this is clearly a limiting constraint. Furthermore, there
is no automatic mechanism to verify consistency of at-
tribute fields, e.g. such as ensuring that an attribute xy
which operator X depends on is provided by another
operator Y . A similar problem arises with the order of
operators: While including the normal attribute field al-
lows the use of a curvature operator at compile time, it
does not make sure that the normal estimation operator
is actually applied first in the chain of stream operators.

Therefore, the stream-processing framework was re-
designed to allow setting up an arbitrary operator chain
at run-time, by using either an external configuration
file or by specifying stream operators as command line
arguments. Also, since attribute fields of different oper-
ators are now specified dynamically at run-time, a regis-
tration mechanism can verify that no required attributes
are missing, and that the operators are specified in a
compatible order.

In the new framework, dependencies between stream
operators are defined solely by dependencies on certain

WSCG 2009 Full papers proceedings 51 ISBN 978-80-86943-93-0

data elements. This has the advantage that every oper-
ator can be replaced as long as the replacement opera-
tor can generate the same output data fields. Addition-
ally, since there are no direct code-level dependencies
between operators, new operators can be integrated by
loading them as separate plugins or dynamic shared li-
braries at run-time.
Run-time Structures In the dynamic run-time con-
figurable version of the stream-processing framework,
the size of the structure holding the attribute fields is
unknown at compile-time. Therefore, a new rt_structs
(for run-time structures) concept for the streaming three-
dimensional point data structure was designed that en-
ables the use of efficient, type-safe and run-time config-
urable member variables. Each stream operator stores
the accessor objects it needs to extract the required
member variables.

Accessors are template classes which are configured
with the required data type. This means that the actual
type of all dynamic member is fields clearly defined
in the header of the operator, and standard C++ type
checking can be used when using the run-time struc-
tures.
Setup Stage In the first part of the setup stage, each
stream-processing operator registers the name and data
type of the member fields it requires as input and those
it generates as output. This allows simple and effi-
cient consistency checking of the operator chain. Addi-
tionally, some configuration settings such as minimum
number of neighbors can be negotiated between opera-
tors. After that, the size of the point structure is com-
puted and the run-time structure accessors are config-
ured.
Processing Stage Using the templatized run-time struc-
ture accessors, each variable can be accessed efficiently.
Trying to access a field using a wrong type is detected
at compile-time, and the additional cost of accessing a
variable as compared to standard C++ classes is only an
(inlined) function call and a reinterpret_cast<>().

4.2 Memory Mangement
Pools of objects are used where possible to optimize
performance by preventing continuous construction and
destruction of objects. Memory pools are used for
rt_struct objects, for the kd-tree nodes in the kd-heap-
neighbor operator and for all node types in the new
chain operator.

5 OPERATORS
The basic semantic of stream operators has been re-
tained from [29] in the new proposed system architec-
ture. In addition to the standard read and deferred-write
I/O and the various geometry operators, we have im-
plemented one new local stream operator ΦO(pi) for
outlier detection and removal.

Moreover, the new stream-processing system has an
additional novel chain-operator type Ψ which in its
scope overarches the entire chain of individual local
stream operators Φ. A stream operator Φk(pi) is de-
fined as a local operation on the geometry of point pi
and its attributes, and is but one element in a chain
of stream operators Φ1, . . . ,Φp not knowing about the
other selected operators. Furthermore, a stream opera-
tor only has direct access to the points within its own
FIFO queue of points, which is only a subset of all
points in the active set A . On the other hand, the
chain-operator Ψ(A), which is discussed in more de-
tail in Section 5.4, in its scope spans the entire set of
active points A and has knowledge of all elements in
the chain of stream operators Φ1, . . . ,Φp as illustrated
in Figure 2.

output stream active set A input stream

p1 pj pn

pj-m

ΦW(p) Φ…(p) ΦX(p) ΦR(p)

Ψ(A)
spatial data structure, statistics, …

Figure 2: Conceptual diagram of the chain operator Ψ

overarching a chain of individual stream operators Φk.

5.1 I/O Operators
The read operator ΦR acts on the input stream of point
data. During the setup phase, it reads and parses the
data header and maps the point data input file to the
input stream. Typically, this is done via memory map-
ping of the input file and sequential traversal through
the input data. During the point processing phase, ΦR
reads the input point data and (optionally) converts it to
the proper format. By definition, the read operator ΦR
must be the first in a chain of operators. It uses a pool
of rt_struct point objects as mentioned in Section 4.2 to
efficiently create the new objects.

In the setup phase, the write operator ΦW creates and
memory maps the output file. During processing, the
write operator uses the deferred writing strategy de-
scribed in [29] to write points out to disk and remove
them from main memory as soon as this can be done
safely. ΦW shares a pool of rt_struct point objects with
the read operator, as indicated above, to avoid unneces-
sary memory allocation and deallocation overhead.

5.2 Neighborhood Operator
In the extended stream-processing framework we intro-
duce a new neighborhood operator ΦX that takes ad-
vantage of the spatial data structure provided by the
new chain operator ΨX , see also below. Upon inser-
tion of a new point p j into the active-set A , it will

WSCG 2009 Full papers proceedings 52 ISBN 978-80-86943-93-0

also be inserted into a spatial data structure maintained
by ΨX . Moreover, the stream operator ΦX (p j) then
queries ΨX (A) immediately for an initial left-sided
nearest neighbors set N j which at that point contains
the closest points pi with index i < j in the input stream.
At the same time, the new point p j is tested with exist-
ing neighborhood sets Ni and included if appropriate to
update their missing right-sided closest neighbors.

The spatial data structure in the chain operator ΨX
also allows for within-range neighborhood queries. As
soon as the next new point p j is farther away from an
active point pi ∈ A than the query range r along the
streaming dimension, a range query for pi can be in-
voked on A to find all neighbors within distance r.

While the new nearest neighbor operator is now the
default to establish closest points neighborhoods, a kd-
heap approximate k-nearest-neighbor operator as in [29]
is still available, but deprecated for performance rea-
sons. See also experimental results in Section 7.

5.3 Geometry Operators
The normal estimation ΦN , curvature estimation ΦC,
elliptical point splat-extent estimation ΦE and smooth-
ing ΦS operators have been ported from [29] to the
new dynamic rt_struct member attributes architecture
described in Section 4.

A new local outlier detection stream operator ΦO(pi)
has been added which quantifies the likeliness of any
nearest neighbor p j ∈Ni to be an outlier. The outlier
quantifier is defined as

Oi(p j) = hi(|pi−p j|) · |p j−Πi(p j)|, (1)

with hi(x) being a smooth weighting function, e.g. a
Gaussian, and Πi(p j) the projection of p j onto the plane
with normal ni through point pi. The outlier operator
ΦO(pi) compares the values Oi(p j) for all p j ∈Ni to a
threshold value ε and if greater discards p j as a nearest
neighbor of pi.

Therefore, the outlier operator ΦO(pi) measures the
offset of p j from the tangent plane at pi and quantifies a
degree of co-planarity. However, it penalizes points p j
farther away from pi less, so they are allowed to deviate
more from the tangent plane. Hence with the support
radius of the weighting function hi(x) being adjusted
relative to an estimated local curvature at point pi, the
outlier detection can be made adaptive to the local sur-
face feature size.

5.4 Chain Operators
The main new chain operator ΨX (A) sorts all the points
in the active set A into a spatial tree structure. By de-
fault, a bucketed PR KD-Tree [40] is used, but the op-
erator can be templatized with other spatial index struc-
tures. Any regular stream operator can interact with this
tree operator by providing a visitor object [11]. Cur-
rently, the tree operator is used by the neighborhood

operator ΦX for efficient k-nearest-neighbor searching
or range queries. Additionally, the smoothing operator
ΦS uses the new chain operator ΨX to update the spa-
tial data structure for point locations modified by the
smoothing operation.

The statistics operator ΨS(A) collects data about
current and maximum data size, extent and memory us-
age of the active set. Having all statistical functional-
ity in an operator makes data collection optional, and
statistics can easily be disabled for performance rea-
sons. This also allows the implementation of different
operators to customize statistics collection (complete
debug and optimization statistics vs. minimal release-
mode statistics).

6 RUN-TIME PROCESS
Setup To demonstrate the run-time procedure of the
stream-processing application, a simple processing job
will be explained in detail. A raw point data set is to
be processed to compute the normal of each point. The
resulting pipeline consists of the following stream oper-
ators: read, neighborhood, normal and write. The input
data set contains only point positions.

During the setup phase, the read operator will be ini-
tialized first, reads and parses the input point header and
registers a dynamic member field called position. Next,
the neighboorhood operator is initialized. This opera-
tor requires the chain tree operator and so requests the
system to instantiate the chain operator. Then, it will
reserve the neighbor-list and neighbor-count dynamic
members, and register position as input-dependency.
Additionally, it will check for a user-specified neighborhood-
size option, or set a default. Next the normal operator
is initialized, reserves the normal-vector dynamic mem-
ber field and adds position, neighbor-list and neighbor-
count to the input-dependencies. Finally, the write op-
erator is instantiated. Optionally, a statistics chain op-
erator may be set up. After all operators are set up, the
system will run a dependency check that makes sure all
requirements for each operator are met. The pipeline
specified above is valid and therefore passes that check.

The size of the run-time structure used in this pipeline
is computed, the offsets to the dynamic members in all
accessor objects of each stream operator are set and an
initial pool of memory for points is allocated. The read
operator memory-maps the input data file, and the write
operator creates and memory-maps a file large enough
to contain the final point data, including all the newly
created member fields that were marked as persistent
output data fields. This phase concludes the setup stage
and stream processing can now begin.
Processing The read operator reads the point position
from the input data file into factory-allocated new run-
time structure instances. The points are inserted into
all chain operators, including the tree operator contain-
ing a spatial data structure. The neighborhood oper-

WSCG 2009 Full papers proceedings 53 ISBN 978-80-86943-93-0

ator then receives the points and performs a k-nearest
neighbor query by sending a visitor object to the tree
operator’s data structure. See Section 5.2 for how the k-
nearest neighbor search is performed. The normal op-
erator then receives the point from the output buffer of
the previous operator and computes an estimated nor-
mal based on the neighboring points. Finally, the de-
ferred write operator buffers the processed point until it
is not referenced anymore in the previous stream oper-
ators. The point-data is written to the output stream and
the run-time structure instance is returned to the pool.
This process continues until all the input points have
been processed.
Notes The new stream-processing system depends on
two libraries: boost [1] and an in-house library with
some vector-matrix geometry functions. The stream-
processing system runs on most UNIX-like operating
systems including Mac OS X, GNU/Linux and FreeBSD.

7 EXPERIMENTAL RESULTS
All reported experimental results were achieved on a
Apple Xserve with dual Intel Xeon 2.0GHz processors.
The models that have been tested are listed in Table 1.

model name number of sample points
david2mm 4’129’534
lucy 14’022’961
scene 21’749’996
david1mm 28’168’109
st. matthew 102’965’801

Table 1: The point-cloud test models.

In Figure 3 we compare the performance of the new
stream-processing system architecture to the original
approach introduced in [29]. As we can see, the new
architecture is not only much more flexible with its run-
time configurability of the stream-operator chain, but it
is also significantly more efficient, especially for large
point-cloud data sets. The performance differences are
mainly due to two factors: the new improved nearest
neighborhood operator, and the memory pooling used
in the read- and write-operators.

With the new neighborhood operator and other im-
provements, the average time a point stays active in
main memory has also been reduced significantly as
shown in Figure 4.

Many of todays point-cloud models are too big to
process efficiently all in main memory. One advantage
of stream-processing is that only a minimal required
subset of the model data has to be in-core. In Fig-
ures 6 and 5 the relative sizes of the active set with re-
spect to the total size of the point data set are displayed.
The (office) scene model is a worst-case model since
it has a well defined direction of longest extent, how-
ever, at the same time it exhibits large co-planar point
regions exactly perpendicular to the major object ex-
tent. Therefore, the basic alignment and sorting leads to

0s

1750s

3500s

5250s

7000s

david2mm lucy david1mm st. matthew

3869s

721s
499s

131s

6358s

2152s

642s

201s

streamproc (original) sptool (new)

Figure 3: Performance comparison between the orig-
inal and the new system using a read-neighborhood-
normal-curvature-splatsize-write operator chain.

0s

1s

2s

3s

4s

david2mm lucy david1mm st. matthew

0.81s

0.33s
0.47s

0.32s

1.87s

3.79s

1.33s

0.95s

streamproc (original) sptool (new)

Figure 4: Comparison of average time each point
spends in main memory.

a stream-processing where at isolated locations a large
number of points get passed by the sweep-plane, lead-
ing to few individual spikes in memory consumption.
Figure 6 shows the typical in-core effectiveness as well
as the above indicated worst-case. Figure 7 displays the
spikes in active set size for the worst-case scene model.

0%

0.625%

1.250%

1.875%

2.500%

Normal Chain Curv/Splat Chain

0.1%0.0% 0.1%0.1%

2.2%

1.5%

0.2%
0.1%

1.3%

0.5%

david2mm lucy scene david1mm st. matthew

0%

2.5%

5.0%

7.5%

10.0%

Normal Chain Curv/Splat Chain

0.7%0.3%
0.8%1.0%

9.0%9.0%

2.3%2.3%
2.0%

0.8%

david2mm lucy scene david1mm st. matthew

Figure 5: Comparison of average active-set sizes in re-
lation to total point-set-size.

Applying a chain of operators consisting of read (ΦR),
nearest-neighbor search (ΦX), normal estimation (ΦN),
curvature estimation (ΦC), splat-extent estimation (ΦE)
and deferred-write (ΦW) the out-of-core effectiveness
of the stream-processing system has remained excellent
as in [29]. As shown in Figure 7, the goal of dramat-
ically reducing the number of data elements actively
maintained in main memory has well been achieved,

WSCG 2009 Full papers proceedings 54 ISBN 978-80-86943-93-0

0%

0.625%

1.250%

1.875%

2.500%

Normal Chain Curv/Splat Chain

0.1%0.0% 0.1%0.1%

2.2%

1.5%

0.2%
0.1%

1.3%

0.5%

david2mm lucy scene david1mm st. matthew

0%

2.5%

5.0%

7.5%

10.0%

Normal Chain Curv/Splat Chain

0.7%0.3%
0.8%1.0%

9.0%9.0%

2.3%2.3%
2.0%

0.8%

david2mm lucy scene david1mm st. matthew

Figure 6: Comparison of maximum active-set sizes in
relation to total point-set-size.

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

#" $#" &#" (#" *#"

!
"#
$
%&
'(
"%
&
")

*
)
$
+,
"

!"#$%&'("#+$-*((*."

,-./,$00" 1234" 53676" ,-./,#00" 589"0-:;6<"

Figure 7: Percentage of active set of points maintained
in main memory during stream-processing.

0s

5625s

11250s

16875s

22500s

original, k=8 new, k=8 original, k=64 new, k=64

6730s

20276s

1299s

4992s

1045s

8133s

252s
1815s

david1mm st. matthew

Figure 8: Performance comparison of neighbor detec-
tion in large models using 8- and 64-neighborhoods.

as rarely ever more than 1% of data is kept active in
main memory. To more efficiently handle worst-case
models such as the office scene outlier, the sorting pre-
process should in the future take into account specifi-
cally expressed dimensions of co-planar data and sim-
ply perturb the sweep-plane direction slightly to avoid
this worst-case scenario.

8 CONCLUSION
In this paper we have presented a novel stream-processing
system architecture, extending and implementing the
conceptual framework introduced in [29] more effi-
ciently. The new architecture allows for efficient and
flexible run-time configurability of geometry process-
ing operators that can be applied to an ordered stream of

point cloud data. This novel definition and implemen-
tation of local stream-processing operators allows oper-
ators to be dynamically defined and configured at run-
time, and not statically at compile-time as previously
required. Through our novel stream-operator imple-
mentation, the main stream-processing application pro-
gram can be compiled without specification of which
geometric operators and in what order they will even-
tually be applied to the point data. In fact, at run-
time, the available local geometry processing opera-
tors can dynamically be selected and configured on-
demand. Moreover, the stream-processing application
can automatically check for consistency of the selected
chain of stream operators.

In addition to a few new and modified stream-operators,
we have introduced the new concept of a chain opera-
tor. In the context of stream-processing points by pass-
ing them from one geometry processing operator to the
next in a chain of multiple successive stream operators,
a chain operator acts as a global operator overarching
the chain of individual stream operators and thus intro-
duces a new stream-processing functionality.

With respect to a seamless integration of the neces-
sary preprocessing task, we have included the stream-
sorting operation into the stream-processing framework.
A parallel radix-sort based algorithm provides a stream-
ing result of sorted point data which can be operated
on by the main stream-operators with minimal latency.
Finally, the new system architecture has demonstrated
significant performance improvements.

ACKNOWLEDGEMENTS
We would like to thank and acknowledge the Stan-
ford 3D Scanning Repository and Digital Michelangelo
projects as well as Cyberware Inc. for providing the 3D
geometric test data sets. This work was partially sup-
ported by the Swiss National Science Foundation Grant
200021-111746/1.

REFERENCES
[1] Boost c++ libraries. Website, 2007.

[2] Remi Allegre, Raphaelle Chaine, and Samir Akkouche. A
streaming algorithm for surface reconstruction. In Proceedings
Eurographics Symposium on Geometry Processing, pages 79–
88, 2007.

[3] Matthew Bolitho, Michael Kazhdan, Randal Burns, and Hugues
Hoppe. Multilevel streaming for out-of-core surface reconstruc-
tion. In Proceedings Eurographics Symposium on Geometry
Processing, pages 69–78, 2007.

[4] Mario Botsch and Leif Kobbelt. High-quality point-based ren-
dering on modern GPUs. In Proceedings Pacific Graphics 2003,
pages 335–343. IEEE, Computer Society Press, 2003.

[5] Mario Botsch, Andreas Wiratanaya, and Leif Kobbelt. Efficient
high quality rendering of point sampled geometry. In Proceed-
ings Eurographics Workshop on Rendering, pages 53–64, 2002.

[6] Liang Cheng, Anusheel Bhushan, Renato Pajarola, and Magda
El Zarki. Real-time 3D graphics streaming using MPEG-4. In
Proceedings IEEE/ACM Workshop on Broadband Wireless Ser-
vices and Applications, 2004.

WSCG 2009 Full papers proceedings 55 ISBN 978-80-86943-93-0

[7] Carsten Dachsbacher, Christian Vogelgsang, and Marc Stam-
minger. Sequential point trees. ACM Transactions on Graphics,
22(3):657–662, 2003.

[8] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geometry: Algorithms and Ap-
plications. Springer-Verlag, Berlin, 1997.

[9] Peter J. Denning. Virtual memory. ACM Computing Surveys,
2(3):153–189, 1970.

[10] Klaus Engel, Ove Sommer, and Thomas Ertl. A framework for
interactive hardware-accelerated remote 3D-visualization. In
Proceedings EUROGRAPHICS - IEEE TCVG Symposium on
Visualization, pages 167–177, 2000.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional Computing Series.
Addison-Wesley, 1994.

[12] Enrico Gobbetti and Fabio Marton. Layered point clouds: A
simple and efficient multiresolution structure for distributing
and rendering gigantic point-sampled models. Computers &
Graphics, 28(1):815–826, February 2004.

[13] Markus H. Gross. Getting to the point...? IEEE Computer
Graphics and Applications, 26(5):96–99, September-October
2006.

[14] Markus H. Gross and Hanspeter Pfister, editors. Point-Based
Graphics. Morgan Kaufmann Publishers - Elsevier, 2007.

[15] J.P. Grossman and William J. Dally. Point sample rendering.
In Proceedings Eurographics Rendering Workshop 98, pages
181–192. Eurographics, 1998.

[16] Martin Isenburg and Peter Lindstrom. Streaming meshes. In
Proceedings IEEE Visualization, pages 231–238, 2005.

[17] Martin Isenburg, Peter Lindstrom, Stephan Gumhold, and Jack
Snoeyink. Large mesh simplification using processing se-
quences. In Proceedings IEEE Visualization, pages 465–472.
Computer Society Press, 2003.

[18] Martin Isenburg, Peter Lindstrom, and Jack Snoeyink. Stream-
ing compression of triangle meshes. In Proceedings Eurograph-
ics Symposium on Geometry Processing, pages 111–118, 2005.

[19] Martin Isenburg, Yuanxin Liu, Jonathan Shewchuk, and Jack
Snoeyink. Streaming computation of delaunay triangulations.
ACM Transactions on Graphics, 25(3):1049–1056, July 2006.

[20] Thouis R. Jones, Frédo Durand, and Matthias Zwicker. Normal
improvement for point rendering. IEEE Computer Graphics
and Applications, 24(4):53–56, July-August 2004.

[21] Donald E. Knuth. The Art of Computer Programming, 3rd Edi-
tion. Addison-Wesley, 1998.

[22] Leif Kobbelt and Mario Botsch. A survey of point-based
techniques in computer graphics. Computers & Graphics,
28(6):801–814, 2004.

[23] Marc Levoy and Turner Whitted. The use of points as dis-
play primitives. Technical Report TR 85-022, Department of
Computer Science, University of North Carolina at Chapel Hill,
1985.

[24] John P. Linderman. rsort and fixcut. man pages, 1996. revised
June 2000.

[25] G. H. Liu, Y. S. Wong, Y. F. Zhang, and H. T. Loh. Adaptive
fairing of digitized point data with discrete curvature. Computer
Aided Design, 32(4):309–320, 2002.

[26] Gopi Meenakshisundaram. Theory and Practice of Sampling
and Reconstruction for Manifolds with Boundaries. PhD thesis,
Department of Computer Science, University of North Carolina
Chapel Hill, 2001.

[27] Yuval Noimark and Daniel Cohen-Or. Streaming scenes to
MPEG-4 video-enabled devices. IEEE Computer Graphics and
Applications, 23(1):58–64, January/February 2003.

[28] Renato Pajarola. Efficient level-of-details for point based ren-

dering. In Proceedings IASTED Invernational Conference on
Computer Graphics and Imaging (CGIM), 2003.

[29] Renato Pajarola. Stream-processing points. In Proceedings
IEEE Visualization, pages 239–246. Computer Society Press,
2005.

[30] Renato Pajarola, Miguel Sainz, and Patrick Guidotti. Con-
fetti: Object-space point blending and splatting. IEEE Transac-
tions on Visualization and Computer Graphics, 10(5):598–608,
September-October 2004.

[31] Renato Pajarola, Miguel Sainz, and Roberto Lario. XSplat: Ex-
ternal memory multiresolution point visualization. In Proceed-
ings IASTED Invernational Conference on Visualization, Imag-
ing and Image Processing (VIIP), pages 628–633, 2005.

[32] Mark Pauly and Markus Gross. Spectral processing of point-
sampled geometry. In Proceedings ACM SIGGRAPH, pages
379–386. ACM Press, 2001.

[33] Mark Pauly, Richard Keiser, Leif Kobbelt, and Markus Gross.
Shape modeling with point-sampled geometry. ACM Transac-
tions on Graphics, 22(3):641–650, 2003.

[34] Hanspeter Pfister and Markus Gross. Point-based com-
puter graphics. IEEE Computer Graphics and Applications,
24(4):22–23, July-August 2004.

[35] Liu Ren, Hanspeter Pfister, and Matthias Zwicker. Object space
EWA surface splatting: A hardware accelerated approach to
high quality point rendering. In Proceedings EUROGRAPH-
ICS, pages 461–470, 2002. also in Computer Graphics Forum
21(3).

[36] Szymon Rusinkiewicz and Marc Levoy. QSplat: A multireso-
lution point rendering system for large meshes. In Proceedings
ACM SIGGRAPH, pages 343–352. ACM SIGGRAPH, 2000.

[37] Szymon Rusinkiewicz and Marc Levoy. Streaming QSplat: A
viewer for networked visualization of large, dense models. In
Proceedings Symposium on Interactive 3D Graphics, pages 63–
68. ACM SIGGRAPH, 2001.

[38] Miguel Sainz and Renato Pajarola. Point-based rendering tech-
niques. Computers & Graphics, 28(6):869–879, 2004.

[39] Miguel Sainz, Renato Pajarola, and Roberto Lario. Points
reloaded: Point-based rendering revisited. In Proceedings Sym-
posium on Point-Based Graphics, pages 121–128. Eurograph-
ics/IEEE VGTC, 2004.

[40] Hanan Samet. Foundations of Multidimensiona and Metric
Data Structures. Morgan Kaufmann Publishers - Elsevier,
2006.

[41] Jeffrey S. Vitter. External memory algorithms and data struc-
tures: Dealing with massive data. ACM Computing Surveys,
33(2):209–271, 2001.

[42] Huy T. Vo, Steven P. Callahan, Peter Lindstrom, Valerio Pas-
cucci, and Claudio T. Silva. Streaming simplification of tetrahe-
dral meshes. IEEE Transaction on Visualization and Computer
Graphics, 13(1):145–155, January-February 2007.

[43] T. Weyrich, M. Pauly, R. Keiser, S. Heinzle, S. Scandella, and
M. Gross. Post-processing of scanned 3D surface data. In Pro-
ceedings Symposium on Point-Based Graphics, pages 85–94.
Eurographics/IEEE VGTC, 2004.

[44] Jianhua Wu and Leif Kobbelt. A stream algorithm for the deci-
mation of massive meshes. In Proceedings Graphics Interface,
pages 185–192, 2003.

[45] Yanci Zhang and Renato Pajarola. Single-pass point ren-
dering and transparent shading. In Proceedings Symposium
on Point-Based Graphics, pages 37–48. Eurographics/IEEE
VGTC, 2006.

[46] Yanci Zhang and Renato Pajarola. Deferred blending: Im-
age composition for single-pass point rendering. Computers &
Graphics, 31(2):175—189, 2007.

WSCG 2009 Full papers proceedings 56 ISBN 978-80-86943-93-0

Pick-by-Vision:
An Augmented Reality supported Picking System

Rupert Reif

Technische Universität München
Department for Materials, Handling Material,

Flow Logistics
Boltzmannstraße 15

 D-85748 Garching, Germany
reif@fml.mw.tum.de

Willibald A. Günthner
Technische Universität München

Department for Materials, Handling Material,
Flow Logistics

Boltzmannstraße 15
D-85748 Garching, Germany
guenthner@fml.mw.tum.de

ABSTRACT
Order picking is one of the most important process steps in logistics. Because of their flexibility human beings
cannot be replaced by machines. But if workers in order picking systems are equipped with a head-mounted
display, Augmented Reality can improve the information visualization.
In this paper the development of such a system – called Pick-by-Vision - is presented. The system is evaluated in
a user study performed in a real storage environment. Important logistics figures as well as subjective figures
were measured. The results show that Pick-by-Vision can improve considerably order picking processes.

Keywords
Augmented Reality, order picking, user studies, 3D geometries.

1 INTRODUCTION
Over the last decade globalization has led to an
increasing division of labor along the value creation
chain. Companies focus on their core competences
and the trend is moving towards outsourcing
processes and tasks. Because of this, the domain of
logistics and most of all order picking as one of its
core functions are becoming more and more
important. Order picking is the gathering of goods
out of a prepared range of items following some
customer orders [VDI94]. As such it is the last
process step before the goods are delivered to the
customers. Mistakes have a strong influence on the
quality of delivery and the relationship between
clients and suppliers. Thus, zero defect picking is one
important goal. However, this won’t be achieved, no
matter which technologies are used [Gud07]. One
way to minimize errors is complete process
automation. Machines usually cannot replace the
human being with his flexibility and fine motor skills
[Gud07]. Flexibility is needed because the product
range and thus the variety of items increases while,
in contrast the size of orders decreases. Human

beings are often the best solution for picking in
storages. Accordingly, the aim is to support
optimally workers by technical devices during their
task fulfillment. In this paper we focus on the
provision of information for order pickers.
The Department for Materials Handling, Material
Flow, Logistics (fml) of the Technische Universität
München (TUM) is participating in a research project
on visual information assistance – the Augmented
Reality (AR) supported order picking system Pick-
by-Vision. The order picker wears a head-mounted
display (HMD) which visualizes all the required data
directly in his field of view. Thus, he does not have
to move his head, which leads to a decrease in dead
times caused by looking e. g. at a mobile data
terminal (MDT). In combination with a voice system
for data input, the application is hands-free and the
worker can use both hands for his real task.
First this paper gives an overview of the state of the
art. After selecting the important hardware
components, the test bed at the Department fml for
an evaluation of the Pick-by-Vision system is
presented. The experimental setup, the execution of
the test and its results are presented in the next
section. This evaluation is the basis for some
optimizations and for the second system which
includes a tracking device and which is displayed
next. The final section gives an outlook on future
fields of application of the Pick-by-Vision
technology.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2009 Full papers proceedings 57 ISBN 978-80-86943-93-0

2 STATE OF THE ART
This section introduces the state of the art in order
picking and industrial AR.

2.1 Order Picking
The basic conditions in the field of logistics have
changed rapidly over recent years. The market
demands customized products. Thus, production and
logistics systems as well as the workers within these
systems have to become more flexible to fulfil the
costumers’ needs. A lot of different techniques exist
for order picking in warehouses [Gud07].
Conventionally, workers execute their orders with
paper lists which are intuitive for human beings but
laborious to handle. Modern systems go without
paper work. They include mobile data entry devices
still having a high handling effort but which are
usually connected online to the warehouse
management system (WMS) processing the data.

Figure 1: Order picking technologies: scanner (1),

Pick-by-Light (2) and Pick-by-Voice (3)
In modern warehouses, worker support based on the
usual paper lists is often replaced by MDT, Pick-by-
Voice (PbV) or Pick-by-Light (PbL) systems (see
Figure 1). All these technologies have specific
advantages as well as disadvantages. PbV supports
the worker by giving him all instructions through the
computer’s speech output. Unfortunately, these
systems face difficulties in noisy industrial
environments. Furthermore, it is questionable
whether the warehouseman, as the user of such a
system, likes it when he is bossed by a monotone
voice the whole day. Compared to voice support
systems, PbL offers the worker visual aid by
installing small lamps on each storage compartment.
PbL systems have the problem that the displays have
to be elaborately integrated into the shelf
construction and are thus very expensive and
inflexible towards rebuilding. PbL is suitable for
order picking stations with a high throughput
because the display addresses the human optical

sense, the favoured sense for the provision of
information.
Brynzér and Johannsonn evaluated several picking
applications in some case studies [Bry95]. Their
results are that more logical information systems and
more logical storage strategies can save a lot of time.
Thus, new technologies of information provision like
Pick-by-Vision can improve this logistics process.

2.2 Augmented Reality
Augmented Reality is a technology which can
support the human visual sense. Following the
definition of Azuma we define AR as a combination
of the real and virtual world with 3D registration and
interaction in real time [Azu97]. This definition
requires a tracking system for positioning virtual
objects. For order picking, the support with static
data like text information via an HMD could be
enough.
AR has many possible fields of application in
industrial environments. In the ARVIKA research
project, AR applications for development, production
and service were implemented [Fri04]. The first
industrial application was the wire bundle assembly
project carried out by Boeing in the 1990s [Miz01].
The use of AR for maintenance of a printer was
introduced by Feiner et al. [Fei93]. Production
planning is another field where AR is used
productively in industrial applications [Doi03]. In
this paper we focus on supporting the operative staff.
One application is an intelligent welding gun for
experimental vehicle construction [Ech04]. Tang et
al. showed in a user study that AR can improve
manual assembly tasks [Tan04]. The subjects were
faster and made fewer errors. Training of the
operative staff is another field [Wal07].
The biggest potential of AR is the parallelization of
information gathering with secondary employment.
Thus, dead times can be minimized and the time for
information search can be reduced when the data is
displayed in the user’s field of view. Dangelmaier et
al. compared an AR system with a video see-through
(VST) HMD to a the usual paper list [Dan06]. The
view of the order picker’s real environment was
superimposed with text information, with a map of
the storage and the storing compartment was
highlighted with an optical frame. With the HMD, a
clear learning curve was seen and all the
implemented picking errors were found. But some
users faced orientation and equilibrium problems due
to the VST HMD with its small field of view. In the
research project ForLog, an evaluation for
information visualization in storing environments
was performed [Kli06]. Among other things, an AR
system with an optical see-through (OST) HMD was
tested. The small field of view and the bad depth

WSCG 2009 Full papers proceedings 58 ISBN 978-80-86943-93-0

perception of this non-stereoscopic HMD caused
problems. Most of the subjects could not clearly
identify the real spatial position of the 3D arrows
pointing on the storage compartment. The
Department fml also evaluated a first prototype of a
Pick-by-Vision system [Rei07]. The results and the
consequences are mentioned later in this paper in
chapter 5.

3 HARDWARE COMPONENTS
An AR system consists of some typical hardware
devices: the visualization, the interaction and the
tracking system. In this paper only mobile systems
with HMDs as visualization medium are considered.

3.1 Head-Mounted Display
The HMD is the most important hardware for Pick-
by-Vision because it is the interface between the
human and the technical system. Its task is to display
the necessary information to the order picker. The
visualization of the data is one aspect; the other
aspect is ergonomics and the physiological
harmlessness of the device. Furthermore, aspects
concerning the use in industrial environments should
be considered. The most significant requirement is
that the worker has to wear the HMD over a shift of
eight hours. Because of that, the HMD should be
light and ergonomically designed, but also rugged
and with an eight-hour battery operation. Another
critical point is that the field of view must not be
limited due to reasons of labor safety.
In this project more than 40 HMDs where considered
and evaluated in terms of suitability but only ten
have the potential to be used in storages. VST was a
knock-out criterion because a power failure leaves
the worker completely blind. Other problems were a
too small field of view or the weight. Virtual Retinal
Displays (VRD) like the Nomad from Microvision
are best suited for order picking applications [Tid95].
They don’t limit the field of view because of their
construction based on a semipermeable mirror. The
mirror is used to project the image with a laser beam
directly into the eye. The HMD is the decisive factor
towards user acceptance of Pick-by-Vision. The
Nomad HMD was presented to some order pickers
employed by some industrial partners in this project.
The feedback was predominantly positive, but the
workers didn’t wear the HMD for more than 15
minutes. Because if this, the time dependent effects
did not have any influence on their opinion. Most of
them can imagine working with an HMD for one day
or even longer for further evaluation. But there are
also workers who generally dislike the HMD.

3.2 Interaction Device
The second important piece of hardware is the
interaction device. Order picking processes vary

slightly from one company to the next. But the
acknowledgement of the pick, the input of the zero
crossing (if there are not enough items in the storage
compartment) or the input of errors are necessary for
every order picking system. These interactions are
implemented in the fml Pick-by-Vision system.
Different input devices were evaluated in terms of
their suitability. The interaction device should be
robust and should not limit the worker’s freedom of
movement. Two devices were chosen for Pick-by-
Vision. An adjustment knob and speech input can be
used best for this application. The degrees of
freedom of the adjustment knob (turning left or right
and pushing) can be transferred easily to the user
interface. Speech input is the most intuitive form of
interaction for humans and it is the only technology
which allows hands-free interaction.

3.3 Tracking System
Besides the HMD, the tracking system is the most
problematic hardware component of a mobile AR
application, especially in industrial environments. A
lot of different factors, like degrees of freedom,
accuracy, resolution, update rate and range
characterize tracking systems [Rol01]. If these
technical issues are suitable for an industrial
application there is still another important factor: the
price. On the one hand, an AR system must work
robustly and safely in practical operation. On the
other hand, it must have better performance than the
system used before so that a short return on
investments can be achieved.
There are many different functional principles for
tracking systems like electromagnetic, inertial,
mechanical, optical, radio-based or ultrasonic
systems [Rol01]. They all have their specific
advantages and disadvantages. Electromagnetic,
ultrasonic or radio-based systems have problems in
storages because of the high proportion of metallic
structures. Magic Map is a WLAN-based technology
which is used in storages to locate devices and
loading aids [Iba05]. The position can be measured
well but this system gives no orientation. Ubisense
developed a tracking system based on the ultra
wideband technology which works in metallic
environments [Ubi08]. In most publications, optical
tracking systems are seen as the best choice for use
in industrial environments. After an evaluation
optical tracking systems were also chosen for Pick-
by-Vision. Three different variants are possible. The
first one is an inside-out system with a video camera
and paper markers mounted in the storage. Paper
markers are always crucial if they are used in
industrial applications because they can become dirty
and perform more poorly. The second idea is an
inside-out system with infrared sensors and active
LEDs on the ceiling like the Hi-Ball system [Wel01].

WSCG 2009 Full papers proceedings 59 ISBN 978-80-86943-93-0

But in our application it wasn’t possible to
implement LEDs on the ceiling. Thus, we decided to
use the third variant, an outside-in system with
infrared cameras and with spherical reflective
markers mounted on the HMD.
It is questionable if a tracking system is needed for a
Pick-by-Vision system. In the evaluation of Tang et.
al. the tracking system leads to a better performance
especially to less errors [Tan04]. However, is the
performance in order picking systems with tracking
sufficiently better than without so that the additional
costs are amortized in an acceptable time? This is
one question which should be answered in this
project. Therefore, the first Pick-by-Vision system
was installed without a tracking system. This system
will be explained and evaluated in the next chapters.
The system with tracking is introduced in chapter 6.

4 PICK-BY-VISION SYSTEM
The first Pick-by-Vision system was implemented in
close collaboration with our industrial partner CIM
GmbH which is the developer of the WMS used in
this application. The information of the WMS which
is normally shown on a fork lift terminal is displayed
on the HMD. Thus, the AR application is embedded
in the WMS. As mentioned above, the Microvision
Nomad VRD is used (see Figure 2).

Figure 2: System used in this set-up and a possible

visualization (small picture)
One of the most important things about this system is
the Graphical User Interface (GUI), because the
virtual information must be displayed at the right
time and at the right position. A GUI was
implemented following special AR guidelines
[Bow05], [Fri04]. For his daily work the order picker
needs essential text information about the orders,
e. g. storage locations, article number or required
quantities. The data input, e. g. the
acknowledgement, is done by the order picker with a
rudimentary speech input system based on the
software from MediaInterface Dresden GmbH. Only
a small vocabulary is needed for order picking. In
this case the system can be operated with ca. 20
words. The system must function properly
independently of the speaker. This is very important

for an industrial application with changing workers
or for an evaluation with several test persons. Only
then every user can work with the system without a
special familiarisation.
The workflow of this Pick-by-Vision system includes
all important tasks found in the general order picking
process. In real order picking applications there are
more company specific tasks but for our system the
following workflow is sufficient. First, there is a
short login dialog. After choosing the next order the
user has to take a picking trolley where he sets down
the picking container. Then, the system shows him
the next storage compartment. During his way to this
storage compartment he can already read the picking
information (article number and amount). After
acknowledging the pick the next order line is
displayed. When the last order line is completed, he
is told to go to the delivery station to finish the order.
Every command is confirmed with the same simple
speech input – except for the case where the picking
amount also has to be acknowledged by repeating the
amount. Because of the small number of speech
commands the user becomes familiar with the system
in a little while.

5 EVALUATION
A first simple Pick-by-Vision system was evaluated
in 2007 [Rei07]. The users’ acceptance was high but
the measured logistic operating figures were worse
when compared to the paper list. Several factors were
responsible for this. The speech input system was not
well implemented, the GUI could use improvement
and the test storage at the Department fml was too
small. After improving the system a new evaluation
was carried out in a larger storage.

5.1 Experimental Setup
In this experimental series the Pick-by-Vision system
was compared to a usual paper list in a compartment
shelving system hosted by our industrial partner
Kühne + Nagel (AG & Co.) KG in their distribution
centre in Langenbach. The storage consists of eight
shelves with four aisles with more than 600 stock
locations (see Figure 3).

Figure 3: The storage for the experimental setup

Each subject had to finish 14 orders using both
techniques. The orders had between two and six

WSCG 2009 Full papers proceedings 60 ISBN 978-80-86943-93-0

order lines with one to six items each. Altogether
there were 52 order lines with 125 items. The items
were boxes in different sizes and with different
weight. Other items were booklets or sweets which
were also the reward for the test persons. The orders
were picked in the same sequence with each
technique. This means that each subject started with
order 1 and finished with order 14. For every order
the WMS optimized the route through the storage.
16 subjects took part in this test series. Most of them
were male (13), the average age was 27.6 years
(between 20 and 52 years, standard deviation 8.13).
Among them were students or researchers, but also
non academic people like skilled workers. Six had
experience with 3D visualization, e. g. from
computer games. Five were familiar with order
picking processes. The data for this analysis was
collected in personal questionnaires.

5.2 Null Hypotheses
During the test series two very important logistic
operating figures were measured: order picking time
and errors. Order picking time is important for the
throughput time of the orders in the storage. It is a
part of the reaction time between the order of the
costumer and the delivery to him. This time becomes
shorter and shorter and is an essential factor of
success for a company. In addition, it can be used to
calculate the order picking performance which is the
average number of picked order lines per hour.
Picking errors can have a big effect when they are
not recognized before shipping. They can result in
high contract penalties. The picking errors are
translated into an error rate. This represents the
amount of errors within all picked order lines.
For these figures some null hypotheses can be
introduced comparing Pick-by-Vision to a paper list
based system. The first null hypothesis is that the
picking time t for both techniques is equal:

H 0,1: t Pick-by-Vision = t paper list (1)

For Pick-by-Vision little training is needed. So the
order picking times for Pick-by-Vision can be
different between the subjects who started with Pick-
by-Vision and who started with the paper list. Thus,
the second null hypothesis is that the times tStart are
equal and do not depend on the starting technology:

H 0,2: t start Pick-by-Vision = t start paper list (2)

For the error rates f between both techniques it is
expected that they are equal. This is the third null
hypothesis:

H 0,3: f Pick-by-Vision = f paper list (3)

5.3 Analysis of the test series
The measurement of the logistic operating figures is
one side, their interpretation is another. Identifying a
difference between Pick-by-Vision and the paper list
for only one certain value in this test series does not
necessarily imply a universal validity of this result.
First, descriptive values like the mean value or the
standard derivation are calculated. Based on these
results the null hypotheses are proven. For all
analysis in this paper the level of significance is 5%.

1.1.1 Picking Time

Figure 4: mean values, maximum and minimum

of the order picking times over all 16 subjects
There is only a small difference between the mean
values of the order picking times. With Pick-by-
Vision the subjects were about one minute (4%)
faster than with the paper list (see Figure 4). In both
tests the Grubbs' Test for outliers shows no outliers
with a confidence level of 99%. Both samples are
very homogenous and are normally distributed
(Kolmogorov-Smirnov-Test). This is the condition
for the significance test. A t-Test for paired
dependent samples is used because the number of
values for both samples is equal but the variance is
different (Pick-by-Vision: 4.97, paper list 3.08). The
difference between the order picking times is not
significant and the null hypothesis H0,1 cannot be
discarded. Remarkable is that the statistical spread is
bigger with Pick-by-Vision. The difference between
the slowest and the fastest subject is 18 minutes (ca.
47%) whereas it is only 12 minutes (35%) with the
paper list. With a special test the significance can be
proven [Bor05]. The difference is significant. Thus,

29,54 28,46

0

5

10

15

20

25

30

35

40

45

paper list Pick-by-Vision

or
de

r p
ic

ki
ng

 ti
m

e
[m

in
]

WSCG 2009 Full papers proceedings 61 ISBN 978-80-86943-93-0

the null hypothesis H0,1 can be discarded. Order
picking with Pick-by-Vision is significantly faster.

1.1.2 Learning Effects
There are always some learning effects, e. g.
concerning the layout of the storage, the workflow or
the look of the articles. To minimise these effects the
technique with which the subjects had to start was
randomized. Hence, eight subjects started with Pick-
by-Vision and eight with the paper list. We can
notice an interesting effect. When the picking times
with Pick-by-Vision are compared, there is a
difference of six minutes (ca. 19%). So the subjects
were noticeably faster with Pick-by-Vision when
they had picked with the paper list before (see Figure
5). This effect is checked for significance. Both
samples are normally distributed (Kolmogorov-
Smirnov-Test). A t-Test for paired dependent
samples is used again because the number of values
for both samples is equal but the variance is different
(start Pick-by-Vision: 3.90, start paper list 2.23). The
test shows a significant difference between the order
picking times. Thus, H0,2 is discarded. The
explanation for this effect is that the subjects work
more confidently with Pick-by-Vision if they know
the storage and the workflow. So they can
concentrate on the new AR technology.

0

5

10

15

20

25

30

35

40

45

start paper list start Pick-by-Vision

av
er

ag
e

or
de

r
pi

ck
in

g
tim

e
w

ith
 P

ic
k-

by
-V

is
io

n
[m

in
]

Figure 5: Boxplot of the order picking time with

Pick-by-Vision

1.1.3 Picking Errors
Among other things the error rate depends on the
order picking technology. For a paper list it is
normally 0.35%, for Pick-by-Light 0.40% or Pick-
by-Voice 0.08% [Ten04]. This means e. g. for an
error rate of 0.40% that four order items within 1.000
are faulty. There are different types of errors, e. g. a
wrong item was picked or the amount is incorrect.
Even one error within 1.000 is usually not acceptable
to the customers, because each mistake can lead to
halting the production line.
In this test series the error rate for the paper list is
seven times higher than for Pick-by-Vision (see

Figure 6). With Pick-by-Vision only one error was
made for each 1.904 picked order lines. Significance
is questionable because of such a small number of
errors in the whole evaluation. Both samples are not
normally distributed. Error rates are subject to the
Poisson distribution because the error count can only
take integer, non-negative values and picking errors
are a rare event. Thus, the significance test was made
with the Mann-Whitney-U-Test. The test shows no
significant difference although the difference seems
to be big enough. The null hypothesis H0,3 cannot be
discarded. The reasons are that there were only 16
subjects and they made too few errors.

Figure 6: Mean values, maximum and minimum

of the order picking times over all 16 subjects

1.1.4 Questionnaires
Besides the logistic operating figures the
psychological factors motivation, usability,
impression and the cognitive load were measured
with questionnaires. The subjects accepted the
system very well and the subjective load is lower
than with the paper list. The distinct usability and the
low cognitive load lead to a very high motivation to
work with Pick-by-Vision. The motivation is the
major difference when compared to the paper list
whereas the other examined factors showed no clear
differences. There were also free questions where the
subjects could state their opinion in their own words.
On the one hand, some had problems with the HMD
because they could read worse due to changing
brightness or the shift of the Nomad VRD mounted
on a usual baseball cap. Most disliked the monotone
speech input and that they had no overview of the
size of an order (foremost the amount of order lines).
On the other hand, the subjects liked that they could
work hands-free and that the information was
displayed clear and in their field of view. Another
advantage is the acknowledgment of the pick with
the right amount. This is the main reason for the low
error rate. Altogether the result is very positive but
the subjects wore the HMD only between 30 and 45

0,84%

0,12%

0,00%

0,20%

0,40%

0,60%

0,80%

1,00%

1,20%

1,40%

1,60%

1,80%

2,00%

paper list Pick-by-Vision

er
ro

r
ra

te
 d

ep
en

di
ng

 o
n

th
e

pi
ck

ed
 o

rd
er

 li
ne

s
[%

]

start Pick-by-Vision start paper list

WSCG 2009 Full papers proceedings 62 ISBN 978-80-86943-93-0

minutes. Therefore, it is hard to make predictions
concerning full-time use.

6 ADDING A TRACKING SYSTEM
The second functional model of the Pick-by-Vision
system is developed independently from the first one
together with the Fachgebiet für Augmented Reality
(FAR) of the TUM. For this system, the same HMD
is used but the GUI is different. Besides text
information, pictures of the articles or 3D geometries
can also be visualized. One important point is to find
the right amount of displayed information because it
should not occlude too much of the real environment
due to labor safety.

Figure 7: Pick-by-Vision including an infrared
tracking system with targets fixed on the HMD

The first step for this system was selecting the
tracking system. As mentioned in chapter 3.3 an
infrared tracking system was chosen. In the AR Lab
of the FAR four ARTrack cameras from the A.R.T.
GmbH are installed and cover an area with two
shelves of one meter in length. This setup was used
to develop the visualization. For the small storage at
the Department fml with two aisles of four meters in
length at least eight of these cameras were needed.
Because of a low budget we decided to use the
prototype ARLiveCam from our industrial partner
metaio GmbH in this application. The two infrared
cameras have a wider aperture angle. Thus, hanging
above the shelves they cover the whole storage (see
Figure 7). With the tracking system it is possible to
display 3D information in correct spatial position.
These geometries are used for wayfinding and for
marking the storage compartment. Different
geometries like arrows, boxes or tunnels were tested.
The combination of a tunnel with a box seems to be
the best solution. This is a further development of the
attention funnel [Bio06]. The tunnel shows the user
in which direction he should look. If his view is

towards the right shelf the tunnel becomes
transparent and at its end the user can see a frame
around the storing compartment (see Figure 8). In
this system an adjustment knob is used for
interaction because the speech recognition in the
other functional model does not work satisfactorily.

Figure 8: Frame and tunnel becoming

transparent if the right storage compartment
A first evaluation was made [Sch08]. Several
visualizations were tested at the FAR’s AR Lab
considering the error rate. The result was that the
subject made no errors regardless of the chosen
visualization. The next step is that the system must
run stably with the new tracking system at the
storage of the Department fml. Afterwards, it will be
compared to a paper list or a PbV system. One of the
most interesting questions will be if the tracking
system brings any further advantages for the
performance of order picking processes.

7 CONCLUSION
Our results underline the potentials of Pick-by-
Vision. Our evaluations show that the users are faster
and make fewer errors. But not only logistics
operating figures were considered. The user
acceptance is high, resulting in a steep training curve.
But there are still some problems. The biggest
obstacle for porting such systems from the research
stage into practical applications is the hardware
components, especially the HMD and the tracking
system. However, there is a continuous further
development of these components because the
gaming industry is slowly discovering AR and
HMDs will soon be a part of everyday life within
mobile multimedia applications. Therefore, it seems
probably that HMDs will be used in industrial
applications within the next five years.

8 ACKNOWLEDGEMENTS
The Department fml would like to thank their
industry partners for their support with the
development and the evaluation of the above-
mentioned demonstrators; especially CIM GmbH,
metaio GmbH and Kühne + Nagel (AG & Co) KG.
A special thanks to the FAR of the TUM, especially
to Björn Schwerdtfeger for his work on the 3D

WSCG 2009 Full papers proceedings 63 ISBN 978-80-86943-93-0

visualization. Many students were involved in the
project. Two should be mentioned here: Xueming
Pan and Thomas Schmidt. Finally, the Department
thanks all participants who took part in the different
kinds of experiments and gave us feedback for
optimizing the demonstrators and the German
Federal Ministry of Economics and Technology
which supports this project.

9 REFERENCES
[Azu97] Azuma, R. T. A survey of Augmented

Reality. Presence: Teleoperators and Virtual
Environments 8, pp. 355-385, 1997.

[Bio06] Biocca, F., Tang, A., Owen, C. and Xiao, F.
Attention funnel: omnidirectional 3D cursor for
mobile augmented reality platforms. In CHI '06:
Proceedings of the SIGCHI conference on Human
Factors in computing system, New York, NY,
USA. ACM Press, pp. 1115-1122, 2006.

[Bor05] Bortz, J. Statistik für Human- und
Sozialwissenschaftler. Springer, 2005.

[Bow05] Bowman, D. A., Kruijff, E., LaViola jr., J.
and Poupyrev, I. 3D User Interfaces. Addison-
Wesley, 2005.

[Bry95] Brynzér, H., Johannsonn, M. I. Design and
performance of kitting and order picking systems.
International Journal of Production Economics 41,
pp. 115-125, 1995.

[Dan06] Dangelmaier, W., Franke, W., Mueck, B.
and Mahajan, K. Augmented Reality Applications
in Warehouse Logistics. In Proceedings of the 7th
International Conference on Production
Engineering and Logistics, Aim-Shams University,
Cairo, Egypt, 2006.

[Doi03] Doil, F., Schreiber, W., Alt T. and Patron, C.
Augmented Reality for manufacturing planning. In
Proceedings of the 7th International Immersive
Projection Technologies Workshop, ETH Zurich,
Zurich, Swiss, 2003.

[Ech04] Echtler, F., Sturm, F., Kindermann, K.,
Klinker, G., Stilla, J., Trilk J. and Najafi, H. The
intelligent welding gun: Augmented Reality for
experimental vehicle construction. In Ong, S. K.
and Nee, A. Y. C. (eds.). Virtual and Augmented
Reality Applications in Manufacturing. Springer,
pp. 333-360, 2004.

[Fei93] Feiner, S., MacIntyre B. and Seligmann, D.
Knowledge-Based Augmented Reality.
Communications of the ACM 36, pp. 52-62, 1993.

[Fri04] Friedrich, W. ARVIKA – augmented reality
for development, production and service. Publicis
Corporate Publishing, 2004.

[Gud07] Gudehus, T. and Kotzab, H. Logistics. A
Handbook: Principles, Strategies, Operations.
Springer, 2007.

[Iba05] Ibach, P., Stantchev, V., Lederer, F. and
Weiß, A. WLAN-based asset tracking for
warehouse management. In Proceedings of the
IADIS International Conference e-Commerce,
Porto, Portugal, 2005.

[Kli06] Klinker, G., Frimor, T., Pustka, D. and
Schwerdtfeger, B. Mobile Information Presentation
Schemes for Supra-Adaptive Logistics
Applications. In Proceedings of the 16th
International Conference on Artificial Reality and
Telexistence, Hangzhou, China, 2006.

[Miz01] Mizell, D. Boeing’s Wire Bundle Assembly
Project. In Barfield W. and Caudell, T. (eds.).
Fundamentals of Wearable Computers and
Augmented Reality. Lawrence Erlbaum Associates,
pp. 447-467, 2001.

[Rei07] Reif, R. and Walch, D. Augmented &
Virtual Reality Applications in the Field of
Logistics. In Proceedings of the 4th Intuition
International Conference and Workshop. Athens,
Greece, 2007.

[Rol01] Rolland, J. P., Davis, L. D. and Baillot, Y. A
Survey of Tracking Technology for Virtual
Environments. In Barfield W. and Caudell, T.
(eds.). Fundamentals of Wearable Computers and
Augmented Reality. Lawrence Erlbaum Associates,
pp. 67-112, 2001.

[Sch08] Schwerdtfeger, B. and Klinker, G.
Supporting Order Picking with Augmented Reality.
In Proceedings of the 7th IEEE and ACM
International Symposium on Mixed and Augmented
Reality, Cambridge UK, 2008.

[Tan04] Tang, A., Owan, C., Biocca, F. and Mou, W.
Performance Evaluation of Augmented Reality for
Directed Assembly. In Ong, S. K. and Nee, A. Y.
C. (eds.). Virtual and Augmented Reality
Applications in Manufacturing. Springer, pp. 311-
331, 2004.

[Ten04] ten Hompel, M. and Schmidt, T. Warehouse
Management. Springer, 2004.

[Tid95] Tidwell, M., Johnston, R. S., Melville, D.
and Furness, T. A. The Virtual Retinal Display - A
Retinal Scanning Imaging System. In Proceedings
of Virtual Reality World '95, pp. 325-333, 1995.

[Ubi08] Ubisense: http://www.ubisense.com, 2008
[VDI94] VDI guideline 3590. Order picking systems.

Beuth, 1994.
[Wal07] Walch, D. Augmented and Virtual Reality

based Training in the Field of Logistics. In
Proceedings of the 10th IAESTED International
Conference and Advanced Technology in
Education, CATE 2007, Beijing, China, 2007.

[Wel01] Welch, G., Bishop, G., Vicci, L., Brumback,
S., Keller K. and Colluci, D. High-Performance
Wide-Area Optical Tracking - The HiBall Tracking
System. Presence 1, pp. 1–21, 2001.

WSCG 2009 Full papers proceedings 64 ISBN 978-80-86943-93-0

Interactive Editing of Upholstered Furniture
Christopher Schwartz, Patrick Degener, Reinhard Klein

Institute for Computer Science II, University of Bonn

ABSTRACT

Fast visualization of industrial parts for rapid prototyping is nowadays eased by the fact that CAD construction data is readily
available in most cases. Upholstery constitutes an important exception as its shape is not given a priori but the result of
complex physical interactions between hard bodies, soft cushioning and elastic sheets. In this paper we propose an interactive
visualization and editing method for upholstery that infers physically plausible surfaces from a sewing pattern. Our method
supports fast design decisions by allowing easy and intuitive modifications of the inferred surface at any time.
We also propose a reconstruction method for point clouds that is specifically targeted at upholstery. We argue that the sewing
pattern encodes important information about shape and material deformations of the final surface and consequently use it as a
prior in our reconstruction algorithm. The practicability of our method is demonstrated on two real world data sets.

Keywords: Upholstery, Mesh Optimization, Mesh Editing, Surface Modeling, Reconstruction

1 INTRODUCTION

In many modern design and production processes an
early and realistic visualization of the product is of high
importance as it not only allows timely marketing but
also reveals errors and supports decisions during the de-
sign phase. To this extent, visualization tools must be
fast and flexible so that designers can quickly evaluate
different design options or modifications of a prototype.

As most production pipelines are nowadays fully or
in large parts automatized, the products shape can usu-
ally be directly derived from CAD data or construction
plans which eases visualization. An important excep-
tion is, however, upholstery: For furniture, cushions
or car seats only the sewing patterns, the shape of the
cushioning material and the solid upholstery frame are
known (see Figure 3).

Even though the frame might roughly resembles the
upholstered furniture at first sights, the actual shape of
the surface usually differs strongly as it is determined
by the complex interaction of frame, cushioning and
fabric. In this context, the concern of this paper is to
infer a physically plausible surface model of the up-
holstered object for visualization. Moreover, to enable
rapid prototyping we aim at a surface model that al-
lows easy, intuitive and interactive manipulation. Fur-
thermore, in some cases (possibly incomplete) 3D point
measurements might be available for an upholstered
furniture in addition to sewing patterns. In this paper we

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press

therefore also propose a novel method to reconstruct the
upholstered object’s shape from such measurements.

To visualize upholstery the fabric surface can be ob-
viously inferred by physical simulation. In fact, the
simulation of textiles or cloth has a long tradition in
computer graphics. Early approaches introduced either
continuous [21] or discrete [3] deformation models for
elastic sheets which have been subsequently improved
e.g. with respect to speed [22], stability [7] or to han-
dle materials with special properties (e.g. [9]). Most
of these approaches naturally handle interactions with
rigid bodies and even interactions between cloth and
soft bodies has been considered, e.g. in [8].

For an early visualization in the design process the
physical simulation approach in general is, however,
not well suited: First, the interaction between fabric,
cushioning and frame is involved and requires measure-
ment and specification of material and friction param-
eters for all involved materials. Second, small design

Figure 1: A visualization of a seat model retrieved with our
method.

WSCG 2009 Full papers proceedings 65 ISBN 978-80-86943-93-0

Figure 2: A patch undergoing an anisotropic deformation.
The deformation model of [16] can be parametrized to mimic
the behaviour of different materials.

modifications like adding a fancy seam must be actu-
ally modelled and implemented in a physically correct
manner. This is far more complex than directly editing
the surface. For these reasons we abandon strict phys-
ical accuracy in this paper. Nevertheless the results of
the reconstruction should be at least physically plausi-
ble and mimic natural effects like folds or wrinkles.

To allow easy and intuitive modifications of surfaces,
a number of editing metaphors have been proposed
[10, 17, 11, 12] that allow the user to specify changes to
the surface by sketching. In particular, the approach of
Nealen et al. [15] uses a set of curves as surface repre-
sentation, that can be arbitrarily modified or extended.

Targeted at general surface editing these approaches
have no notion of an underlying parametrization. For
upholstery, however, a parametrization is crucial to rep-
resent stretch and shear of cover materials. Further-
more, the parametrization corresponds directly to the
sewing pattern used in the upholstery. Since in the
above approaches constrained curved can only sketched
directly on the surface, patterns and seams between
patterns can not be defined. For interactive design of
plush toys, Mori and Igarashi [14] therefore maintain
the sewing pattern as internal shape representation dur-
ing editing. To verify that the constructed pattern is
valid, their method actually computes the surface shape
using a simple reconstruction method. While their ap-
proach yields good results for relatively simple stuffed
objects, the obtained surface deformations are in gen-
eral not physically plausible (see Figure 10).

Non-rigid template surface fitting for reconstruction
was proposed by Marschner et al. [13]. Their approach
fits a mesh template to a target mesh by iteratively min-
imizing distances between closest point pairs similar to
the ICP algorithm [4]. For well-posedness a smooth-
ness term is added in the minimization that produces
smooth surfaces in areas with missing data. Alterna-
tive regularizations have been proposed in [1] and [2]
that improve the preservation of template details by en-
forcing locally affine transformations instead of general
smoothness.

Similar to the above approaches our reconstruction
algorithm can also be regarded as a generalized ICP
algorithm. However, our regularizations is based on
the mesh deformation model from [16] that penalizes

anisotropic local transformations. This mimics the be-
haviour of textiles and gives physically more plausible
results for upholstery (see Figure 2). While a physically
plausible deformation behaviour is not always desirable
for general template fitting (for example, local surface
scaling is physically not plausible but often necessary
to accommodate differences in surface area) it is cru-
cial for upholstery reconstruction.

In [20] Stoll et al. present a non-rigid template fit-
ting method for reconstruction of point sampled sur-
faces which also generalized the classical ICP algo-
rithm. To prevent overfitting and to preserve template
details their approach resorts to Laplacian surface edit-
ing [19], a linear deformation technique which is known
to yield physically implausible deformations [6]. More-
over, their method adapts fitting weights to accommo-
date for template vertices without reliable correspond-
ing point on the sampled surface which requires a rather
costly matrix refactorization in each optimization step.
We circumvent this problem by proposing a novel type
of constraint that does not requires matrix refactoriza-
tions.

In summary, our paper makes the following contribu-
tions: We present an interactive reconstruction method
for upholstery from sewing patterns and upholstery
frame that is based on the mesh optimization method
in [16]. Several extension to this mesh optimization
are described, most notable G1-continuous seams and
force field constraints. We propose a curve based
representation that allows fast and interactive changes
of the surface that using a sewing pattern metaphor
similar to [14]. In contrast to the latter it shows
physically more plausible behaviour and can simulate
different materials. In addition, our representation
supports direct drawing of additional constraint curves
into the sewing pattern. We exemplify the power of
this concept by a simply but effective tool for adding
fancy seams.

Last but not least, we also show how to reconstruct
the fabrics surface from possibly incomplete or par-
tial 3D point measurements if these are available. To
this extent, we describe a further extension to the mesh
editing method from [16]. The practicability of our ap-
proach is exemplified on two real world data sets.

2 PROBLEM STATEMENT AND
OVERVIEW

For the following we assume that for a piece of up-
holstered furniture a sewing pattern and an upholstery
frame are given (see Figure 3). The pattern is given as
a set of closed planar curves that define the outlines of
patches. Individual patches are further annotated with
sewing instructions or seams illustrated by dashed ar-
rows in Figure 3a. Besides seams between patches, in
the construction some parts of the sewing pattern are

WSCG 2009 Full papers proceedings 66 ISBN 978-80-86943-93-0

(a) (b)

(c)

P

P

S

((1
,j,j),(2

,r,s))

1

2

(1
,i,j)

S
(2
,r,s)

(d)

Figure 3: (a) sewing pattern with sewing instructions (b) up-
holstery frame (c) fixations curves on the upholstery frame.
(d) seam between patches P1 and P2

also fixated at the upholstery frame in 3D. Figure 3c
shows an example of a set of fixation curves on a frame.

Now, given a sewing pattern, fixation curves and
seams the first problem that we tackle in this paper is to
compute a visibly plausible approximation of the fab-
rics surface. To this extent, Section 3 proposes a suit-
able surface representation and a basic reconstruction
algorithm. Moreover, we describe a set of interactive
editing operations on the reconstructed surface. In Sec-
tion 4 an extension to the basic reconstruction algorithm
is described that improves on it by simulating a cush-
ioning between upholstery frame and surface.

Finally, we consider in Section 5 the case where a set
of point samples S⊂R3 on the fabric surface is given as
an additional input. The point set S might be obtained
by laser range scanning and can be incomplete, noise
and disconnected. The problem is then to reconstruct a
closed fabric surface that approximates the set S while
adhering to the given sewing pattern and seaming con-
straints. After exemplifying the proposed algorithms
on real world models in Section 6 we close with a short
conclusion in Section 7.

3 BASIC RECONSTRUCTION AND
EDITING

3.1 Representation
At the heart of our representation is the sewing pat-
tern P = {P1, . . . ,Pn}, a set of simple closed curves Pi
in 2D that define the outlines of patches. In our im-
plementation these are given as either polygons or B-
spline curves. Seams between patches are represented
by tuples ((i,r,s),(j,r′,s′)) denoting a seam between

the curve segment Pi([r,s]) and another Pj([r′,s′]) (see
Figure 3d). We collect all seams between patches in the
set PS .

As described in the previous section there are also
fixation seams between fabric and frame. We therefore
keep a list with fixation curves C = {C1, . . . ,Cm} on the
surface of the upholstery frame which are also given as
either B-splines or polygons in 3D. In contrast to patch
outlines Pi these curves might be open. Fixations seams
are represented analogously to patch seams: we store
for each seam between a curve segments Pi([r,s]) and a
fixation curve C j a tuple ((i,r,s), j) in a set FS .

Our idea to derive the fabrics shape given these in-
puts is to simulate an elastic sheet cut from the sewing
pattern that adheres to the sewing and fixations. If we
assume a sufficiently stiff material like e.g. leather or
paper that resists bending to some degree, the sewing
pattern P together with fixation curves C and seams
PS ,FS do in fact determine the shape of this sheet.
By using the elastic sheet metaphor, these sets can
therefore be indeed regarded as a representation for the
upholstered shape. Later we will augment this repre-
sentation by further user defined constraint to enable in-
teractive editing. The next section describes the choice
of an appropriate interactive sheet simulation.

3.2 Basic Reconstruction

Although in principle strictly physically based defor-
mation models like e.g. for cloth simulation can be used
to simulate elastic sheets, physical accuracy is, as ar-
gued in the introduction, not required in our case and
the relatively high computational effort thus not justi-
fied. An alternative constitute interactive mesh editing
methods that are less accurate but tuned to run interac-
tively even for large models. Among a multitude of de-
formation models for elastic sheets we chose the mesh
editing method of Paries et al. [16] as it is very flexible
and provides physically plausible results at interactive
frame rates. In contrast to other mesh editing method
[6, 5], the deformation model of [16] can emulate the
behavior of materials with different Poisson ratios, i.e.
rubber, leather, or textiles via a single parameter (see
Figure 2). This is of high importance for our application
as it guarantees physically plausible shear or stretch in
the texture map. In the following we summarize the
most important concepts from [16].

The mesh editing algorithm minimizes iteratively a
non-linear deformation energy on the surface by solv-
ing two linear systems in least squares sense and a par-
allel low-dimensional eigenvalue problem. In each step,
the first linear systems L1 updates the positions of all
vertices while the second system L2 optimizes a local
frame in each vertex. Both steps aim at the preserva-
tion of local surface details. The method gains its speed
from the fact, that the system matrices of the two linear

WSCG 2009 Full papers proceedings 67 ISBN 978-80-86943-93-0

systems do not change during the iterations and thus
can be prefactored using sparse direct solvers.

In addition, the original formulation allows to con-
strain the position and the local frame at arbitrary ver-
tices. This is realized by adding additional rows to both
linear systems: positional constraints are added in the
first system while constraints to the local frames - ori-
entation constraints - are added to the second. Although
the original formulation does not describe pure position
constraints or pure orientation constraints, these can be
added in straightforward manner by skipping the corre-
sponding rows from the other linear system.

To reconstruct upholstery with this mesh optimiza-
tion algorithm, we first triangulate the interior of each
curve Pi of the sewing pattern P using a planar Delaunay
triangulator [18]. For later reference we label boundary
vertices positioned at Pi(t) with their parameter value t.
With the resulting meshes M0

i , we initialize the mesh
optimization that eventually yields optimized meshes
Mi with the same topology that locally resemble M0

i .
As the meshes M0

i are flat and the above described it-
erations of the mesh optimization will thus minimize
bending in the surface. In the absence of further con-
straints the patches Mi will therefore remain flat.

To impose sewing constraints, we compute for each
seam ((i,r,s), j)∈FS the vertices on the boundary of
M0

i that correspond to Pi([r,s]), i.e. with label values r≤
t ≤ s and constrain their position to C j((t− r)/(s− r)).

Finally, sewing constraints between patches have to
be imposed. For each inter patch sewing constraint
((i,r,s),(j,r′,s′)) ∈PS boundary vertices with cor-
responding labels have to be identified. More precisely,
a vertex on Pi([r,s]) labeled with t must be sewed to the
vertex on Pj([r,s]) with the label t ′ = s′−r′

s−r (t − r) + r′.
However, as usually a vertex with that label does ini-
tially not exist in M0

j , we add it by subdividing the cor-
responding boundary edge.

To actually impose a sewing constraint for two corre-
sponding vertices v and v′ we add an additional row to
the first linear system in the mesh optimization, to min-
imize the quadratic distance between v and v′. In the
formulation of [16] the coordinates of all vertices are
collected in a matrix. If k and k′ denote the row indices
of v and v′ respectively, the additional row equals 1 at
column index k and −1 at k′. All other entries are zero.

3.3 Interactive Editing
In our implementation the user interface is divided into
two windows (see Figure 4). There is a pattern window
showing patterns laid-out in 2D with seams indicated
by lines. Pattern curves can be modified and rearranged.
Moreover, seams between patches can be defined. In
the main 3D-window the reconstructed model and the
fixation curves C are shown. In both windows, the user
interacts with the reconstructed model only by adding
or changing curves, either patch boundaries or fixations.

Figure 4: The user interface of our interactive editor.

When two points on a patch curve are selected it is pos-
sible to create a new fixation curve in the 3D-window.
This also creates a fixation seam between patch and the
created curve. It is possible to display a polygon model
of the upholstery frame for guidance. The user interface
and its functions are exemplified in the accompanying
video.

Modifying a fixation curve in the 3D-window
changes the position constraints of the associated ver-
tices (see previous section). As the mesh optimization
is tuned to handle changes in positional constraint
very efficiently, the shape of the reconstructed surface
updates interactively at about 10 − 15 fps. Modi-
fications on a pattern curve in the pattern window
results in instant re-triangulation of the patches and
re-initialization of the mesh optimizations. Although
this is computationally more expensive than changes
of fixation curves, patch boundaries can be edited at
interactive frame rates.

3.4 C1 and G1 Continuous Seams
So far, inter patch seams constrain only the positions
of adjacent patches, i.e. the resulting surface is C0 con-
tinuous at such seams. In some cases, however, higher
orders of smoothness desirable (see Figure 8 bottom).
In our systems, the user can therefore choose C1 or G1

smoothness for individual inter patch seams.
To impose C1 continuity at a seam, we first identify

corresponding vertices as described in section 3.2. In
the mesh optimization first order derivatives at a vertex
v are explicitly represented by a local frame which is
in turn given as quaternion qv (see [16]). Analogous
to positional constraints, we add four similar rows for
each pair of corresponding vertices v,w along the seam
to the second linear system of the mesh optimization
to minimizes the squared difference ‖qv− qw‖2. This
effectively enforces nearly identical local frames at both
sides of the seam and thus C1 continuity.

In upholstery seams are often placed to reduce stretch
of the fabric. This is most effective if discontinuities in
the texture or fabric pattern are allowed at the seam,
i.e. discontinuous tangent vectors at the seam. Never-
theless, the surface shape should be smooth. In other
words, the surface should be G1 continuous at the seam.
To allow this weaker form of continuity, we have to en-

WSCG 2009 Full papers proceedings 68 ISBN 978-80-86943-93-0

force identical normal vectors at corresponding vertices
along the seam. More precisely, for corresponding ver-
tices v and w with frames encoded by quaternions qv,qw
and vertex normals nv,nw we require

R[qw]R[qv]−1nv = nw (1)

where R[q] denotes the rotation matrix associated with
the quaternion q. The above expression simple requires
that both vertex normals coincide in the local frame co-
ordinates of vertex w.

Unfortunately, equation 1 is nonlinear in the quater-
nion components and thus cannot be represented in the
second linear system of the optimization anymore. As
the linearity of this step is crucial for the performance
of the method, we use the following approximation: In
each step of the iterative mesh optimization we com-
pute the quaternions qvw and qwv that rotate nv onto nw
and vice versa. We then add the following constraints
to the linear system:

qv = qvwqw and qw = qwvqv

To avoid matrix updates that require an expensive refac-
torization of the linear system, we evaluate the right
hand part of both equation and constrain qv and qw to
the computed values using the build-in orientation con-
straint mechanism.

3.5 Handle Curves and Fancy Seams
Although results of the basic reconstruction algorithm
are plausible, the information encoded by fixation
curves are sparse and there might be the need to add
surface details in some parts of the upholstered object.
To provide additional flexibility, we therefore allow the
user to draw addition handle curves Hk into the interior
of the planar pattern patches after a surface has been
reconstructed. In contrast to patch boundaries P these
curves can also be open.

Each handle curve Hk is converted to a polygon and
triangulated into the respective patch M0

i . The corre-
sponding edges in the reconstructed 3D surface Mi are
then collected into a polygon H ′k. We then add an ad-
ditional fixation seam mapping Hk onto H ′k and allow
the user to manipulate both Hk and H ′k interactively. In
this way, the surface can be easily modified to meet the
user’s needs. If Hk is given as a spline, it is also conve-
nient to approximate H ′k by a 3D spline for editing.

Figure 5 shows an important application of handle
curves. Fancy seams do not connect between patches
but are of purely decorative nature. Nonetheless these
seams have a great impact on the object’s appearance.
Using handle curves, a fancy seam can be easily real-
ized by adding triples of parallel curves as shown in the
figure and translating the 3D handle curve in the mid-
dle.

Figure 5: Adding fancy seams. Left: additional handle curves
Hk in the pattern. Right: corresponding 3D handle curves H ′k.

f'' f' f

Figure 6: The three steps to create the force field f (see text).

4 SIMULATING CUSHIONING
The basic reconstruction algorithm described in the last
section relies only on the sewing pattern and fixation
curves. The actual shape of the upholstery frame has
not been considered so far. However, as described in
the introduction frame and cushioning have significant
influence on the actual shape of upholstered furniture.

To simulate cushioning and to incorporate the frame’s
shape in the interactive reconstruction we propose a
simple force field based approach: First, we compute
a force field f : R3 → R3 from the upholstery frame’s
geometry that assign each point in the inside a force
pointing toward the cushions outside. We then extent
the mesh optimization to push the reconstructed surface
outwards along the force field.

4.1 Creating the Force Field
In our approach, the actual force field f is defined by
trilinear interpolation of a discrete grid fi, j,k surround-
ing the upholstery frame. To construct this grid we start
with a binary voxel grid f ′′ : N3→ R3 defined as

f ′′i, j,k =

{
1, (i, j,k) is inside the frame
0, otherwise

From this voxel grid, we then calculate for each voxel
the city-block-distance to the nearest voxel with f ′′l,m,n =
0 and store it in f ′ (see Figure 6). Finally, to obtain
an outside pointing force field f we take discrete par-
tial derivatives of f ′ scale them with the distance value
stored in f ′:

fi, j,k =


f ′i+1, j,k− f ′i−1, j,k

2 · f ′i, j,k
f ′i, j+1,k− f ′i, j−1,k

2 · f ′i, j,k
f ′i, j,k+1− f ′i, j,k−1

2 · f ′i, j,k


WSCG 2009 Full papers proceedings 69 ISBN 978-80-86943-93-0

To simulate extra cushioning a user specified amount of
dilation steps can be applied the auxiliary binary voxel
grid f ′.

4.2 Force Field Constraints
For cushioning simulation we first construct an initial
surface using the basic reconstruction algorithm de-
scribed in Section 3.2. Then a force to each vertex is
applied that is equivalent to the value of f at its loca-
tion.

To integrate the force field f into the mesh optimiza-
tion without breaking the linearity of the two sub steps
L1 and L2, we propose a simple extension that fits into
the least squares frame work: If a force fv should be
imposed to a vertex v located at pv, we compute a ghost
position

p′v = pv +
1
2

fv

and add a soft positional constraint to the linear system
L1, i.e. we add rows corresponding to the equation:

pv = p′v

As the linear system L1 is solved in least squares sense,
this effectively minimizes the quadratic energy E f :=
‖pv− p′v‖2. The force imposed on v in the minimization
is thus equivalent to the negative gradient of this energy
which is given by

−
∂E f

∂ pv
=−2(pv− p′v) = fv

Although the ghost position p′v has to be updated in
each iteration, the system matrix of the linear system
L1 remains constant and thus no expensive refactoriza-
tion is required.

Using the above described force field constraints, the
force field f can be trivially integrated with the mesh
optimization by evaluating the field at all vertex posi-
tions in each iteration. However, we found in our ex-
periments that the robustness of the cushioning simula-
tion can be improved, by applying only the fraction of
the force f that is orthogonal to the surface. Further-
more, we want the cushioning to pull the surface only
outwards, i.e. in the direction of its normal. We thus use
the following force assignment

fv = max(0,〈nv| f (pv)〉)nv

where nv denotes the vertex normal at v.

5 SURFACE RECONSTRUCTION
FROM 3D MEASUREMENTS

In this section we assume that besides frame and sewing
pattern also a set of point measurements S on the sur-
face is given. As described in Section 2 this measure-
ments can be obtained e.g. from range scans and can

Figure 7: Point cloud fitting: initialized mesh with closest
pairs

be incomplete or have holes. In this case, our general
approach can also be used to reconstruct a complete sur-
face from these samples.

Even the most basic reconstruction method described
in Section 3.2 usually yields a surface that already ap-
proximates the actual fabric surface (see Figure 7). To
fit this initial surface to the point set S we use an ICP-
like approach. The original iterative closest point (ICP)
algorithm [4] searches a single rigid transformation that
aligns two point sets so that their distance is minimized.
It iterates between finding pairs of closest point in the
two point sets and minimizing the distances between
these point pairs until it eventually converges.

Similarly, we start by computing for every vertex v
positioned at pv its nearest neighbor sv ∈ S using a fast
kd-tree indexing structure. The distance ||pv− sv|| is
evaluated and all vertices whose values is below a cer-
tain threshold are marked. This is illustrated in Figure
7 where pairs of marked vertices and closets point sam-
ples are connected by red lines.

To minimize the distance between vertices and se-
lected samples sv we again use force field constraints:
To each marked vertex v we apply the force

fv = sv− pv

pointing towards the point sample sv. For all unmarked
vertices we set fv = 0. Finally, a mesh optimization step
is computed. Closest point search and mesh optimiza-
tion are iterated until the surface converges.

The reason why we have chosen force field con-
straints instead of simple positional constraints pv = sv
is that the set of marked vertices can change signifi-
cantly in each iteration. Adding of removing positional
constraints from L1, however, changes the structure of
the system matrix and thus would require a refactoriza-
tion in each iteration which is infeasible.

Contrary to the original ICP our method does not
solve for a single rigid body transformation but per-
forms an optimization of the whole surface. The re-
sulting mesh approximates the point cloud while min-
imizing surface bending and material stretch or shear.
Certainly, seams between pattern patches and fixation
seams are nevertheless maintained.

WSCG 2009 Full papers proceedings 70 ISBN 978-80-86943-93-0

Figure 8: Top left: result after basic reconstruction. Top right:
same object with cushioning simulation. Bottom: result af-
ter selecting G1 smoothness for the two seams along the two
armrests.

6 RESULTS
We applied our method to two real world data sets
to demonstrate its applicability. For both data sets a
sewing pattern and upholstery frame were given. In ad-
dition, a laser range scan of the constructed seat was
given for the second data set.

The results for the first data set are shown in Figure
8. The fixation curves and the frame for this data set
are those shown in Figure 3. As visible in the figure,
the result of the basic reconstruction already resembles
a car seat. However, the effects induced by cushioning
are clearly missing. The example shown in the middle
of Figure 8 demonstrates that the cushioning simulation
can add these effects.

For visualization of material deformations, we used a
checker board pattern texture and mapped it to the sur-
face patches Mi using the positions of the correspond-
ing mesh elements in M0

i as uv-coordinates. Material
deformations become thus visible in deviations of the
checker boards from equally sized squares. As visible
in the figure, deformations appear plausible and resem-
ble the shearing and stretching of natural materials.

In the bottom of the figure an application for G1-
continuous seams is presented: The two seams running
along the armrest of the cushion meet at an sharp an-
gle after cushioning simulation. As in this case clearly
a smooth transition is desired, we selected G1 continu-
ity for these seams. The results shown in the bottom of
Figure 8 is a smooth surface while the texture map is
still discontinuous as visualized by the checker boards.

For the second data set we used the surface recon-
struction from 3D measurements. As shown in the ac-
companying video the fitting runs interactively and con-
verges after less than 5 seconds. The result of the recon-
struction is shown in Figure 9 while the original point
cloud and the initialization is shown in 7. The fancy
seams in this example were not added by the handle

Figure 9: Result of point cloud fitting.

vertices # constraint FPS
basic reconstruction 11094 2073 15
cushioning 11094 11094 13
cushioning + G1-seams 11331 11736 11
point fitting 8026 8026 10

Table 1: Timings of the mesh optimization

curves but reconstructed from detail in the point set.
Please note that the sewing pattern of this data set is
not symmetric as it contains a notch for the belt on the
right hand side.

In Table 1 we collected timings for the mesh opti-
mization using the extensions proposed in this paper.
The rows correspond to the reconstruction algorithm,
cushioning simulation using force field constraints for
all vertices, cushioning simulation with two additional
G1 seams, and point cloud fitting with a point set size
of 105,126. All tests were conducted on a 2.4GHz ma-
chine with a GeForce 8800 used for acceleration of the
mesh optimization as descibed in [16]. Even with the
relatively expensive nearest neighbor search and a large
number of constraints the optimization runs at interac-
tive frame rates for both data sets.

Finally, we present in Figure 10 a comparison be-
tween our method and the plush toy design tool Plushie
[14]. To this extent, we build a small cushion using
a quadratic patch of fabric (see figure) and sewed it
to a trapezoidal fixation curve. For better comparison
we also added a cube shaped cushioning to our result.
While in the result obtained by Plushie the fabric is lo-
cally scaled to compensate for the smaller lower edge
of the trapezoid, this behaviour is seldom observed for
real materials: most materials like leather, textiles etc.
rather form out folds and wrinkles to reduce compres-
sion of the fabric. This expected behaviour can be ob-
served with our method.

7 CONCLUSION
In this paper we proposed an visualization and interac-
tive editing system for upholstery designed to support
early and fast decisions in industrial design. The sys-
tem is build around a basic reconstruction method that
infers an initial shape from sewing pattern and fixation
curves. Besides manual editing of this initial shape,
we proposed extension to simulate cushioning and for
fitting to given point measurements. Our approach is
based on the mesh optimization from [16] but extents it
in several important ways: we describe ways to realize

WSCG 2009 Full papers proceedings 71 ISBN 978-80-86943-93-0

P

C

(a) (b) (c)

Figure 10: Comparison of our method with Plushie: (a) setup:
a quadratic shaped pattern P is sewed to a trapezoid shaped
fixation curve C. (b) result using Plushie (c) result using mesh
editing (bolstered by a quadratic shaped cushion)

G1 seams, incorporate a force field and to fit the mesh
interactively to a point cloud.

Currently our method fails to produce satisfying
results if the shape of the upholstery frame differs
strongly from the actual cushioning. In these cases,
deriving a force field as described in Section 4 might
not provide a suitable approximation for the forces
expelled by the cushioning. We therefore want to to
explore simple and intuitive ways to edit the force field
f or to roughly model the shape of cushioning material.

Acknowledgements The results shown in this pa-
per are based on sewing patterns, upholstery frame data
and 3D scans kindly provided by the Volkswagen AG.

REFERENCES
[1] B. Allen, B. Curless, and Z. Popovic. The space

of human body shapes: reconstruction and param-
eterization from range scans. ACM Trans. Graph,
22(3):587–594, 2003.

[2] B. Amberg, S. Romdhani, and T. Vetter. Optimal
step nonrigid ICP algorithms for surface registra-
tion. In CVPR. IEEE Computer Society, 2007.

[3] D. Baraff and A. P. Witkin. Large steps in cloth
simulation. In SIGGRAPH, pages 43–54, 1998.

[4] P. J. Besl and N. D. McKay. A method for regis-
tration of 3-D shapes. IEEE Trans. Pattern Anal.
Mach. Intell, 14(2):239–256, 1992.

[5] M. Botsch, M. Pauly, M. H. Gross, and
L. Kobbelt. Primo: coupled prisms for intu-
itive surface modeling. In Symposium on Geom-
etry Processing, volume 256, pages 11–20. Euro-
graphics Association, 2006.

[6] M. Botsch and O. Sorkine. On linear variational
surface deformation methods. IEEE Trans. Vis.
Comput. Graph, 14(1):213–230, 2008.

[7] K.-J. Choi and H.-S. Ko. Stable but responsive
cloth. In SIGGRAPH, pages 604–611. ACM,
2002.

[8] F. Cordier, P. Volino, and N. Magnenat-Thalmann.
Integrating deformations between bodies and

clothes. Journal of Visualization and Computer
Animation, 12(1):45–53, 2001.

[9] R. Goldenthal, D. Harmon, R. Fattal,
M. Bercovier, and E. Grinspun. Efficient
simulation of inextensible cloth. ACM Trans.
Graph, 26(3):49, 2007.

[10] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy:
A sketching interface for 3D freeform design. In
SIGGRAPH, pages 409–416, 1999.

[11] L. B. Kara and K. Shimada. Sketch-based 3D-
shape creation for industrial styling design. IEEE
Computer Graphics and Applications, 27(1):60–
71, 2007.

[12] O. A. Karpenko and J. F. Hughes. Smoothsketch:
3D free-form shapes from complex sketches.
ACM Trans. Graph, 25(3):589–598, 2006.

[13] S. R. Marschner, B. K. Guenter, and S. Raghupa-
thy. Modeling and rendering for realistic facial
animation. In Rendering Techniques, pages 231–
242. Springer, 2000.

[14] Y. Mori and T. Igarashi. Plushie: an interactive
design system for plush toys. ACM Trans. Graph,
26(3):45, 2007.

[15] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa.
Fibermesh: designing freeform surfaces with 3D
curves. ACM Trans. Graph, 26(3):41, 2007.

[16] N. Paries, P. Degener, and R. Klein. Simple
and efficient mesh editing with consistent lo-
cal frames. In Pacific Conference on Computer
Graphics and Applications, pages 461–464. IEEE
Computer Society, 2007.

[17] R. Schmidt, B. Wyvill, M. C. Sousa, and J. A.
Jorge. Shapeshop: Sketch-based solid modeling
with blobtrees. In Sketch Based Interfaces and
Modeling. Eurographics Association, 2005.

[18] J. R. Shewchuk. Triangle: Engineering a 2D qual-
ity mesh generator and delaunay triangulator. In
WACG, volume 1148 of Lecture Notes in Com-
puter Science, pages 203–222. Springer, 1996.

[19] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa,
C. Rössl, and H.-P. Seidel. Laplacian surface edit-
ing. SGP, pages 179–188, 2004.

[20] C. Stoll, K. Zachi, C. Rössel, H. Yamauchi, and
H.-P. Seidel. Template deformation for point
cloud fitting. Symp. on Point-Based Graphics,
pages 27–35, 2006.

[21] D. Terzopoulos, J. C. Platt, A. H. Barr, and K. W.
Fleischer. Elastically deformable models. In SIG-
GRAPH, pages 205–214. ACM, 1987.

[22] P. Volino and N. Magnenat-Thalmann. Imple-
menting fast cloth simulation with collision re-
sponse. In Computer Graphics International,
page 257, 2000.

WSCG 2009 Full papers proceedings 72 ISBN 978-80-86943-93-0

User Motion Prediction in Large Virtual

Environments

Jaroslav Přibyl

Department of Computer Graphics, FIT
Brno University of Technology

Božetěchova 2
 612 66, Brno, Czech Republic

pribyl@fit.vutbr.cz

 Pavel Zemčík

Department of Computer Graphics, FIT
Brno University of Technology

Božetěchova 2
612 66, Brno, Czech Republic

zemcik@fit.vutbr.cz

ABSTRACT
Motion prediction of various objects is important for work of many people. We have to distinguish between near

and distant time prediction queries. The trajectory of an object represented by mathematical functions can be

used for near time prediction. These formulas are often called motion functions and they use recent movements to

predict future locations of the objects. It is impossible to use simple mathematical formulas to evaluate distant

time queries, because the movement trajectory between current and distant future time can alter widely.

Trajectory pattern of an object is suitable prediction method to take into account for both near and distant time

queries. Consequently, data mining methods can mine trajectory patterns from historic movements and these

patterns can be used to predict the future objects movement. The best contemporary methods exploit combination

of trajectory pattern method and motion function. This means that in case no trajectory pattern is found, the

motion function is used to determine object near location. Using the trajectory pattern prediction principle a new

approach to optimize communication between client and server in large virtual environments is introduced. Both

short time and long time prediction queries are used to minimize the overall amount of downloaded data from

network server and to obtain the probably requested parts of the scene in advance.

Keywords
Motion prediction, large virtual environment, user profile, trajectory pattern, movement history

1. INTRODUCTION
User (or object) motion prediction in large virtual

environments will be described in this paper. The

large virtual environment can be a terrain model or a

model of a building. Whole scene is stored in a

network database. The client application transmits to

the server information about recent movements of

object and its current position. The server predicts the

future object position and sends necessary data (e.g.

geometry, textures and other application dependent

data) to the client application. The near time query

prediction is sufficient (e.g. rendering optimization,

data preprocessing, etc.) in many cases, but a need of

long time prediction (e.g. mobile networks, deliver

network services, traffic information etc.) is

sometimes necessary to uncover the future location of

the object.

Current location and current movement of the object

are needed to perform a short time prediction. Several

techniques were invented to predict near time

location of the object. These methods work fine for

near time prediction queries but fail when they’ll be

used to predict location far away from the current

position of the object.

Motion functions can be used to predict the near

locations. These functions describe motion of an

object by simple mathematical formulas. They can

predict trajectory of the object reasonably well for

near time locations. The motion function cannot be

used to predict locations far away from the current

object position because the motion of object might be

affected by various circumstances (terrain obstacles,

road networks, regular traffic jams, etc.). Let us

consider an example (see Figure 1.). Some linear

motion functions [Tao03a, Pat04, Jen04, Sal00 and

Tao03b] can be used to predict the future object

location during several consequent days. The

prediction may fail e.g. on Friday in our example. To

avoid this, nonlinear functions can be used [Tao04a].

They can capture the regular path of the object on

Friday, but they may fail too (e.g. predict the “wrong

place” in our example). Instead of the motion

function, the movement pattern principle can be used

to predict future location of the object accurately.

WSCG 2009 Full papers proceedings 73 ISBN 978-80-86943-93-0

Figure 1. User go from home to work each week.

Trajectory pattern can be used to examine that on

Friday the user goes to work with some probability

and during other week days with another probability

[Yav05, Yan06].

The main interest of the above mentioned technical

articles is to discover trajectory patterns. They

assume that the prediction can be easily done through

the discovered trajectory patterns. But they don’t take

into account that the prediction query result can

consist of many of patterns. The total amount of

discovered patterns grows with every new object in

the virtual environment. Therefore we need a method

to organize the large amount of trajectory patterns

and an efficient data structure to answer the

predictive queries fast and accurately. Only several

technical articles address the problem of large

amount of discovered patterns [Jeu08]. Some of them

address the problem partially [Mam04] and they

develop pattern indexing techniques. Very few works

[Jeu08] solve the case when no pattern is found. They

use trajectory patterns to answer the predictive query

and in case when no pattern is found call motion

function to predict future location of the object.

In this paper we present a new approach to predict

object motion in large virtual environment. To the

best of our knowledge no one has solved the object

motion prediction in context of 3D virtual

environment. We use the prediction for optimize the

rendering process and the data flow between client

application and network server.

2. RELATED WORK
In this section we introduce state of the art of object

motion prediction methods. Generally the object

motion prediction methods can be categorized into

two main classes.

Motion function based prediction
Motion functions result from vector representation of

object motion, position and direction. Motion

functions can be categorized into linear and nonlinear

types. Linear models [Sal00, Tao03b] assume only

linear movement of an object. Moreover, nonlinear

models assume nonlinear movement [Tao03c].

At time t0, the object location equals l0 and velocity

equals v0. Object future location can be predicted for

the linear model at time tf through this following

equation:

)()(000 ttvltl ff −×+= ,

where l and v are 3-dimensional vectors.

The nonlinear prediction methods are generally more

accurate in comparison with the linear methods.

Today most accurate prediction mathematical method

is recursive motion function (RMF) [Tao03c]. Object

location l at time t is defined as follows:

∑ = −⋅=
f

t itit lcl
1

,

where ci is a constant matrix and f is the minimum

number of the most recent timestamps which are

needed to compute the elements of all ci. The RMF

method can be used only for near future prediction.

The prediction accuracy can drop severely if we

would like to know where the object is located in

some distant time. Generally the motion functions

predict wrong locations when movement of the object

contains sudden changes in its direction or velocities.

It is due to the motion function is strongly dependent

on current previous locations.

Pattern based prediction
A lot of methods solve a pattern based prediction

problem. One of them is neural network pattern based

prediction. The classical back propagation network

joined with a self organizing feature map (SOFM)

can be used.

Further useful method is discrete Markov model

[Rab89]. Some works derive Markov transition

probabilities from one or multiple cells to another.

Association rules can be used to predict future

locations of an object as well. Work [Yav05,

Tao04b] address spatio-temporal association rules of

the form),(),,(21 trctr ji → , with confidence c, where

ri and rj are regions at time t1 a t2 respectively (t2 >

t1). In other words an object in location ri at time t1 is

likely appear in location rj at time t2 with probability

c. Study [Yan06] mine sequential patterns from

object trajectories.

All above mentioned techniques can discover large

amounts of patterns and amounts of patterns

discovered as a result of a predictive query can be

large as well. Only [Jeu08] method organizes the

discovered patterns and can quickly answer to the

predictive query.

No previous article solves the case if large amount of

objects in virtual environment store and use their own

motion history. Otherwise no study describes an

opportunity to use the pattern based prediction

techniques in computer graphics especially in

distributed 3D virtual environment. The main

WSCG 2009 Full papers proceedings 74 ISBN 978-80-86943-93-0

purpose of this paper is to optimize the rendering

process and communication between client and

network server.

3. PREDICTION MODEL FOR LARGE

VIRTUAL ENVIRONMENT
The proposed approach is intended for large

distributed virtual environments. The prediction

system is formed as a part of a server including

representation of all models. The client applications

request data from the server and render the scene.

The virtual environment is divided into a regular grid.

This approach was chosen for several reasons. The

first reason is that the virtual environment consists of

large amount of textures. In order to save free

memory, the quad tree data structure was employed

to handle texture level of detail. Furthermore fast

rendering, distributed character of the scene and

prediction related to distributed parts of the virtual

environment were good reasons for involving the

regular grid. Each cell of the grid represent one

distributed piece of the scene and has to be managed

in the network server. There can be a large amount of

cells to be managed on the server. Each cell of the

grid can be a possible object location on his path

through the virtual environment. Therefore the

prediction granularity should be one cell.

The trajectory pattern of an object is represented by

sequence {(l0, l1, ..., li, ..., ln-1)}, where li denotes object

location l0 at time i. Location coordinates are [x, y, ...,

d]
dR∈ , where d is used dimension. Object

trajectory pattern can be discovered from its

historical movement [Mam04]. A given period T is

defined by a number of timestamps such that a

trajectory pattern may reappear. An object trajectory

can be decomposed into







T

n sub-trajectories. The

period T is data dependent. To identify all locations

with the same time offset the term group is used. In

other words each group Gt represents all locations

visited by object at time offset t. Consequently, the

groups are clustered to dense clusters Rt. We call Rt a

frequent region at time t. The
j

tR symbol is used to

distinguish between frequent regions with the same

time offset. It represents j-th frequent region at time

offset t.

These definitions can be adapted to our model of

virtual environment. We need to predict the future

cells which will be necessary to be downloaded from

network server in near and far future. For our virtual

environment, the time period T is a sequence of

visited cells during one client session. A group G

corresponds to frequent region R. At this point the

dense cell and the dense region terms have to be

defined.

Definition 1: Dense cell c is a cell with more than

one pass through of an object along the movement

history of the object in virtual environment.

Definition 2: The size of a dense cell Size(c) is

defined by amount of visitors of the cell c along the

movement history of an object in virtual environment.

Definition 3: Dense region is a group of adjacent

dense cells with the same dense cell size. All dense

cells associated with dense region m

jR have the same

dense cell size j. The variable m is dense cell

identifier and >∈< nm ,1 , where n is number of

discovered dense regions.

Let us consider an example. Each red and green cell

is a dense cell in Figure 2. The green groups are

dense regions at level 2 and the red groups of cells

are dense regions at level 3. Overall we have five

dense regions counted from left to right and from

bottom to top in this example. The bottom-leftmost

red region is dense region 1

3R and the top-rightmost

dense region is marked as
5

2R .

Figure 2. Virtual environment is divided into

regular grid. The colored groups of cells are dense

regions.

A density based clustering algorithm DBSCAN

[Est96] was adapted to obtain dense regions. We

modify the algorithm to work as follows. For every

dense cell c from dense region R a dense cell q from

dense region R exists, so that dense cell c is inside the

Eps-neighborhood of dense cell q and NEps(q)

contains at least minPts dense cells.

Definition 4: The Eps-neighborhood of a dense cell c

marked as NEps(c) is defined by:

)}()(|{)(qsizecsizeDqN cEps =∈= ,

where D is input set of dense cells.

We have introduced a method to obtain dense regions

R from a sequence of object locations. Dense regions

allow us to describe object motion by trajectory

pattern and to predict next movement of the object.

WSCG 2009 Full papers proceedings 75 ISBN 978-80-86943-93-0

Trajectory pattern concept
The concept of a trajectory pattern was defined in

earlier work [Jeu08]. Now our modification of the

trajectory pattern concept is proposed.

Definition 5: The trajectory pattern P is an

association rule of form n

j

confm

jjj RRRR →∧∧∧ ...21 . The

form m

jjj RRR ∧∧∧ ...21 is sequence of dense regions

visited by object. We call this sequence a premise.

The form m

jR is a dense region called a consequence

and this dense region might be visited by the object

with probability conf. The term conf stands for

confidence.

Thanks to current visited dense regions we are able to

predict the object future location (dense region). The

prediction is done by a prediction query. The

prediction query is defined by number of dense

regions which will be predicted. Two types of

prediction queries are defined.

Definition 6: The distant time prediction query is a

spatio-temporal query satisfying the condition that the

number of predicted dense regions is greater than d,

where d is user defined threshold.

The boundary between distant time query and non-

distant time query is strictly application-dependent.

Trajectory pattern retrieval
The trajectory pattern discovery process can be

divided into two parts. First of all we have to detect

the dense regions. This task can be completed by

modified DBSCAN algorithm which was described

previously. The second task in trajectory pattern

discovery process is to extract trajectory patterns (it

corresponds to association rules) from input dense

regions. The apriori algorithm [Agr94] can be used to

extract association rules from user movement history

described by sequences of dense regions.

Apriori algorithm
We briefly describe the apriori algorithm used to

obtain the association rules from dense regions.

Inputs of the apriori algorithm are sequences of dense

regions. This set of sequences represents movement

history of the object. Outputs of the apriori algorithm

are sets of association rules with various length and

probabilities.

3.1.1 Obtain frequent 1-patterns
We can obtain frequent 1-patterns from dense regions

discovered by DBSCAN algorithm. Each frequent 1-

pattern corresponds to one dense region Rj.

3.1.2 Obtain frequent k-patterns
The time period T is a sequence of visited dense cells

during one client session.

Trajectory ID Sequence of visited cells

TID1 1, 2, 10, 11, 19, 27, 28, 36, 44,

45, 53, 61, 62

TID2 1, 2, 3, 11, 12, 20, 28, 36, 44,

52, 53, 61, 62

TID3 1, 2, 3, 4, 12, 13, 21, 22, 30,

38, 46, 53, 54, 58, 59, 60, 61

Table 1. Database of visited grid cells.

The TIDx identifiers represent sequence of visited

dense cells during one client session. The colored

blocks represent the dense regions. The numbers in

the table correspond to dense region identifiers.

Candidate item set can be generated from input dense

regions. Please follow the work [Agr94] because of

candidate item set definition. For each candidate item

set the trajectory ID has to be kept together with the

candidates. This defines the TID modification of the

apriori algorithm.

The apriori algorithm has also three input parameters.

The first parameter is set of frequent 1-patterns,

second parameter is the trajectory database

represented by sequences of dense regions and the

last parameter is candidate item set. The key idea of

the apriori algorithm it to generate candidate item set

of length k from candidate item sets of length k-1.

Outputs of the apriori algorithm are sets of frequent

k-patterns with property parameter called a support.

We can compute probability for each association rule

using the support property. The Table 2. shows

discovered k-patterns for data from Table 1.

k Discovered sets of k-patterns

1 {1}, {2}, {3}, {4}, {5}

2 {{1,2}, {1,3}, {1,4}, {1,5}}, {{2,3}, {2,4},

{2,5}}, {{3,4}, {3,5}}, {{4,5}}

3 {{1,2,3}, {1,2,4}, {1,2,5}}, {{1,3,4},

{1,3,5}},{{1,4,5}}, {{2,3,4}, {2,3,5}},

{{2,4,5}}, {{3,4,5}}

4 {{1,2,3,4},{1,2,3,5}}, {{1,3,4,5}},{{2,3,4,5}}

5 {{1,2,3,4,5}}

Table 2. The discovered sets of k-patterns. Each

subset corresponds to one association rule.

For example, the first association rule from 3-pattern

set is 3

2

2

2

1

3 RRR → . The corresponding support for

each association rule is defined in the next table.

k Probabilities discovered for association rules

1 {0.23}, {0.23}, {0.15}, {0.23}, {0.15}

2 {{0.30}, {0.20}, {0.30}, {0.20}}, {{0.29},

{0.42}, {0.29}}, {{0.5}, {0.5}}, {{1.0}}

3 {{0.29}, {0.42}, {0.29}},{ {0.5}, {0.5}},

WSCG 2009 Full papers proceedings 76 ISBN 978-80-86943-93-0

{{1.0}}, {{0.5}, {0.5}}, {{1.0}}, {{1.0}}

4 {{0.5},{0.5}},{{1.0}},{{1.0}}

5 {1.0}

Table 3. Each association rules has defined a

support property obtained from the apriori

algorithm. The probabilities are computed from

the support properties.

For our example, the first association rule from the 3-

pattern set is 3

2

29.0
2

2

1

3 RRR → .

At this point the association rules and corresponding

probabilities are known. These rules can be used to

predict the object future location. If overall amount of

the trajectory patterns grows, then the prediction

process gradually becomes inefficient. This is why

the principle of trajectory pattern tree [Jeu08] has to

be adapted. Now, the main ideas of the trajectory

pattern tree have to be briefly pointed out.

Trajectory pattern tree
The trajectory pattern tree is a variant of signature

tree [Mam03] which is dynamically balanced tree

designed for signature bitmaps.

The key difference between the signature tree and the

trajectory pattern tree is how the construction

algorithm of the trees encodes signatures. The

trajectory pattern tree encodes a trajectory pattern

into a pattern key. The pattern key is designed to

efficiently process the prediction query using

trajectory pattern tree. The pattern key consists of

two parts. The first part is a premise key and the

second part is a consequence key. The premise part

of the pattern key covers current trajectory pattern of

an actual object and the consequence part of the

pattern key covers destination dense region.

3.1.3 Premise key
Each dense region n

jR has its own dense region id

which is defined by n. We encode each dense region

id using a hash function
1

2
−n
. The bit length of each

premise key is equal to the number of dense regions.

The premise key of a trajectory pattern includes

several dense regions. We use a bitwise operation OR

for all current visited dense regions. Every set bit in

the premise key represents actual dense region.

3.1.4 Consequence key
The consequence key is constructed as follows. We

collect all destinations dense regions from all

association rules and assign them an identifier with

the same hash function which was used for premise

key. The length of the consequence key is equal to

the number of destination dense regions. The premise

and consequence keys can be generated from

association rules from Table 2. If we join the premise

and consequence keys together then we get a pattern

key.

3.1.5 Pattern key
The pattern key represents a trajectory pattern, which

is encoded using premise and consequence keys.

Pattern Pattern key

{1,2,3,4} 01000 00111

{1,2,3,5} 10000 00111

{1,3,4,5} 10000 01101

{2,3,4,5} 10000 01110

Table 4 Pattern keys created from 4-patterns

association rules from Table 2. Numbers in

column Pattern correspond to dense region

identifiers.

Similarly to the existing approach [Jeu08], we place

the consequence key before the premise key. Some

generated pattern keys are shown in Table 4. where

the red part of the formula is consequence key and

the green part is premise key. The premise key is

constructed using bitwise operation OR for the first

three items of each association rule. The last item in

each association rule is destination dense region.

According to [Jeu08] we define some operations over

pattern keys, where pk is pattern key, ck is

consequence key and rk is premise key:

Union(pk1, pk2,..., pkn): the function return a new

pattern key formed as pk1|pk2|...|pkn, where the

operator | is bitwise OR.

Size(pk): the function return the number of set bits in

pk.

Contain(pk1, pk2): the function return true when

pk1&pk2 = pk2.

Difference(pk1, pk2): the function return

Size(pk1⊕ (pk1&pk2)).

Intersect(pk1, pk2): let ck1(ck2) denote the

consequence key and rk1(rk2) denote the premise key

of pk1(pk2). If Size(ck1&ck2) > 0 and Size(rk1&rk2) >

0 then return true else return false.

3.1.6 Search in trajectory pattern tree
We have to create a predictive key to search future

locations of an object in trajectory pattern tree. The

predictive pattern key has specific format in our case

of virtual environment.

The predictive key is composed from premise and

consequence keys as well as the pattern key. The

premise key is composed from recent movement of

the object. Further the consequence key is composed

from dense regions which might we visited in future.

The distance of such regions from current object

location is less or equal than prediction length.

WSCG 2009 Full papers proceedings 77 ISBN 978-80-86943-93-0

Definition 7: The prediction length of a predictive

key is number of dense regions between current

object location and future object location.

Let us consider an example. The currently visited

dense regions are identified by sequence 1

3R
2

2R . The

prediction length is e.g. two. Now we construct a

prediction key for this example. We have two current

dense regions 1

3R
2

2R and we have to predict two dense

regions ahead. We can use pattern keys from Table 4.

The bitwise operation OR is applied onto result of

functions
0
2 and

1
2 for dense regions id 1

3R and
2

2R .

The result of the operation OR is premise key 00011.

The consequence key can be computed from the

pattern key Table 4. First of all we select the pattern

keys starting with sequence of dense regions 1

3R
2

2R .

This fits in with two first pattern keys from the Table

4. Second we perform OR between consequence keys

from the first two pattern keys from Table 4. As a

result we get the consequence key 11000. If we put

the consequence and premise key together then the

prediction key is 1100000011.

At this point the prediction key can be selected as an

input of the trajectory pattern tree. The trajectory

pattern tree returns all the trajectories (sequences of

dense regions) satisfying a condition Intersect(pk, q),

where pk is the trajectory pattern from a node of the

tree and q is the input predictive key. The depth first

search method is used to find all the intersecting

trajectory patterns. We have to select one trajectory

pattern with the highest confidence from returned set

of candidates.

3.1.7 Premise similarity
The trajectory pattern search process gives us number

of trajectory patterns. We have to select a trajectory

pattern with highest confidence. A method for

measure premise similarity is introduced now.

Let us consider the result from trajectory pattern tree

is trajectory patterns described by dense regions {1,

2, 3, 4} and {1, 2, 3, 5}. The corresponding trajectory

patterns are 0100000111 and 1000000111 (values

from Table 4.) and the prediction key is 1100000011

(from previous example). The current object position

is 2

2R . The more set bits close to the current object

position exist, the more important the dense region is.

A weight function assigns a weight to each set bit in

the premise key based on its position in the premise

key. For example, the weighted function can be linear

as follows:

∑
=

=
)(

1

rkSize

j

i

j

i
ω ,

where rk is the premise key of trajectory pattern. The

linear function result is (1/6, 1/3, 1/2, 0, 0) for both

trajectory patterns and (1/3, 2/3, 0, 0, 0) for the

prediction key. We compare the premise key rk of the

trajectory pattern pk with the premise key rkq of the

prediction key q. The premise similarity is computed

as follows:

∑
=

=
)&(

1

rkqrkSize

i

irS ω)10(≤≤ rS

The sum is performed over all set bits in premise key

rk which is also set in premise key rkq. For our

example the premise similarity between rk and rkq

equals
rS = 1/6 + 1/3 = 1/2.

The earlier work [Jeu08] defines two algorithms to

search the most probable regions. The first one is

forward query processing algorithm which is used for

near location prediction. We have to take into

account the confidence of the association rules. Thus

we merge the premise similarity and the confidence

together:

Sp(pk, q) = Sr x c (0 <= Sr <= 1),

where pk is trajectory pattern key discovered by the

apriori algorithm, q is prediction key and c is

confidence for the trajectory pattern key. This

equation can be applied to all the candidates from the

trajectory pattern search result set. The candidate

with the highest Sp will be selected. For our example

the Sp for both trajectory patterns key is as follows:

Sp(00111, 00011) = 1/2 x 0.5 = 1/4

The second algorithm to search most probable

location is backward query processing. This

algorithm is used to process distant time queries. The

algorithm is different from the forward query

processing, because the recent movements aren’t as

important as in the short time prediction. This

algorithm operates only with intersection between

two premise keys and no weights are used. For the

consequence key the algorithm works with time

relaxation length. In our case this parameter stands

for number of dense regions close to the prediction

length.

4. USER PROFILES AND

TRAJECTORY PATTERNS
We propose a concept of user profile to optimize the

process of finding trajectory patterns in large virtual

environment in order to improve the efficiency of the

above presented trajectory pattern concept.

Definition 8: The user profile is a data structure

containing information about each unique user. The

content of the user profile is highly application-

dependent. Every user profile contains unique user

WSCG 2009 Full papers proceedings 78 ISBN 978-80-86943-93-0

ID, trajectory pattern tree and application dependent

information.

The information from user profile can be used to

perform accurately prediction in a shorter time with

significant less memory consumption. All movement

history represented by trajectory patterns can be

categorized into several groups (e.g. student or

teacher groups etc.).

In order to achieve the minimal memory consumption

of the prediction system, we can create and store one

single trajectory pattern tree for each single group.

The prediction might be more accurate because the

probabilities of the association rules are not affected

by other users with significantly different interests.

Let us consider an example of two groups with

different count of trajectories. The first group of users

has significantly more number of trajectory patterns

than the second group. The prediction categorized

into second groups is considerably affected by

trajectory patterns from the first group without giving

any reason.

Further we propose a new approach to solve the case

when no pattern is found. If we didn’t found any

trajectory pattern for object categorized into some of

defined groups, we join two similar groups together.

Then we perform the search query again. If there are

no groups which can be merged together, the

algorithm uses a recursive motion function to predict

the next object location.

5. RESULTS
No study known to the authors investigates user

motion prediction in large distributed virtual

environment. Some papers describe process of

preloading data to cache memory. This process can

accelerate rendering. The earlier work [Chm98]

proposes hot regions which affect motion vector of

given object. Further work [Var02] uses two view

frustums to preload data to cache memory. No work

solves the case when the prediction of distant location

is needed for optimization the download process.

The prediction can optimize the amount of

downloaded data and speed up the process of setting

up appropriate level of detail for given object.

For testing purposes we have a terrain scene with

relatively small number of cells and we use a

synthetic pattern generator to generate dense regions.

The prediction mechanism is used to download

textures from network server. Each texture is

represented by several files with different resolution.

These resolution files are used for texture level of

detail purposes.

The two different approaches to download textures

from network server were compared. The first

Figure 3 Virtual environment with 16x33 cells (3D

triangle model represents large part of

Switzerland).

method download textures included in view frustum

of a given object. Level of detail metric for this

approach is defined as distance between object and

each cell of the grid. If all textures from current view

frustum are downloaded then the system cannot

exactly decides which texture at which level of detail

should be downloaded further.

In such case the prediction method can be utilized

successfully. We have examined that the prediction

accuracy for our synthetic set of trajectory patterns

depends on the parameters of the DBSCAN algorithm

Eps and minPts. We use Eps=4 and minPts=1. The

number of generated trajectory patterns by our

synthetic generator is 256 and the number of dense

regions discovered by our DBSCAN algorithm is

147. We limit the size of each dense region to five

cells because of scaling up the prediction process.

Table 5. show comparison of downloaded textures at

different level of detail between the pattern and

between the view frustum prediction models.

The number of downloaded textures depends on the

object’s behavior in the virtual environment. If the

user goes faster then the prediction is more useful for

lower resolution. It is because the higher resolutions

won’t be downloaded at time because the scene

changes significantly (se Figure 4.).

 Number of downloaded textures

Texture

resolution
256 512 1024 2048 4096

with

prediction
276 79 40 19 9

view

frustum
394 147 63 29 17

Table 5. Table show number of downloaded

textures during the virtual scene walkthrough.

If the user often stops, then the prediction is useful

for higher resolution. Let us consider an example.

The user stays on the same place for a while and he

gets the full resolution of the visible part of scene.

The download process can continue to the nearest not

yet available predicted textures.

WSCG 2009 Full papers proceedings 79 ISBN 978-80-86943-93-0

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5

Texture level of detail

N
u
m
b
e
r
o
f
d
o
w
n
lo
a
d
e
d
 t
e
x
tu
re
s

Prediction

View frustum

Figure 4 Graph representing the fast walk

through the virtual environment. The prediction is

most useful for lower resolutions.

6. CONCLUSION
We adapt method for user motion prediction in large

virtual environments. We demonstrate that the

prediction is meaningful and can increase efficiency

of texture selection to download. This is the very

contribution of this paper as well as this paper make

an attempt to use prediction in 3D virtual

environment. The system, however, can still be

improved. The further work will be concentrated to

improve the process of mining association rules and

to examine other method of motion prediction and

their adaption to network virtual environments.

Furthermore we have to propose an algorithm closely

connecting motion function principle with trajectory

pattern selection. Further work will be focused on

out-of-core rendering algorithms.

7. ACKNOWLEDGEMENTS
This work has is supported by the Ministry of

Education, Youth and Sports of the Czech Republic

under the research program LC-06008 (Center for

Computer Graphics), and by the research project

Security-Oriented Research in Information

Technology, MSM0021630528.

Special thanks also go to CadWork Informatik AG

and CadWork development team in Brno for

professional support of this project.

8. REFERENCES
[Agr94] Agrawal, R. and Srikant, R. Fast algorithms

for imnining association rules, in VLDB, pp. 487-

499, 1994.

[Est96] Ester, M., Kriegel, H.-P., Sander, J. and Xu,

X. A density-based algorithm for discovering clusters

in large spatial databases with noise, in SIGKDD, pp.

226-231, 1996.

[Chm98] Chim, J., Green, M., Lau, R. W. H. Leong,

H. and Si, A. On caching and prefetching of virtual

objects in distributed virtual environments, ACM

Multimedia, pp.171–180, 1998

 [Jen04] Jensen, C. S., Lin, D. and Ooi, B. C. Query

and update efficient b+-tree based indexing of

moving objects. in VLDB, pp. 768-779, 2004.

[Jeu08] Jeung, H., Liu, Q., Shen, H. T., Zhou, X. A

hybrid prediction model for moving objects, in ICDE,

pp. 236-245, 2008.

[Mam03] Mamoulis, N., Cheung, D. W and Lian, W.

Similarity search in sets and categorical data using

the signature tree, in ICDE, pp. 75-86, 2003.

[Mam04] Mamoulis, N., Cao, H., Kollios, G.,

Hadjieleftheriou, M., Tao, Y. and Cheung, D. W.

Mining, indexing, and querying historical

spatiotemporal data, in SIGKDD, pp. 236-245, 2004.

[Pat04] Patel, J. M., Chen Y, and Chakka, V. P.

Stripes: an efficient index for predicted trajectories,

in SIGMOD, pp. 635-646, 2004.

[Rab89] Rabiner, L. A tutorial on hidden Markov

models and selected applications in speech

recognition, Proceedings of the IEEE, vol. 77, pp.

257-286, 1989.

[Sal00] Saltenis, S., Jensen, C. S., Leutenegger, S. T.

and Lopez, M. A. Indexing the positions of

continuously moving objects, in SIGMOD, pp. 331-

342, 2000.

[Tao03a] Tao Y. and Papadias, D. Spatial queries in

dynamic environments, TODS, vol. 28, no. 2, pp.

101-139, 2003.

[Tao03b] Tao, Y., Papadias, D. and Sun, J. The

TPR*-Tree: An optimized spatiotemporal access

method for predictive queries. in VLDB, pp. 790-

801, 2003.

[Tao04a] Tao, Y., Faloutsos, C., Papadias, D. and

Liu, B. Prediction and indexing of moving objects

with unknown motion patterns, in SIGMOD, pp. 611-

622, 2004.

[Tao04b] Tao, Y, Kollios, G., Considine, J., Li, F.

and Papadias, D. Spatio-temporal aggregation using

sketches, in ICDE, p. 214, 2004.

[Var02] Varadhan, G. and Manocha, D. Out-of-core

rendering of massive geometric environments,

IEEE Computer Society, pp. 69-76, 2002.

[Yan06] Yang, J. and Hu, M. Trajpattern: Mining

sequential patterns from imprecise trajectories of

mobile objects. in EDBT, pp. 664-681, 2006.

[Yav05] Yavas, G., Katsaros, D., Ulusoy, 0. and

Manolopoulos, Y. A data mining approach for

location prediction in mobile environments, Data &

Knowledge Engineering, vol. 54, no. 2, pp. 121-146,

2005.

WSCG 2009 Full papers proceedings 80 ISBN 978-80-86943-93-0

Low cost finger tracking for a virtual blackboard

Eugenio Rustico
Dipartimento di Matematica e Informatica

Image Processing Laboratory

Università di Catania

Viale Andrea Doria, 6

95125, Catania, Italy

rustico@dmi.unict.it

Abstract

This paper presents a complete and inexpensive system to track the movements of a physical pointer on a flat surface. Any

opaque object can be used as a pointer (fingers, pens, etc.) and it is possible to discriminate whether the surface is being touched

or just pointed at. The system relies on two entry-level webcams and it uses a fast scanline-based algorithm. An automatic

wizard helps the user during the initial setup of the two webcams. No markers, gloves or other hand-held devices are required.

Since the system is independent from the nature of the pointing surface, it is possible to use a screen or a projected wall as a

virtual touchscreen. The complexity of the algorithms used by the system grows less than linearly with resolution, making the

software layer very lightweight and suitable also for low-powered devices like embedded controllers.

Keywords: Finger, pointer, tracking, optical, video, webcam, camera, scanline, virtual touchscreen, Human-Computer

Interaction.

1 INTRODUCTION

Among the existing graphical input devices, computer

users love especially touchscreens. The reason is that

they reflect, as no other device does, the way we use to

get in touch and interact with the reality around us: we

use to point and touch directly with our hands what we

see around us; touchscreens allow to do the same with

our fingers on computer interfaces. This preference is

confirmed by a strong trend in the industry of high-

end platforms (e.g. Surface and Touchwall from Mi-

crosoft) and in the market of mobile devices: Apple, LG

and Nokia, to cite only a few examples, finally chose a

touch-sensible display for their leading products, while

the interest for this technology is growing also for de-

sign studios, industrial environments and public infor-

mation points like museum kiosks and ATMs. Unfortu-

nately, touchscreen flexibility is low: finger tracking is

impossible without physical contact; it is not possible

to use sharp objects on them; large touch-sensible dis-

plays are expensive because of their manufacturing cost

and damage-proneness.

In [FR08] we presented a low-cost tracking system

capable of turning any static surface in a tablet, and

any kind of display - even very large ones, like pro-

jected walls - in a touchscreen. That paper focused

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

its attention mostly on the mapping algorithm and pro-

vided only a description of an early stage of the sys-

tem reported here. In this paper, instead, we introduce

a more efficient and mature system, exploiting an im-

proved pointer detection but computationally and eco-

nomically cheap as the previous one. Among the im-

provements we made:

• two proximity constraints in the pointer detection

help to reduce the number of false positives;

• a convolution-based algorithm is used to locate the

presence of a pointer;

• the gap from the reference backgrounds is kept un-

der control to detect camera movements;

• the calibration phase is faster, and the system gra-

phically shows the points to touch;

• iterative algorithms are used to solve the linear sys-

tems instead of direct formulas.

2 RELATED WORK

Research in computer interfaces is turning back to the

human body, trying to adapt the way we communicate

with computers to our natural way of move and behave.

Speech-driven interfaces, gesture-recognition softwares

and facial expression interpreters are just some exam-

ples of this recent trend. There is a growing interest in

the ones that involve real-time body tracking, especially

if no expensive hardware is required and the user does

not need to wear any special equipment. The simplest

and cheapest choice is to use optical devices to track a

specific part of the body (head, eyes, hands or even the

nose [GMR02]); we focus on finger tracking systems

WSCG 2009 Full papers proceedings 81 ISBN 978-80-86943-93-0

that do not require lasers, markers, gloves or hand-held

devices [SP98, DUS01, Lee07].

The main application of finger tracking is to move a

digital pointer over a screen, enabling the user to re-

place the pointing device (e.g. the mouse) with his

hands. While for eye or head tracking we have to direct

the camera(s) towards the users’s body, finger tracking

let us a wider range of choices.

The first possibility is to direct the camera towards

the user’s body, as for head tracking, and to translate

the absolute or relative position of the user’s finger to

screen coordinates. In [WSL00] an empty background

is needed; in [IVV01] the whole arm position is re-

constructed, and in [Jen99] a combination of depth and

color analysis helps to robustly locate the finger. Some

works tried to estimate the position of the fingertip re-

latively to the view frustum of the user; this was done

in [CT06] with one camera and in [pHYssCIb98] with

stereovision, but both had strong limits in the accuracy

of the estimation.

The second possibility is to direct the camera towards

the pointing surface, which may be static or dynamic.

Some works require a simple black pad as pointing sur-

face, making it easy to locate the user’s finger with

only one camera [LB04]; however, we may need ad-

ditional hardware [Mos06] or stereovision [ML04] to

distinguish if the user is just hovering the finger on it

or if there is a physical contact between the finger and

the surface. A physical desktop is an interesting sur-

face to track a pointer on. Some works are based on the

DigitalDesk setup [Wel93], where a overhead projector

and one or more cameras are directed downwards on a

desk and virtual objects can interact with physical doc-

uments [Ber03, Wil05]; others use a similar approach

to integrate physical and virtual drawings on vertical

or horizontal whiteboards [Wil05, vHB01, ST05], and

one integrates visual informations with an acoustic tri-

angulation to achieve better accuracy [GOSC00]. These

works use differencing algorithms to segment the user’s

hands from the background, and then shape analysis

or finger templates matching to locate the fingertips;

they rely on the assumption that the background sur-

face is white, or in general of a color different than

skin. Other approaches work also on highly dynamic

surfaces. It is possible to robustly suppress the back-

ground by analyzing the screen colorspace [Zha03] or

by applying polarizing filters to the cameras [AA07];

in the first the mouse click has to be simulated with a

keystroke, while in the latter a sophisticated mathemat-

ical finger model allow to detect the physical contact

with stereovision. Unfortunately, these two techniques

cannot be applied to a projected wall. Directing the ca-

mera towards the pointing surface implies, in general,

the use of computationally expensive algorithms, espe-

cially when we have to deal with dynamic surfaces.

A third possible approach, which may drastically re-

duce the above problems, is to have the cameras watch-

ing sidewise - i.e. laying on the same plane of the sur-

face; using this point of view we do not have any prob-

lem with dynamic backgrounds both behind the user or

on the pointing surface, and this enables us to set up

the system also in environments otherwise problematic

(e.g. large displays, outdoor, and so on). Among the

very few works using this approach, in [QMZ95] the

webcam is on the top of the monitor looking towards

the keyboard, and the finger is located with a color seg-

mentation algorithm. The movement of the hand along

the axis perpendicular to the screen is mapped to the

vertical movement of the cursor, and a keyboard button

press simulates the mouse click. However, the posi-

tion of the webcam has to be calibrated and the verti-

cal movement is mapped in an unnatural way. Also in

[WC05] we find a camera on the top of a laptop display

directed towards the keyboard, but the mouse pointer is

moved accordingly to the motion vectors detected in the

grayscale video flow; a capacitive touch sensor enables

and disables the tracking, while the mouse button has

to be pressed with the other hand. In [Mor05], finally,

the “lateral” approach is used to embed four smart ca-

meras into a plastic frame that is possible to overlap on

a traditional display.

The above approaches need to process the entire im-

age as it is captured by the webcam. Thus, every of

the above algorithms is at least quadratic with respect

to resolution (or linear with respect to image area). Al-

though it is possible to use smart region finding algo-

rithms, these would not resolve the problem entirely. In

[FR08] we proposed a different way to track user move-

ments keeping the complexity low. We drastically de-

creased the scanning area to a discrete number of pixel

lines of two uncalibrated cameras. Our system requires

a simple calibration phase that is easy to perform also

for non-experienced users.

The proposed technique only regards the tracking of

a pointer, and it is not about gesture recognition. The

output of the system, at present, is directly translated

into mouse movements, but may be instead interpreted

by a gesture recognition software.

3 SYSTEM DESCRIPTION

We propose to use two off-the-shelf webcams posi-

tioned sidewise so that the lateral silhouette of the hand

is captured into an image like figure 1. After a quick

auto-calibration, the software layer will be able to inter-

pret the image flow and translate it into absolute screen

coordinates and mouse button clicks; the corresponding

mouse events will be simulated on the operative sys-

tem in a completely transparent way for the application

level. We call pointing surface the rectangle of surface

to be tracked; as pointing surface we can choose a desk,

a lcd panel, a projected wall, etc.. An automatic region

WSCG 2009 Full papers proceedings 82 ISBN 978-80-86943-93-0

stretching is done to map the coordinates of the point-

ing surface to the target display. Any opaque object can

be used to point or touch the surface: the system will

track a finger as well as a pencil, a chalk or a wooden

stick.

Scanlines

We focus the processing only on a small number of

pixel lines from the whole image provided by each we-

bcam; we call these lines scanlines. Each scanline is

horizontal and ideally parallel with the pointing sur-

face; we call touching scanline the lowest scanline (the

nearest to the pointing surface), and pointing scanline

every other one. The calibration phase requires to grab

a frame before any pointer enters in the tracking area;

these reference frames (one per webcam) will be stored

as reference backgrounds, and will be used to look for

runs of consecutive pixels different from the reference

background. We will see later howwe detect such scan-

line interruptions (fig.1). The detection of a finger only

in pointing scanlines will mean that the surface is only

being pointed, while a detection in all the scanlines will

mean that the user is currently touching the surface. To

determine if a mouse button pressure has to be simu-

lated, we can just look at the touching scanline: we as-

sume that the user is clicking if the touching scanline is

occluded in at least one of the two views.

Figure 1: Visual representation of scanlines within

the view field of each camera.

During the calibration phase the number of scanlines

of interest may vary from a couple to tens; during the

tracking, three or four scanlines will suffice for an ex-

cellent accuracy. A detailed description of the calibra-

tion will be given later.

Noise reduction

We detect the presence of a physical pointer in the view

frustum of a webcam by comparing the current frame

with the reference background. This is simple in ab-

sence of noise; unfortunately, the video flow captured

from a CMOS sensor (the most common type of sen-

sor in low cost video devices) is definitely not ideal and

presents a bias of white noise, salt and pepper noise

and motion jpeg artifacts. This makes pointer detection

more difficult, especially when the pointer is not very

close to the camera and its silhouette is therefore only

a few pixels wide. To keep the overall complexity low

we avoid to apply any post-elaboration filter on each of

the grabbed frames and adopt two simple strategies in

order to reduce the impact of noise on our algorithm.

The first strategy is to store, as a reference back-

ground, not just the first frame but the average of the

first b frames captured (in current implementation,

b = 4). The average root mean square deviation of

a frame from the reference background, after this

simple operation, decreases from ~1.52 to ~1.26 (about
−17%).

The second strategy is to apply a simple convolution

to the scanlines we focus on. The matrix we use is




0 0 0

1 1 1

0 0 0





with divisor 3. This is equivalent to say that we re-

place each pixel with the average of a 1 pixel neigh-

borhood on the same row; it is not worth increasing the

neighborhood of interest because by increasing it we

decrease the tracking accuracy.

Finally, we keep track of the Root Mean Square Er-

ror (RMSE) with respect to the reference frames; if the

RMSE gets higher than a threshold, this is probably due

to a disturbing entity in the video or to a movement of

the camera rather than to systematic noise. In this case,

the system automatically stops tracking and informs the

user that a new reference background is about to be

grabbed.

Fast pointer detection

Although some noise has been reduced, we cannot rely

only a binary differencing algorithm. A set of pixels

different from the reference frame is meaningful if they

are close to each other; we apply this spatial contigu-

ity principle both horizontally and vertically. This ap-

proach imitates the so called Helmholtz principle1 for

human perception.

The first goal is to find a run of consecutive pixels

significantly different from the reference; what we care

is the X coordinate of the center of such interruption.

We initialize to zero a buffer of the same size of one

row, then we start scanning the selected line (say l). For

each pixel p= (px, pl), we compute the absolute differ-

ence δp from the correspondent reference value; then,

for each pixel q= (qx,ql) in a neighborhood long n, we
add this δp multiplied by a factor m inversely propor-

tional to |px−qx|. Finally we read in the buffer a peak

1 The Helmholtz principle states that an observed geometric structure

is perceptually meaningful if its number of occurrences would be very

small in a random situation (see [MmM01]).

WSCG 2009 Full papers proceedings 83 ISBN 978-80-86943-93-0

Figure 2: The buffer used for the analysis of the

green row shows a clear peak

value correspondent to the X coordinate of the center

of the interruption (fig. 2); if no interruption occurred

in the row (i.e. pixels different from the reference were

not close to each other), we will have only “low” peaks

in the buffer. To distinguish between a “high” and a

“low” peak we can use a fixed or a relative threshold;

in our tests, a safe threshold was about 20 times greater

than the neighborhood length.

Now we have a horizontal proximity check, but not

a vertical one yet. As section 3 explains, each we-

bcam sees the pointer always breaking into the view

frustum by the upper side. The pointer silhouette may

be straight (like a stick) or curved (e.g. a finger); in

both cases, the interruptions found on scanlines close to

each other should not differ more than a given thresh-

old. This vertical proximity constraint gives a linear

upper bound to the curvature of the pointer, and helps

discarding interruptions caused by noise or other ob-

jects entering in the view frustum; in other words, the

system detects only pointers coming from above, and

keeps working correctly if other objects appear in the

view frustum from a different direction (e.g. the black

pen in fig. 3).

Figure 3: The system correctly detects only the

pointer coming from above.

These two simple proximity checks make the recog-

nition of the pointer an easier task. Fig.4 shows the cor-

rect detection of the pointer (a hand holding a pen) over

a challenging background. The lower end of the verti-

cal sequence of interruptions is marked with a little red

cross.

Figure 4: The vertical contiguity constraint of a

hand holding a pen.

Positioning the cameras

The proposed technique requires the positioning of two

webcams relatively to the pointing surface. The sim-

plest choice is to put them so that one detects only

movements along the X axis, while the other one de-

tects Y axis changes. This solution is the simplest to

implement, but requires the webcams to have their op-

tical axes perfectly aligned along the sides of the point-

ing surface. Moreover, the wider is the view field of a

webcam, the more we loose accuracy on the opposite

side of the surface. On the other hand, the narrower is

the view field of the webcams, the farther we have to

put them to capture the entire surface.

Figure 5: Example of a simple but inefficient

configuration.

In figure 5, for example, the webcam along Y axis of

the surface has a wide view field, but this brings resolu-

tion loss on segmentDC; on the other side, the webcam

WSCG 2009 Full papers proceedings 84 ISBN 978-80-86943-93-0

along X axis of the surface has a narrow view field, but

it has to be positioned far from the pointing surface to

cover the whole area. If the surface is a 2×1.5m pro-

jected wall and the webcam has a 45° view field, we

have to put the camera ~5.2 meters away to catch the

whole horizontal size.

A really usable system should not bother the final

user about webcam calibration, view angles and so on.

A way to minimize the calibration effort is to posi-

tion the webcams near two non-opposite corners of the

pointing surface, far enough to catch it whole and ori-

ented as the surface diagonals were about bisectors of

the respective view fields (figure 6). With this config-

uration there is no need to put the webcams far away

from the surface; this reduces the accuracy loss on the

“far” sides.

Figure 6: Suggested configuration to optimize the

use of view frustum of the cameras.

In the rest of this paper we will assume, for the sake

of clarity, that the webcams are in the same locations

and orientations as in figure 6. However, the proposed

tracking algorithm works with a variety of configura-

tions without changes in the calibration phase: the ca-

meras may be positioned anywhere around the surface,

and we only need that they do not face each other.

Calibration phase

When the system is loaded, the calibration phase starts.

In this phase, after grabbing the reference backgrounds,

we ask the user to touch the vertices of the pointing

surface and its center. When a pointer is detected in

both views, we track the position of its lower end (the

red cross in fig. 4 and 3); if this position holds with a

low variance for a couple of seconds, the correspondent

X coordinate is stored. After we grabbed the position

of all the five points, we compute the Y coordinate of a

“special” scanline as the lowest row not intercepting the

pointing surface: during the tracking we will focus only

on this row to grab the position of the pointer, so that

the overall complexity will be linear with the horizontal

resolution.

Tracking algorithm

During the calibration phase we stored the X coordi-

nate of each vertex as seen by the webcams. The ba-

sic idea is to calculate the perspective transformation

that translates the absolute screen coordinates to abso-

lute coordinates in the viewed image. We store vertices

in homogeneous coordinates and use a 3x3 transforma-

tion matrixM:




l11 l12 l13
l21 l22 l23
l31 l32 l33



 ·V = P ·α

Since P is determined up to a proportional factor α
there is no loss of generality in setting one of the ele-

ments of M to an arbitrary non-zero value. In the fol-

lowing we set the element l33 = 1. To obtain all the

other elements of M, in principle the correspondence

between four pairs of points must be given. The pro-

posed application only needs to look at horizontal scan-

lines; for this reason there is no need to know the coef-

ficients l21,l22,l23 of M and we only have to determine

the values of l11,l12,l13,l31,l32.

The number of unknown matrix elements has been

decreased to five, so we only need the x coordinate

of five points (instead of the x and y of four points).

During the calibration phase, we ask the user to touch

the four vertices of the pointing surface and its center.

This setup greatly simplifies the computation of the un-

known coefficients. Indeed points A,B,C,D and the cen-

ter E (see fig.6) have screen coordinates respectively:

A = (0,0)
B = (0,H)
C = (W,H)
D = (W,0)
E = (W/2,H/2)

when the display resolution isW ×H.

If Q is a point on the surface, let Qxp be the x coor-

dinate of the corresponding projected point. The final

linear system to solve is:









0 H 0 −HBxp

W H −WCxp −HCxp

W 0 −WDxp 0

Ex Ey −ExExp −EyExp









·









l11
l12
l31
l32









=









Bxp−Axp

Cxp−Axp

Dxp−Axp

Exp−Axp









which makes easy to obtain l11, l12, l13, l31, l32 for

each camera.

During the tracking phase we face a somehow inverse

problem: we know the projected x coordinate in each

view, and from these values (let them be Xl and Xr) we

would like to compute the x and y coordinates of the

correspondent unprojected point (that is, the point the

user is touching). Let li j be the transformation values

for the first camera, and ri j for the second one; the linear

system we have to solve in this case is

WSCG 2009 Full papers proceedings 85 ISBN 978-80-86943-93-0















l11xl + l12yl + l13zl = Xl

l31xl + l32yl + zl = 1

r11xr + r12yr + r13zr = Xr

r31xr + r32yr + zr = 1

It is convenient to divide the first two equations by

zl and the latter two by zr, and rename the unknown

variables as follows:

x =
xl

zl
=

xr

zr

y =
yl

zl
=

yr

zr

z′l =
1

zl

z′r =
1

zl

so that the final system is









l11 l12 −Xl 0

l31 l32 −1 0

r11 r12 0 −Xr

r31 r32 0 −1









·









x

y

z′l
z′r









=









−l13
−1

−r13
−1









This is a determined linear system, and it is possible

to prove that in the setting above there is always one

and only one solution. By solving this system in x and

y we find the absolute coordinates of the point that the

user is pointing/touching on the surface.

We can solve this system in a very fast way by com-

puting once a LU factorization of the coefficient ma-

trix, and by using it to compute x and y for each pair

of frames; we can also use numerical methods, such

as Single Value Decomposition, or direct formulas. In

the previous version of the system direct formulas were

used, while now a LU factorization is implemented.

Resolution accuracy

Let’s consider now how accurate is the tracking system

depending on display and webcam physical character-

istics. Let t = (xt ,yt) be a point on the pointing surface,
XD×YD the display resolution (i.e. the resolution of the

projector for a projected wall) and XW1
×YW1

the reso-

lution of a webcam W1; let βW1
be the bisector of the

view frustum ofW1, and let the upper left corner of the

surface be the origin of our coordinate system (with Y

pointing downwards, like in fig.7). We assume for sim-

plicity that the view frustum of the camera is centered

on the bisector of the coordinate system, but the fol-

lowing considerations keep their validity also in slightly

different configurations.

The higher is the number of pixels detected by the

webcam for each real pixel of the display, the more ac-

curate will be the tracking. Thus, if we want to know

how accurate is the detection of a point in the pointing

surface, we could consider the ratio between the length

in pixels of the segment χt , passing by t and perpen-

dicular to βW1
, and the number of pixels detected by

the webcam W1. We define resolution accuracy of W1

in t and we call σ(W1,t) this ratio. It is clear that we

only care about the horizontal resolution of W1, which

is constant in the whole view frustum of the camera (fig.

7)

Figure 7: We define “resolution accuracy ofW1 in

t“ the ratio between the length of χt and the

number of pixels detected byW1.

Because pixels are approximatively squares, the

number of pixels along the diagonal of a square is

equal to the number of pixels along an edge of the

square; thus, the length of χt will be equal to the

distance from the origin of one of the two points that χt

intercepts on the X and Y axes. For every point p ∈ χt

is xp + yp = k; then, its length will be equal to the

y-intercept of the line passing by t and perpendicular

to βW1
. So we have |χt | = xt + yt; hence, the resolution

accuracy ofW1 in t is

σ(W1,t) =
Xw

xt + yt

One of the most interesting applications of the system

is to projected walls, so that they become virtual black-

boards. A very common projector resolution is nowa-

days 1024× 768 pixels, while one of the maximum

resolutions that recent low-cost webcams support is

1280×1024pixels at 15 frames per second. In this con-

figuration, the resolution accuracy in t = (1024,768) is

σ(W1,t) =
1280

1024+768
≈ 0.71

This is the lowest resolution accuracy we have with

W1 in the worst orientation; if we invert the X axis to

get the accuracy forW2 (supposing thatW2 is placed on

the upper right corner of the surface), σ(W2,t)≈ 1.7. In
the central point u = (512,384) of the display we have

WSCG 2009 Full papers proceedings 86 ISBN 978-80-86943-93-0

σ(W1,u) = σ(W2,u) ≈ 1.4; it is immediate that, in the

above configuration, the average resolution accuracy is

higher than 1:1 (sub-pixel).

Algorithm complexity

The number of scanlines is constant and in the track-

ing phase it is not useful to use more than 3 or 4 of

them. For each scanline we do a noise reduction (in lin-

ear time), we apply a linear convolution filter (in linear

time too) and then we do a linear search for a peak. Fi-

nally, we solve the system (in constant time). The total

complexity is therefore linear with the horizontal reso-

lution of the webcams.

4 EXPERIMENTAL SETTINGS AND

SYSTEM PERFORMANCE

The webcams we used for testing are two Philips

SPC1000NC, with a native SXGA video sensor; their

2008 price has been of about 40BCeach, and they are ca-

pable of producing a SXGA video at about 15fps, and

a VGA one at 60fps. There is a mature Video4Linux2

compliant driver (uvcvideo) available for GNU/Linux.

Our prototype has good resolution accuracy and ex-

cellent time performances: less than 10 milliseconds

are needed to elaborate a new frame and compute the

pointer coordinates. Two USB webcameras connected

to the same computer can usually send less than 20

frames per second simultaneously, while the software

layer could elaborate hundreds more.

We implemented the tracking system in C++ in a

GNU/Linux environment; in the relatively small source

code (less than 4000 lines) all software layers are

strictly separated, so that it is possible to port the whole

system to different platforms with very little changes

in the source.

A demonstrational video is available for download

at http://svg.dmi.uni
t.it/iplab/download/FingerTra
king/. At the same URL is available

a demonstrative video of a previous version of the

presented system.

5 CONCLUSIONS AND FUTURE

WORK

We presented a low cost system for bare finger track-

ing able to turn lcd displays into touchscreens, as well

as a desk into a design board, or a wall into an in-

teractive whiteboard. Many application domains can

benefit from the proposed solution: designers, teachers,

gamers, interface developers. The proposed system re-

quires a simple calibration phase.

Future works will be devoted to improve the robust-

ness of the calibration and the pointer-detection subsys-

tems; moreover, suitable evaluation procedures to test

the empirical accuracy of tracking will be addressed.

Adding multitouch support will also be considered.

ACKNOWLEDGEMENTS

Thanks to prof. G.Gallo for the invaluable guidance

offered during this research and dr. G.M.Farinella

for his support and assistance in the set up of the

previous version of the system. We also thankit.s
ienza.matemati
a newsgroup for their

precious tips.

REFERENCES

[AA07] Chandraker M. Blake A. Agarwal A.,

Shahram Izadi S. High precision multi-

touch sensing on surfaces using over-

head cameras. In Horizontal Interac-

tive Human-Computer Systems, 2007.

TABLETOP ’07. Second Annual IEEE

International Workshop on, pages 197–

200, 2007.

[Ber03] F. Berard. The magic table: Com-

puter vision based augmentation of a

whiteboard for creative meetings. IEEE

International Conference in Computer

Vision, 2003.

[CT06] Kelvin Cheng and Masahiro Takat-

suka. Estimating virtual touchscreen

for fingertip interaction with large

displays. In OZCHI ’06: Pro-

ceedings of the 20th conference of

the computer-human interaction spe-

cial interest group (CHISIG) of Aus-

tralia on Computer-human interaction:

design: activities, artefacts and envi-

ronments, pages 397–400, New York,

NY, USA, 2006. ACM.

[DUS01] Klaus Dorfmüller-Ulhaas and Dieter

Schmalstieg. Finger tracking for in-

teraction in augmented environments.

Augmented Reality, International Sym-

posium on, 0:55, 2001.

[FR08] G.M. Farinella and E. Rustico. Low

cost finger tracking on flat surfaces.

In Eurographics Italian chapter 2008,

2008.

[GMR02] D. Gorodnichy, S. Malik, and G. Roth.

Nouse ’use your nose as a mouse’ - a

new technology for hands-free games

and interfaces, 2002.

[GOSC00] Christophe Le Gal, Ali Erdem Ozcan,

Karl Schwerdt, and James L. Crowley.

A sound magicboard. In ICMI ’00:

Proceedings of the Third International

Conference on Advances in Multimodal

WSCG 2009 Full papers proceedings 87 ISBN 978-80-86943-93-0

Interfaces, pages 65–71, London, UK,

2000. Springer-Verlag.

[IVV01] Giancarlo Iannizzotto, Massimo Vil-

lari, and Lorenzo Vita. Hand tracking

for human-computer interaction with

graylevel visualglove: turning back to

the simple way. In PUI ’01: Proceed-

ings of the 2001 workshop on Percep-

tive user interfaces, pages 1–7, New

York, NY, USA, 2001. ACM.

[Jen99] Cullen Jennings. Robust finger tracking

with multiple cameras. In In Proc. of

the International Workshop on Recog-

nition, Analysis, and Tracking of Faces

and Gestures in Real-Time Systems,

pages 152–160, 1999.

[LB04] Julien Letessier and François Bérard.

Visual tracking of bare fingers for in-

teractive surfaces. In UIST ’04: Pro-

ceedings of the 17th annual ACM sym-

posium on User interface software and

technology, pages 119–122, New York,

NY, USA, 2004. ACM.

[Lee07] Johnny Chung Lee. Head tracking for

desktop VR displays using the Wii re-

mote. //www.
s.
mu.edu/~johnny/proje
ts/wii/. 2007.
[ML04] Shahzad Malik and Joe Laszlo. Vi-

sual touchpad: a two-handed gestural

input device. In ICMI ’04: Proceedings

of the 6th international conference on

Multimodal interfaces, pages 289–296,

New York, NY, USA, 2004. ACM.

[MmM01] Lionel Moisanm and Jean michel

Morel. Edge detection by helmholtz

principle. Journal of Mathematical

Imaging and Vision, 14:271–284, 2001.

[Mor05] Gerald D. Morrison. A camera-based

input device for large interactive dis-

plays. IEEE Computer Graphics and

Applications, 25(4):52–57, 2005.

[Mos06] Tomer Moscovich. Multi-finger cursor

techniques. In In GI ’06: Proceedings

of the 2006 conference on Graphics in-

terface, pages 1–7, 2006.

[pHYssCIb98] Yi ping Hung, Yang Yao-strong, Yong

sheng Chen, and Hsieh Ing-bor. Free-

hand pointer by use of an active stereo

vision system. In in Proc. 14th

Int. Conf. Pattern Recognition, pages

1244–1246, 1998.

[QMZ95] F. Quek, T. Mysliwiec, and M. Zhao.

Fingermouse: A freehand computer

pointing interface, 1995.

[SP98] Joshua Strickon and Joseph Paradiso.

Tracking hands above large interactive

surfaces with a low-cost scanning laser

rangefinder. In Proceedings of CHI’98,

pages 231–232. Press, 1998.

[ST05] Le Song and Masahiro Takatsuka.

Real-time 3d finger pointing for an aug-

mented desk. In AUIC ’05: Pro-

ceedings of the Sixth Australasian con-

ference on User interface, pages 99–

108, Darlinghurst, Australia, Australia,

2005. Australian Computer Society,

Inc.

[vHB01] Christian von Hardenberg and François

Bérard. Bare-hand human-computer

interaction. In PUI ’01: Proceedings of

the 2001 workshop on Perceptive user

interfaces, pages 1–8, New York, NY,

USA, 2001. ACM.

[WC05] AndrewD. Wilson and Edward Cutrell.

Flowmouse: A computer vision-based

pointing and gesture input device. In In

Interact ’05, 2005.

[Wel93] Pierre Wellner. Interacting with paper

on the digitaldesk. Communications of

the ACM, 36:87–96, 1993.

[Wil05] Andrew D. Wilson. Playanywhere:

a compact interactive tabletop

projection-vision system. In Patrick

Baudisch, Mary Czerwinski, and

Dan R. Olsen, editors, UIST, pages

83–92. ACM, 2005.

[WSL00] Andrew Wu, Mubarak Shah, and

N. Da Vitoria Lobo. A virtual 3d black-

board: 3d finger tracking using a sin-

gle camera. In In Fourth IEEE Interna-

tional Conference on Automatic Face

and Gesture Recognition, pages 536–

543, 2000.

[Zha03] Zhengyou Zhang. Vision-based in-

teraction with fingers and papers.

In Proc. International Symposium on

the CREST Digital Archiving Project,

pages 83–106, 2003.

WSCG 2009 Full papers proceedings 88 ISBN 978-80-86943-93-0

Repairing Heavy Damaged CAD-models

Alexander Emelyanov

Institute of Computing for Physics and
Technology, ICPT

Protvino,
142284, Moscow reg, Russia

aiem@rambler.ru

Yuri Astakhov
Institute of Computing for Physics and

Technology, ICPT
Protvino,

142284, Moscow reg, Russia
jurij.astakhov@gmail.com

ABSTRACT
The presented work is related to the problem of repairing incomplete reconstructed (damaged) CAD-models. To
solute this problem, a general concept of the repairing that uses various types of mathematical fields is proposed.
One method developed within the framework of this concept is described in details. As the base this method
uses interpolation of a given successfully reconstructed surface to estimate the behavior of the corresponding
missing one. Ability of the method to repair heavy damaged CAD-models has been proved. This method has a
big potential for further development, because the main advantage of the presented concept is that its framework
is open to adding various methods of missing surface estimation to supplement each other in the repairing
process.

Keywords
Cloud of points, surface reconstruction, mesh repairing, repairing CAD-models.

1. INTRODUCTION
Creating a CAD-model on the base of a given cloud
of points obtained by sampling the corresponding
original object is widely used in science, culture and
industry. But due to as physical so technical reasons
such point cloud often contains as good sampled
regions so regions with unsatisfactory allocation of
points or without them. In this case using even a
powerful and robust surface reconstruction algorithm
often leads to absence of the resulting model surface
in the badly sampled regions. So, the problem of
repairing incomplete reconstructed (damaged) CAD-
models is very challenging.
A majority of recently developed repairing methods
can be related to two groups. Methods of the first one
(let’s call it the rebuilding group), in general, remake
all a model to be repaired [TJ04, EBV05, ZJH07].
But it means that they ignore the most part of the
previous work to create the model. Theirs processing
cost doesn’t depend essentially on the degree of
damage of the model that leads to inefficient
processing a little damaged models. Methods of the

second group (let’s call it the template-warping
group) use warping of a suitable template from a
database to repair a given damaged model region
[ACP03, PMG05, SKR06]. They show impressive
results, but are usable only for models corresponding
to theirs template databases. Also, to provide a
proper template fitting such methods require
manually setting a certain number of point matches
between the damaged model region and the used
template.
In spite of the fact that even a heavy damaged CAD-
model contains various kinds of information
concerning its missing surface (the behavior of the
reconstructed one, location of unused sampled
points, an assumption of symmetry, etc.), existing
repairing methods use only the corresponding
restricted parts of it. The primary goal of the
presented work is developing an approach that
allows using such information as entirely as it is
necessary. It is clear that developing one "universal"
method with this property is impossible. Thus, we
have to develop a concept that provides an
interaction of various methods developed within its
framework to supplement each other.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

The presented paper is organized in the following
way. In the next section a formalization of supposed
input of our work is made. Then there is a
description of two theoretical concepts. In section (3)
the developed previously [EM04] concept of bridges
is briefly explained. This concept considers reducing

WSCG 2009 Full papers proceedings 89 ISBN 978-80-86943-93-0

a heavy damaged model to a model that is easy to
repair. In section (4) a general concept that is called a
missing surface field concept is introduced. This
concept makes the desired open framework that
allows effective using various kinds of information
about missing surface in a uniform way to achieve
the best repairing result. One approach developed
within this framework is described in section (5).
This approach is based on interpolation of the
behavior of existing surface along its boundary(ies)
using a tensor field. In spite of that the both
introduced concepts and the interpolation-based
approach can be used independently, they naturally
join with each other to be used together. A method
based on such joined using is described in section
(6). Some results and a discussion are adduced in
section (7).

2. FORMALIZATION OF DAMAGED
CAD-MODELS
Definition D2.1. Let’s consider an unsuccessful
result of work of some surface reconstruction
algorithm that contains a partially reconstructed
surface (Α), unused sampled points and does not
contain invalid surface elements (edges, triangles,
etc.). The remaining part of the surface (Ᾱ) is
missing. Let’s call such result an incomplete CAD-
model (ICADM).
Definition D2.2. In a given ICADM Α can be
represented by one or several isolated regions with
possible holes inside them. When Α is represented by
more than one region, let’s call such regions islands.
Definition D2.3. Let’s consider a hole in a given
surface. This hole is considered a simple hole if
inside it Ᾱ can be reconstructed by an existing not so
complicated method and a complex hole otherwise.
Definition D2.4. Each ICADM can be related to one
of the following classes:
ICM1: Α is represented by one region, that has only
simple holes;
ICM2: Α is represented by one region, but there are
both simple and complex holes inside;
ICM3: Α is represented by several islands, which
have possible holes of the both types.

3. CONCEPT OF BRIDGES
In accordance with D2.3 and D2.4 obtaining a
correct CAD-model from a given ICADM of class
ICM1 is not a problem. Let’s use the fact that to
reduce an ICADM of class ICM3 to an ICADM of
class ICM2 and then to an ICADM of class ICM1 it
is enough to reconstruct Ᾱ only in properly chosen
local regions. In the simplest case such region is a
curve connecting two specified boundary points of
Α. At each point of it a unit vector is defined. This

vector lies in the curve normal plane at the point and
is assumed as the normal vector of Ᾱ at the point
(figure F3.1). Let’s call such curve a bridge.

Figure F3.1

Using bridges we initially reduce Ᾱ between islands
of an ICADM of class ICM3 (figure F3.2, left) to a
set of regions of Ᾱ bounded by the corresponding
contours with the defined normal vectors along them.
Each contour is formed by the corresponding bridges
and fragments of island boundaries. Such bounded
region of Ᾱ can be considered as a hole, and,
therefore, the model is reduced to class ICM2 (figure
F3.2, middle). Then using bridges again each
complex hole of the ICADM is recursively
decomposed until a set of only simple holes is
obtained, that is the criteria of class ICM1 (figure
F3.2, right).

Figure F3.2

In this way bridges create an irregular mesh
approximating Ᾱ. Inside each cell of such mesh Ᾱ
can be reconstructed by a simple existing method.
This concept minimizes using costly reconstruction
methods and therefore, essentially reduces the
repairing cost.

4. MISSING SURFACE FIELD
CONCEPT

4.1 Scalar missing surface field
Definition D4.1.1. Let’s call a field of some nature
that contains some information about Ᾱ a missing
surface field (ᾹF).

Figure F4.1.1

This paper introduces several particular cases of ᾹF
at various levels of abstraction. The relationship
between them is shown in figure F4.1.1. The cases of
ᾹF shown in this scheme are defined in this and the
next sections.

WSCG 2009 Full papers proceedings 90 ISBN 978-80-86943-93-0

Definition D4.1.2. For a given ᾹF let’s call the
corresponding set of indices which characterize this
ᾹF at a point the tension of the ᾹF at the point.
Definition D4.1.3. Let's call the estimated in some
way probability of that Ᾱ passes through a specified
point the missing surface potential (MSP, a ,

]1,0[∈a) at the point.

Definition D4.1.4. Let's suppose that the MSP is
defined at each point of a certain space area
surrounding a given ICADM. So, it can be
considered that in this area the corresponding scalar
field of the MSP is defined. Let's call such field
scalar missing surface field (SᾹF). The MSP is
directly the tension of it.
A SᾹF is defined by the corresponding function of
one vector argument that is the coordinates of a
specified point (X):

)(Xfa = (E4.1.1)

In any ICADM boundaries of Α can be considered as
degenerated to lines equipotent surfaces of a
specified SᾹF with 1=a . Also, it is obvious, that at
points which belong to Α, except the boundaries,

0=a .

For example, if a given ICADM contains a sufficient
number of unused sampled points, we can define a
SᾹF assuming these unused points and boundary
points of Α as its elementary sources (let’s call such
field point-based missing surface field, PSᾹF). The
MSP created by each such source is defined by a
function of the distance (r ,) to it:),0[∞∈r

)(rpa = , , , , where
 is the confidence value of the point (figure

F4.1.2).

0)(' <rp cp =)0(0)(=∞p
]1,0(∈c

1.0 1.0
0.8

0.1 0.2

0.3

Figure F4.1.2: Side-view of a surface gap

Definition D4.1.5. A SᾹF directly defines the
corresponding vector field formed by its gradient
vectors. Let's call vector lines of this vector field
force lines of the corresponding SᾹF (several such
force lines are shown in F4.1.2).

Definition D4.1.6. Let there is an ICADM with a
defined SᾹF. Consider a boundary point of Α.
Among all force lines outgoing from the point let's
select the line with the highest average value of the
MSP along it. Let's call such force line the principal
force line (in F4.1.2 the principal force line passes
through the point with the confidence value 0.8).
Basic assumption. Let's assume that the principal
force line of a boundary point of Α belongs to Ᾱ.
Therefore, by defining a proper SᾹF for a given
ICADM we can reconstruct Ᾱ by tracing principal
force lines of the SᾹF (figure F4.1.3).

Figure F4.1.3

So, a SᾹF represents Ᾱ by a set of its traced principal
force lines. This set doesn't contain any explicit
information about the normal vectors of Ᾱ that
requires from it to be quite dense. The described
concept of bridges can't be directly applied because
of this fact as well.

4.2 Function missing surface field
At the same time Ᾱ can be represented by a set of
bridges. Such representation requires less density of
sampling, because in this case it can be considered
that Ᾱ is approximated by arbitrary narrow surface
strips. Using in this case the bridge concept is
obvious choice.
Definition D4.2.1. In the rest of this paper objects
which are aggregates of a specified number of scalar
and tensor values are used. At any place when such
aggregate is implied, it is denoted by enumeration of
its components in braces. For example is an
aggregate consisted of a scalar and a vector.

},{ ba

Definition D4.2.2. Let's call an aggregate of a point
and a unit vector at this point an oriented point.
Definition D4.2.3. Each oriented point defines the
corresponding plane. Let's call such plane the tangent
plane of a given oriented point.
The bridge-based representation of Ᾱ can be
provided by another concept of ᾹF. In this concept a
field expresses the probability of the tangent plane of
a specified oriented point to be the approximation of
Ᾱ at the point. Such field is defined by the
corresponding function of the two vector arguments:

)Xg(X,a n= (E4.2.1)

WSCG 2009 Full papers proceedings 91 ISBN 978-80-86943-93-0

where X is the coordinates of a specified point;
is a specified normal vector at the point.

Xn

Thus, at each point where such field is defined, there
is the corresponding function that takes as the
argument a specified normal vector () at the point
and returns the corresponding MSP value:

n

)(nua = (E4.2.2)

Let’s call such kind of ᾹF function missing surface
field (FᾹF).
Function E4.2.2 binds this field with the introduced
above concept of SᾹF. On the base of this
relationship let's consider what force lines in the case
of FᾹF are. It is clear, that concerning a defined field
of normal vectors a FᾹF defines the corresponding
SᾹF. Let's suppose that there is such field of normals
that exactly determines normal vectors of Ᾱ. This
field with the given FᾹF define the corresponding
SᾹF, whose principal force lines belong to Ᾱ.
Assuming Ᾱ smooth enough, we can determine this
field of normals and the corresponding SᾹF along
such force lines during tracing them, that is sufficient
from the point of view of our task. The tracing is
performed in the following way. Let it starts from a
boundary point of Α. On the base of the assumption
of smoothness it can be considered that in a close
neighborhood of this point the normal vector to Ᾱ
has the same direction like the normal vector to Α at
the point. Thus, it can be considered that in this
neighborhood the required field of normals and the
corresponding SᾹF are defined. By determination of
the SᾹF gradient in the given neighborhood the next
point of the traced force line can be obtained. At this
next point the unit vector that maximizes function u
(E4.2.2) is assumed as the normal.
The following tracing steps can be performed in the
same way.
This tracing process description illustrates that in the
case of FᾹF the required in the tracing process MSP
gradient vector at a specified point is, like the MSP, a
function of the normal vector:

)()(nva =∇ (E4.2.3)

So, to construct a convenient to use FᾹF, at each
considered point as function (E4.2.2) so function

 (E4.2.3) should be defined.
u

v

4.3 Using several missing surface fields
In many cases we can define for a given ICADM
more than one ᾹF. To supplement each other in the
repairing process, at each considered point theirs
MSPs and gradient vectors should be summed with
the corresponding positive weights (): iw

∑=
i

ii awa (E4.3.1a)

)()(i

i

i awa ∇∇ ∑= (E4.3.1b)

Each weight is the relative confidence value of
information contained in the corresponding ᾹF.
They, in general, should not be constant everywhere,
but the following condition should be satisfied:

1=∑
i

iw (E4.3.2)

5. INTERPOLATION MISSING
SURFACE FIELD

5.1 Interpolation concept
In this section a particular case of FᾹF that uses
interpolation of Α as the MSP estimation method
(let's call it interpolation missing surface field, IFᾹF)
is formulated. To estimate the MSP boundaries of Α
are considered mainly, because just the behavior of Α
along the boundaries in a majority of cases has the
most influence on Ᾱ.

5.2 Basic definitions
Definition D5.2.1. For a surface (and a plane, as a
particular case), let's assume that the normal vector at
a point of the surface defines its external side.
Definition D5.2.2. For a closed surface boundary
let's assume as the positive direction the counter-
clockwise direction, if we look to the external surface
side.
Definition D5.2.3. Let's consider a surface boundary,
a point (O) on it and the tangent line to the boundary
at this point (figure F5.2.1). Let's call the unit vector
() on the tangent line with the origin at O and
directed in accordance with the positive direction of
the boundary the tangent vector to the boundary at
the given point.

Oτ

X

On
nn

s

τ

θ oxo
x xo

o

Figure F5.2.1

In this section let's assume that the term “boundary
point” implies the aggregate of a point on a surface
boundary (O), the normal vector to the surface at the
point () and the tangent vector at it (): On Oτ

WSCG 2009 Full papers proceedings 92 ISBN 978-80-86943-93-0

},,{ OOO τn . A boundary point within an arbitrary
small its neighborhood represents the surface by its
tangent plane and the boundary by its tangent vector.
Definition D5.2.4. Let's call that the tangent plane
(α , see figure F5.2.2) of a given oriented point
() has the non-twisted connection with the
tangent plane of a given boundary point
() if the line of intersection of these
planes is the tangent line of the boundary point with
condition, that the plane normals are concerted, in
other words, if we walk from

},{ XX n

},,{ OOO τn

X to O on the
external side of the tangent plane of { , we
reach the external side of the surface.

}, XX n

O n

τ

o

oX

nx

Figure F5.2.2

Definition D5.2.5. From the properties of the vector
cross-product follows (see figure F5.2.1), that the
normal vector () at a given point (XOn X) that
provides the non-twisted connection of the tangent
plane of with the tangent plane of a given
boundary point (), is defined by the
following equation:

},{ XOX n
},,{ OOO τn

|| XO

XO
XO

s
sn = (E5.2.1a)

 where
OXOXO τ×= ds (E5.2.1b)

|| OX
OXOX =d (E5.2.1c)

Let's call such vector the non-twisting normal at a
point concerning a given boundary point,
Definition D5.2.6. Let there is an oriented point
(, see figure F.5.2.1), a boundary point
() and the non-twisting normal at

},{ XX n
},,{ OOO τn X

concerning (). Let's call the angle
(

},,{ OOO τn XOn
θ) between and the twist angle of

 concerning .

Xn XOn
},{ XX n },,{ OOO τn

5.3 Formalization of the field
Here the introduced above IFᾹF has been defined.
Initially, several basic dependencies of the MSP in
the simplest case are formulated. Then two indices at
a point which are called an interpolation quality and
a force vector correspondingly are defined. These
indices aren't exactly the MSP and its gradient but
have a relationship with them. After formalization of
the field using these indices this relationship is
highlighted. It binds the formalized field with the
introduced above general concept of ᾹF.
So, in the beginning let's formalize the basic
dependencies of the MSP at a given oriented point
(), located somewhere outside Α, for the
simplest case, when Α and its boundary are locally
represented by the tangent plane and the tangent line
of a given boundary point (). Of course,
such formalization depends on the context of a
concrete task, but in a majority of cases the adduced
below dependences are found true.

},{ XX n

},,{ OOO τn

Concerning the location of point X , it is clear that
 doesn't have the same influence on the

behavior of Ᾱ everywhere. Let's assume that the
MSP at

},,{ OOO τn

X :
1) decreases with increasing the distance (r)

between X and O in accordance with some
distance function ;)(_ rrangefunc

2) decreases with decreasing the angle between
OX and the tangent line of (},,{ OOO τn ϕ ,

2/0 πϕ ≤≤) in accordance with a function
)(_ ϕfacefunc .

Concerning the direction of , let's assume that the
MSP at

Xn
X :

3) decreases with increasing the angle between
 and (Xn On η , πη ≤≤0) in accordance

with a function)(_ ηnormalfunc ;
4) decreases with increasing the twist angle of

 concerning (},{ XX n },,{ OOO τn θ ,
πθ <≤0) in accordance with a function

)(_ θtwistfunc .

Conditions (1, 3) have a valuable dependence on a
concrete task. In a majority of cases only extreme
large values of r and η lead the MSP to 0. For
clarity of the further statement let's assume that the
values of and are
restricted by .

rangefunc _ normalfunc _
]1,0[

Conditions (2, 4) have a weak task dependence.
Assuming)sin()(_ ϕϕ ≡facefunc and

)cos()(_ θθ ≡twistfunc , we can define the
introduced above interpolation quality () of q

WSCG 2009 Full papers proceedings 93 ISBN 978-80-86943-93-0

},{ XX n concerning in the following
way:

},,{ OOO τn

)cos()sin(θϕmq = (E5.3.1)

where)(_)(_ ηnormalfuncrrangefuncm = .

This quality expresses the degree of interpolation of
the surface represented by by the tangent
plane of at

},,{ OOO τn
},{ XX n X . From this formalization it

follows that the interpolation quality is equal to 0 if
X locates on the tangent line of and is
equal to 0 or even negative if the tangent planes of

 and are "overtwisted"
concerning each other. On the base of definition
D5.2.4 a negative value of the quality can be
interpreted in the following way: if we walk from

},,{ OOO τn

},{ XX n },,{ OOO τn

X to on the external side of the tangent plane of
, we reach the internal side of the surface

instead the external one. Also we can see, that for
any mutual location of

O
},{ XX n

X and O except cases when
X is on the tangent line of { , the quality
value can be made positive by proper choosing the
direction of .

},, OOO τn

Xn
So, let's formulate the field. As an elementary source
of it a boundary point of Α is assumed. The tension
of the field created by such source () at a
given point (

},,{ OOO τn
X) is represented by the following

aggregate: where is the quality vector
and

},{ XX Hq Xq
XH is the force matrix at X :

XOX msq = (E5.3.2a)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
XO
z

OX
z

XO
y

OX
z

XO
x

OX
z

XO
z

OX
y

XO
y

OX
y

XO
x

OX
y

XO
z

OX
x

XO
y

OX
x

XO
x

OX
x

X

sdsdsd
sdsdsd
sdsdsd

mH (E5.3.2b)

where and are defined by E5.2.1b,c; is
the same like in E5.3.1.

XOs OXd m

Using the quality vector and the force matrix at X
we can define the two following functions at the
point:

n
q
q

|| X

X
Xq = (E5.3.3a), (E5.3.3b) nHf XX =

where is the interpolation quality of the oriented
point ; is the force that acts at

Xq
},{ XX n Xf X if

. If , “attracts” 0≠Xq 0>Xq Xf X to O and
“repulses” it away otherwise.
Definition D5.3.1. Let q is the quality vector at a
point. Then || is the highest possible quality value
at the point. Let’s call such value the principal
quality at a point.

q

It is clear, that the made formalization provides the
property of superposition of IFᾹF. Thus all the
considerations and conclusions can be generalized to
the case when there are elementary sources of the
field:

k

∑
=

=
k

i

XiXiXX

1
},{},{ HqHq (E5.3.4)

and to the case when as a source of the field a
continuous surface boundary segment is considered:

∫=
l

XX
XX dl

dl
d },{},{ HqHq (E5.3.5)

and a set of such boundary segments as well.
At it has been mentioned above, the interpolation
quality and the force vector have a relationship with
the MSP and its gradient. Assuming fμ=)(a∇ ,
where μ is a positive constant, it can be considered
that)(qa α= , where]1,0[)(∈qα , 0)(' >qα . This
relationship is sufficient to obtain the same result, if
in the force line tracing process we substitute a by

 and q)(a∇ by . Also, in practice, to use in the
sum operations defined by E4.3.1, function

f
)(qα

can be approximated by , where k is a
positive constant. At the same time, exact values of

kq)2/)1((+

a and)(a∇ at each point can be obtained using
known distribution of and , if it is necessary. q f

6. IMPLEMENTATION
On the base of the adduced above theoretical
statement the described in this section repairing
method has been developed and implemented. It uses
the properties of IFᾹF as the base. Initially,
boundaries of Α of a given ICADM are considered as
IFᾹF sources. Then on these boundaries we
determine points corresponding to local maximums
of the principal quality on a specified little distance
from the boundaries. From these points the
corresponding principal force lines are traced. They
connect isolate islands of the ICADM with each
other and divide complex holes inside the islands to
more simple ones. Then, in accordance with the
concept of bridges, from the obtained topology the
created set of holes is extracted. Each hole is
decomposed by the tracing IFᾹF principal force lines
in a similar way that in the previous step, with the
difference that only the hole boundary is considered
as an IFᾹF source.
If the processed ICADM contains a valuable number
of unused sampled points, then within the framework
of the ᾹF concept IFᾹF is supplemented by defined
in subsection (4,1) PSᾹF. Because the confidence
values of such points, as a rule, are low, in the sum

WSCG 2009 Full papers proceedings 94 ISBN 978-80-86943-93-0

operations defined by E4.3.1 the weight of PSᾹF is
relative small, so this field plays only a perturbing
role during the IFᾹF force line tracing.

Figure F6.1

Because the presented method works directly in
regions of damage, its cost does not essentially
depend on the square of Α and as a consequence on
the number of existing edges, triangles and points
used in Α. To estimate the cost, let’s take into
account that traced force lines finally forms a mesh
approximating Ᾱ (figure F6.1) where each cell can
be considered as a simple hole. Assuming for
simplicity that all the force lines are traced with the
same step and cells of the mesh have the same square
we can conclude that the number of points, at which
the tension of the both fields should be calculated is
proportional to the total square of Ᾱ. So, the cost
behavior can be approximately expressed by the
following equation:

)(AkSquaret = (E6.1)

where is a positive constant. k
In the current state of development, the method
works correctly if a given ICADM adequately
represents topology of the corresponding original
object. Using the given Α and unused sampled points
it provides obtaining a closed surface. If the original
object has holes, theirs contours should be explicitly
given.

7. TESTS AND COMPARISON
An example of a heavy damaged ICADM obtained in
practice of surface reconstruction is shown in figure
F7.1. This ICADM has been generated from a cloud
of 228741 sampled points. A valuable part of its
surface is missing due to undersampling. Α is
represented by 32 islands which have 306 holes.
During the repairing (71 sec. for 3~GHz Pentium-4)
the tension of the both fields (IFᾹF and PSᾹF) at
123295 points has been calculated and 5173 force
lines of the combined ᾹF (IFᾹF + PSᾹF) have been
traced. The reconstruction result is shown in figure
F7.2. Such result is comparable with results
providing by the considered methods of the template
warping group, but it has been obtained without any
template database and manual management. Of
course, the template warping methods can provide

the super-resolution effect of reconstructed Ᾱ due to
theirs database knowledge, but a similar knowledge
expressed by a proper ᾹF can be in principle used
and in the presented method.
During the done tests a direct comparison with a
method of the rebuilding group has been made. This
method is similar to [EBV05] and models the
behavior of a shrinking elastic membrane
surrounding an ICADM to be repaired. To make the
experimental comparison more clear, three test
ICADMs (the same well known “Bunny” artificially
damaged in a different degree) have been processed
by the both methods. The results of this processing
are shown in table T7.1. They, in general, are in
agree with the theoretical estimations and E6.1. The
cost of the warping method weakly depends on the
model damage degree and the presented method has
a superiority, which, although, decreases when this
degree increases. In general, methods of the
rebuilding group, which use warping, have a greater
theoretical robustness, than the presented one. They
can reconstruct a closed surface from an extremely
damaged ICADM, but practical usability of such
repairing result is questionable.

8. CONCLUSION
The presented method using only the two
implemented ᾹFs (IFᾹF and PSᾹF) has proved
ability to repair heavy damaged CAD-models
without any manual management. The method has
good potential for further development, which is
caused by using the introduced ᾹF concept. This
concept provides the open framework to use together
various methods of missing surface estimation. And
many of existing ones can be embedded in this
framework by defining corresponding ᾹFs. As a
particular, it seems perspective to supplement the two
implemented ᾹFs by an ᾹF that expresses a property
of symmetry of an original object. The method has
very good parallelization abilities, because each force
line can be traced independently on tracing other
ones and the tension of a given ᾹF at a point can be
calculated independently on calculating the tension
of other ᾹFs at the same point as well.

9. ACKNOWLEDGMENTS
This work is supported by the Russian Foundation
for Basic Research, projects 08-07-00362, 08-07-
00399.

10. REFERENCES
 [ACP03] B. Allen, B. Curless, Z. Popovic. The

Space of Human Body Shapes. Reconstruction
and Parameterization from Range Scans. ACM
Transactions on Graphics, Vol. 22, No. 3, pp.
587-594, 2003.

WSCG 2009 Full papers proceedings 95 ISBN 978-80-86943-93-0

[EM04] A. Emelyanov. Surface reconstruction from
clouds of points. PhD Thesis. Department of
Computer Science, University of West Bohemia,
Plzen, 2004.

[PMG05] M. Pauly, N. J. Mitra, J. Giesen, M. Gross,
L. Guibas. Example-based 3D Scan Completion.
Symposium on Geometry Processing, pp.23-32,
2005.

[SKR06] C. Stoll, Z. Karni, C. Rössl, H. Yamauchi,
H.-P. Seidel. Template Deformation for Point
Cloud Fitting. Eurographics Symposium on
Point-Based Graphics, pp. 27-35, 2006.

 [TJ04] Tao Ju. Robust Repair of Polygonal Models.
Proceedings of ACM SIGGRAPH, ACM
Transactions on Graphics, 23(3), pp. 888-895,
2004.

[ZJH07] Q-Y. Zhou, T. Ju, S-M. Hu. Topology
Repair of Solid Models Using Skeletons. IEEE
Transactions on Visualization and Computer
Graphics, 13(4), pp. 675-685, 2007.

 [EBV05] J. Esteve, P. Brunet, A. Vinacua.
Approximation of a Variable Density Cloud of
Points by Shrinking a Discrete Membrane.
Computer Graphics Forum, Volume 24 Issue 4,
pp. 791-807, 2005.

 Figure F7.1

 Figure F7.2

ICADM:

Square(Ᾱ)/Square(Α+Ᾱ) 0.11 0.29 0.38 damage
degree relative 1.0 2.6 3.5

absolute (sec) 27 34 32 warping
method cost relative 1.0 1.3 1.2

absolute (sec) 4.2 12 16 IFᾹF-based
method cost relative 1.0 2.9 3.8

Table T7.1

WSCG 2009 Full papers proceedings 96 ISBN 978-80-86943-93-0

Quadrilateral mesh generation from point clouds by a Monte
Carlo method

Ágoston Róth
Chair of Numerical Calculus and

Statistics, Babeş - Bolyai University
Str. Mihail Kogălniceanu nr. 1

Romania,RO-400084, Cluj-Napoca
agoston_roth@yahoo.com

Imre Juhász
Department of Descriptive

Geometry, University of
Miskolc

Egyetemváros
Hungary, H3515, Miskolc

agtji@uni-miskolc.hu

ABSTRACT

We present a Monte Carlo method that generates a quadrilateral mesh from a point cloud. The proposed algorithm evolves an
initial quadrilateral mesh towards the point cloud which mesh is constructed by means of the skeleton of the input points. The
proposed technique proves to be useful in case of relatively complex point clouds that describe smooth and non-self-intersecting
surfaces with junctions/branches and loops. The resulted quadrilateral mesh may be used to reconstruct the surfaces by means
of tensor product patches such as B-spline or NURBS.

Keywords: Quadrilateral mesh, point cloud, Monte Carlo method.

1 INTRODUCTION

Surface reconstruction from point clouds (scattered
data or unorganized set of points in space/plane) is
a key issue in several fields of geometric modeling,
such as reverse engineering or medical applications.
Most often, tensor product surfaces (e.g. NURBS
surfaces) are used to describe the surfaces, that require
organized point sets, i.e. points arranged into rows
and columns. Therefore, quadrilateral meshes has to
be extracted from the point cloud, or the cloud has
to be approximated by a quadrilateral mesh, then the
quadrilateral mesh can be interpolated or approximated
by tensor product surface patches.

The usual way to produce a quadrilateral mesh con-
sists of two steps. At first a triangular mesh is generated
from the point cloud, then the quadrilateral mesh from
the triangular one. There are numerous publications
dealing with triangular mesh generation from scattered
data, cf. [EM94], [HG97], [HDD+92], [Kós01] and
references therein. Concerning the triangular mesh to
quadrilateral mesh generation process the reader is re-
ferred to [TACSD06] and references therein.

Our objective is to generate quadrilateral mesh from
a point cloud without a previous triangular mesh gen-
eration. There are some papers (cf. [BF02], [VHK99],
[GY95]) that generate quadrilateral mesh directly from

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

unorganized set of points that represent surfaces of sim-
ple form (and topology). All of them use neural net-
works.

Our proposed Monte Carlo method allows more com-
plex geometry. We assume that a point cloud and its
topological graph (skeleton) are given. The method
consists of the following main steps:

• build an initial rough quadrilateral mesh around the
skeleton;

• refine the mesh;

• adjust the mesh to the point cloud using a Monte
Carlo method.

The resulted quadrilateral mesh can be interpolated
or approximated by tensor product surfaces.

The rest of the paper is organized as follows. In
Section 2 there is a short review of skeleton genera-
tion methods of spatial point clouds, Section 3 contains
our proposed MC method for quadrilateral mesh gener-
ation, in Section 4 some test results and examples are
presented and a section on future work concludes the
paper.

2 SKELETON OF SPATIAL POINT
CLOUDS

A skeleton (topological graph) is an abstraction of a 2D
or 3D object that represents the shape of the object. It
is a graph structure that represents the substantial parts
of the object and their relations. The edges of the graph
are the representation of such parts of the objects that
are roughly of the same thickness/diameter. Skeleton
can be considered as an approximation of the centerline
of the medial axis. A comprehensive study on skeletons
can be found in [CMS07].

WSCG 2009 Full papers proceedings 97 ISBN 978-80-86943-93-0

Figure 1: (a) A T-shaped scattered point data set is presented together with its skeleton. (b) A prism is placed in
the T-junction. The prism consists of six face groups. (c) The right face group is extruded along its corresponding
bone. (d) The left face group is also extruded along its corresponding bone. (e) The bottom face group is extruded
along the T-leg, too. (f) The face group at the bottom of the T-leg is deleted. (g) All faces in face groups are split
in four smaller faces that form new face groups which replace the old ones. (h) The previous smoothing step is
repeated once again.

WSCG 2009 Full papers proceedings 98 ISBN 978-80-86943-93-0

There are several methods for the determination of
skeletons of 2D or 3D objects. These methods fall
into one of the following categories: voxel topology
([GS99], [BND99]), geometric ([DZ04], [AM97],
[WML+03], [DS06]), implicit ([BKS01], [CSYB05a],
[GG00]) and deformable model evolution ([SLSK07]).
A detailed survey on these methods can be found in
[CSYB05b].

This paper does not deal with the computation of the
skeleton. We assume that the skeleton of the point cloud
has been produced already.

3 PROPOSED MONTE CARLO
METHOD

Our approach to reconstruct a surface from an unorga-
nized (scattered) point set

P =
{

pi ∈ R3 : i = 1,2, . . . ,N
}

is based on a Monte Carlo (MC) method and a flexible
quadrilateral mesh data structure that consist of:

• types like vertices, oriented halfedges, counterclock-
wise oriented faces and face groups that consist of
four adjacent faces that have a common vertex (i.e.
a face group is a fan of quadrilateral faces);

• methods for fast neighborhood access, mesh
smoothing, face group scaling, rotating, extruding,
deleting and vertex merging.

MC methods are computational algorithms that pro-
vide approximate solutions to a variety of mathemati-
cal problems by performing statistical sampling exper-
iments on a computer. These methods are successfully
applied in computer graphics, e.g. in global illumina-
tion computing, a comprehensive study of which can be
found in [SK99]. Each MC method follow a particular
pattern:

• first, we need to define a domain of possible inputs;

• second, we generate inputs randomly from the do-
main and perform a deterministic computation on
them;

• finally, we aggregate the results of the individual
computations into the final result.

In what follows, we assume that the skeleton

S =
{
(b j,A j) : j = 1,2, . . . ,M

}
of the point cloud P is known, where b j ∈ R3 repre-
sents one of the two endpoints of a bone, while A j ∈
P ({1,2, . . . ,M}\{ j}) is the adjacency list of the bone
node b j. Using adjacency lists A j (j = 1,2, . . . ,M), one
is also able to create an adjacency matrix

A = [akl]k,l=1,2,...,M ∈MM,M ({0,1}) ,

where

akl =
{

1, if bone node bk is connected to bl ,
0, otherwise.

Naturally, the point cloud P corresponds to the do-
main of possible inputs. Based on the adjacency matrix
A of the skeleton, we are able to build a rough quadrilat-
eral mesh Q that will be evolved (i.e. spanned/stretched
to the point cloud) by the proposed MC method. Figure
1 presents the steps of the creation process of the rough
quadrilateral mesh that is based on the skeleton of a
T-shaped point cloud. The vertices qi (i = 1,2, . . . ,n)
of the mesh Q can be considered as control points.
After the mesh Q has been created, one can evaluate
the average unit normal vectors ni (i = 1,2, . . . ,n) that
are associated with control points qi. Later, after ev-
ery deformation of mesh Q, these unit normal vectors
will be reevaluated. The initial unit normal vectors of
the quadrilateral mesh associated with the previous T-
shaped point cloud are illustrated in Figure 2.

Note, in general Q is not a fixed sized quadrilateral
mesh, however, most of its parts can be decomposed
in smaller regular control nets that determine smooth
interpolating or approximating patches. The decompo-
sition is not possible around extraordinary points which
by definition are control points connected to other than
four edges. In the neighborhood of extraordinary points
one can use some kind of merging method, e.g. the
bicubic T-spline patch merging algorithm provided by
[SZBN03]. Figure 3 illustrates two types of extraordi-
nary points.

Points of the cloud P will be organized in cells using
a (balanced) 3-dimensional kd-tree TP which is a space-
partitioning data structure useful in case of applications
that involve range or nearest neighbor searches.

Consider the notations of Figure 4. The proposed
algorithm in each iteration step tends to span the ver-
tex qi =

(
qi

x,q
i
y,q

i
z
)T (i = 1,2, . . . ,n) along its unit nor-

mal vector ni to an optimal point oi∈ R3 which approx-
imates the position of the yet unknown nearest cloud
point to qi as follows.

Let us denote by

αl = l · αmax

c
, l = 1,2, . . . ,c

the half angles of a right circular cone sequence{
cl : [0,∞)× [0,2π]→ R3,

cl (u,v) =
(
cx

l (u,v) ,cy
l (u,v) ,cz

l (u,v)
)T

,

that share the common axis ni and apex qi. The number
c of cones and the maximal half angle αmax are user-
defined parameters. If k′ = ni =

(
k′x,k

′
y,k
′
z
)T , j′ = k′×

(1,0,0)T =
(

j′x, j′y, j′z
)T and i′ = j′ × k′ =

(
i′x, i
′
y, i
′
z
)T ,

WSCG 2009 Full papers proceedings 99 ISBN 978-80-86943-93-0

then this cone sequence is defined by the matrix equa-
tion

[
cl (u,v)
1

]
=


cx

l (u,v)
cy

l (u,v)
cz

l (u,v)
1



=


i′x j′x k′x qi

x
i′y j′y k′y qi

y
i′y j′y k′y qi

z
0 0 0 1

 ·


ucosv
usinv
u tan

(
π

2 −αl
)

1

 .

In case of each cone cl (l = 1,2, . . . ,c), let r + 1
(r≥ 0) be the number of fixed and uniformly distributed
generators

clg (u) = cl

(
u,

2gπ

r

)
, g = 0,1, . . . ,r, u ∈ [0,∞) .

Figure 2: Initial average unit normal vectors of a
quadrilateral mesh are presented

Figure 3: Two parts of a quadrilateral mesh are shown.
The highlighted vertices of the mesh are extraordinary
points

Parameter r is also user-definable. We also introduce
the set of rays

R = {rk (u) : u∈ [0,∞) ,
k = 1,2, . . . ,c · (r +1)+1}
=
{

qi +u ·ni, clg (u) :
l = 1,2, . . . ,c;

g = 0,1, . . . ,r, u∈ [0,∞)}

the elements of which may intersect several adjacent
point cells around control point qi.

Figure 4: The image depicts a set of uniformly dis-
tributed rays (generators) of a sequence of right and
circular cones that share the common axis ni and apex
qi. The colored dots represent different cells of the 3-
dimensional kd-tree that was associated with the point
cloud

Let m≥ 1 either be a user defined or cell based num-
ber of random point samples and consider the set of in-
dices K = {k1,k2, . . . ,kz}⊆ {1,2, . . . ,c · (r +1)+1} for
which the ray rk j (j = 1,2, . . . ,z) intersects a point cell.
Note, m is much less than the number of possible input
points within a cell. Also, it is possible that different
rays intersect the same cell of input points. Each ray
rk j generates a minimal projection

d j = min
l=1,2,...,m

{
r0

k j
·al

}
,

where the vector r0
k j

is the unit direction of ray rk j

and points al (l = 1,2, . . . ,m) are random sample points
from the cell which is intersected by the ray rk j .

Let

Dε =
{

d j :
∣∣d j
∣∣< ε, j = 1,2, . . . ,z

}
be the set of feasible minimal projections, where ε > 0
is also a user defined parameter which determines the

WSCG 2009 Full papers proceedings 100 ISBN 978-80-86943-93-0

maximal distance of the acceptable point cells from
control point qi. The average of feasible minimal pro-
jections

δ̄ε =
1
|Dε | ∑

δ∈Dε

δ

determines the current optimal point

oi = qi + δ̄ε ·ni

that will be the new position of qi. After repositioning
qi its average unit normal vector ni will also be reevalu-
ated. Such an iterative process is presented in Figure 5.
This generational process is repeated until a termina-

tion condition has been reached. Common terminating
conditions are: a fixed number of iterations is reached
or the error of the current solution (i.e. the quadrilat-
eral mesh) is at such a level that successive iterations
no longer produce better results.

The error of the evolving mesh Q can be calculated
as follows. Suppose, the 3-dimensional kd-tree TP con-
sists of point cells

Zl =
{

plw = (xlw,ylw,zlw)T : w = 1,2, . . . ,Wl

}
,

l = 1,2, . . . ,L.

Naturally, the point cells Zl (l = 1,2, . . . ,L) are disjoint
sets and the union of them results the point cloud P.

Let us denote by

gl =
1
|Zl | ∑

p∈Zl

p =
(

gl
x,g

l
y,g

l
z

)T
∈ R3,

the center of gravity of the cell Zl (l = 1,2, . . . ,L) and
by

tl =
(

t l
x, t

l
y, t

l
z

)T
∈ R3

the unit normal vector of the plane πl that contains the
point gl and it is parallel to least square plane deter-
mined by the cell Zl . Components t l

x, t l
y and t l

z are ob-
tained by solving the symmetric homogeneous system

 β l
00 β l

01 β l
02

β l
01 β l

11 β l
12

β l
02 β l

12 β l
22

 t l
x

t l
y

t l
z

=

 0
0
0

 (1)

with the constraint

(
t l
x

)2
+
(

t l
y

)2
+
(

t l
z

)2
= 1,

where

β
l
00 =

Wl

∑
w=1

(
xlw−gl

x

)2
,

β
l
11 =

Wl

∑
w=1

(
ylw−gl

y

)2
,

β
l
22 =

Wl

∑
w=1

(
zlw−gl

z

)2
,

β
l
01 =

Wl

∑
w=1

(
xlw−gl

x

)(
ylw−gl

y

)
,

β
l
02 =

Wl

∑
w=1

(
xlw−gl

x

)(
zlw−gl

z

)
,

β
l
12 =

Wl

∑
w=1

(
ylw−gl

y

)(
zlw−gl

z

)
.

With this constraint, it is readily seen that the solution
to the system (1) is an eigenvalue problem. The three
eigenvectors are mutually orthogonal and define three
sets for components t l

x, t l
y and t l

z. These three sets rep-
resents the best, intermediate and worst planes. In our
case, we want to choose for tl the eigenvector associ-
ated with the smallest eigenvalue. The cyclic Jacobi
numerical method can be used to find the eigenvalues
and the eigenvectors of the symmetric matrix appeared
in (1).

If Zl (l ∈ {1,2, . . . ,L}) is the nearest cell to the con-
trol point qi (i ∈ {1,2, . . . ,n}), then

ei = |tl · (qi−gl)|

denotes the distance between qi and the plane πl . Now,
the average value

ē =
1
n

n

∑
i=1

ei

is the error level of the current quadrilateral mesh Q.
In what follows, we examine the complexity

of the proposed algorithm. Building a static
kd-tree from point cloud P ={p0,p1, . . . ,pN}
takes O

(
(N +1) log2 (N +1)

)
time if an

O((N +1) log(N +1)) sort is used to compute
the median at each level. The complexity is
O((N +1) log(N +1)) if a linear median-finding
algorithm such as the one described in [CLR90]
(Chapter 10) is used. A ray-shooting/tracing can be
done by an O(log(N +1)) operation.

Thus, the runtime complexity of the algorithm is

O((N +1) log(N +1))
+O((c · (r +1)+1) · log(N +1) ·m

+ max
l=1,2,...,L

Wl +32
)
·n · I

)
= O((N +1+n · I) log(N +1)) ,

WSCG 2009 Full papers proceedings 101 ISBN 978-80-86943-93-0

Figure 5: Here we can follow-up the evolution of the quadrilateral mesh after successive iterations of the proposed
MC algorithm

where:

• I is the number of iterations/steps performed by the
method;

• n is the number of control points within control net
Q;

• c · (r +1)+ 1 is the number of rays associated with
an evolving control point;

• m is the number of random point samples from a
point cell;

• maxl=1,2,...,L Wl < N +1 is the maximum number of
cloud points within an arbitrary point cell;

• O
(
32
)

is the complexity of Jacobi cyclic method
that calculates the eigenvectors of a symmetric ma-
trix of dimension 3×3.

4 RESULTS AND EXAMPLES
Figure 6 shows the main steps of the algorithm for a
complex geometry. The parameters of the algorithm
were set as follows:

• the number of input points is 182274, the bound-
ing box of the model is [−6.8,6.8]× [−7.83,7.83]×
[−7.83,7.0];

• the maximal half angle is αmax=π/18;

• the number of cones is 4 while the number of fixed
generators/rays on each cone is 6;

• the maximal distance of acceptable point cells is ε =
2;

• for each vertex of the mesh the number of random
samples is 10;

• the final error level is 0.056.

In case of the point cloud depicted in Figure 7 most
of the parameters of the algorithm were set as in the
previous example. The differences consist in:

• the number of input points is 413696,
while the bounding box of the model is
[−24.88,4.43]× [−17.25,10.91]× [−1.71,7.41];

• the maximal distance of acceptable point cells is ε =
0.8;

• after approximately 20 iterations the error level of
the mesh is 0.051.

5 CONCLUSION AND FUTURE
WORK

As it is illustrated in Section 4 the proposed algorithm is
able to generate a quadrilateral mesh from point clouds
that represent quite complex geometry. However, there

WSCG 2009 Full papers proceedings 102 ISBN 978-80-86943-93-0

Figure 6: The main steps of the algorithm in the case of a complex model

are several problems to be solved. At the moment,
the proposed algorithm is not able to generate a cor-
rect quadrilateral mesh in case of point clouds that ei-
ther describe very detailed surfaces or have junctions
the branches of which form very small acute angles.
In such cases, the resulted quadrilateral mesh will have
self intersections in the neighborhoods of arms due to
the fact that adjacent vertices of the evolving mesh in
vicinities of junctions are moved along their average
unit normal vectors. In this phase the initial rough
quadrilateral mesh is constructed manually by means
of the given skeleton. It is highly probable that an au-
tomatic initial mesh generation will cause undesired ef-
fects like twists, self intersections, etc.

In the immediate future we plan to improve the pre-
sented algorithm by introducing more constraints and
penalty functions to handle such disadvantages. Un-
fortunately/naturally, we have performance hits in case
of point clouds that belong to very detailed surfaces,
when the construction of the initial rough quadrilat-
eral meshes needs a large number of (local) smooth-
ing/refining steps that will raise exponentially the size
of the allocated memory and the duration of the evolu-
tion.

ACKNOWLEDGEMENTS
The second author would like to thank the Hungarian
Scientific Research Fund (OTKA T 048523) for its sup-
port.

REFERENCES
[AM97] D. Attali and A. Montanvert. Computing and simpli-

fying 2d and 3d skeletons. Comp. Vision and Image
Underst., 67(3):156–169, 1997.

[BF02] J. Barhak and A. Fischer. Adaptive reconstruction of
freeform objects with 3d som neural network grids.
Computers & Graphics, 26:745–751, 2002.

[BKS01] I. Bitter, A. Kaufman, and M. Sato. Penalizeddistance
volumetric skeleton algorithm. TVCG, IEEE, 7(3):195–
206, 2001.

[BND99] G. Borgefors, I. Nystrom, and G. Dibaja. Comput-
ing skeletons in three dimensions. Pattern Recognition,
32(7):1225–1236, 1999.

[CLR90] Th. H. Cormen, Ch. E. Leiserson, and R. L. Rivest. In-
troduction to Algorithms. MIT Press and McGraw-Hill,
1990.

[CMS07] N. D. Cornea, P. Min, and D. Silver. Curve-
skeleton properties, applications and algorithms. IEEE
Transactions on Visualization and Computer Graphics,
13(3):530–548, 2007.

[CSYB05a] N. Cornea, D. Silver, X. Yuan, and R. Balasubrama-
nian. Computing hierarchical curveskeletons of 3d ob-
jects. The Visual Computer, 21(11):945–955, 2005.

[CSYB05b] N. Cornea, D. Silver, X. Yuan, and R. Balasubrama-
nian. Curve-skeleton applications. Visualization, IEEE,
pages 95–102, 2005.

[DS06] T. K. Dey and J. Sun. Defining curve-skeletons with
medial geodesic function. SGP, pages 143–152, 2006.

[DZ04] T. K. Dey and W. Zhao. Approximate medial axis
as a voronod’ subcomplex. Computer-Aided Design,
36(2):195–202, 2004.

[EM94] H. Edelsbrunner and E. P. Mücke. Three-dimensional
alpha shapes. ACM Transactions on Graphics,
13(1):43–72, 1994.

[GG00] P. Golland and W. Grimson. Fixed topology skeleton.
Comp. Vision and Pattern Recog., IEEE, pages 1010–
1017, 2000.

[GS99] N. Gagvani and D. Silver. Parameter-controlled volume
thinning. Graph. Models and Image Proc., 61(3):149–
164, 1999.

[GY95] P. Gu and X. Yuan. Neural network approach to the re-
construction of freeform surfaces for reverse engineer-
ing. Computer-Aided Design, 27(1):59–64, 1995.

[HDD+92] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Surface reconstruction from unorganized
points. Computer Graphics (SIGGRAPH’92), pages
19–26, 1992.

[HG97] P. S. Heckbert and M. Garland. Survey of polygonal
surface simplification algorithms. Course notes, course

WSCG 2009 Full papers proceedings 103 ISBN 978-80-86943-93-0

Figure 7: (a) Point cloud of a translational surface the directrix of which is a torus knot (b) The initial quadrilateral
mesh (c) The evolving mesh after approximately 20 iteration of the proposed MC method (d) The quadrilateral
mesh (c) has no extraordinary points, thus it can be decomposed into smaller control nets of the size 4×4 that can
be used to generate a C2-continuous bicubic uniform periodic B-spline surface

25, SIGRAPH 97, 1997.

[Kós01] G. Kós. An algorithm to triangulate surfaces in 3d using
unorganized point clouds. Computing Suppl., 14:219–
232, 2001.

[SK99] L. Szirmay-Kalos. Monte-carlo methods in global illu-
mination. Technical report, Vienna University of Tech-
nology, 1999.

[SLSK07] A. Sharf, T. Lewiner, A. Shamir, and L. Kobbelt. Adap-
tive subdivision and the length and energy of bézier
curves. Computer Graphics Forum, 26(3):323–328,
2007.

[SZBN03] T. W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri.
T-splines and T-NURCCs. 22(3):477–484, 2003.

[TACSD06] Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Des-
brun. Designing quadrangulations with discrete har-
monic forms. Technical report, Symposium on Geome-
try Processing, Eurographics, 2006.

[VHK99] L. Várady, M. Hoffmann, and E. Kovács. Improved
free-form modelling of scattered data by dynamic neu-
ral networks. Journal for Geometry and Graphics,
3(2):177–81, 1999.

[WML+03] F. C. Wu, W. C. Ma, P. C. Liou, R. H. Laing, and
M. Ouhyoung. Skeleton extraction of 3d objects with
visible repulsive force. pages 409–413, 2003.

WSCG 2009 Full papers proceedings 104 ISBN 978-80-86943-93-0

Real-Time Dense and Accurate Parallel Optical Flow using
CUDA

Julien Marzat
INRIA Rocquencourt - ENSEM

Domaine de Voluceau
BP 105, 78153 Le Chesnay Cedex,

France
julien.marzat@gmail.com

Yann Dumortier
INRIA Rocquencourt - ENSMP

Domaine de Voluceau
BP 105, 78153 Le Chesnay Cedex,

France
yann.dumortier@gmail.com

Andre Ducrot
INRIA Rocquencourt
Domaine de Voluceau

BP 105, 78153 Le Chesnay Cedex,
France

andre.ducrot@inria.fr

ABSTRACT

A large number of processes in computer vision are based on the image motion measurement, which is the projection of the
real displacement on the focal plane. Such a motion is currently approximated by the visual displacement field, called optical
flow. Nowadays, a lot of different methods are commonly used to estimate it, but a good trade-off between execution time and
accuracy is hard to achieve with standard integrations. This paper tackles the problem by proposing a parallel implementation
of the well-known pyramidal algorithm of Lucas & Kanade, in a Graphics Processing Unit (GPU). It is programmed using the
Compute Unified Device Architecture from NVIDIA corporation, to compute a dense and accurate velocity field at about 15 Hz
with a 640×480 image definition.

Keywords: image processing, monocular vision, optical flow, parallel processing, GPU, CUDA.

1 INTRODUCTION
1.1 Context
The perception of the environment is a necessary pro-
cess in many robotic tasks. Indeed, it is used as well for
navigation and obstacle detection in intelligent trans-
port systems [2], which was the original context of
this work, as for automatic video monitoring. To this
end, monocular vision is a convenient solution since
the camera is a low cost sensor providing rich two-
dimensional information contained in a single frame.
Also, the depth of each image point can be estimated
from the study of two or more successive frames. The
first step in any process, whatever it deals with obstacle
detection [9] or object tracking, is the optical flow com-
putation, that is an estimation of the apparent motion
or the matching points between different images. Thus,
we will focus on determining a dense subpixelic opti-
cal flow by only using two consecutive frames from a
video sequence, so that the velocity field could be used
by most of processes.

In addition, recent developments of Graphics
Processing Units (GPUs) for High Performance Com-
puting (HPC) were the main motivation of this work.
Thanks to the Compute Unified Device Architecture
(CUDA) from NVIDIA corporation, phenomenal en-

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

hancement have been performed (up to a one hundred
factor [15]) by offloading computationally-intensive
activities from the CPU to the GPU. The main re-
quirement in order to use this promising solution is
to have a highly parallelizable algorithm. In brief,
this study is looking forward to provide an optical
flow respecting the previously described constraints by
taking advantage of parallel computing performs on a
GPU.

The paper is organized as follows. The rest of this
section presents some optical flow estimation methods
commonly used in real-time robotic systems. Then,
section 2 describes in detail the chosen algorithm while
section 3 explains its parallel computing scheme. Fi-
nally the last section presents experimental results and
proposes a comparison tool for real-time optical flow
algorithms.

1.2 Optical flow
Definition Optical flow is an approximation of im-
age motion, that is the exact two-dimensional displace-
ment given by the projection of real motion on the fo-
cal plane. Actually, the only information we have with
a camera is the level of intensity of light received on
cell sensor, so the gray value at each pixel. The opti-
cal flow computation consists in matching image points
using this information in order to build a visual dis-
placement field. Most estimation methods are so based
on the brightness constancy assumption between two
successive frames of a sequence. Given an image se-
quence I(x, t) : Ω→ R+ that associates for each point
x = (x,y)T , its intensity at time t, the gray value con-
stancy is written:

I(x+ω, t +1)− I(x, t) = 0 ,

WSCG 2009 Full papers proceedings 105 ISBN 978-80-86943-93-0

where ω = (u,v)T describes the apparent image ve-
locity. The problem can also be expressed under the
differential form which leads to:

dI(x(t),y(t), t)
dt

=
∂ I
∂x

dx
dt

+
∂ I
∂y

dy
dt

+
∂ I
∂ t

= 0 , (1)

that is equivalent to the optical flow equation:

(∇I)T
ω + It = 0 , (2)

with (∇I) = (IxIy)T , the intensity spatial gradient and
It its temporal derivative. This problem is ill-posed so
that with the single Eq. (2), we are not able to compute
the two-component optical flow. From there, a lot of
methods propose different additional hypothesis in or-
der to regularize the system. The most commonly used
in robotic application, are presented in the following
paragraphs without exhaustivity.

Block Matching method This is the historical algo-
rithm and probably the simplest. Considering a Region
Of Interest in first image (a block), the purpose is to
find the displacement of this ROI in the next one. To
this end, we compare the correlation scores between the
original block and a family of candidates into a search
area ΩROI , in the second frame. Among the correla-
tion criteria of the most often used, one can find some
well-known cost functions to minimize, as the sum of
absolute differences (SAD) or the sum of squared dif-
ferences (SSD):

SSD .= ∑
ΩROI

(I(x,y, t)− I(x+u,y+ v, t +1)2

SAD .= ∑
ΩROI

|I(x,y, t)− I(x+u,y+ v, t +1)| .

To avoid exhaustive search in Ω and speed up the
process, a lot of exploration algorithms have been
developed [4]. However, the main problem of such
a method remains its pixelic accuracy. Working on
over-sampled images is a way to solve this issue, but
also increases the amount of computation.

Variational Methods The methods based on the dif-
ferential approach consists in an optimization problem
resolution (local or global) by minimizing a functional
containing the term (2) with an additional constraint.
The historical global differential method has been de-
veloped by Horn & Schunck [4]. It aims to minimize
on the whole image domain Ω the following functional:

JHS =
∫ Ω

((∇I)T
ω + It)2 +α((∇vx)2 +(∇vy)2)dxdy .

This criteria is based on the idea that the adjoining ve-
locities are very similar (continuity constraint). There
exists other versions of this method, using different reg-
ularization operators [2]. The main problems of that

kind of methods are its high noise sensibility and the
lack of accuracy: global method implies global move-
ment so that small local displacements are not well
tracked. This can be very harmful for processes that
aims to detect small moving objects.

Also, local differential methods use an additional as-
sumption on a small domain of the image to particular-
ize the computed optical flow. The most famous local
method is the algorithm of Lucas & Kanade [5] : the
velocity is supposed constant on a neighborhood ΩROI .
Then we minimize on this domain the following func-
tional built with the optical flow Eq. (2):

JLK = ∑
ΩROI

(∇I.ω + It)2 .

This is equivalent to the least square estimation on the
neighborhood ΩROI . Such a method is very interesting
because of its robustness to the noise, and the local
assumption makes the small motions trackable.

Ruled out methods Frequency-based methods, using
the Fourier transform version of Eq. (2), have been de-
veloped. They go by tuned families of filter, phase [7]
or wavelet models [8]. But all these methods provide
sparse velocity fields or over-parametrized approaches.

2 ALGORITHM
The algorithm we choose according to the previously
described requirements is the pyramidal implementa-
tion of the Lucas & Kanade algorithm with iterative and
temporal refinement.

2.1 Lucas and Kanade tracker
The basis idea of the Lucas & Kanade algorithm has
already been presented in section 1.2, and the optical
flow estimation is based on the least-square resolution
method. Considering a patch of size n with an uniform
velocity, and centered on the considered pixel. Thanks
to Eq. (2), its displacement ω = (u,v)T can be written
as following: [

u
v

]
= (AT A)−1AT b , (3)

with:

A =


Ix1 Iy1
Ix2 Iy2
...

...
Ixn Iyn

 , b =


It1
It2
...

Itn

 . (4)

In order to improve the robustness of the resolution
(the least square matrix can be singular), we propose
to use the regularized least-square method with the L2
norm. This finally yields:[

u
v

]
= (AT A+αI)−1AT b , (5)

WSCG 2009 Full papers proceedings 106 ISBN 978-80-86943-93-0

Figure 1: Pyramidal implementation.

with 0 < α < 10−3 and I the identity matrix. This tech-
nique avoid matrix singularity problems since the de-
terminant is always different from zero.

2.2 Pyramidal Implementation
Pyramidal implementation, in a coarse-to-fine scheme
enables the algorithms to track all kind of displacement.
In this way, the largest movements can be identified in
the lowest resolution while the original image size al-
lows to determine the finest components of the optical
flow. Let us describe briefly how this computation is
performed.

In a first step, a gaussian pyramid should be built for
each of two consecutive frames of the video by their
successive sub-sampling. The level 0 of each pyramid
is filled with the original image, the level n is then built
with the image of level n-1 sub-sampled by a factor 2,
and so on until the maximum level is reached. The num-
ber of levels should be determined by the resolution of
the original images: typically, 3 or 4 levels represent
common values for a 640× 480 sequence. Then, the
implementation is as follows: the optical flow is com-
puted at the lowest resolution (i.e. the highest level)
before being over-sampled by a factor 2, with bilin-
ear interpolation, to be used at the lower level as initial
value for a new estimate. To this end, the new research
area is translated as the displacement vector previously
calculated. This process continues until the 0 level is
reached.

2.3 Iterative & Temporal Refinement
Iterative refinement is performed at every level of the
pyramid. It consists in minimizing the difference be-
tween the considered frame, warped by the displace-
ment field sought, and the next image, by executing the
algorithm and transforming the destination image with
the last computed flow, and this iteratively. Transform-
ing the image means moving each point of the image
with the corresponding displacement previously com-
puted. If the displacement is not an integer, bilinear in-
terpolation is performed to respect the real sub-pixelic
motion.

The temporal optimization consists in the reusing of
the computed velocity field between images N− 1 and
N as an initial value for the computation of optical flow
between images N and N +1.

The final algorithm combines all the before-
mentioned elements : pyramidal implementation of the
Lucas & Kanade algorithm with iterative and temporal
refinement. Fig. 2 shows an execution example with 3
pyramid levels.

Figure 2: Execution sample on three levels

2.4 Parameters
The method we use has three parameters to set up : the
number of levels, the number of refinement iterations
per level and the size of the patch where the velocity
is supposed constant. There is often a lack of informa-
tion in the literature concerning parameters tuning. We
propose to base the parameters according to the min-
imization of angular (AEE) and norm errors, respec-
tively measured such as:

1
|Ω|∑

Ω

arccos

(
ucur + vcvr +1√

(u2
c + v2

c +1)(u2
r + v2

r +1)

)

and:
1
|Ω|∑

Ω

√
(uc−ur)

2 +(vc− vr)
2 .

where (ur,vr)
T and (uc,vc)

T mean real and computed
displacements. This is done using some synthetic se-
quences with complex motions, like Yosemite (Fig. 5).

WSCG 2009 Full papers proceedings 107 ISBN 978-80-86943-93-0

(a) related to the iteration number

(b) related to the patch size

Figure 3: Optical flow error.

Thanks to the results illustrated in Fig. 3(a), 4 itera-
tions is a good compromise in term of accuracy, in or-
der not to unnecessarily increase the execution time. A
larger value does not improve much the flow. Also, the
optimal patch size is from 9× 9 to 11× 11 (Fig. 3(b)).
Concerning the number of pyramid levels, for a reso-
lution of 300× 200 it is useless to go over 3 levels.
Bouguet [6] gives the following formula expressing the
maximum trackable displacement gain related to the
number of levels l:

gainmax = (2l+1−1) .

For the 640×480 resolution we can use up to 4 levels.
In the rest of the paper the following parameters will
be used: 4 levels of pyramids, a patch size of 10× 10
pixels and 3 refinement iterations.

2.5 Results on synthetic and real se-
quences

The previously described algorithm has been assessed
on both synthetic (Fig. 5) and real sequences (Fig. 6).
In order to represent the computed optical flow, each
velocity vector is encoded according to the color map

Figure 4: Color map representation equivalent vector
field.

illustrated Fig. 4: the color gives the angle while the
brightness represents the norm of the considered dis-
placement. The main advantage of this representation
comes from the possibility of drawing a dense optical
flow, whereas a vector field representation can mask
or highlights some absurd points due to its sampling.
Thus, Fig. 5 illustrates the motion field performs on
the Yosemite sequence with an average angular error
of 2.13deg.

The real sequence we choose involves an embedded
camera taking 640× 480 pictures of another car mov-
ing towards the vehicle (Fig. 6). There is obviously
no ground truth for this sequence, so the comparison is
made with the OpenCV implementation [6] of the same
algorithm, which performs an angular error of 2.61deg
on the Yosemite sequence. The spatial aliasing present
in the final OpenCV motion field, due to a bad passing
through the pyramid levels, disappears from our results
thanks to the bilinear interpolation, indeed while the ra-
dian flow is well retrieved. Moreover, the coming vehi-
cle has clear borders which is promising for a detection
application for example. All these aspects validate the
accuracy of the chosen method.

3 PARALLEL IMPLEMENTATION
Nevertheless the execution time remains about 7 sec-
onds with an optimized sequential implementation in
C, on a 3 GHz mono-core processor. That is why in or-
der to reach 15 Hz, or 67 ms, parallel computing must
be used.

3.1 GPU and scientific processing
Until recently, programming was sequential with a Sin-
gle Input Single Output (SISO) architecture. The devel-
opment of parallel architectures is relatively new, and
includes particularly the General Purpose computing
on GPU (GPGPU), that is to say using existing graph-
ical chipsets, based on a Single Input Multiple Data
(SIMD) architecture, to perform intensive computation
of highly parallelizable algorithms. The growing im-
portance of such approaches has motivated NVIDIA to
produce graphical chipsets allowing an access to their
multi-processors as well as their registries, via a Com-
pute Unified Device Architecture (CUDA) [10].

3.2 CUDA
Generalities CUDA makes possible to write software
compatible with the next GPU generations. Du to
technical considerations, such programs have to be
organized into three levels of abstraction: elementary
sequential instructions, called threads, are clustered
in different blocks which are themselves divided into
grids. All threads contain the same sequential instruc-
tions that are executed on different data. Each block
is executed on one multiprocessor which can alternate
with several other blocks in order to hide latencies

WSCG 2009 Full papers proceedings 108 ISBN 978-80-86943-93-0

(a) Synthetic sequence (b) Ground truth (c) Our result

Figure 5: Real flow and computed flow on the Yosemite synthetic sample.

(a) Real sequence (b) OpenCV (CPU) version (c) CUDA (GPU) version

Figure 6: OpenCV and our results, on a real video sequence (green and red arrows give dominant motions).

due to some not-cached memory access. Whenever
the number of blocks is higher than the number of
multiprocessors available, the remaining blocks are
queued. Obviously, performances depend of hardware
specifications, like the number of multiprocessors or
the cached memory quantity, that affect the optimal
size of blocks. But an efficient implementation allows
to write a program GPU-independent since the block
size has not to be hard written. In that way, the only
changes in executing a CUDA program on a new GPU,
will be the size of blocks and their distribution over all
the multiprocessors.

Constraints The GPU used in this study is a
Tesla C870 (G80 type) consisting in 128 gathered
multiprocessors and 1.5 GB of global (not cached)
memory. Concerning memory into the NV G80 chipset,
each thread accesses only 32 registers and each block
commands 16 KB of shared (cached) memory common
to all these threads. Furthermore, as memory transfers
between CPU and GPU are very time consuming, it is
preferable to perform all the calculations on data stored
in the global memory.

About the execution, the major constraint comes
from that only one kernel per GPU should be active
at any time. There are also many memory constraints
to consider. A Tesla card guaranties 8192 registers,
which means there should be only 256 threads active at
a time. Moreover the number of threads per block has
to be set up, between 64 and 512, to optimize the block
distribution and avoid latency. Finally, all blocks has to
fit into 16 KB of shared memory.

3.3 Algorithm parallelization

The key idea behind the parallelization of the algorithm
described in section 2, is that the optical flow com-
putation at one pixel is independent from each other,
computed at the same time. More precisely, there are
four parallelizable parts in the algorithm : building the
pyramids, computing the derivatives, interpolating (size
doubling) the velocity fields and computing the visual
displacement for each image point. Building the pyra-
mids is both a sequential and parallel activity: it is
indeed necessary to compute successively the under-
sampling of the images but at each level the value in
the considered pixel only depends on the lower level
and not on its neighborhood. The same reasoning can

Figure 7: GPU time for the real sequence.

WSCG 2009 Full papers proceedings 109 ISBN 978-80-86943-93-0

be applied to the interpolation (passing from one pyra-
mid level to another) and to the derivative computation.

Finally, the computation itself is only performed with
the derivatives information and so the calculation in
each pixel is independent from the neighboring pixels
that is why we can use one CUDA thread per pixel.
The implementation is divided into different kernels:
the initialization (memory allocation), the iterative loop
on the pyramid levels and the iterative refinement inside
each pyramid level, which are launched sequentially by
the CPU (Fig. 7). The figure 8 sums up the paralleliza-
tion scheme. We can see there is not any exchange of
memory between CPU and GPU during the entire pro-
cess, except for loading the input images

4 RESULTS

Execution time

With the CUDA implementation we obtain the same re-
sults than described in section 2.5. Execution time on
the 316×252 Yosemite sequence is 21 ms per frame (47
frames per second). On the real 640×480 sequence, the
execution time is exactly 67 ms per frame (15 frames
per second), or an increase by a factor of 100 compared
to the CPU implementation.

Figure 8: CUDA implementation.

AAE Time per pixel ETATO
(deg) (µs) (µs.deg)

Bruhn 2.63deg 0.68µs 1.785
HSCuda 4.36deg 2.5µs 10.9
LKCuda 2.34deg 0.226µs 0.53

Table 1: Compared results

Trade-off measurement
In order to compare the different implementations for
the calculation of optical flow in connection with the
double problem of execution time and accuracy, we
propose a measurement of the Execution Time and Ac-
curacy Trade-Off (ETATO). This number is obtained by
the product of the calculation time per pixel and the an-
gular error obtained on the well-known Yosemite se-
quence:

ETATO = exeTime/pixel.AngError

The best (theoretical) result that can be achieved is 0.
Obviously, the less ETATO is, the best the trade-off will
be.

A few authors have already addressed the problem
of providing a real-time estimation of optical flow that
can be use in embedded systems. The best CPU re-
sult is obtained by Weickert, Bruhn & al [12] with a
dense variational method. They perform the dense op-
tical flow for the 316×252 Yosemite sequence in 54 ms
per frame with an angular error of 2.63deg, so their
ETATO is 1.78µs.deg. A CUDA attempt has also been
made with the implementation of the Horn & Schunck
method [14]. Finally, our method (LKCuda) achieves a
0.53 ETATO level. All these results are listed in Tab. 1.

5 CONCLUSION
The well-known and heavy used Lucas and Kanade
optical flow algorithm has been described in this
study. The parallel CUDA programming model has
been presented along with the parallelization of this
algorithm. The obtained results are outperforming
the previous attempts on real time optical flow. We
achieved 15 velocity field estimations per second on
640× 480 images. This opens a new way in image
processing since high resolutions are not any more a
constraint with parallel approaches. Though, this study
uses a G80 card released at the end of year 2006. The
currently most powerful GPU (type GT200, released
on summer 2008) has double power and registries so
that we can expect half execution times and even more
in the future, always with the same CUDA program.
The optical flow implementation developed in this
work is voluntary unfiltered in order to be used as
a basis for different image processing processes, as
obstacle detection [9] for example. Finally, our work is
freely available on the form of a library on the CUDA
zone [15], or directly at http://www.nvidia.
com/object/cuda_home.html#state=home.

WSCG 2009 Full papers proceedings 110 ISBN 978-80-86943-93-0

Figure 9: Video sample and its corresponding optical flow.

REFERENCES
[1] S. S. Beauchemin and J. L. Barron, "The Compu-

tation of Optical Flow", in ACM Computing Sur-
veys (1995), Vol. 27, No. 3, pp. 433-467

[2] N. Ohnishi and A IMIYA, "Dominant Plane De-
tection from Optical Flow for Robot Navigation",
in Pattern Recognition Letters (2006), Vol. 27, No
9, pp. 1009-1021.

[3] A. Barjatya, "Block Matching Algorithms for Mo-
tion Estimation", in Technical Report, Utah State
University (2004).

[4] B. K. P. Horn and B. G. Schunck, "Determining
Optical Flow", in Artificial Intelligence (1981),
Vol. 17, pp. 185-203.

[5] B. D. Lucas and T. Kanade, "An Iterative Im-
age Registration Technique with an Application to
Stereo Vision", in Proceedings of the 7th Interna-
tional Joint Conference on Artificial Intelligence
(1981) pp. 674-679.

[6] J.-Y. Bouguet, "Pyramidal Implementation of the
Lucas Kanade Feature Tracker", in Technical re-
port, Intel Corporation Microprocessor Research
Labs (2000).

[7] D. J. Fleet and A. D. Jepson, "Computation of
Component Image Velocity from Local Phase In-
formation", in International Journal of Computer
Vision archive (1990), Vol. 5 , Issue 1, pp. 77-104.

[8] Y. T Wu, T. Kanade, J. Cohn and C-C. Li, "Optical
Flow Estimation Using Wavelet Motion Model",
in Proceedings of the 6th International Conference
on Computer Vision (1998), pp._992 - 998.

[9] Y. Dumortier, I. Herlin and A. Ducrot, "4-D Ten-
sor Voting Motion Segmentation for Obstacle De-
tection in Autonomous Guided Vehicle", in Pro-
ceedings of the IEEE Intelligent Vehicle Sympo-
sium (2008).

[10] J. Nickolls, I. Buck, M. Garland and K. Skadron,
"Scalable Parallel Programming in CUDA", in
ACM Queue (2008), Vol. 6, No. 2.

[11] "NVIDIA CUDA, Compute Unified Device Archi-
tecture: Programming guide", in Technical Re-
port (2008), NVIDIA corporation.

[12] A. Bruhn, J. Weickert et al, "Variational optical
flow computation in real time", in IEEE Trans-
actions on Image Processing (2005), Vol. 14, Is-
sue 5, pp. 608 - 615.

[13] Y. Mizukami and K. Tadamura, "Optical Flow
Computation on Compute Unified Device Archi-
tecture", in Proceedings of the 14th International
Conference on Image Analysis and Processing
(2007), pp. 179-184.

[14] C. Zach, T. Pock, and H. Bischof, "A Dual-
ity Based Approach for Realtime TV-L1 Optical
Flow", in 29th Annual Symposium of the German
Association for Pattern Recognition (2007).

[15] http://www.nvidia.com/cuda

WSCG 2009 Full papers proceedings 111 ISBN 978-80-86943-93-0

WSCG 2009 Full papers proceedings 112 ISBN 978-80-86943-93-0

Geometric Diversity for Crowds on the GPU

W. Lister

R. G. Laycock

School of Computing Sciences
University of East Anglia
Norwich, NR4 7TJ, UK

A. M. Day

{ w.lister, Robert.Laycock, Andy.Day } @uea.ac.uk

ABSTRACT
Pure geometric techniques have emerged as viable real-time alternatives to those traditionally used for rendering
crowds. However, although capable of drawing many thousands of individually animated characters, the potential
for injecting intra-crowd diversity within this framework remains to be fully explored. For urban crowds, a
prominent source of diversity is that of clothing and this work presents a technique to render a crowd of clothed,
virtual humans whilst minimising redundant vertex processing, overdraw and memory consumption. By adopting
a piecewise representation, given an assigned outfit and pre-computed visibility metadata, characters can be
constructed dynamically from a set of sub-meshes and rendered using skinned instancing. Using this technique,
many thousands of independently clothed, animated and textured characters can be rendered at 40 fps.

Keywords
Crowd rendering, crowd diversity, GPU techniques.

1. INTRODUCTION
As real-time virtual environments continue to strive
towards photorealism, their enrichment with high-
quality and diverse crowds becomes essential for the
provision of a truly immersive experience. Applied
by urban simulations [CLM05, DHOO05, TLC02a]
and cultural heritage visualizations [dHCSMT05b,
RFD05] to populate otherwise sterile worlds, recent
work within the gaming industry has shown that
crowds need not be confined to passive roles but can
instead become fundamental to the success of a game
[Ubi07].

This work focuses purely upon the rendering aspect
of crowd simulation which typically requires three
criteria to be addressed; namely the quantity, quality
and diversity of characters. With current techniques
capable of rendering many thousands of agents, it can
be contended that the former objective has largely
been achieved and the principal problem is now that
of how to increase the individuality and fidelity of
 each. However many previous works are constrained

by their dependency upon pre-computation; memory
limitations naturally restrict the number of impostors
and baked-meshes that can be stored.

To this end, skinned instancing (discussed in Section
3) has recently emerged as a viable alternative to the
hybrid techniques traditionally employed by real-time
simulations. The capability of skinned instancing to
render large numbers of animated characters has been
demonstrated on both current-generation graphics
hardware [Dud07] and future architectures supporting
a tessellation pipeline [SBOT08]. However, besides
colour modulation and multi-texturing, the potential
for intra-crowd diversity is yet to be explored.

Within an urban setting, a prominent source of crowd
diversity is that of clothing and ideally each agent
should be individually dressed. However, for crowds
comprised of impostors and baked-geometry, this is
inhibited by pre-computation which typically serves
to consolidate characters and clothing into a single
representation. Thus, the opportunities for variety are
limited to image-space techniques since if a different
outfit is required then an alternative set of impostors
and baked-meshes must be provided. In contrast, our
approach decouples characters from clothing and
defers outfit assignment until rendering.

The contributions of this work can be summarised as
follows.

• A method is presented to add geometric diversity
to urban crowds through the addition of clothing.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2009 Full papers proceedings 113 ISBN 978-80-86943-93-0

Given a skinned template mesh and a selection of
pre-fitted outfits, characters can be independently
clothed by assigning a different outfit to each at
run-time. The technique is memory efficient and
fully compatible with skinned instancing.

• Rendering clothing directly over a character leads
to redundant vertex processing and overdraw. To
address this, a piecewise representation is adopted
whereby a character is divided into a set of sub-
meshes and the visibility of each is tagged for all
outfits as a pre-process. This metadata can then be
used to construct characters dynamically during
rendering whilst ensuring that only visible regions
are drawn, irrespective of the clothing assigned.

2. RELATED WORK
Recent years have witnessed the problem of real-time
crowd generation receiving significant research
interest. In the following, prominent rendering and
intra-crowd diversity techniques are discussed.

With the geometric complexity of a typical crowd
scene being prohibitively high for graphics hardware
of the time, many early works explored image-space
techniques as a means to accelerated rendering. In
[ABT00], the application of dynamic impostors was
proposed. In this approach, a character is animated,
rendered into a texture and then mapped onto a
camera-oriented quad to be displayed in place of the
original model. By exploiting temporal coherency,
the cached image (impostor) may be reused in
subsequent frames until sufficient variation in posture
or viewing angle evokes an update of the texture.

Subsequent work by Tecchia et al. [TLC02a]
describes a system within which impostor generation
is performed as a pre-process by sampling from the
surface of a hemisphere at 32 positions and at 8
elevations. For each frame of animation, samples are
stored within a compressed texture and the most
appropriate is selected during rendering, dependent
upon the current viewport and animation frame.
Variety is achieved using colour modulation together
with multi-pass rendering whereby the alpha channel
of an impostor texture is used to mask the regions of
a character shaded by each pass. Later work
described in [TLC02b] considers both normal
mapping and shadow generation.

The primary advantage of impostors over the
alternative techniques discussed by the remainder of
this section is their efficiency of rendering. An
implementation by Millan et al. [MR07] using
pseudo-instancing [NVI04a] achieves interactive
framerates for crowds in excess of one million
individuals, suggesting impostors to be ideal for
large-scale applications such as within stadia.

However, this performance comes at the expense of
memory consumption, image-quality and diversity.
For example, despite using texture compression, the
system of Tecchia et al. [TLC02a] requires 256 KB
of memory per-impostor, per-frame. Consequently,
they limit the resolution to a maximum of 2562 texels
and permit only ten frames of animation.

For applications requiring higher fidelity rendering,
Ulicny et al. [UdHCT04] introduces the concept of
baked-geometry and describes how an animation can
be cached on the GPU as a set of pre-computed
meshes. By providing a separate mesh for each frame
and sorting for temporal locality, efficient rendering
is achieved using display lists. In a novel method,
crowd variety can be introduced through interactive
authorship of a scene.

Dobbyn et al. [DHOO05] builds upon the work
described in [UdHCT04] to construct a hybrid system
within which crowds are comprised predominantly of
impostors and enriched by baked-geometry. Through
the introduction of LOD, this enables the efficient
rendering of a crowd whilst affording increased
quality for agents local to the viewer. A ‘pixel-to-
texel’ ratio is used to switch between representations
when an impostor becomes sufficiently close such
that a single texel maps to more than one pixel on the
screen. In the spirit of Tecchia et al. [TLC02a],
crowd variety is introduced by encoding the
customisable regions of an impostor within the alpha
channel of its texture. However, afforded by the
luxury of shaders, colour modulation can be applied
in a single pass by using region identifiers to address
a one-dimensional palette texture. Additional textures
allow impostors to be clothed in different outfits and
normal mapping is used to increase shading accuracy.
The later work of Coic et al. [CLM05] notes that the
visual disparities between impostor and geometry
representations are often sufficient as to induce
artifacts during LOD transitions. Consequently, Coic
et al. introduced an intermediate LOD through the
adaptation of layered impostors [Sch98].

Motivated by the rapid evolution of graphics
hardware, recent research has increasingly sought to
remove the limitations imposed by pre-computation
and focused upon the development of dynamic,
geometry-based crowd rendering systems capable of
running primarily on the GPU. As the first work
within this area, Gosselin et al. [GSM04] developed
several techniques, many of which were to later
become fundamental to the current state-of-the-art
[Dud07, SBOT08]. Of particular interest, Gosselin et
al. implemented a limited form of instancing to
reduce the API overhead associated with rendering
thousands of meshes, performed skeletal-subspace
deformation (SSD) within a vertex shader (hardware
skinning) and promoted the use of 3x4 matrices for

WSCG 2009 Full papers proceedings 114 ISBN 978-80-86943-93-0

storing bone transformations. Applied to a crowd of
soldiers, variety is achieved through the standard
approach of colour modulation and masking
although, in contrast to the work described in
[DHOO05], a two-dimensional palette texture is used
whereby texels on adjacent rows denote the range of
tints that may be applied to a given character. Further
diversity is added through the application of decals
and image-quality addressed by the use of pre-
computed ambient occlusion, normal mapping and
pre-generated shadow maps. In [dHCSMT05a],
together with geometric LOD, hardware skinning is
later used to animate a crowd of Romans within a
cultural heritage simulation.

At the forefront of current research, work described
in [Dud07, SBOT08] demonstrates how geometry
instancing [Car05] can be used to apply hardware
skinning across a crowd of characters with far greater
efficiency than was possible at the time of [GSM04].

3. INSTANCED CROWD RENDERING
Previous work has demonstrated the emergence of
skinned geometric crowds as a viable alternative to
those traditionally realised by impostor and baked-
geometry systems. Efficient rendering can be
achieved by instancing a crowd from a limited set of
template meshes and using shaders to perform
skinning, world-space transformations and variety
introduction on a per-agent basis. However, within
this framework, the incorporation of visual diversity
remains a challenging problem and current methods
operate predominantly at the fragment level through
the adoption of image-space techniques such as
masked colour modulation and multi-texturing.

Whilst this is sufficient for the work described in
[Dud07, SBOT08], which both consider crowds of
animated fantasy characters, within an urban setting
the incorporation of geometric diversity is necessary
to enable characters to be individually clothed. Such
is the focus of this section which, following a review
of skinned instancing, presents a compatible method
for the rendering of clothed, real-time crowds.

Skinned Instancing
Skinned instancing is a hybrid rendering technique
that uses geometry instancing to apply skeletal-
subspace deformation (SSD) [MTLT88] across a
large number of characters. The former refers to a
mechanism through which an application can render
multiple instances of a template mesh using a single
draw call. When applied to the problem of crowd
simulation, this high-level functionality can relieve a
CPU from the burden of issuing expensive rendering
instructions for every agent. Instead, a buffer object
containing per-instance parameterizations is bound

and used by the GPU to customise the template mesh
for each instance.

uTTwx
k

i
ioii 






= ∑
−

=

−
1

0

1
, (1)

Presented formally by (1), SSD transforms each
vertex, u, of an animated mesh by a weighted blend,
w, of the bone transformations, TiTo,i

-1, from which it
receives influence. As shown in [Dud07, SBOT08],
this can be mapped to current-generation GPUs by
multiplying the inverse pose-space transformation,
To,i

-1, of each bone by the corresponding bone
transformation, Ti, for each keyframe and storing the
results within a floating-point texture. This is
illustrated in Figure 1. If all transformations are
assumed to be affine then it is only necessary to store
the upper three rows of each matrix.

Figure 1. Skinned instancing animation texture.

Adding Diversity through Clothing
Given a skinned template mesh and a set of pre-fitted
clothing, this section seeks to use the template as the
basis for a crowd and inject diversity by assigning a
different outfit to each character. Conceivably, this
can be achieved in three ways.

3.1.1 Naïve
An initial approach, conceptually similar to that of
[Dud07], is to create a list of the characters which use
a given outfit, instance the template mesh for each
character and then for each outfit, draw the required
number of instances. Although simple to implement,
this method is inefficient since large regions of the
template are occluded by clothing. Clearly, outfits
should be drawn first to minimise overdraw but a
more significant problem is that of having to process
the occluded faces at all. This implies the redundant
transformation of skinned vertices which is especially
undesirable given their high cost of evaluation.

WSCG 2009 Full papers proceedings 115 ISBN 978-80-86943-93-0

3.1.2 Pre-fitted
An alternative technique could instead embed a copy
of the template mesh within each outfit and remove
hidden faces as a pre-process. However, this requires
additional memory since a near-complete version of
the mesh is stored for each outfit and much of the
resulting geometry arises from duplication.

3.1.3 Tagged
The method proposed by this work is to segment the
template mesh into sub-sections and as a pre-process,
determine the visibility of each for all of the outfits
provided. This metadata can be used during rendering
to ensure that only the visible regions of a character
are drawn, irrespective of the clothing assigned.

Naturally, there are many ways in which the template
mesh can be segmented and most of the impostor
works discussed previously allude to the use of
anatomical divisions when defining the image-space
masks used by colour modulation techniques. By
contrast, for geometric rendering, meshes are often
divided into a minimum set of sub-regions as a result
of material assignments. This is illustrated by the
leftmost image in Figure 2 and provisionally these
regions are used to avoid further mesh fragmentation.

As is illustrated by the center and rightmost images in
Figure 2, sub-region boundaries are typically not in
direct correspondence with those of the clothing and
as a result, some segments are partially occluded. In
this case, the entire region could be drawn but this is
undesirable for those where only a small proportion is
visible. Instead, a copy of the sub-region is provided,
specific to the outfit, with the occluded faces
removed. This allows redundant vertex processing to
be minimised whilst having only a modest impact on
memory usage since, in contrast to the previous
method, only visible regions which differ from those
of the template are stored. The approach naturally
emits a piecewise representation whereby the
majority of a character is rendered using sub-meshes
from the template mesh and for partially visible
segments, outfit specific sub-meshes are used.

Content Preparation
The character and clothing models used throughout
this work are intended primarily for offline use and as
a consequence, are too highly tessellated for real-time
rendering. However, for the character, multiple LODs
are available and that used by our implementation
contains 3.3K faces. All clothing is fitted to this mesh
using software provided by [DAZ08]. After rigging
and skeletal animation, a copy of the character mesh
is embedded within each outfit and occluded faces
are removed.

Our tagging algorithm processes this data to generate
a set of unique sub-meshes and the corresponding

region visibility metadata for each outfit. For all of
the clothed characters, each sub-region is compared
to the corresponding region on the generic template
and if the same numbers of faces are present then it is
known to be fully visible. Conversely, if a sub-region
of the template is absent in the outfit specific mesh
then it is known to be fully occluded. For the case
where a sub-region is found but the number of faces
differs, the sub-region is only partially occluded and
the specialised copy is stored. After tagging, for each
outfit there is a list of the fully visible template mesh
regions and a set of dedicated sub-meshes for those
which are partially occluded.

Figure 2. Left: Character template mesh with color-
coded sub-regions and fitted clothing.

Figure 3. Left: Fully visible sub-meshes for the
corresponding outfit. Center: Outfit specific sub-
meshes determined by visibility. Right: The final

composite character.

WSCG 2009 Full papers proceedings 116 ISBN 978-80-86943-93-0

4. RENDERING
On the CPU, this work represents a crowd as a list of
characters and stores a 3x4 world matrix, an outfit
identifier and an animation time offset for each.

Every frame, the world matrices and animation time
for a maximum of n characters are consolidated and
stored within a constant buffer on the GPU. As
described in [Dud07], n is bound by the GPU
constant buffer size of 4,096 float4 vectors. We use a
total of four float4 vectors per character and this
permits agents to be rendered in batches of up to
1,024 at a time.

From the preceding section, the renderer receives a
set of sub-meshes and metadata specifying those that
should be rendered for characters wearing a given
outfit. To each sub-mesh, an empty list of character
identifiers is assigned. Render queues can then be
generated by iterating through the CPU character list
and for each, appending its position within the list to
that of each sub-mesh used by the character. After all
characters have been processed, for each sub-mesh it
is known how many instances should be drawn and
for each instance, the position of its per-character
data within the constant buffer on the GPU.

Sub-mesh Character IDs

Head (generic) { 0, 1 }

Hands (generic) { 0, 1 }

Feet (generic) { 0, 1 }

Arms (generic) { 0 }

Arms (jumper) { 1 }

Torso (generic) { }

Torso (dress) { 0 }

Torso (skirt) { 1 }

Legs (generic) { }

Legs (dress) { 0 }

Legs (skirt) { 1 }

Dress { 0 }

Jumper { 1 }

Skirt { 1 }

Table 1. Render queue generation.

As an example, in reference to Table 1, consider the
two characters shown previously in Figure 3. The
first, is wearing a dress and the second, a jumper and
skirt. The head and hands of both characters are fully
visible and so their character IDs are appended to the
corresponding generic sub-mesh lists. For the first
character, the arms are also fully visible whereas the

legs are partially occluded. Thus, the character ID is
appended to the generic arms and dress-specific sub-
meshes. For the second character, the arms and legs
are both partially occluded and use the jumper and
skirt specific sub-meshes respectively. The former
case is noteworthy since if a dedicated mesh was not
provided, the entire generic arms mesh would need to
be drawn even though only a small segment is visible.

The crowd is rendered by iterating through each sub-
mesh in turn, uploading character IDs to a constant
buffer on the GPU and then drawing the appropriate
number of instances; this is given by the length of the
character IDs list. Within a shader, each instance use
the character ID buffer to map the instanceID system
variable generated by the GPU to the corresponding
per-character data in the buffer shown in Figure. 1.
The world transformation matrix and attributes can
then be retrieved and skinned instancing implemented
as described in Section 3.

The additional layer of indirection is necessary since,
due to the piecewise construction, instance x of each
sub-mesh does not necessarily belong to the same
character. For example, in the case described above,
instance 0 of the skirt sub-mesh belongs to character
1, not character 0. As a consequence, addressing the
per-character buffer using instanceID directly would
access the attributes for an unintended character.

5. RESULTS
To appraise our technique, we compare it to those
described in Section 3 with respect to both rendering
performance and memory consumption. As the
models used by this work are relatively complex, only
crowds up to a maximum of 5,000 characters are
evaluated. The test system is a 2.4 GHz Intel Core 2
Duo with 2 GB of memory and a Nvidia GeForce
8800 GTX graphics card.

0

10

20

30

40

50

1000 2000 3000 4000 5000

Number of Characters

F
ra

m
es

 p
er

 S
ec

o
n

d

Naïve Pre-fitted / Tagged

Figure 4. Performance tests for the three techniques.

WSCG 2009 Full papers proceedings 117 ISBN 978-80-86943-93-0

Figure 4 compares the three rendering techniques as
applied to crowds of up to 5,000 characters. Our test
scene is illustrated in Figure 5. As anticipated,
performance is increased by removing occluded faces
although there is negligible difference as to whether
this is accomplished as a pre-process or using the
tagged approach of this work.

Occlusion
Technique

Total Number of Faces Stored

Template C1 C2 C3 Total

Naïve 3266 2486 3568 2550 11,870

Pre-fitted n/a 5024 5739 5001 15,764

Tagged 3266 2745
(259)

3788
(220)

2785
(234)

12,583

Table 2. The number of faces stored by each
technique for three arbitrary outfits: C1, C2 and C3.
Those quoted in brackets denote how many of each
total belong to dedicated sub-meshes. C1 and C2

correspond to those outfits illustrated in Figure 3 (top
and bottom of figure respectively).

However, the principal advantage of our method is
the reduced amount of memory required to attain the
same performance. As shown in Table 2, for the pre-
computed approach a generic template is unnecessary
and a specialised copy for each outfit with the
occluded faces removed is stored instead. For the
examples presented, this raises memory consumption
by 33% over the naïve approach. In contrast, the
tagged method increases memory requirements by
just 10% since the only additional mesh data stored is
that of the specialised sub-meshes for partially
occluded regions.

Figure 5. A screenshot showing 1,000 characters
rendered with geometric diversity in real-time.

6. CONCLUSIONS
This work has presented a technique to render a
crowd of clothed, virtual humans whilst minimizing
redundant vertex processing, overdraw and memory
consumption. By adopting a piecewise representation,
given an assigned outfit and pre-computed visibility
metadata, characters can be constructed dynamically
from a set of sub-meshes and rendered using skinned
instancing. Using this technique, a geometric crowd
of 1,000 individually clothed, animated and textured
characters can be rendered in excess of 40 fps.

For the examples shown, culling the regions of a
character that are known to be occluded by clothing
increased rendering performance by approximately
20%. The advantage of the presented method is that
this can be achieved without the provision of a
dedicated character mesh for each outfit. In addition
to reducing memory requirements, this approach also
assists in the provision of supplementary content. For
example, if a new outfit was provided for an in-game
character, only clothing, replacement sub-meshes and
metadata would need to be downloaded. In contrast,
the pre-fitted method would use additional bandwidth
since a near-complete copy of the template mesh
would also be required.

Although the results from Section 5 demonstrate the
effectiveness of the technique, diversity is limited
since only three clothing sets are used. If diversity
was to be increased and ten outfits provided, using
the average sizes from Table 2 the total numbers of
faces can be extrapolated for both the pre-fitted and
tagged approaches. This is shown in Figure 6 and it
can be seen that the relative memory consumption of
the techniques is inversely proportional to diversity.
Our method becomes increasingly memory efficient
as additional diversity is introduced and at the limit,
requires just 59% of the memory used by pre-fitting.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Number of Unique Outfits

N
u

m
b

er
 o

f
F

ac
es

 (
x1

00
0)

0

20

40

60

80

100

120

140

M
em

o
ry

 U
sa

g
e

(%
)

Pre-fitted (left axis)

Tagged (left axis)

Relative memory usage (right axis)

Figure 6. Comparing the relative memory usage of
the tagged technique against the pre-fitted method.

WSCG 2009 Full papers proceedings 118 ISBN 978-80-86943-93-0

As enforced by this paper, geometric methods are a
viable way by which to render an urban crowd, even
for those comprised of relatively complex character
meshes. Although only a small crowd of 5,000 agents
was demonstrated, we anticipate that much larger
crowd will be possible since LOD techniques are yet
to be incorporated. Thus, future work will continue to
address both the quality and diversity of characters.
Morph targets coupled with hardware tessellation
may offer potential within this context.

7. ACKNOWLEDGMENTS
The models and textures illustrated by this work were
purchased from DAZ Productions [DAZ08]. This
programme of research is supported by EPSRC grant
EP/E035639/1.

8. REFERENCES
[ABT00] Aubel A., Boulic R., Thalmann D.: Real-

time display of virtual humans: Levels of detail
and impostors. IEEE Transactions on Circuits
and Systems for Video Technology 10, 2 (2000),
207-217.

 [Car05] Carucci F.: Inside geometry instancing. In
GPU Gems 2 (2005), Addison-Wesley, pp. 47-67.

[CLM05] Coic J.-M., Loscos C., Meyer A.: Three lod
for the realistic and real-time rendering of crowds
with dynamic lighting. Research Report, LIRIS,
Lyon University, France (2005).

[DAZ08] DAZ Productions: http://www.daz3d.com.
DAZ 3D (2008).

[dHCSMT05a] de Heras Ciechomski P., Schertenleib
S., Maim J., Thalmann D.: Real-time shader
rendering for crowds in virtual heritage. In VAST
’05: Proceedings of the 6th International
Symposium on Virtual Reality, Archaeology and
Cultural Heritage (2005).

[dHCSMT05b] de Heras Ciechomski P., Schertenleib
S., Maim J., Thalmann D.: Reviving the roman
Odeon of aphrodisiac: Dynamic animation and
variety control of crowds in virtual heritage. In
Proceedings of the 11th International Conference
on Virtual Systems and Multimedia (2005).

[DHOO05] Dobbyn S., Hamill J., O’Conner K.,
O’Sullivan C.: Geopostors: a real-time geometry/
impostor crowd rendering system. In Proceedings

of the 2005 Symposium on Interactive 3D
Graphics and Games (2005), pp. 95-102.

[Dud07] Dudash B.: Animated crowd rendering. In
GPU Gems 3 (2007), Addison-Wesley, pp. 39-52.

 [GSM04] Gosselin D., Sander P., Mitchell J.:
Drawing a crowd. In ShaderX 3: Advanced
Rendering with DirextX and OpenGL (2004),
Charles River Media, pp. 505-517.

 [MR07] Millan E., Rudomin I.: Impostors, pseudo-
instancing and image maps for gpu crowd
rendering. The International Journal of Virtual
Reality 6, 1 (2007), 35-44.

[MTLT88] Magnenat-Thalmann N., Laperrière R.,
Thalmann D.: Joint-dependent local deformations
for hand animation and object grasping. In
Proceedings on Graphics Interface ’88 (1988),
pp. 26-33.

 [NVI04a] NVIDIA: Technical report: Glsl pseudo-
instancing. In NVIDIA SDK 9.52 (2004).

[RFD05] Ryder G., Flack P., Day A. M.: A frame-
work for real-time virtual crowds in cultural
heritage environments. In VAST ’05: Short
Papers Proceedings (2005), pp. 108-113.

[SBOT08] Shopf J., Barczak J., Oat C., Tatarchuk
N.: March of the Froblins: simulation and
rendering massive crowds of intelligent and
detailed creatures on gpu. In SIGGRAPH ’08:
ACM SIGGRAPH 20008 Classes (2008), pp. 52-
101.

[Sch98] Schaufler G.: Per-object image warping with
layered impostors. In Proceedings of the 9th
Eurographics Workshop on Rendering (1998),
pp. 145-156.

[TLC02a] Tecchia F., Loscos C., Chrysanthou Y.:
Image-based crowd rendering. IEEE Computer
Graphics and Applications 22, 2 (2002), 36-43.

[TLC02b] Tecchia F., Loscos C., Chrysanthou Y.:
Visualizing crowds in real-time. Computer
Graphics Forum 21, 4 (2002), 753-765.

[Ubi07] Ubisoft: http://assassinscreed.uk.ubi.com.
Assassin’s creed. (2007).

[UdHCT04] Ulicny B., de Heras Ciechomski P.,
Thalmann D.: Crowdbrush: Interactive authoring
of real-time crowd scenes. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (2004), pp. 243-252.

WSCG 2009 Full papers proceedings 119 ISBN 978-80-86943-93-0

WSCG 2009 Full papers proceedings 120 ISBN 978-80-86943-93-0

View-Dependent Multiresolution Modeling on the GPU
Oscar Ripolles, Jesus Gumbau, Miguel Chover, Francisco Ramos, Anna Puig-Centelles

LSI Department
Universitat Jaume I, Castellón, SPAIN

{oripolle, jgumbau, chover, jromero, apuig}@uji.es

ABSTRACT

For more than a decade, researchers working on level-of-detail techniques have oriented their efforts toward developing better
frameworks and adapting their solutions to new hardware. Nevertheless, we believe there is still a gap for efficient yet simple
multiresolution models that fully exploit the potential of current GPUs. In this paper we present a level-of-detail framework
based on moving the extraction process from updating indices to updating vertices. This feature enables us to perform culling
and geomorphing on a vertex basis. Furthermore, it simplifies the update of indices to eliminate degenerate information. The
model is capable of offering both uniform and variable resolution and to achieve the latter, a silhouette-based criterion has
been included. Finally, we would like to highlight that the model is completely integrated in the GPU and no CPU/GPU
communication is necessary once all the information is correctly loaded in hardware memory.

Keywords: Multiresolution modeling, View-dependent, Silhouette-preserving, Shader Model 4.0

1 INTRODUCTION

Multiresolution modeling has been successfully applied
to solve problems in many areas [17] and there is an im-
portant body of literature on the subject [15]. The prob-
lem with traditional level-of-detail (LOD) techniques is
the fact that they usually include complex data struc-
tures and algorithms which are difficult to translate to
GPU. This complexity is the reason why LOD methods
are traditionally performed on the CPU.

The development of Shader Model 4.0 was a break-
through in computer graphics as it offers a new range
of functionalities [1]. The main contribution is the Ge-
ometry Shader, which establishes a new stage inside
the graphics pipeline enabling the dynamic creation and
elimination of geometry in the GPU. Furthermore, it
also offers the possibility of modifying the flow of in-
formation by means of the Stream Output.

The Shader Model 4.0 offers a new opportunity for
the development of extremely fast level-of-detail meth-
ods. What we propose in this paper is a new model that
combines the computational power of GPUs with the
wealth of work already done in multiresolution. The
main objective is to develop a variable resolution model
that preserves appearance and avoids popping artifacts
while offering high performance. More precisely, the
model that we are presenting has the following features:

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

• Fully GPU-based implementation. The solution
is completely integrated in the GPU, exploiting the
recent Geometry Shader for storing the calculated
levels-of-detail and eliminating degenerate trian-
gles. In addition, our method is capable of offering
both uniform and variable resolutions, which can be
calculated in GPU with no CPU intervention. The
Vertex Shader will select the optimal level-of-detail
to be extracted for the particular viewing conditions.

• Updating vertices and indices in the GPU. The
solution introduced in [21] presented a promising
framework where the level-of-detail transitions
modify vertices instead of indices. Traditional
models have always updated the information re-
lated to the indices. In this work we will update
vertex coordinates to reflect LOD changes in a
Vertex Shader while we will modify the indices
list to delete degenerate triangles in a Geometry
Shader. This approach integrates well with other
pixel-based methods like sub-surface scattering or
parallax occlusion mapping.

• Optimization of visual quality. It is also important
to ensure that the original appearance of the model
is kept. With this aim, we will offer variable res-
olution with a silhouette-based criterion. Moreover,
we will perform geomorphing between the collapsed
vertices in order to avoid disturbing effects like dis-
continuities or popping artifacts. Figure 1 presents
several visualizations of a model of a man at dif-
ferent levels of detail using a silhouette-preserving
extraction algorithm.

• Use of triangles as the rendering primitive.
The use of triangles as rendering primitive limits
performance, compared to triangle strips. Neverthe-
less, cache-aware optimizations can considerably

WSCG 2009 Full papers proceedings 121 ISBN 978-80-86943-93-0

Figure 1: Approximations of a man model (136,410 triangles). From left to right: original model and simplifica-
tions to 50%, 25% and 10% respectively.

improve the final performance [5, 11]. In our case
we have applied the method presented in [18] which
is based on one of the latest methods [23].

The structure of this paper is as follows. Section 2
contains a review of the work previously carried out
on GPU-friendly multiresolution modeling. Section 3
presents the basic framework of our method. Section 4
provides thorough details of the implementations of the
algorithms in the GPU. Section 5 includes a study of the
performance of our model. Lastly, Section 6 comments
on the results obtained in our tests.

2 RELATED WORK
Much work has been published on multiresolution mod-
eling. In this section we will focus on the lines of work
that are currently active in the level-of-detail field which
are oriented toward the exploitation of GPUs.

Firstly, we believe it is important to mention the
works designed to exploit the complex memory hier-
archy of modern graphics platforms. In this sense, they
develop "GPU-friendly" static vertex and index buffers
and try to optimize their use by minimizing data trans-
fers between CPU and GPU [19, 20, 24]. This idea has
also been applied to rendering massive models in real
time [6, 7, 22, 26].

Following on with massive models, many researchers
have recently proposed methods for moving the gran-
ularity of the representation from triangles to triangle
patches [2, 6, 7, 26] in order to offer view-dependent
capabilities for rendering out-of-core models. Preserv-
ing boundaries is a key feature of these algorithms
and it is possible to find algorithms that propose
GPU-based solutions by means of geomorphing [2] or
border-stitching techniques [16].

Furthermore, it is also possible to find algorithms that
propose a progressive creation of geometry in the GPU
[3, 9, 13]. These models offer interesting results al-
though they are not aimed at rendering meshes in real-
time applications.

Recently, the work proposed in [21] presented a GPU
multiresolution model which updated vertices instead
of indices and used a fixed order of triangles that per-
mitted the use of a sliding-window scheme. Neverthe-
less, this fixed order simplified the algorithm while lim-
ited it to perform further extensions.

Finally, it is important to comment on those methods
which use the silhouette as their criterion for extract-
ing the desired approximation. Silhouettes are partic-
ularly important to offer realistic visualization. Many
authors have presented silhouette-preserving variable
multiresolution approaches [10, 25]. More recently, the
work presented in [12] introduces a GPU-based adap-
tive model for non-photorealistic rendering. They pro-
pose a hierarchical multiresolution model and use the
GPU to refine the areas around the silhouettes. Later,
Dyken et al. [9] introduced a framework for calculat-
ing silhouettes on the GPU and tessellating afterwards
those areas that need further detail. The main drawback
of this approach is the fact that the process for calculat-
ing the silhouettes is complicated and requires several
rendering passes.

3 OUR FRAMEWORK
The method we are presenting will perform the LOD
update in a Vertex Shader and the degenerate filter in
a Geometry Shader. As a consequence, we will be
able to apply the whole extraction process in only one
pass. The outputted geometry will be ready for passing
through the Pixel Shader to generate the final image.
It is worth mentioning that it would be possible to use
the Stream Output method to store the calculated ap-
proximation to use it in subsequent renderings. Figure
2 shows a diagram of the different processes that will
take place in each rendering stage.

3.1 Simplifying the original mesh
For our multiresolution model we decided to use an
edge-collapse simplification algorithm to obtain the hi-
erarchy of collapses. We could use any simplification

WSCG 2009 Full papers proceedings 122 ISBN 978-80-86943-93-0

Figure 2: Rendering pipeline for our approach.

algorithm [4, 8, 14]. Our solution is not restricted to
use half-edge collapses where we do not add new ver-
tices. The only restriction is to pre-calculate the ver-
tices so that we can store them properly before starting
to use our multiresolution model. Nevertheless, in the
examples that we present in this paper we will assume
that the half-edge collapse is the selected simplification
operation as it offers a less complex implementation.

3.2 Ordering of vertices
As we commented in the introduction, the work we are
proposing is based on the ideas presented in [21]. This
work introduced some basic ideas for managing col-
lapse information, which are:

• Ordering the vertices in collapse order, so that vertex
v will be collapsed when changing from LOD v−1
to LOD v.

• Calculating the evolution of each vertex, which con-
tains a list of all the vertices that the vertex will col-
lapse to.

In order to clarify this construction process, Figure
3 presents a section of the collapse hierarchy of one of
our test models after correct ordering of the vertices.
The evolution of each vertex stores the branch of this
tree that links it with the root node. Thus, for exam-
ple, the evolution of vertex 18 will be a list of indices
to vertices composed of values (38,49). These values
will indicate at which LOD we must perform a change
and, in addition, which change should be performed.
Thus, following on with the example we can say that
we must perform the collapse 18→ 38 when changing
to LOD 38, and that we must apply collapse 38 → 49
when swapping to LOD 49.

It is important to comment that the presented ap-
proach offers a truly selective refinement, where we can
apply any collapse without applying further collapses
or other requisites. As the simplifications are applied in

Figure 3: Example of the collapse hierarchy of a sam-
ple model.

a vertex-basis, all the triangles sharing that vertex will
be modified in the same way. Figure 4 shows an im-
age of a Beethoven model simplified with this method,
where half of the model is simplified to 80%. It can
be seen how no crack or other disturbing effect is pro-
duced, even though there is a severe change of resolu-
tion.

3.3 Optimizing the rendering primitive
The solution presented in [21] proposed a sliding-
window approach as it entails a fixed order of triangles
which limits further extensions. This limitation is
overcome in our model with the use of primitives
optimized for the vertices cache [18], which orders the
indices in an optimized way which renders much faster
than the triangles ordered in eliminations fashion.

The pre-ordered list of triangles assured that no de-
generate triangle is rendered. In our framework, we
will control the appearance of degenerate information
directly in a Geometry Shader.

4 IMPLEMENTATION DETAILS
In this section we will address thoroughly the shaders
that we have developed. In Figure 5 we present a de-
tailed description of the implemented shaders using a
GLSL-like pseudocode. The Vertex Shader will be used
to update the level-of-detail following the silhouette cri-
terion. In the Geometry Shader we will mainly perform
the degenerate triangles elimination. We will later ad-
dress the possibilities offered by the Stream Output for
our multiresolution model.

4.1 Storage of information
Before describing the implemented process, it is impor-
tant to clarify the way the information is stored. The
model we are presenting has very low memory require-
ments. The only extra information that we will need
to store is the information about the evolution of each
vertex.

The information of the original mesh (vertex coor-
dinates, texture information, normals and so on) will
be stored in floating point textures. This information
will be accessed if necessary from the Vertex Shader.

WSCG 2009 Full papers proceedings 123 ISBN 978-80-86943-93-0

Figure 4: Beethoven model with its right side simpli-
fied to 80%.

The Shader Model 4.0 permits defining and using non-
squared textures without the restriction of having a size
power of two, offering a more cost-effective storage of
the information.

The evolution of the vertices will be stored in dif-
ferent sets of attributes. The Vertex Shader will be in
charge of obtaining the real vertex information so that
the final geometry is correctly rendered.

4.2 Vertex Shader
The Vertex Shader will be responsible of calculating
the appropriate LOD, updating vertices information and
performing geomorphing.

// Vertex Shader

uniform LOD;

varying newID;

float3 newCoords,nextCoords;

calculateAngle(view,normal);

calculated_lod=interpolate(LOD,angle);

newCoords=

getNewCoordinates(gl_VertexID,lod);

nextCoords=

getNextCoordinates(gl_VertexID,lod);

newID=getNewID(gl_VertexID,lod);

nextID=getNextID(gl_VertexID,lod);

gl_Position=

geomorph(newCoords,nextCoords,newID);

// Geometry Shader

varying newID;

if (isTriangle(newID[0],newID[1],newID[2]))

outputTriangle();

Figure 5: Pseudocode of the implemented shaders.

The first instructions of the Vertex Shader will calcu-
late the angle between the view vector and the normal

of the vertex. The Vertex Shader has full access to the
ModelView matrix. As a consequence, we can easily
calculate the dot product between the vertex normal and
the view direction.

We want to develop a model that will not need any
information from the CPU once the model is correctly
loaded into GPU memory. With that aim, we want
to calculate the appropriate LOD according to the
scene conditions inside the GPU. Knowing the angle
between the vector that points towards the camera
and the normal of the vertex will allow us to easily
perform a silhouette-based extraction process. In
those cases where the vectors are nearly perpendicular,
we will need to render highly-detailed geometry to
obtain the visual perception of the silhouette. In those
cases where the vectors are nearly parallel, we will
simplify the vertices as they do not contribute to the
silhouette. In the rest of cases, we will perform a linear
interpolation so that the geometry refines progressively
towards the areas of the silhouette.

After these different steps, we are able to extract the
correct geometry for the scene conditions. We will con-
sult the evolution information to know which vertex in-
formation must be used, recovering all the information
from the previously-defined textures.

It is important to note that we will recover the in-
formation of the vertex that we currently need and the
following one. With the two extracted vertices we can
make some simple calculations to assure a progressive
transition among LODs. The way that the evolution is
stored will assure that a vertex will collapse to its j-th
element of the evolution once we reach LOD j. Our
proposal is to geomorph between vertices stored in the
positions j−1 and j while the LOD value is contained
between j− 1 and j. Thus, once we reach LOD j the
vertex will be completely changed to vertex j, ensuring
that the collapse information is correctly applied. With
this approach the continuity of the mesh is ensured, as
all the vertices will be collapsed in the same way. Fol-
lowing with the example given in Figure 3, if we are
at LOD 48 the vertices 28, 19 and 45 will contain the
same interpolated value ensuring mesh continuity.

Finally, the Vertex Shader, in addition to outputting
the vertex information, will also output the ID of the
vertex we have collapsed to.

The LOD traversal algorithm is efficient and is capa-
ble of extracting any level-of-detail with the same cost.
Thus, making big LOD changes is not penalized. More-
over, the Pixel Shader is not necessary and remains
available for any further extension that we may wish
to apply.

4.3 Geometry Shader
The development of the Geometry Shader has made it
possible to work directly with triangles in a new stage.
This feature is very powerful but the Geometry Shader

WSCG 2009 Full papers proceedings 124 ISBN 978-80-86943-93-0

is not a stage that must be activated. Consequently, the
use of Geometry Shaders involves slowing down the
whole rendering process. Nevertheless, it is worth ac-
tivating this rendering stage when we are able to dis-
card a considerable amount of geometry or when we
need to create geometry on-the-fly. In our case, we can
expect that the more coarse the approximation that we
want to render, the greater the number of degenerate
triangles that will be obtained. Thus, we decided to use
the Geometry Shader to filter the degenerate triangles in
real time. As a consequence, we will perform a simple
test using the ID of the vertices output from the Vertex
Shader to discard those triangles which have repeated
vertices.

4.4 Exploiting Stream Output
An important drawback of the scheme we have pre-
sented is that it obliges us to make the LOD calcula-
tions for every frame, even when the level-of-detail is
maintained. To overcome this limitation we can use the
Stream Output possibilities. With this feature enabled,
we are able to store the new vertices and indices, and
use the modified buffers in subsequent renderings until
the application updates the viewing conditions.

Storing the calculated information forces us to per-
form two rendering passes to obtain the correct geom-
etry: one pass to output vertex information and another
one to store the index information. Obviously, we need
two new buffers to store the vertices and indices gener-
ated.

The first pass will be used to store the vertices calcu-
lated. In this case we will use no index buffer to ensure
that the vertices are processed and output in the correct
order.

The second pass will be the one that creates the cor-
rect index buffer. The Geometry Shader performs this
calculation. We will slightly modify the shader to out-
put a special varying containing, for each triangle pro-
cessed, the three indices. In addition, when using the
Stream Output it is possible to query the number of
primitives generated from the CPU. This information,
as well as the recently filled index buffer, will be used
to render the model in successive frames.

In the results section we will show that the imple-
mentation of the Stream Output using OpenGL does
not greatly affect the final performance. Nevertheless,
depending on whether the application is updating the
LOD in every frame or maintaining it, we can decide to
switch the Stream Output on and off.

5 RESULTS
In this section we will present some tests that analyze
the rendering performance of the model presented. The
experiments were carried out using Windows Vista on
a PC with a 2.8 GHz processor, 2 GB RAM and an
nVidia GeForce 8800 graphics card with 256MB RAM.

The different implementations have been done in C++,
OpenGL and GLSL. Finally, it is important to note that
we have used the GL_TIME_ELAPSED_EXT exten-
sion, which provides a query mechanism to determine
the amount of time used for completing a set of GL
tasks without stalling the rendering pipeline.

Table 1 presents the results obtained for a scene with
a lit model of a man. This Table provides the rendering
and extraction times obtained throughout three different
levels of detail for given viewing conditions. The Dis-
crete LOD row offers the times that would be obtained
with three precalculated approximations. In this case,
we have assumed that there is no extraction time. The
following rows present the costs of our model, with-
out and with the Stream Output extension. It can be
seen how, on average, our model increases the render-
ing time by approximately 30%. Nevertheless, this time
is necessary to perform all the tasks that are part of our
view-dependent rendering pipeline. Finally, including
the Stream Output capabilities entails slightly higher
times, as we need to perform two rendering passes.
Nevertheless, this extra time would allow us to reduce
the extraction cost to zero in subsequent passes.

6 CONCLUSIONS
This paper has presented a new multiresolution model
that combines the power of current GPUs with tradi-
tional techniques. Updating vertices instead of indices
allows us to perform geomorphing among the differ-
ent levels of detail to offer smooth transitions. The
framework also allows for variable resolution, which
can be oriented toward applying silhouette-based vi-
sualizations that better preserve the appearance of the
model. This method is suitable for combining with
other techniques, such as normal mapping, hardware
skinning, and other pixel-based approaches.

From the results obtained we can conclude that the
extraction process is expensive, as it entails increasing
the final rendering time by 30%. Nonetheless, the level-
of-detail extraction would be much more costly if it was
applied in a CPU-based way. Furthermore, the extra
cost that our model introduces is compensated by the
number of calculations performed and the final visual
quality.

ACKNOWLEDGEMENTS
This work was supported by the Spanish Ministry of
Science and Technology with grant TSI-2004-02940
and project TIN2007-68066-C04-02. Also by Bancaja
with project P1 1B2007-56.

REFERENCES
[1] D. Blythe. The direct3d 10 system. ACM Trans.

Graph., 25(3):724–734, 2006.

WSCG 2009 Full papers proceedings 125 ISBN 978-80-86943-93-0

Approximation 100% (136,410 tris.) 50% (68205 tris.) 25% (34,102 tris.)
Discrete LOD 1.984 1.491 0.872
View-Dependent LOD 2.615 2.012 1.192
View-Dependent LOD + Stream Output 2.641 2.092 1.205

Table 1: Comparison of total time (extraction + rendering) for three approximations of the man model (ms.).

[2] L. Borgeat, G. Godin, F. Blais, P. Massicotte,
and C. Lahanier. Gold: interactive display of
huge colored and textured models. Trans. Graph.,
24(3):869–877, 2005.

[3] T. Boubekeur and C. Schlick. A flexible kernel
for adaptive mesh refinement on GPU. Computer
Graphics Forum, 27(1):102–114, 2008.

[4] P. Castello, M. Chover, M. Sbert, and M. Feixas.
Applications of information theory to computer
graphics (part 7). In Eurographics Tutorial Notes,
volume 2, pages 891–902. Eurographics, 2007.

[5] J. Chhugani and S. Kumar. Geometry engine op-
timization: cache friendly compressed representa-
tion of geometry. In I3D ’07: Proceedings of the
2007 symposium on Interactive 3D graphics and
games, pages 9–16, 2007.

[6] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton,
F. Ponchio, and R. Scopigno. Adaptive tetra-
puzzles: efficient out-of-core construction and vi-
sualization of gigantic multiresolution polygonal
models. In SIGGRAPH, pages 796–803, 2004.

[7] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton,
F. Ponchio, and R. Scopigno. Batched multi trian-
gulation. In IEEE Visualization, pages 207–214,
2005.

[8] J. Cohen, M. Olano, and D. Manocha.
Appearance-preserving simplification. In
SIGGRAPH ’98, pages 115–122, New York,
USA, 1998. ACM Press.

[9] C. Dyken, M. Reimers, and J. Seland. Real-
time GPU silhouette refinement using adaptively
blended bézier patches. Computer Graphics Fo-
rum, 27(1):1–12, March 2008.

[10] H. Hoppe. View-dependent refinement of pro-
gressive meshes. Computer Graphics, 31(Annual
Conference Series):189–198, 1997.

[11] G. Lin and T. Yu. An improved vertex caching
scheme for 3d mesh rendering. Transactions on
Visualization and Computer Graphics, 12(4):640–
648, 2006.

[12] Y. Livny, M. Press, and J. El-Sana. Interactive
GPU-based adaptive cartoon-style rendering. Vis.
Comput., 24(4):239–247, 2008.

[13] H. Lorenz and J. Döllner. Dynamic mesh refine-
ment on GPU using geometry shaders. In WSCG,
February 2008.

[14] D. Luebke and B. Hallen. Perceptually-driven
simplification for interactive rendering. In 12th
Eurographics Workshop on Rendering, pages
223–234, 2001.

[15] D. Luebke, M. Reddy, J. Cohen, A. Varshney,
B. Watson, and R. Huebner. Level of Detail for
3D Graphics. Morgan-Kaufmann, Inc., 2003.

[16] K. Niski, B. Purnomo, and J. Cohen. Multi-
grained level of detail using a hierarchical seam-
less texture atlas. In Proceedings of I3D’07:,
pages 153–160, 2007.

[17] E. Puppo and R. Scopigno. Simplification, lod and
multiresolution - principles and applications. In
EUROGRAPHICS 1997, volume 16, 1997.

[18] B. Purnomo. Amd tootle ver 2.0.
http://ati.amd.com/developer/
tootle.html, 2008.

[19] F. Ramos, M. Chover, O. Ripolles, and C. Granell.
Continuous level of detail on graphics hardware.
In DGCI, pages 460–469, 2006.

[20] O. Ripolles and M. Chover. Optimizing the man-
agement of continuous level of detail models on
GPU. Computers & Graphics, 32(3):307–319,
2008.

[21] O. Ripolles, F. Ramos, and M. Chover. Sliding-
tris: A sliding window level-of-detail scheme.
In Computer Graphics and Geometric Modeling
(CGGM) 2008 Workshop, 2008.

[22] P. V. Sander and J. L. Mitchell. Progressive
buffers: View-dependent geometry and texture for
lod rendering. In Symp. on Geom. Process., pages
129–138, 2005.

[23] P. V. Sander, D. Nehab, and J. Barczak. Fast tri-
angle reordering for vertex locality and reduced
overdraw. ACM Transactions on Graphics (Proc.
SIGGRAPH), 26(3), August 2007.

[24] P. Turchyn. Memory efficient sliding window pro-
gressive meshes. In WSCG, 2007.

[25] J. Xia, J. El-Sana, and Varshney A. Adapta-
tive real-time level-of-detail-based rendering for
polygonal models. Trans. on Visualization and
Computer Graphics, 3(2):171–183, 1997.

[26] S. Yoon, B. Salomon, and R. Gayle. Quick-vdr:
Interactive view-dependent rendering of massive
models. IEEE TVCG, 11(4):369–382, 2005.

WSCG 2009 Full papers proceedings 126 ISBN 978-80-86943-93-0

3D Interaction Techniques for 6 DOF Markerless
Hand-Tracking

Markus Schlattmann Tanin Na Nakorn Reinhard Klein
Universität Bonn, Institut für Informatik II - Computergraphik, D-53117 Bonn, Germany

markus@cs.uni-bonn.de, tanin47@yahoo.com, rk@cs.uni-bonn.de

ABSTRACT

Recently, stable markerless 6 DOF video based hand-tracking devices became available. These devices track the position and
orientation of the user’s hand in different postures with at least 25 frames per second. Such hand-tracking allows for using the
human hand as a natural input device. However, the absence of physical buttons for performing click actions and state changes
poses severe challenges in designing an efficient and easy to use 3D interface on top of such a device. In particular, solutions
have to be found for clicking menu items, selecting objects and coupling and decoupling the object’s movements to the user’s
hand (i.e. grabbing and releasing). In this paper, we introduce a novel technique for grabbing and releasing objects, an efficient
clicking operation for selection purposes and last but not least a novel visual feedback in order to support the ease of using
this device. All techniques are integrated in a novel 3D interface for virtual manipulations. Several user experiments were
performed, which show the superior applicability of this new 3D interface.

Keywords: 3D interaction, user interfaces, hand-tracking

1 INTRODUCTION
For interaction with a virtual environment, hand-
tracking is one of the favorite approaches, because it
directly exploits the ease and perfection with which
humans employ their hands in everyday life. In order
to support immersive user experience, markerless
real-time hand-tracking without the need of special ini-
tialization procedures gained a lot of interest in recent
years. Presently, methods fulfilling these properties
are capable of tracking up to 6 continuous degrees of
freedom (DOF) of the hand pose (global position and
orientation) and recognizing several stiff postures.

While such systems enable the translation of real
hand movements to virtual movements, several prob-
lems have to be solved in order to build a 3D inter-
face on top of the basic hand-tracking technology. Ex-
ploiting the detection of position, orientation and pos-
ture the interface has to provide mechanisms for basic
interaction techniques such as object selection, grab-
bing/releasing and 3D navigation. Thereby an easy to
use realization of these techniques is crucial for usabil-
ity and efficiency of the interface. These techniques
have to be adapted to the users’ capabilities and inca-
pabilities (e.g. the limited range of angle movements
of the human wrist), the applications’ specifications as
well as the requirements and drawbacks of the used

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen, Czech Republic.

hand-tracking method. This diversity of demands poses
several challenges in the design of efficient interfaces as
described in the following.

As suggested in [BKLP04] we strictly distinguish be-
tween the notions pose, posture and gesture. The pose
is meant to be the combination of a rigid body’s 3D
position and orientation (e.g. the hand’s global pose).
A hand posture is defined as a specified configuration
of finger limb positions and orientations relative to the
hand pose (e.g. the fist posture). A hand gesture (or
free-hand gesture) describes a predefined movement of
the hand pose (e.g. writing a letter in the air).

The first challenge is grabbing and releasing of ob-
jects, which are inherent tasks during 3D interaction
sessions due to the following reasons. The virtual world
is typically significantly larger than the working vol-
ume of the user (the 3D region the hand is tracked in).
Therefore, to enable users to move a virtual object to
every position in the virtual space it has to be possible
to grab it and release it in order to move it step by step.
Scaling the working volume to the whole virtual world
is not an option, because the accuracy would decrease
too heavily. Similar, the range of angle movements of
the human wrist is limited. In order to fully rotate and
inspect an object from all viewing directions grabbing
and releasing are indispensable.

In interfaces that employ a standard 2D mouse, grab-
bing and releasing is solved either by lifting the mouse
(while it is lifted a mouse movement induces no object
movement) or by exploiting button states (usually the
object is only moved if a button is held down). But in
contrast to standard controllers no direct adequate exists
for markerless hand-tracking. Simple solutions for the
realization of a grab and release cycle in the absence
of physical buttons are disposing one degree of free-

WSCG 2009 Full papers proceedings 127 ISBN 978-80-86943-93-0

dom (DOF) of the hand pose, e.g. only if z-coordinate
is greater than a certain value the object is grabbed,
exploiting the second hand or applying different pos-
tures for different button states. Unfortunately, these
approaches also have drawbacks. Exploiting one DOF
of the hand pose is only possible, if less than 6 DOF
are needed in the current task. Using the second hand,
e.g. to press some virtual button defining the current
grab and release states, is much more uncomfortable
due to the need of straining both hands and arms simul-
taneously. The use of different postures, one for grab-
bing and another for releasing, is significantly more de-
manding for the user than simply pressing a mouse but-
ton, because the physical effort as well as the complex-
ity of coordination of changing postures is considerably
higher, especially if various specified postures are con-
currently needed. Moreover, a posture change always
induces an unintended pose change mainly in rotation
in current markerless hand-tracking systems. This is
due to the problem that the tracking state is temporarily
undefined during a posture change. Therefore, it would
nearly be impossible to instantly stop an object’s move-
ment by switching to another posture.

The second challenge is the lack of suitable tech-
niques for selecting objects and tools. In standard in-
terfaces typically one or more controller buttons are
exploited and a selection is performed by moving the
cursor above a virtual button or object on the screen
and performing a click. To generalize this to 3D hand-
tracking interfaces the hand movements have to be used
both for moving a cursor (or the like) and simultane-
ously for clicking. Fortunately, in this case normally
not the all DOFs of the hand pose are needed for mov-
ing a cursor; the hand’s position and/or pointing direc-
tion is sufficient such that some DOFs can be used for
clicking purposes. Nevertheless, the usability and effi-
ciency of selection is crucial.

Another challenge of using hand-tracking for interac-
tion is providing the user information about the limited
working volume of the hand-tracking device and details
about the current tracking state. The user has to ensure
permanently that her hand is located inside the work-
ing volume and that she is performing the correct pose
and posture for solving the current task. Without suit-
able techniques to facilitate these needs, this can lead to
extremely high demands for the user.

In this paper we introduce three novel approaches to
solve the above mentioned problems: first, a new inter-
action technique is introduced, which allows grabbing
and releasing of objects while still enabling manipula-
tions using the full 6 DOF of the hand pose without
the need of posture changes or the incorporation of the
second hand. Second, in order to perform selection op-
erations we introduce an effective technique to simu-
late the left and right button of a standard 2D mouse.
As a third key contribution we introduce different kinds

of visual feedback for supporting manipulation tasks.
This visual feedback helps the user to manage the gen-
eral problems of markerless video based hand-tracking
(limited working volume and pose/posture verification)
as well as handling the employed interaction modes.

All novel techniques are consistently integrated into
a graphical user interface (GUI) in order to demonstrate
how they can be applied. Moreover, this interface is de-
scribed in detail and several ideas for the realization of
the interface are proposed. Last but not least a short
evaluation and discussion of our new interface is pre-
sented, which is based on a user study, user questioning
and our observations.

2 RELATED WORK
The large amount of literature of interaction techniques
makes it practically impossible to give a full review of
the previously reported methods here; elaborate anal-
ysis can be found in [BKLP04], or [JS07] for multi
modal interaction. We will only discuss the most re-
lated methods that are designed for or can be applied
to 3D interaction interfaces based on markerless hand-
tracking as an input device.

2.1 Virtual clicking techniques
If objects in a scene or menu items in a 3D menu (a
survey of 3D menus can be found in [DH07]) shall be
selected a suitable clicking technique is needed to trig-
ger the selection event while some kind of cursor has
to be moved to choose the desired object/item. If a
hand-tracking device is employed the clicking opera-
tions have to be simulated due to the absence of physi-
cal buttons. Note that for selection purposes exploiting
a DOF of the hand pose for triggering clicking events is
feasible because in general not all 6 DOFs are needed
for moving the cursor. In the following the different
approaches for clicking simulation suitable for hand-
tracking interfaces are outlined.

The first and easiest solution for performing click-
ing operations is extending the hand-tracking interac-
tion interface with additional physical buttons as for ex-
ample floor pedals. However, this kind of interaction is
awkward and slow (according to [GFF+04]).

Another approach is using a cursor dwell time thresh-
old for triggering a click event as for example used in
[WP03] and [GFF+04]. Although this is simple, it in-
troduces a constant lag in the interaction.

A further approach is to use speech to signal a selec-
tion [Bol80]. But this is especially excessive if several
click down and up events have to be captured.

To perform a click by specified movements of the
hand is another option. In [GFF+04] clicking is per-
formed if the user moves her hand 20 cm toward the
camera. We observed this technique to lack efficiency,
because it requires a quite spacious hand movement,

WSCG 2009 Full papers proceedings 128 ISBN 978-80-86943-93-0

which is slow and inefficient. A better solution is pro-
posed in [VB05], where clicking can be performed by
a small movement with the index finger, similar to how
we move when clicking a physical mouse button. But
obviously, this technique can not be used when the
pointing direction of the index finger is needed at the
same time (e.g. for selecting by pointing).

An additional commonly used technique is exploit-
ing different hand postures to click. In [GWB05] and
[VB05] a button down or up event is triggered, when the
thumb is moved in or out toward the index finger side of
the hand. Unfortunately, due to unstable tracking states
while a transition between two postures is performed,
this often leads to unmeant changes in the pointing di-
rection. Moreover, even if a simple posture is applied,
it is significantly more complex and uncomfortable to
change postures than simply press a mouse button.

2.2 Virtual grabbing and releasing tech-
niques

Once an object is selected, different manipulations can
be applied. During complex object movements all 6
DOFs of the user’s hand pose are required to move the
object and additionally a suitable mechanism is needed
for precise releasing it in the desired pose. For this rea-
son, the virtual clicking techniques can in general not be
applied for this problem and other solutions have to be
found for determining when the object shall be attached
to the hand (i.e. coupling the object’s movements to the
hand’s movements).

According to Zachmann [Zac00] grabbing an object
(i.e. attaching the object to the hand) can be realized
in (at least) three different ways: single-step, two-step
or naturally. Single-step grabbing attaches the object
at a certain event (e.g. a spoken command like “grab
thing"). Two-step grabbing can be further divided into
the following interaction steps:

1. Some event (e.g. a posture or spoken command)
switches the grabbing mode on; only in this mode,
objects can be grabbed.

2. The object is attached to the hand at another event.

To release the object usually the same event as in the
first step is used. In the grabbing mode natural grab-
bing is typically realized by conditioning collisions of
the finger tips with the object (e.g. the thumb and one
forefinger must collide with the object). The object’s
movements will be coupled directly to the hand’s, when
the object is touched this way. The types of natural
grabbing can be further distinguished into several dif-
ferent classes (for details see [Zac00]).

Using physical buttons, a dwell time threshold or
speech for triggering an attach action suffer from the
same drawbacks as in the case of clicking. As well ex-
ploiting one DOF of the hand pose is not possible, be-

cause for object movements normally all 6 DOFs are
needed.

Therefore, most approaches adopt grabbing postures
to determine whether an object is attached to the hand
or not (e.g. [MF04] or [BI05]). Unfortunately, it turned
out to be quite difficult to release an object at a precise
position [Osa06]. The reasons for this are: first, it is
demanding for people to fix a hand precisely in midair
without having physical support. Second, judging the
release point without tactile feedback can be difficult.
Third, the finger movements of a grabbing action of-
ten cause the hand’s global pose to change. To solve
the third problem of using grabbing postures Osawa
[Osa06] proposed an approach to automatically adjust
the release pose of a virtual object based on the relative
speed of the two grabbing fingers (usually the thumb
and one forefinger).

Furthermore, in current markerless hand-tracking
systems most of the different types of natural grabbing
are not available, typically only one grabbing posture
is supported. Additionally, in order to ensure a stable
tracking, this posture must be performed very exactly
and clearly. We observed this to be cumbersome for
most users.

2.3 Object manipulation techniques
In a hand-tracking based 3D interface commonly a vir-
tual representation of the user’s hand is shown in the 3D
scene. When the virtual representation intersects with
an object, the object can be grabbed. Once grabbed, the
movements of the virtual hand are directly applied to
the object in order to move, rotate or deform it. This
is called the virtual hand metaphor, which is the most
common direct manipulation technique for manipulat-
ing objects [BRC05]. When the coupling between the
physical world (hand or device) and the virtual repre-
sentation works well, this interaction technique turns
out to be very intuitive, since it is similar to every-day
manipulation of objects. The main drawback of the vir-
tual hand metaphor is the scaling problem; the limited
workspace of the user’s limbs or the input device, which
makes distant objects unreachable.

To solve this problem various approaches were
reported. For example the Go-Go technique [PBWI96]
simulates an interactively non-linear growing of the
user’s arm. When the user’s hand is close to her, the
mapping of real hand pose to virtual object pose is one
to one. As she extends her hand and arm beyond a
certain range, the mapping becomes nonlinear and the
virtual arm “grows”. Thus, she is able to reach objects
out of her range. Several other solutions to the scaling
problem were introduced as for instance the World-in-
Miniature technique [SCP95], HOMER (hand-centered
object manipulation extending ray-casting) [BH97],
Scaled-World Grab [MFPBS97] or Voodoo Dolls
[PSP99]. However, none of these techniques can be

WSCG 2009 Full papers proceedings 129 ISBN 978-80-86943-93-0

identified as the “best” solution; their performance
depends on the task and environment.

In order to improve the accuracy of object move-
ments, the PRISM method was introduced [FK05].
This interaction technique acts on the user’s behavior
in the environment to determine whether they have
precise or imprecise goals in mind. When precision
is desired, PRISM dynamically adjusts the control-
to-display-ratio which determines the relationship
between physical hand movements and the motion of
the controlled virtual object. A similar approach to
automatically adjust the speed of the current action is
described in [Osa06].

3 HAND-TRACKING DEVICE
To markerless track the 6 continuous DOFs of the
user’s global hand pose in several different stiff pos-
tures we implemented the method of Schlattmann et
al. [SKSK07]. We decided to use this approach due to
the real-time capability and automatic initialization. In
contrast to [SKSK07], we connected all three cameras
to one and the same computer where as well the
hand-tracking is computed. The intersection of the
viewing volumes of the cameras defines the working
volume of the hand-tracking. It describes the physical
space the user’s hand pose and posture are determined
in (approximately 80cm×50cm×50cm).

In this method the fingertip positions of two stretched
fingers are identified and the hand center is computed
as a third point to sufficiently determine the hand pose
in each frame. Note that for this reason movements
of the stretched fingers slightly influence the derived
hand pose. The hand posture is determined by evalu-
ating some heuristics based on the local surroundings
of the fingertip points. In our interface we generally
employ the pointing posture with the stretched thumb
and index-finger.

4 INTERACTION TECHNIQUES
Each of the basic techniques described in this section
can be used in different parts of an interface as will be
described in Sec. 5.

4.1 Visual feedback box
The adaption to novel devices and/or interaction tech-
niques can be very demanding particularly for an unex-
perienced/unsupervised user. As a support we therefore
integrate specific visual feedback into our GUI, which
is shown in a small 3D box that can be positioned freely
(typically in the upper left or right corner). The visual
feedback box provides three basic visual cues (see Fig.
1(Left)):

1. A hand model, which is moved according to the
user’s hand in order to indicate the recognized pose
and posture.

2. A cuboid, in order to show the working volume of
the hand-tracking. If the user moves her hand inside
the working volume, the hand model (see Cue 1) is
shown inside this box. This way the user gets a vi-
sual hint, if her hand can be seen by enough cameras
and if the tracking is working correctly.

3. The shadow of the hand model on the floor of the
cuboid. This helps the user to estimate the position
of the hand along the z-axis more accurately.

Figure 1: (Left) An example of the basic visual feed-
back. (Right) Partitioning of our working volume.

Furthermore, the visual feedback box can be extended
with other visual cues in order to help users to learn
how to interact with the GUI. Currently, there are three
major extensions for the respective modes of interac-
tion, which will be explained in the respective sections.
For lack of space, we refrain from illustrating all exten-
sions by depicting screenshots; they are shown in the
accompanying video.

4.2 Roll click
The roll click is introduced for simulating button events.
The simulation of button events is needed for selecting
objects and menu items. Thereby, the clicking opera-
tion should be easy to learn as well as easy to perform.
To this end, we decided to exploit one DOF for trig-
gering button events. We found exploiting a specified
rotation around the roll-axis (i.e. around the axis de-
scribed by the forearm) serves best. This has several
reasons. First, exploiting a rotational DOF for clicking
is superior to using a translational DOF due to comfort
issues. Using a translational DOF would force the user
to move the whole fore arm in order to perform a click.

Second, a rotation around the roll-axis performs bet-
ter than around the yaw or pitch-axis, because the range
of rotation the user can utilize for this rotation is signif-
icantly larger. Moreover the roll-angle’s value is only
marginally affected by changing the hand’s position or
pointing direction. The yaw and pitch angles depend
loosely on the position of the hand (e.g. translating
the hand toward the left induces a rotation toward the
left except the wrist is bended for compensation), which
could lead to unmeant clicking operations.

Our approach is particularly advantageous compared
to exploiting a posture or the second hand for clicking
because it is significantly easier and less exhausting to

WSCG 2009 Full papers proceedings 130 ISBN 978-80-86943-93-0

perform. We observed some users to be nearly inca-
pable to form a specified posture while further concen-
trating on the current task.

For deciding if a virtual button event is triggered
in frame i (the i-th time the hand pose/posture was
determined), we use two sufficient conditions based
on the value of the user’s hand’s roll-axis angle α i

r.
The first condition enables very slow clicking with a
more spacious movement while the second condition
also enables clicking by smaller but faster movements.
Note that one condition would be sufficient, but using
both conditions better accounts for the individual user
preferences. The first condition employs a hysteresis
thresholding (i.e. a thresholding, that employs different
threshold values depending on the state that is occu-
pied) based on α i

r for triggering a button event. This is
expressed in the first terms in Fig. 2, respectively. T1
and T2 denote the hysteresis thresholds. Currently we
use T1 = π

4 , T2 = π

16 . In our current setting the roll-axis
angle is defined to be zero, if the index finger is point-
ing toward the front and the thumb is pointing up. A
counterclockwise rotation of the user’s hand around its
roll-axis increases this angle while a clockwise rotation
leads to a decrease.

Figure 2: State machines illustrating when the virtual
left and right button is pressed or released.

The second sufficient condition is expressed in the
second terms in Fig. 2, respectively. These terms com-
prise one of the conditions CL or CR and an additional
constraint based on the hysteresis thresholds (see previ-
ous paragraph). The additional constraints are needed
to disambiguate between left and right button events;
otherwise a right button down event could not be dis-
tinguished from a left button up event. The conditions
CL and CR are based on α i

r as well as on the signed an-
gular velocity vi

r of the roll-axis angle, which is defined
as

vi
r =

α i
r−α i−1

r

t i− t i−1 , (1)

where t i is the time of frame i. Now CL can be defined as
follows. If k is the greatest positive number with vi− j

r ≥
ε for all j = 1, ...,k, then the condition CL is defined as

CL = vi
r < ε ∧ (α i−1

r −α
i−k
r >

π

16
). (2)

This way, already a small counterclockwise rotation can
be employed to simulate a left button down or right but-
ton up event. The threshold ε ensures the rotation to
have a minimal velocity (we used ε = 1

2 π
rad
s2). The sec-

ond term of Eq. (2) is needed to avoid unmeant button
events by requesting the angular movement to exceed
a minimal value (otherwise an infinitesimal movement
could lead to a button event). CR is defined analogously
by substituting −ε for ε and − π

16 for π

16 and inverting
the relational operators.

If a clicking operation is performed, we observed the
pointing direction to lack accuracy due to unmeant an-
gular movements around the pitch or yaw-axis. There-
fore, selecting a small object by employing the vir-
tual pointer metaphor [PIWB98] can be hard to accom-
plish. To this end, we replace the yaw and pitch an-
gle values α i

y and α i
p of the current frame i with the

angles of the last frame, which fulfilled the condition∣∣α i
r−α i−1

r
∣∣< 2(

∣∣α i
p−α i−1

p
∣∣+ ∣∣α i

y−α i−1
y
∣∣). This way,

the pointing direction remain constant during a click-
ing operation, because in this case the hand rotation is
mainly around the roll-axis.

When this technique is currently applied in the inter-
face, the visual feedback box provides two small but-
tons (visualized as cylinders), positioned left and right
alongside the hand model, which indicate the user how
she can perform clicking.

Note that exploiting one DOF for clicking purposes
leaves us only 5 DOFs for other manipulations. There-
fore, this technique can only be employed in specific
interaction modes such as selection of tools or objects.

4.3 Jerky release

Once an object is selected and the full amount of the 6
continuous DOFs of the global hand pose is employed
for moving the object, an additional suitable mecha-
nism is needed for determining when the object shall
be attached to the hand or not. This mechanism should
enable precise releasing of objects and should be man-
ageable fast and efficiently. To this end, we used an
approach based on the velocity and acceleration of the
hand translation and rotation to trigger grabbing (attach
action) and releasing. The idea is to move a virtual ob-
ject only if the user moves her hand smoothly (i.e. no
abrupt pose changes). If she instead performs a fast and
jerky movement the object is released. This provides
an intuitive interaction metaphor as it corresponds to
real life experience (e.g. if a screw is turned downward,
people typically do a relatively slow clockwise rotation
while turning the screw and a relatively fast counter-
clockwise rotation back without turning the screw).

This behavior is implemented in the state machine
depicted in Fig. 3. Ca and Cv are conditions based on

WSCG 2009 Full papers proceedings 131 ISBN 978-80-86943-93-0

the translational and rotational velocities and accelera-
tions vt , vr, at and ar and are defined as

Ca = at > At ∨ar > Ar,

Cv = vt < Vt ∧ vr < Vr,

where Vt , Vr, At and Ar denote the respective thresh-
olds. Note that by conditioning the signed accelera-

Figure 3: State machine illustrating how an object can
be grabbed and released.

tions no releasing is performed, when the user jerks to
a halt (leads to high negative accelerations). In our cur-
rent setting the thresholds were set to be At = 50 cm

s2 ,
Ar = 5

3 π
rad
s2 , Vt = 40 cm

s and Vr = π
rad

s . These thresh-
old values were determined in a pilot experiment, where
first an object should be moved in only one direction
(we used the positive x-direction for translation and
a clockwise rotation around the roll-axis for rotation)
with different employed threshold values while the per-
centage of involuntary movements was measured. A
performed hand movement is classified to be involun-
tary either if the movement is in the desired direction
but the object is not moved (the acceleration threshold
was exceeded without intension) or if the movement is
in the opposite of the desired direction but the object is
moved (the acceleration threshold was not exceeded).
Note that using lower threshold values leads to more
occurrences of the first kind of involuntary movements
while higher threshold values abets the second kind.
Therefore, we rate the chosen thresholds by the sum
of the squared respective errors (the amount of invol-
untary movements). This way, both kinds of involun-
tary movements are minimized. Additionally, we let
the subjects perform some simple manipulation tasks
while the completion times and precision were mea-
sured (similar to the user experiments which will be
described in Sec. 6). We noticed a strong coherence
between good performance (completion times and pre-
cision) and good threshold rating. The above stated
threshold values result from several of these tests and
had the best overall performance. In our interface, the
user can adjust these values by choosing a factor from
the interval [0.5;2] with which all threshold values are
scaled in order to account for the different preferences
of each individual. However, for the user experiments
in Sec. 6 this factor was locked to 1.

When a fast and jerky movement is performed, typi-
cally the acceleration curve has a positive peak at the
beginning, then decreases to approximately zero and
has a negative peak in the end (see Fig. 4(Right)).

Therefore, the condition Cv is essential for condition-
ing a transition back to state ‘Attached’; otherwise the
‘Not attached’ state would be leaved directly after the
positive peak at the beginning.

Figure 4: Diagrams of velocity (red) and acceleration
(blue) across several frames (x-axis) of two different
translational movements. The two horizontal dashed
lines indicate our chosen thresholds At and Vt and
the green and yellow regions the periods of having at-
tached or released the object. (Left) A movement is
performed by smoothly increasing the speed. (Right)
A fast and jerky movement is performed.

With this implementation a jerky translational or ro-
tational hand movement induces a transition from state
‘Attached’ to state ‘Not attached’ and if the translational
and rotational speed as well as the acceleration of the
hand movement falls below the according given thresh-
olds a transition back to state ‘Attached’ is performed.
As long as the speed is not abruptly increased the object
will move according to the users hand.

Note that if a simple thresholding on the velocity
would be used, precise releasing of the object would
hardly be possible, because dependent on the accel-
eration it could take several frames until the velocity
threshold is reached. But in these frames the object
would still be moved. Using a very low velocity thresh-
old to diminish this problem would prohibit the user
from performing any fast operation. This can be seen
in Fig. 4, where we depicted graphs of velocity and ac-
celeration for two translational motion sequences: one,
where the user performed a typical smooth manipula-
tion (Left), and another, where she performed a fast
and jerky movement (Right). Analogously, we recorded
two rotational motion sequences, which showed the
same characteristics.

In addition, using the acceleration as a single crite-
rion for transiting to state ‘Not attached’ has the advan-
tage, that this way, the velocity with which an object
can be moved is not constrained. For example in the
motion sequence of Fig. 4(Left) the object was attached
all along although the velocity exceeded the velocity
threshold.

Using the acceleration criterion for releasing opera-
tions enables fairly precise positioning of objects. How-
ever, sometimes slight unintentional movements occur
in the direction the fast and jerky movement is per-

WSCG 2009 Full papers proceedings 132 ISBN 978-80-86943-93-0

formed, because dependent on the jerkiness of the per-
formed movement it can take a short while until the
acceleration threshold is exceeded. To overcome this
problem, we introduce a simple post-correction step,
when the ‘Not attached’ state is reached in frame i.
We undo the last k manipulation steps (both translation
and rotation), whereby k denotes the greatest number of
steps, that fulfill the following conditions for all j with
i− k ≤ j < i:(∥∥p′ j

∥∥
t j− t j−1 <

∥∥p′ j+1
∥∥

t j+1− t j

)
∧ (t i− t j) < t0. (3)

t j denotes the time and p′ j is defined depending on
whether the ‘Not attached’ state is reached due to a high
translational or high rotational acceleration. In the case
the translational acceleration threshold is exceeded, p′ j

is defined to be the hand position increment p j − p j−1

(p j denotes the hand position in frame j). In the other
case, we instead define p′ j to be the normalized rota-
tion axis of quaternion q′ j multiplied by its angle. q′ j

is defined as the rotation of the hand from frame j− 1
to frame j. The first condition in Eq. (3) ensures the
absolute acceleration value to be strictly increasing for
the k steps. This avoids unintended undoing of steps,
if for example the user moves an object, stops shortly
and then wants to release it by performing a fast and
jerky movement. The second condition prohibits un-
doing steps that are longer ago than t0. This threshold
describes the maximal available time the user has to ex-
ceed the acceleration threshold. In our current setting
t0 is chosen to be 100 milliseconds as several experi-
ments showed this to be suitable. This post-correction
enables very precise release operations in all manipu-
lation tasks. Moreover, because only very slight post-
corrections are needed, the distraction induced by auto-
matic undoing is only marginal.

The visual feedback for this technique shows how an
object is moved according to the position and orienta-
tion of the user’s hand. A small solid cube is elastically
attached to the hand model. The elastic relationship be-
tween the hand model and the object inherently indi-
cates that the object will be released if the hand moves
too fast. If the object is released in the current task,
the cube is released in its current pose. If the object
is grabbed in the current task, the cube jumps back to
the hand model and is reattached. This indicates that an
object will be released if the hand moves rapidly.

4.4 Changing interaction tech-
niques/settings

In order to be able to switch between different manip-
ulation tools or adjust application settings we chose a
similar approach as used in standard interfaces, where
the user can switch between a menu and manipula-
tion mode. In the menu mode, the different interaction

modes/settings can be selected/changed from a 3D tool-
bar, and in the manipulation mode the selected interac-
tion mode is applied. To this end, the user can choose
between two different techniques:
Working volume split: The 3D working volume is
divided into a near region and a far region as depicted
in Fig. 1(Right). If the user’s hand is located in the near
region, the menu mode is chosen. When the hand enters
the far region, the selected interaction mode is applied.
Thereby the far region is about four times larger than
the near region. This way, switching between menu
and manipulation mode is simple, but the available ma-
nipulation space is reduced and some distraction results
from unintentional menu/manipulation transitions.
Free-hand gestures: The user switches between menu
and manipulation mode by performing a certain free-
hand gesture (we used a circle in the xy-plane), while
her hand remains in the ‘Not attached’ state (see Sec.
4.3). This way, the whole working volume can be ex-
ploited for manipulation purposes, but switching be-
tween menu and manipulation is more difficult. As
both solutions have their advantages and drawbacks, the
user can choose between them. If for example a single
long manipulation step is planned, she could select the
second alternative and otherwise the first one. Addi-
tionally, we enable free-hand gestures for switching be-
tween interaction modes directly (e.g. between object
manipulation and selection).

5 THE INTERFACE
When the user’s hand is directly used as an input device
for controlling an application it is extremely desirable
that no other controller is involved during appliance to
ensure immersive interaction. Therefore we designed
a graphical user interface (GUI) that is fully controlled
by the user’s tracked hand. In our GUI a 3D scene is
shown and several basic manipulation tools can be se-
lected from a toolbar, when the menu mode is active
(see Sec. 4.4). The user can choose a tool by moving a
hand model such that it intersects the 3D object, which
represents a tool (currently a labeled cylinder), and per-
forming a roll click (see Sec. 4.2).

Our system is designed as a state machine, where
the states are represented by the different manipulation
tools. If a certain manipulation state is occupied and
the manipulation mode is active, specific manipulations
are applied to the selected objects (e.g. state ‘Move’ for
translating and rotating objects) or the camera (in state
‘Steer’). In the following the different available manip-
ulation states are described.

In the ‘Move’ state the currently selected objects
are translated and rotated according to the user’s hand
movements as long as they are grabbed, which is deter-
mined by the jerky release technique introduced in Sec.
4.3.

WSCG 2009 Full papers proceedings 133 ISBN 978-80-86943-93-0

In the ‘Scale’ state the object is scaled up if the user
moves her hand to the positive x-direction and down if
she moves her hand to the negative x-direction. If the
hand movement is classified to be fast and jerky accord-
ing to the jerky release technique in Sec. 4.3 no scaling
is applied. This way, the object can be scaled up or
down arbitrarily in several cycles.

In the ‘Select’ state the two most common standard
techniques (according to [PIWB98]), namely the vir-
tual hand metaphor (an object can be selected when
it collides with a virtual hand) and the virtual pointer
metaphor (an object can be selected when it collides
with a virtual ray emanating from the virtual hand) are
available. Each technique is combined the roll click
(see Sec. 4.2). When the virtual pointer metaphor is
applied an additional ray is drawn in the visual feed-
back box illustrated as a simple line emanating from
the hand model toward the pointing direction.

In the ‘Steer’ state the virtual camera can be moved.
Thereby we decided to use the traditional approach of
steering, which was introduced by Ware and Osborne
[WO90] and named the flying vehicle control metaphor.
The translational and rotational distances of the user’s
hand pose from a certain resting pose are used to con-
trol the translational and rotational velocities of the vir-
tual camera to the according directions. In this state,
several modifications are applied to the visual feedback
box. Due to the lack of haptic feedback users have of-
ten problems to return their hands to the resting pose in
order to stop moving the camera. To this end, in our
visual feedback box the resting position is visualized
by showing a static additional hand model. To further
hint the currently applied camera translation, a 3D ar-
row originating from this static hand model and ending
at the currently moving hand model is provided. The
orientation is split into roll, pitch and yaw angle and
the resting orientation is illustrated by three static lines
on the back wall, side wall, and floor of the cube, re-
spectively. Simultaneously, three rotating lines indicate
the currently applied rotation. The area between each of
the rotating lines and its according static line is shaded
and two circular arrows are depicted, respectively. For
an illustration we refer the reader to the accompanying
video.

6 EXPERIMENTS
We conducted an experiment to evaluate the perfor-
mance of the jerky release technique for moving and
positioning virtual objects. Our hypothesis was that
our method would be superior to other techniques com-
monly applied for hand-tracking devices. Moreover, we
expected that a hand-tracking device combined with our
technique had superior or at least similar performance
compared to a standard 6 DOF controller.

To this end, we compared our technique to both the
use of a grabbing posture (i.e. only if the subjects form

the grabbing posture the virtual object moves accord-
ing to her hand) and the use of a standard 3D mouse.
As we are interested in complex interaction with the si-
multaneous manipulation of 6 DOFs we refrained from
a comparison to a standard 2D mouse, because a 2D
mouse would need specific interaction metaphors to en-
able the control over 6 DOFs. Several manipulation
tasks had to be solved by using each controller, while
the completion times and precisions were measured.

For the posture based grabbing and releasing the ad-
justments of Osawa [Osa06] for precise releasing were
implemented. However, we could not use the same ve-
locity threshold of 1 cm

s as proposed in [Osa06], because
depending on the velocity of the hand pose the accuracy
of the determined thumb and front-fingertip positions
were not sufficient (Osawa used data gloves, which
have a high precision and whose global pose does not
influence other hand parameters). Therefore, we had to
use a higher threshold (10 cm

s in the experiments), which
led to inferior releasing precisions.

6.1 Experimental setting
Two connected PC-based systems (Intel E6600,
Geforce 8800) were used in the experiment, one
coupled to the cameras for tracking the hand (see
Sec. 3) and one for running the virtual environment
application. The application was visualized on a stan-
dard 19" TFT-Display. Additionally, a 3D connexion
SpaceNavigator was connected to the second PC.
Experimental tasks: In the experimental tasks a vir-
tual object had to be approximately moved to a speci-
fied position (less than 2 units translational error) and/or
orientation (less than 4 degrees rotational error) by us-
ing the different techniques/controllers. In the first task
only translation had to and could be modified until the
desired position was approximately reached. In the sec-
ond task, the object’s position was fixed and only ori-
entation had to be modified. These two tasks were es-
tablished in order to check if one of the techniques has
specific advantages in either the rotational or transla-
tional DOFs. To check the performance for more com-
plex tasks both the orientation and position had to be
manipulated in the third task. These three tasks were
used to measure the completion times, therefore, it was
communicated to the subjects to be as fast as possible.

In the fourth and last task again orientation and po-
sition had to be modified, but the subjects could decide
by themselves when the final pose was reached and then
had to release the object by either pulling the hand out
of the working volume (if the hand-tracking device was
used) or pressing the left 3D mouse button (if the 3D
mouse was used). No snapping algorithm (the object
snaps to the desired pose, when it is near by) was ap-
plied. This task was used to determine the positioning
errors. For this reason, the subjects were advised of be-
ing as accurate as possible for this task.

WSCG 2009 Full papers proceedings 134 ISBN 978-80-86943-93-0

Participants: Eight participants (one female, seven
males, all university students) took part in the experi-
ment. They had little or no virtual reality experience.
Procedure: Each participant had to solve all four
tasks four times by employing each of the three con-
trollers (3D mouse, hand-tracking with grabbing pos-
ture and hand-tracking with our technique). Thereby,
the sequence of the employed controllers was permuted
evenly and all tasks had to be finished until the next
controller was adopted. Before starting the test for each
controller, its mode of action was explained and the
subjects could familiarize with it in a short preparation
time (two minutes).

6.2 Results
The average task completion times including standard
deviations are depicted in Fig. 5. Employing the grab-

Figure 5: Task completion times (in seconds).

bing posture was clearly inferior to our technique or the
3D mouse. This is mainly because some time is needed
for switching the postures. If the object’s orientation is
manipulated, this becomes even more relevant, because
more grab and release cycles are needed due to the little
space of anatomical rotational freedom.

Considering both the times of our technique and the
3D mouse it can be seen that the 3D mouse performs
slightly better if the amount of degrees of freedoms is
restricted, but inferior if all 6 DOFs are available. This
was confirmed in our observations during the experi-
ments. The simultaneous control of several DOFs was
significantly more difficult with the 3D mouse.

In Fig. 6 the mean errors and their standard devia-
tions for translational and rotational positioning of the
virtual object are depicted. This diagram shows, that
our technique is suitable for precisely releasing virtual
objects. The bad results for using the grabbing posture
are caused by overhasty releasing while the hand was
still attached to the virtual object.

6.3 Discussion
After the user experiments, the subjects could practice
with the whole interface and we quested them for their

Figure 6: Positioning errors. In degrees for the rota-
tional error. The translational error can only serve as
a relative measure as it depends on the adopted map-
ping from real to virtual space.

subjective impression concerning the visual feedback
box. Most subjects told us that the proposed visual
feedback box (see Sec. 4.1) with its modifications for
different interaction modes helped them notably for fa-
miliarizing with the respective interaction mode and for
ensuring that their handling of the hand-tracking device
is correct (e.g. whether the hand is still in the work-
ing volume and forms the correct posture). In particu-
lar for supporting the steering of the camera, we got a
clear positive feedback, what we think results from the
less intuitive handling of the steering technique. Note
that more objective testing of the visual feedback goes
beyond the scope of our work, because as it supports
mainly the familiarization with an interface, we can not
compare the performance with and without it for one
and the same subject. However, the timings and preci-
sion strongly depends on the individual, so an objective
study would need a great many of subjects.

The roll click (see Sec. 4.2) could instantly be han-
dled by everyone. Due to the proposed pointing direc-
tion modifications very precise object selection oper-
ations could be performed even if the virtual pointer
metaphor was used. Note that these modifications are
only applicable, because the roll-axis angle is used for
triggering the button events.

For moving objects by using the jerky release tech-
nique (see Sec. 4.3), most users needed a short adap-
tation phase until they developed a sense for the differ-
ent kinds of motion (smooth movements for moving the
object and fast/jerky for releasing it). But subsequently,
they could easily perform different complex tasks.

Obviously, a limitation of the grabbing and releas-
ing technique is the fact that a virtual object can not
be moved fast and jerky any more. However, in prac-
tice such movements are utilized rarely for manipu-
lation tasks. To quantify this problem, we analyzed
the movements of both hand and virtual object in our
user experiments for the cases that the grabbing posture
was employed for grabbing and releasing instead of our
technique. We computed the percentage of virtual ob-

WSCG 2009 Full papers proceedings 135 ISBN 978-80-86943-93-0

ject movement that occurred while the ‘Not attached’
state would have been occupied, if our technique would
have been used. On average, less than 5% of the virtual
object movements would have been filtered out by our
technique. Moreover, we observed such movements of-
ten to be unintended by the subjects, for example if the
virtual object should be released by switching from the
grabbing to the standard posture but moving the hand
overhasty while the object is still attached to the hand.

7 CONCLUSIONS AND FUTURE
WORK

We presented novel techniques for 3D interaction par-
ticularly suitable if markerless hand-tracking is em-
ployed. These techniques were integrated into a novel
user interface and tested by many people. We showed
that the proposed technique for grabbing and releasing
enables efficient manipulations and precise releasing.
A short user study was presented to compare this tech-
nique to traditional controllers and techniques.

In the future, we want to integrate further manipula-
tion tools into our interface such as object deformation.
Thereby, the visual feedback box will also be adapted.

Furthermore, we wish to improve the immersiveness
of our interface by using additional tracking technology
as for example head or gaze tracking. Gaze tracking
could additionally be exploited for investigation of the
usefulness of the visual feedback; it could be quantified
how much time the user spends on looking at the visual
feedback box in certain situations.

REFERENCES
[BH97] Doug A. Bowman and Larry F. Hodges. An evaluation of

techniques for grabbing and manipulating remote objects in im-
mersive virtual environments. In SI3D ’97: Proceedings of the
1997 symposium on Interactive 3D graphics, pages 35–38, New
York, NY, USA, 1997. ACM.

[BI05] Christoph W. Borst and Arun P. Indugula. Realistic virtual
grasping. In VR ’05: Proceedings of the 2005 IEEE Conference
2005 on Virtual Reality, pages 91–98, Washington, DC, USA,
2005. IEEE Computer Society.

[BKLP04] Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola, and
Ivan Poupyrev. 3D User Interfaces: Theory and Practice. Ad-
dison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA, 2004.

[Bol80] Richard A. Bolt. “put-that-there”: Voice and gesture at the
graphics interface. SIGGRAPH Comput. Graph., 14(3):262–270,
1980.

[BRC05] Joan De Boeck, Chris Raymaekers, and Karin Coninx. Are
existing metaphors in virtual environments suitable for haptic in-
teraction. In Proceedings of Virtual Reality International Confer-
ence, pages 261–268, 2005.

[DH07] Raimund Dachselt and Anett Hübner. Virtual environments:
Three-dimensional menus: A survey and taxonomy. Comput.
Graph., 31(1):53–65, 2007.

[FK05] Scott Frees and G. Drew Kessler. Precise and rapid inter-
action through scaled manipulation in immersive virtual environ-
ments. In VR ’05: Proceedings of the 2005 IEEE Conference
2005 on Virtual Reality, pages 99–106, Washington, DC, USA,
2005. IEEE Computer Society.

[GFF+04] C. Grätzel, T. Fong, T. Fong, S. Grange, and C. Baur. A
non-contact mouse for surgeon-computer interaction. Technol.
Health Care, 12(3):245–257, 2004.

[GWB05] Tovi Grossman, Daniel Wigdor, and Ravin Balakrishnan.
Multi-finger gestural interaction with 3d volumetric displays. In
SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pages 931–931,
New York, NY, USA, 2005. ACM.

[JS07] Alejandro Jaimes and Nicu Sebe. Multimodal human-
computer interaction: A survey. Comput. Vis. Image Underst.,
108(1-2):116–134, 2007.

[MF04] N. Murray and T. Fernando. An immersive assembly and
maintenance simulation environment. In DS-RT ’04: Proceed-
ings of the 8th IEEE International Symposium on Distributed
Simulation and Real-Time Applications, pages 159–166, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[MFPBS97] Mark R. Mine, Jr. Frederick P. Brooks, and Carlo H.
Sequin. Moving objects in space: exploiting proprioception in
virtual-environment interaction. In SIGGRAPH ’97: Proceed-
ings of the 24th annual conference on Computer graphics and
interactive techniques, pages 19–26, New York, NY, USA, 1997.
ACM Press/Addison-Wesley Publishing Co.

[Osa06] Noritaka Osawa. Automatic adjustments for efficient and
precise positioning and release of virtual objects. In VRCIA ’06:
Proceedings of the 2006 ACM international conference on Vir-
tual reality continuum and its applications, pages 121–128, New
York, NY, USA, 2006. ACM.

[PBWI96] Ivan Poupyrev, Mark Billinghurst, Suzanne Weghorst,
and Tadao Ichikawa. The go-go interaction technique: non-linear
mapping for direct manipulation in vr. In UIST ’96: Proceedings
of the 9th annual ACM symposium on User interface software and
technology, pages 79–80, New York, NY, USA, 1996. ACM.

[PIWB98] I. Poupyrev, T. Ichikawa, S. Weghorst, and
M. Billinghurst. Egocentric object manipulation in virtual
environments: Empirical evaluation of interaction techniques.
Computer Graphics Forum, 17(3):41–52, 1998.

[PSP99] Jeffrey S. Pierce, Brian C. Stearns, and Randy Pausch.
Voodoo dolls: seamless interaction at multiple scales in virtual
environments. In I3D ’99: Proceedings of the 1999 symposium
on Interactive 3D graphics, pages 141–145, New York, NY, USA,
1999. ACM.

[SCP95] Richard Stoakley, Matthew J. Conway, and Randy Pausch.
Virtual reality on a wim: interactive worlds in miniature. In CHI
’95: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 265–272, New York, NY, USA, 1995.
ACM Press/Addison-Wesley Publishing Co.

[SKSK07] M. Schlattmann, F. Kahlesz, R. Sarlette, and R. Klein.
Markerless 4 gestures 6 dof real-time visual tracking of the hu-
man hand with automatic initialization. Computer Graphics Fo-
rum, 26(3):467–476, September 2007.

[VB05] Daniel Vogel and Ravin Balakrishnan. Distant freehand
pointing and clicking on very large, high resolution displays. In
UIST ’05: Proceedings of the 18th annual ACM symposium on
User interface software and technology, pages 33–42, New York,
NY, USA, 2005. ACM.

[WO90] Colin Ware and Steven Osborne. Exploration and virtual
camera control in virtual three dimensional environments. In
SI3D ’90: Proceedings of the 1990 symposium on Interactive 3D
graphics, pages 175–183, New York, NY, USA, 1990. ACM.

[WP03] Andrew Wilson and Hubert Pham. Pointing in intelligent
environments with the worldcursor. In INTERACT, 2003.

[Zac00] G. Zachmann. Virtual Reality in Assembly Simulation – Col-
lision Detection, Simulation Algorithms, and Interaction Tech-
niques. PhD thesis, Darmstadt University of Technology, Ger-
many, Department of Computer Science, may 2000.

WSCG 2009 Full papers proceedings 136 ISBN 978-80-86943-93-0

Extracting CAD features from point cloud cross-sections

Ioannis Kyriazis
University of Ioannina, Greece

kyriazis@cs.uoi.gr

Ioannis Fudos
University of Ioannina, Greece

fudos@cs.uoi.gr

Leonidas Palios
University of Ioannina, Greece

palios@cs.uoi.gr

ABSTRACT

We present a new method for extracting features of a 3D object targeted to CAD modeling directly from the point cloud of its
surface scan. The objective is to obtain an editable CAD model that is manufacturable and describes accurately the structure
and topology of the point cloud. The entire process is carried out with the least human intervention possible. First, the point
cloud is sliced interactively in cross sections. Each cross section consists of a 2D point cloud. Then, a collection of segments
represented by a set of feature points is derived for each slice, describing the cross section accurately, and providing the basis
for an editable feature-based CAD model. For the extraction of the feature points, we exploit properties of the convex hull and
the Voronoi diagram of the point cloud.

Keywords: Reverse Engineering, processing point clouds, feature points, Voronoi diagram

1 INTRODUCTION

2005January 31 – February 4
Many applications in manufacturing, medicine, ge-

ography, design, and entertainment require scanning of
rather complex three-dimensional objects for the pur-
poses of incorporating them into a computer-based or
computer-aided processing system, a technique com-
monly known as Reverse Engineering or Digital Re-
construction [Vara97, Thom99, Benk01, Thom96]. 3D
scanning of a solid object yields a representation that
consists of the coordinates of several points of the sur-
face of the object. Advanced measuring techniques
have been developed that produce a large amount of
points lying on the object surface. Such a point set rep-
resenting the boundary of a three-dimensional object
is often called a point cloud. Point clouds do not in-
clude structural or connectivity information, and there-
fore they do not provide editable models.

We present a method for dividing the point cloud into
several slices (cross-sections), which we process sepa-
rately to extract local structural information. This in-
formation is used to detect local features of the object.
Such features describe holes, extrusions or protrusions
on the object, symmetrical or similar parts, or flipped
and arbitrarily transformed versions of already known
features. More specifically, our method uses a subset of
the point cloud each time, which is subsequently used

Permission to make digital or hard copies of all or
part of this work for personal or classroom use is
granted without fee provided that copies are not made
or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

to extract a feature locally [Gumh01]. This is accom-
plished by dividing the point cloud into several slices.
The points of each slice can be considered to be co-
planar, and so we process each slice as a 2D set of
points allowing us to develop very efficient and accurate
local feature extraction techniques. The set of points
of each slice are processed with efficient algorithms
and are represented with a sequence of feature points
derived with advanced computational geometry based
techniques. We call this sequence of feature points fea-
ture polyline. A closed cubic B-Spline curve is then
computed, which interpolates the feature points. The
local per slice feature representation is then combined
with information provided from several adjacent slices,
to reconstruct the global structure and morphology of
the object.

In a nutshell, our paper makes the following technical
contributions:

• Presents an interactive technique for segmenting the
point cloud into slices. This process is supported by
optimization algorithms for correct placement and
user-intuitive visualization techniques.

• Introduces a fast technique for detecting characteris-
tic points that describe the shape of a slice based on
iterative application of the convex hull and Voronoi
diagram algorithms.

• Establishes a novel theoretical formulation for char-
acterizing structural properties of 2D point sets.

• Provides an editable representation of the 2D point
sets with the use of closed cubic B-Spline curves.

The rest of this paper is structured as follows. Section
2 presents related work. Section 3 presents the interac-
tive slicing technique. Section 4 introduces the theoret-
ical formulation for morphology analysis and presents a

WSCG 2009 Full papers proceedings 137 ISBN 978-80-86943-93-0

Figure 1: A point cloud of a cycladean idol, and the original model. The point cloud was acquired using a base
Scanny 3d color laser scanner [Scan08].

convex hull and Voronoi-diagram based method to de-
tecting feature point sets. Section 5 describes the B-
Spline curve interpolation. Section 6 presents a perfor-
mance analysis of the methods and Section 7 offers a
summary of our results.

2 RELATED WORK
Several methods have been developed that extract fea-
tures from a point cloud. Some of these methods are
applied on mechanical objects, and others on freeform
objects. While mechanical objects are easy to de-
scribe with a standard a set of features, representing
freeform objects necessitates the expansion of the usual
repertoire of features and operation with innovative
constraint-based features. Jeong et al. [Jeon02] use
an automated procedure to fit a hand-designed generic
control mesh to a point cloud of a human head scan. A
hierarchical structure of displaced subdivision surfaces
is constructed, which approximates the input geometry
with increasing precision, up to the sampling resolution
of the input data. Sithole and Vosselman [Sith03] have
developed a method for detecting urban structures in an
irregularly spaced point-cloud of an urban landscape.
Their method is designed for detecting structures that
are extensions to the bare-earth (e.g., bridges, ramps),
and it involves a segmentation of a point-cloud followed
by a classification. Au and Yuenb [Au99] use a method
that fits a generic feature model of a human torso to a
point cloud of a human torso scan. The features are rec-
ognized within the point cloud by comparison with the
generic feature model. This is achieved by optimizing
the distance between the point cloud and the feature sur-
face, subject to continuity requirements. This is a pow-
erful approach when we have a priori knowledge of the
set of features. Amenta et al. [Amen98] proposed the
crust algorithm, which combines the point cloud with

the vertices of the Voronoi diagram, and computes the
Delaunay tetrahedralization of the combined point set.
The triangles where all vertices are sample points (not
Voronoi vertices) are considered to form the object sur-
face. Attene and Spagnuolo [Atte00] use properties of
geometric graphs. The Euclidean minimum spanning
tree is used as a constraint during the sculpturing of
the Delaunay tetrahedralization of the data set, and in
addition another constraint is used, the so-called Ex-
tended Gabriel Hypergraph (EGH). These approaches
are very interesting and with many application in com-
puter graphics.

These methods however provide a triangular repre-
sentation with the capability of only local editing by al-
tering interactively the positioning of triangle vertices.
Such models are not appropriate for editing and reman-
ufacturing in the context of computer aided design.

Fayolle et. al. [Shap04] propose a method which
helps to fit existing parameterized function represen-
tation (FRep) models to a given dataset of 3D surface
points. Best fitted parameters of the model are obtained
by using a hybrid algorithm combining simulated an-
nealing and Levenberg-Marquardt methods. Ohtake et.
al. [Ohta03] construct surface models using piecewise
quadratic functions that capture the local shape of the
surface, and weighting functions that blend together the
local shape functions. These works process the entire
3D cloud to detect the object’s constructive logic.

Related work on deformable models is described
in [Terz87, Meta93, Mill91, Mall95, McIn96]. These
methods are quite general and have been applied in
determining contours. To our knowledge there is no
efficient method developed for extracting features
based on deformable models in this context. However
this is a promising direction that requires further
research.

WSCG 2009 Full papers proceedings 138 ISBN 978-80-86943-93-0

Figure 2: A point cloud can be sliced in any desired di-
rection. Slice thickness is determined adaptively (point
cloud of a hip bone [Cybe99]).

3 SLICING THE POINT CLOUD
Processing the point cloud is performed in two impor-
tant steps:

• choosing an appropriate slicing direction and

• determining the proper thickness of a slice.

The direction along which we choose to divide the ob-
ject in slices may influence the process of feature ex-
traction and the resulting model. Thus, a major issue
in point cloud segmentation is determining the slicing
direction. To illustrate this, consider an object that con-
tains a cylindrical hole. If the slicing direction matches
the cylinder axis, the points of the slice located near the
hole would form a circular region. If the slicing direc-
tion is different than the cylinder axis, the points of the
slice would form an elliptical region or even a single
line segment.

The effectiveness of the editability of the resulting
CAD model also depends on the selection of the slicing
direction. To this end we can either align interactively
the object to the desired direction, or seek automatically
a transformation of the object that minimizes a target
function, e.g. PCA [Joll02]. We use a combination of
automated and interactive methods.

Another key issue is to determine the proper thick-
ness for a slice. When a slice is too thick, the points
that belong to it will not provide useful information, as
we might get many features tangled together. To avoid
this we can split it into two new slices with reduced
thickness. On the other hand, if the points of two adja-
cent slices carry almost the same information, or if the
points of a slice are not enough to describe this part of
the object resulting in discontinuities, we can merge the
two slices into one slice with increased thickness. The
thickness of a slice may also differ from slice to slice,
if we require more detailed processing in some parts of
the point cloud than the rest.

To avoid performing a morphological analysis of the
3D point cloud in the preprocessing phase, we have
chosen to initially slice the point cloud in slices of equal
thickness, by setting the slice thickness manually. We
may also determine the ideal slice thickness adaptively,
as described in [Wu04, Ma04, GHLi02, Star05]. The
distance between two slices can also be a parameter, but
as we do not want to omit any information from points
located between two slices, we set each slice to start ex-
actly where the previous slice ends (and thus there is no
empty space between adjacent slices).

Once we have divided the point cloud into slices, the
points that belong to each slice are projected on a plane
that is perpendicular to the slicing axis. After this pre-
processing we may use 2D techniques for processing
the points of the slice. Figure 2 illustrates an exam-
ple of a sliced point cloud of a hip bone from Cyber-
ware [Cybe99], while Figure 3 illustrates the points of
a slice, which are projected to the highlighted plane.
Figure 2 also depicts a snapshot of the user interface
of the prototype that we have developed to evaluate the
effectiveness of method.

Figure 3: A slice of the cloud is highlighted, and the
points of this slice are projected on a plane that is per-
pendicular to the slicing direction.

4 IDENTIFYING FEATURE POINTS
In reverse engineering, a point cloud usually consists
of a very large amount of points, depending on the size
and shape of the prototype object, and also on the accu-
racy that was used to scan the object. The large amount
of points makes it difficult to process this raw informa-
tion. Thus, we need to reduce the number of points in
the cloud while retaining most of the topology implied
provided by these points.

If the points of a slice form a 2D shape that is con-
vex, then we simply compute the convex hull of the
points. This will accurately describe the shape with a
polyline consisting usually of much fewer vertices than
the points of the slice. For example, if the points of a

WSCG 2009 Full papers proceedings 139 ISBN 978-80-86943-93-0

slice lie on a rectangle, the convex hull consists of only
four vertices and four edges, while the slice may consist
of thousands of points.

However, if the shape implied by the points in a slice
is not convex then fitting a polyline to these points
needs additional information beyond the convex hull.
We start by computing the convex hull [Barb96] of the
points as shown in Figure 4, to identify some initial fea-
ture points. We partition the points in regions, one for
each line segment of the convex hull.

Some of these regions may consist exclusively of
points very close to the convex hull (convex regions),
while other regions contain of points located far from
it (concave regions). Before treating these concave re-
gions any further, we need to check wether each point is
assigned to the proper region, since there may be cases
in which a point is closest to one region, but belongs to
another region, for example the one that is located on
the opposite side of the closed feature polyline(e.g. see
Figure 5). To avoid having such erroneous assignments
we define:

Definition 1 A point pN is a neighbor point of a point p
if it lies within distance smaller or equal to some char-
acteristic constant ε .

ε is called the neighborhood radius which is a charac-
teristic of the point cloud and is derived from statisti-
cally processing the topology of the slice.

Definition 2 We call separability tolerance d > ε of the
point cloud, the minimum number with the property that
for any pair of points p1, p2 that belong to different
non-adjacent regions it holds ||p1− p2|| ≤ d.

d is a characteristic of the point cloud derived from sta-
tistically processing the topology of the cross-section.

Then we have,

Definition 3 The shortest neighbor path between two
points s1 and sn of the point cloud slice is a sequence of

Figure 4: The convex hull of the slice points in 2D.
The vertices of the convex hull are identified as feature
points for this slice (cycladean idol cloud [Scan08]).

Figure 5: The points in the highlighted area (small cir-
cle) are located closer to a region other than they should
be assigned to (d2 < d1). We use the information of
their neighboring points to assign them to the correct
region (point cloud of a boat [Cybe99]).

points [s1,s2, . . . ,sn] such that each point is neighbor to
the next and

n−1

∑
i=1
||si− si+1||

is minimized.

Then given a point sequence P = [p1, p2, . . . pk] that
segments the slice into regions [r1,r2, . . .rk] we calcu-
late the shortest neighbor paths between each adjacent
pair of points (pi, p(i+1)mod n).

Definition 4 The initial seed of a region ri is the short-
est path between pi and p(i+1)mod n.

Finally, we assign each point q of the point cloud to a
region ri such that the initial seed of ri contains a point
s j that minimizes the shortest neighbor path length from
q.

Definition 5 For a point cloud point q the region of q
is defined as the region ri such that the initial seed of ri
contains a point s j that minimizes the shortest neighbor
path length from q.

Now that we have ensured that each point is asso-
ciated to the correct region, we can treat the concave
regions further by computing the Voronoi diagram of
their points, and using a property called the largest
empty circle [De B97, ORou98].

The idea is to have a circle of variable radius and
throw it towards the point cloud from a given direc-
tion (the general idea includes a sphere on the three-
dimensional space). When it touches a point of the
region, this point is fixed and the circle continues to
move around it, until a second point is touched. When
the circle touches the second point, it is also fixed, and
the only free variable is the radius, which now starts
decreasing, until the circle touches a third point. The
third point is also fixed, and the circle cannot move any
more. The three points of contact are added to the fea-
ture point set. The center of the circle is one of the
Voronoi vertices of the region.

WSCG 2009 Full papers proceedings 140 ISBN 978-80-86943-93-0

Thus, if we compute the Voronoi diagram for the
point cloud region each Voronoi vertex located out-
side the point cloud area is a candidate center for a
largest empty circle that is touching three or more re-
gion points. We can use this property for detecting
empty largest circles that have their center on a Voronoi
region that is far from the point cloud region and to-
wards the outside. Then the feature points are the points
of contact of such largest empty circles.

The number of Voronoi vertices that can be used as
centers for largest empty circles is still large, and we
have to choose those vertices that will provide suit-
able feature points. We do not look for Voronoi ver-
tices located very close to the point cloud, because
they would provide feature points located very close to
each other, which can be useful only in cases where
we need increased detail. We do not look for Voronoi
vertices located very far from the points of the cloud
either, because they would provide feature points lo-
cated far from each other, leading to lower detail re-
sults. Also, we do not look for Voronoi vertices lo-
cated close to each other, because they would provide
the same feature points, or feature points very close to
each other as in the first case. Furthermore, Voronoi
vertices on the wrong side of the point cloud are also
being excluded, because we are interested in feature
points on the boundary of the point cloud. What we
need is to choose several Voronoi vertices evenly dis-
tributed along the region points, at an intermediate dis-
tance from the region points. Figure 6 (right) illustrates
the candidate Voronoi vertices for two concave regions.

By combining the initial convex hull with the feature
points provided by the selected Voronoi vertices of each
region, we get a feature polyline that interpolates the
points of the slice adequately in most regions. We can
perform this operation repeatedly for the rest of the re-
gions until all regions consist of points that are located
near the fitting polyline (for a termination criterion see
for example [Said02]). The final result of the fitting
feature polyline is illustrated in Figure 7 (right).

The method is summarized in Algorithm 1. Note that
L is a plane perpendicular to the slicing axis.

The use of the Voronoi diagram and the largest empty
circle for identifying feature points is also known as the
rotating ball technique [Bern99], and the feature points
form the so called alpha shape of the point set [Edel94].

5 INTERPOLATING FEATURE
POINTS WITH CUBIC B-SPLNE
CURVES

The feature polyline we have extracted so far may pro-
vide useful information concerning the topology of the
2D point set, but it does not include smoothness re-
quirements. As discussed in [Lee99], it is a common
practice to use B-Spline curves, because they are easy to
compute and capable of representing adequately most

Input: a set P of points, Slice i
Output:an ordered set Fi of feature points
(P(3D)

i ,L) = slice(i,P)
Pi = pro ject(P(3D)

i ,S)
Fi = qconvex(Pi)
Fi j = /0
repeat

for each region Pi j of Fi do
if avg_dist(Pi j,Fi j) > e then

Vi = qvoronoi(Pi j)
Vcandidate = Vi− excluded Voronoi ver-
tices
Fi j = largest_empty_circle(Vcandidate,Pi j)

Fi = Fi∪Fi j
until Fi j 6= /0
return Fi

Algorithm 1: The algorithm for the feature point extrac-
tion.

3D objects. Thus we choose to interpolate a closed
cubic B-Spline curve through the feature points of the
cross-section.

We employ curves of degree 3, because it is the low-
est degree satisfying second-order continuity, and at the
same time ensuring that we have G1 continuity. The
knot vector, the parameter values and the control points
of the interpolating curve are determined according to
the method described in [Lee99].

Once we have acquired the curve that describes the
cross-section, we proceed to the next cross-section and
repeat the same process, until all cross-sections have
been processed, and the point cloud is described by a
sequence of B-Spline contours. Figure 8 illustrates an
example of such a sequence.

So far, we have managed to represent the point cloud
in an editable form, so that a designer may apply mod-
ifications to the 3d model.If the point cloud is a scan
of a mechanical object, CAD features such as pockets,
grooves, gears, holes could be extracted with further
processing of the curve set. This would allow for higher
level modifications to the model. But if the point cloud
is a scan of a freeform object, such CAD features are
not present, and the designer can only use the curve set
for modifications. In this paper we focus on the use of
cross sectional features and we may detect sub features
such as pockets and holes by further post processing.
Future work also includes using a skinning technique
to reconstruct the surface between adjacent curves.

6 PERFORMANCE ANALYSIS
It is not possible to derive an exact evaluation of the
complexity of our approach since this depends on the
shape of the object. Thus in this section we provide an
estimation of the expected complexity as a function of

WSCG 2009 Full papers proceedings 141 ISBN 978-80-86943-93-0

Figure 6: (Left)Voronoi vertices that lie reasonably far from the point cloud are used to identify the next set of
feature points of this region. (Right) Only Voronoi vertices that are located outside the 2D area of interest are used
for feature extraction. Here, this is illustrated for two regions (cross-section of the hip point cloud [Cybe99]).

Figure 7: For the feature polyline to fully describe a region, several iterations may be required. (Left) The first
iteration of our method applied on a region. (Center) The second iteration for the same region. (Right) After the
second iteration the region is described as expected.

the number of points in the point cloud. The complex-
ity is measured in point operation as we have a large
number of points in the point cloud and most of the
processing is performed point-wise.

Before we apply our method to a point cloud, three
standard steps are required, which require O(n) point
operations each (where n is the number of points in the
cloud). These are (a) loading the cloud into memory,
(b) slicing the cloud, and (c) projecting the slice points
on the slice. Slicing the cloud requires O(n) because
each point has to be assigned to a slice, so the whole
cloud has to be processed, regardless of the number of
slices. The same applies for projecting the points to a
slice.

The convex hull of each slice requires O(ni logni) op-
erations (ni being the number of points in slice i). But
since we compute the convex hull for all slices, it sums
up to O(∑s

i=1 ni logni) where s is the number of slices,
which is bounded by O(n logn), since ∑s

i=1 ni = n.
At this point, we have to isolate the regions of the

slice points according to the convex hull, and compute
the Voronoi diagram only for those regions, which are
not adequately described by the feature polyline. This
step depends on the shape of the slice points, and may
require computation for up to all regions (or for no re-

gion at all, if the points of the slice form a convex poly-
gon).

Considering the case where we have to repeat the pro-
cess for all regions, it would take O(n j logn j) point op-
erations for the n j points of region j. This means that
we need O(∑r

j=1 n j logn j) operations for slice i, where
r is the number of regions, and O(∑s

i=1 ∑r
j=1 ni j logni j)

for all slices. This is also bounded by O(n logn), since

s

∑
i=1

r

∑
j=1

ni j = n

One issue is the number of iterations required to fully
fit the feature polyline to the slice points. It depends
on the shape of the points, and in the worst case it may
require up to O(logni) steps to process the ni points of
slice i, i.e. O(logn) for all slices. In practice, it usually
takes only a constant number of steps.
To select the Voronoi vertices in all regions and all
slices, it requires O(n), and to identify the next feature
points and update the feature polyline it requires a con-
stant number of point operations.

To fully update the feature polyline in all slices and to
identify all feature points we need O(logn) iterations of
either O(1), O(n), or O(n logn) point operations. So, in

WSCG 2009 Full papers proceedings 142 ISBN 978-80-86943-93-0

Figure 8: The curves of the entire cycladean idol point cloud (100 cross-sections).

conclusion, to derive descriptive feature point sets for
all slices of the point cloud takes O(n log2 n) time.

For the curve interpolation of a slice, the worst case
includes all the points of the slice. Then we need O(ni)
time to compute the knot vector, O(ni) for the parame-
ter values, and O(n) for the control points, since it re-
quires solving a triagonal linear system of equations. In
conclusion, for the whole point cloud to be processed,
it requires O(n log2 n) time.

7 SUMMARY
We have developed a method for representing cross sec-
tions (slices) of a point cloud, by identifying the a set
of feature points for each cross-section. Future work
includes building a solid model of the objects by us-
ing skinning techniques on the derived B-Spline cross-
sections.

REFERENCES
[Amen98] N. Amenta, M. Bern, and M. Kamvysselis.

“A New Voronoi-Based Surface Recon-
struction Algorithm”. Computer Graph-
ics, Vol. 32, No. Annual Conference Series,
pp. 415–421, 1998.

[Atte00] M. Attene and M. Spagnuolo. “Auto-
matic surface reconstruction from point
sets in space”. Computer Graphics Forum,
Vol. 19, No. 3, pp. 457–465, 2000.

[Au99] C. Au and M. Yuenb. “Feature-based re-
verse engineering of mannequin for gar-
ment design”. Computer-Aided Design,
Vol. 31, pp. 751–759, 1999.

[Barb96] C. Barber, D. Dobkin, and H. Huhdan-
paa. “The Quickhull algorithm for convex
hulls”. ACM Transactions on Mathemati-
cal Software, Vol. 22, No. 4, pp. 469–483,
Dec 1996. http://www.qhull.org.

[Benk01] P. Benko, R. Martin, and T. Varady. “Algo-
rithms for Reverse Engineering Boundary
Representation Models”. Computer-Aided
Design, Vol. 33, No. 11, pp. –851, 2001.

[Bern99] F. Bernardini, J. Mittleman, H. Rushmeier,
C. Silva, and G. Taubin. “The ball-
pivoting algorithm for surface reconstruc-
tion”. IEEE Transactions on Visualization
and Computer Graphics, Vol. 5, pp. 349–
359, 1999.

[Cybe99] Cyberware. “Cyberware Rapid 3D Scan-
ners”. 1999. http://www.cyberware.com.

WSCG 2009 Full papers proceedings 143 ISBN 978-80-86943-93-0

[De B97] M. e. a. De Berg. Computational Geome-
try, Algorithms and Applications. Springer-
Verlag, 1997.

[Edel94] H. Edelsbrunner and E. P. Mücke. “Three-
dimensional alpha shapes”. ACM Trans.
Graph., Vol. 13, No. 1, pp. 43–72, 1994.

[GHLi02] G.H.Liu, Y.S.Wong, Y.F.Zhang, and
H.T.Loh. “Error-based segmentation
of cloud data for direct rapid prototyp-
ing”. Computer-Aided Design, Vol. 35,
pp. 633–645, 2002.

[Gumh01] S. Gumhold, X. Wang, and R. MacLeod.
“Feature Extraction from Point Clouds”.
In: Proceedings of 10th International
Meshing Roundtable, Newport Beach, CA,
pp. 293–305, Sandia National Laborato-
ries, October 2001.

[Jeon02] W.-K. Jeong, K. Kahler, J. Haber, and H.-
P. Seidel. “Automatic Generation of Sub-
division Surface Head Models from Point
Cloud Data”. In: In Proceedings Graphics
Interface 2002, pp. 181–188, 2002.

[Joll02] I. Jolliffe. Principal Components Analysis.
Springer, 2nd edition Ed., 2002.

[Lee99] K. Lee. Principles of CAD/CAM/CAE Sys-
tems. Addison Wesley, pearson interna-
tional edition Ed., 1999.

[Ma04] W. Ma, W.-C. But, and P. He. “NURBS-
based adaptive slicing for efficient rapid
prototyping”. Computer-Aided Design,
Vol. 36, pp. 1309–1325, 2004.

[Mall95] R. Malladi, J. Sethian, and B. Vemuri.
“Shape modeling with front propagation:
A level set approach”. IEEE Transactions
on Pattern Analysis and Machine Intelli-
gence, Vol. 17, No. 2, pp. 158–175, Febru-
ary 1995.

[McIn96] T. McInerney and D. Terzopoulos. “De-
formable models in medical image analy-
sis: a survey”. Medical Image Analysis,
Vol. 1, No. 2, pp. 91–108, 1996.

[Meta93] D. Metaxas and D. Terzopoulos. “Shape
and nonrigid motion estimation through
physics-based synthesis”. IEEE Transac-
tions on Pattern Analysis and Machine In-
telligence, Vol. 15, No. 6, pp. 580–591,
June 1993.

[Mill91] J. Miller, D. Breen, W. Lorensen,
R. O’Bara, and M. Wozny. “Geomet-
ric deformed models: a method for
extracting closed geometric models from
volume data”. In: In SIGGRAPH, Com-
puter Graphics Proceedings, pp. 217–226,
ACM SIGGRAPH, July 1991.

[Ohta03] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk,
and H.-P. Seidel. “Multi-level partition
of unity implicits”. ACM Trans. Graph.,
Vol. 22, No. 3, pp. 463–470, 2003.

[ORou98] J. O’Rourke. Computational Geometry in
C. Cambridge University Press, 1998.

[Said02] M. A. Said. “Polyline Approximation of
Single-Valued Digital Curves Using Alter-
nating Convex Hulls”. Computer Graphics
and Geometry, Vol. 4, pp. 75–99, 2002.

[Scan08] Scanny3d. “Scanny 3d laser scanners”.
2008. http://www.scanny3d.com.

[Shap04] “Shape Recovery Using Functionally Rep-
resented Constructive Models”. In: SMI
’04: Proceedings of the Shape Model-
ing International 2004, pp. 375–378, IEEE
Computer Society, Washington, DC, USA,
2004.

[Sith03] G. Sithole and G. Vosselman. “Automatic
Structure Detection in a Point-Cloud of an
Urban Landscape”. In: Remote Sensing
and Data Fusion over Urban Areas, 2nd
GRSS/ISPRS Joint Workshop, pp. 67–71,
2003.

[Star05] B. Starly, A. Lau, W. Sun, W. Lau, and
T. Bradbury. “Direct slicing of STEP based
NURBS models for layered manufactur-
ing”. Computer-Aided Design, Vol. 37,
pp. 387–397, 2005.

[Terz87] D. Terzopoulos, A. Witkin, and M. Kass.
“Symmetry-seeking models and 3d object
reconstruction”. International Journal of
Computer Vision, Vol. 1, No. 3, pp. 211–
221, October 1987.

[Thom96] W. Thompson, H. de St. Germain, T. Hen-
derson, and J. Owen. “Constructing high-
precision geometric models from sensed
position data”. In: Proc. ARPA Image Un-
derstanding Workshop, February 1996.

[Thom99] W. Thompson, J. Owen, H. de St. Germain,
S. Stark, and T. Henderson. “Feature-
Based Reverse Engineering of Mechanical
Parts”. Trans. Robotics and Automation,
Vol. 15, No. 1, pp. 57–66, 1999.

[Vara97] T. Varady, R. Martin, and J. Cox. “Re-
verse Engineering of Geometric models,
An Introduction”. Computer-Aided De-
sign, Vol. 29, No. 4, pp. 255–269, 1997.

[Wu04] Y. Wu, Y. Wong, H. Loh, and Y.F.Zhang.
“Modelling cloud data using an adaptive
slicing approach”. Computer-Aided De-
sign, Vol. 36, pp. 231–240, 2004.

WSCG 2009 Full papers proceedings 144 ISBN 978-80-86943-93-0

Integrating Tensile Parameters in Hexahedral Mass-Spring
System for Simulation

V. Baudet, M. Beuve, F. Jaillet, B. Shariat, F. Zara

Université de Lyon, CNRS
Université Lyon 1,

LIRIS, SAARA team, UMR5205,
F-69622, Villeurbanne, France

firstname.name@liris.cnrs.fr

ABSTRACT
Besides finite element method, mass-spring systems are widely used in Computer Graphics. It is indubitably the
simplest and most intuitive deformable model. This discrete model allows to perform interactive deformations with
ease and to handle complex interactions. Thus, it is perfectly adapted to generate visually plausible animations.
However, a drawback of this simple formulation is the relative difficulty to control efficiently physically realistic
behaviors. Indeed, none of the existing models has succeeded in dealing with this satisfyingly. We demonstrate
that this restriction cannot be over-passed with the classical mass-spring model, and we propose a new general 3D
formulation that reconstructs the geometrical model as an assembly of elementary hexahedral "bricks". Each brick
(or element) is then transformed into a mass-spring system. Edges are replaced by springs that connect masses
representing the vertices. The key point of our approach is the determination of the stiffness springs to reproduce
the correct mechanical properties (Young’s modulus and Poisson’s ratio) of the reconstructed object. We validate
our methodology by performing some numerical experiments. Finally, we evaluate the accuracy of our approach,
by comparing our results with the deformation obtained by finite element method.

Keywords
Discrete Modeling, Physical Simulation, Mass-Spring System, Rheological Parameters.

1 INTRODUCTION
Finite elements methods (FEM) are generally used to
accurately simulate the behavior of 3D deformable ob-
jects. They require a rigorous description of the bound-
ary conditions. The amplitudes of the applied strains
and stresses must be well defined in advance to choose
either a small - with Cauchy’s description - or a large
deformation context - with St Venant Kirchoff’s de-
scription. Indeed, the accuracy of each context is op-
timized within its domain of deformation.

Mass-spring systems (MSS) have largely been used
in animation, because of their simple implementation
and their possible applications for a large panel of de-
formations. They consist in describing a surface or
a volume with a mesh in which the global mass is

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

uniformly distributed over the mesh nodes. The ten-
sile behavior of the object is simulated by the action
of springs, connecting the mesh nodes. Then, New-
ton’s laws govern the dynamics of the model, and the
system can be solved by solving Ordinary Differen-
tial Equations (ODEs) via numerical integration over
time. In computer graphics, MSS based animations
are generally proposed to deal with interactive applica-
tions and to allow unpredictable interactions. They are
adapted to virtual reality environments where many un-
predicted collisions may occur and objects can undergo
deformations and/or mesh topology changes. Medical
or surgery simulators present another example of their
possible applications. Nevertheless these models gener-
ally fail to represent accurately the behavior of real ob-
jects, characterized by Young’s modulus and Poisson’s
ratio (parameterization problem).

In this paper, our aim is not a comparative study of
MSS and FEM models. The goal is to propose a new
solution to enhance the MSS, making them more com-
patible with the requirements of physical realism. Sec-
tion 2 presents a state of the art of mass-spring systems
and particularly their parameterization. Moreover, in

WSCG 2009 Full papers proceedings 145 ISBN 978-80-86943-93-0

this section, we present published solutions allowing
the determination of springs constant to obtain a realis-
tic behavior of the simulated object. Section 3 presents
our approach to calculate stiffness constants of springs
according to tensile parameters of the simulated object.
Section 4 presents some experimental results. Finally,
some concluding remarks and perspectives are given in
section 5. Then, Appendix A provides a more detailed
explanation of some results presented in section 3.2.

2 RELATED WORK
Mass-spring systems have been used to model tex-
tiles [KEH04, LJF+91, Pro95], long animals such as
snakes, or soft organic tissues, such as muscles, face or
abdomen, where the cutting of tissue can be simulated
[MLM+05, MC97, NT98, Pal03]. Moreover, these sys-
tems have been used to describe a wide range of differ-
ent elastic behaviors such as anisotropy [Bou03], het-
erogeneity [TW90], non linearity [Bou00] and also in-
compressibility [PBP96].

However, where FEMs are built upon elasticity the-
ory, mass-spring models are generally far from accu-
rate. Indeed, springs stiffness constants are generally
empirically set and consequently, it is difficult to repro-
duce, with these models, the true behavior of a given
material. Thus, if the MSS have allowed convincing
animations for visualization purposes, their drawbacks
refrain the generalization of their use when greater reso-
lution is required, like for mechanical or medical simu-
lators. An extensive review can be found in [NMK+06].

The graphics community has proposed so-
lutions based on simulated annealing algo-
rithms [DKT95, LPC95] to estimate spring stiffness
constants to mimic correctly material properties. Usu-
ally, these solutions consist in applying random values
to different springs constants and in comparing the
behavior of the obtained model with some mechanical
experiments in which results are either well known
analytically or can be obtained numerically. Then, the
stiffness constants of the springs that induce the great-
est error are corrected to minimize the discrepancies.
More recently, Bianchi et al. [BSSH04] proposed a
similar approach based on genetic algorithms using
reference deformations simulated with finite element
methods. However, the efficiency of these approaches
depends on the number of springs and is based on
numerous mechanical tests leading to a quite expensive
computation. Moreover, the process should be repeated
after any mesh alteration and the lack of a reference
solution is an obstacle to the generalization of the
method to other cases.

Instead of a trial-and-error process, a formal solution
that parameterizes the springs should save computer
resources. In this context, two approaches were ex-
plored. The Mass-Tensor approach [CDA99, PDA03]
aims at simplifying finite element method theory by a

discretization of the constitutive equations on each ele-
ment. Despite of its interest, this approach requires pre-
computations and the storage of an extensive amount
of information for each mesh component (vertex, edge,
face, element).

The second approach has been proposed by
Van Gelder [Van98] and has been referenced
in [Bou03, BO02, Deb00, MBT03, Pal03, WV97]. In
this approach, Van Gelder proposes a new formulation
for triangular meshes, allowing the calculation of
springs stiffness constant according to elastic param-
eters of the object to simulate (Young’s modulus E,
and Poisson’s ratio ν). This approach combines the
advantages of an accurate mechanical parameterization
with a hyper-elastic model, enabling either small or
large deformations. However, numerical simulations
completed by an Lagrangian analysis exhibited the
incompatibility of the proposal with the physical
reality [BBJ+07, Bau06]. Indeed, the Van Gelder’s
approach is restricted to ν = 0. An extension of
Van Gelder’s method has been recently presented
in [LSH07] for tetrahedra, hexahedra and some other
common shapes, but still remains limited to ν = 0,3
that prevents their use when accurate material proper-
ties are required. Finally Delingette [Del08] proposed
a formal connection between springs parameters
and continuum mechanics for the membranes. He
succeeded to simulate realistically the behavior of a
membrane for the specific case of the Poisson’s ration
ν = 0,3 with regular MSS. The extension of this
approach to 3D is not yet available.

3 OUR PARAMETERIZATION AP-
PROACH

Our approach is based on hexahedral mesh, as currently
used with the FEM. To better demonstrate the basis of
our solution, we begin with the parameterization of a
2D rectangular mass-spring systems (MSS). Indeed, as
in FEM, any complexes object can be obtained by the
assembly of these 2D elements [Bau06]. Then, we ex-
tend our solution to 3D elements.

3.1 Case of a 2D element

At rest, the dimension of a given 2D rectangular ele-
ment of our mesh is l0×h0. This element is composed
of four edge springs with two diagonal edge springs to
integrate the role of the Poisson’s ratio. This configu-
ration implies the same stiffness constant for the both
diagonal springs (kd) and an equal stiffness constant
for springs laying on two parallel edges (kl0 and kh0).
With such boundary conditions, the elastic parameters
(Young’s modulus E and Poisson’s ratio ν) of the bar
elongated by a force ~F , generating a stretch η and a

WSCG 2009 Full papers proceedings 146 ISBN 978-80-86943-93-0

compression of 2δ at equilibrium, are defined by (see
Fig. 1):

ν =
2δ/l0
η/h0

, E =
F/l0
η/h0

. (1)

mm

m m

k d

k
h

0

h
0

l0

kl0

F

F

0

η

h
0

l
δ δ

Figure 1: (Left) 2D rectangular element with three
pairs of strings: kl0 , kh0 and kd . (Right) Elongation test

of the bar.
In addition to the Young’s modulus and the Poisson’s

ratio, the model should simulate correctly the reaction
of the object to shearing strains (correct shear modulus).

In 2D, the shearing modulus is measured by apply-
ing two opposed forces F resulting in shear stress F/l0
on two opposite edges of the rectangular element. The
material response to shearing stress is a lateral devia-
tion with an angle θ and a displacement η (see Fig. 2).

Θ

F

F

Figure 2: Experimentation to measure the 2D shear
modulus: a rectangular element is subject to 2 opposed
forces, generating a deviation θ and a displacement η .

Shear modulus is then defined as:

G =
tan(θ)×F

l0
=

Fh0

l0η
' θ ×F

l0
when θ → 0.

For linear elastic, isotropic and homogeneous materials,
this coefficient is linked to the Young’s modulus and the
Poisson’s ratio by E = 2G(1+ν).

Then, to determinate the spring coefficients that per-
mit to simulate correctly these mechanical experiments,
we follow these four steps [Bau06] detailed later:

1. For each experiment, we define the Lagrangian
equation (sum of potential energies).

2. We apply the principle of least action to get the New-
ton equations.

3. We apply the definition of the measured mechanical
characteristics to build a set of equations linking the
spring coefficients to the mechanical characteristics.

4. Then, we solve the whole system.

First, we begin the parameterization with the shear-
ing experiment. Indeed, only the diagonal springs are
stressed in this experiment. Thus, the Lagrangian equa-
tion defining this characteristic depends only on kd .
This means that the diagonal springs are totally corre-
lated to the shear modulus and that their stiffness con-
stant can be calculated independently of the two oth-
ers spring coefficients. The deformation of the diagonal
springs is defined by:

δd =
√

(l0±η)2 +h2
0 −

√
l2
0 +h2

0

∼ ±η l0√
l2
0 +h2

0

+O(n2)

Thus, the Lagrangian equation for the shearing is de-
fined by:

L = Fη − kd
η2l2

0

l2
0 +h2

0

Then the minimization of the energy is done for:

∂L
∂η

= F− kd
2η l2

0

l2
0 +h2

0

So we obtain:

η =
F(l2

0 +h2
0)

2l2
0kd

Finally, using the definition of the shearing and its link
with E and ν for isotropic and homogeneous materials,
we obtain the following relation:

kd =
E
(
l2
0 +h2

0
)

4l0h0 (1+ν)
.

Note that, for a square mesh element, we obtain:

kd =
E

2(1+ν)
= G.

Then, we continue the parameterization to find kl0
and kh0 by doing two elongation experimentations
in lateral and longitudinal direction. We obtain four
equations with two equations from each elongation
experiment [Bau06]. This over-constrained system
admits one solution for ν = 0.3, as stated by Lloyd et
al. [LSH07] and Delingette [Del08]. This result is not
satisfactory because we wish to simulate the behavior
of any real material. Consequently, we have to add two
degrees of freedom to solve this problem.

We note that the Poisson’s ratio defines the thinning
at a given elongation, i. e. it determines the forces or-
thogonal to the elongation direction. Thus, we intro-
duced for each direction a new variable that represents
this orthogonal force. The force orthogonal to h0 (resp.
l0) is noted F⊥h0 (resp. F⊥l0) (see Fig. 3). Thus, the ad-
dition of these 2 new variables leads to a system of 4

WSCG 2009 Full papers proceedings 147 ISBN 978-80-86943-93-0

equations with 4 unknowns. Note that this kind of cor-
rection is equivalent to the reciprocity principle used in
finite elements methods [Fey64].

For a constraint Fh0 according to h0, we obtain the
following Lagrangian equation:

L = Fh0η−4F⊥h0(2δ)−4kl0δ
2−kh0η

2−kd

h0η−2l0δ√
h2

0 + l2
0

2

.

F
σ

F F

F

Figure 3: Correction forces.

By following the same line as for the shearing La-
grangian, we find the expressions of η and δ . Then, us-
ing the definitions of the Young modulus and the Pois-
son’s ratio, we obtain kl0 and kh0 , but according to this
new potential. By setting the symmetry of kl0 with kh0 ,
we can restrain F⊥ and obtain the relations for kl0 , kh0
and F⊥h0 . Note that, the experimentation according to
l0 permits to obtain the same stiffness constants and for-
mulation for the corrective force. Finally, the solution
of the new system is (with (i, j) ∈ {l0,h0}2 with i 6= j):

ki =
E
(

j2 (3 ν +2)− i2
)

4 l0 h0 (1+ν)
, F⊥i =

i Fi (1−3ν)
8 j

.

As said before, the symmetry involves that the 6
springs of each element are only defined by three spring
coefficients and the elongation/compression correction
forces.

3.2 Generalisation to 3D elements
Our 3D model is the generalization of our 2D approach,
by the use of parallelepiped elements. Let’s consider
this element with rest dimensions x0× y0× z0. As in
2D, to ensure homogeneous behavior, springs laying on
parallel edges need to have the same stiffness constant.
Thus, we have to determine only 3 stiffness coefficients
for these edges: kx0 , ky0 and kz0 . In addition, some di-
agonal springs are necessary to reproduce the thinning
induced by the elongation. Fig.4 displays three possible
configurations for these diagonal links:

• diagonal springs located on all the faces (M1),

• only the inner diagonals (M2),

• the combination of both inner and face diagonals
(M3).

Figure 4: Three possible configurations for integrating
the diagonal links in the 3D element composition.

Prior to the above configuration choice, let’s present
our springs parameterization approach. As in 2D, we
propose a methodology within the Lagrangian frame-
work, and according to the following procedure. For
each experiment that defines an elastic characteristic:

1. We build the Lagrangian as the sum of the potential
of springs due to elongation as well as the potential
of external forces, since kinetic term is null.

2. We establish a Taylor’s expansion of the Lagrangian
to the second order in deformations and apply the
principle of least action. It reads linear equations.

3. We obtain a set of equations, since the mechanical
characteristics are input parameters. We solve this
system to get stiffness coefficients.

To solve the system, the number of unknowns has to
be equal to the number of equations (constraints). Three
equations result from each elongation experiment (one
for the Young’s modulus and one for the Poisson’s ra-
tio along each direction orthogonal to the elongation).
Thus, we obtain 9 equations for all the elongation di-
rections. Moreover, 6 more equations have to be added
to take into account the shear modulus (6 experiments).

Three degrees of freedom stem from the parallel edge
(kx0 , ky0 , kz0), but the total number of freedom degrees
depends on the diagonal spring configuration. Note
that, for small shearing (θ ≈ 0), only diagonal springs
are stressed. Thus, the Lagrangian equation defining
this characteristic depends only on the stiffness con-
stants kdi of the different diagonals. This means that
the diagonal springs constant can be determined inde-
pendently of the other stiffness coefficients.

M1 M2 M3
Nb of unknown for shearing 3 1 4
Nb of unknown for elongation 3+(3) 3+(1) 3+(4)
Total nb of unknown stiffness cst. 6 4 7

Nb of equations for elongation 9 9 9
Nb of equations for shearing 6 3 6
Total number of equations 15 12 15

Table 1: Number of equations and unknowns according
to the chosen geometry.

We summarize the number of degrees of freedom
and the number of equations in Table 1 according to
the possible configurations of the system. We observe

WSCG 2009 Full papers proceedings 148 ISBN 978-80-86943-93-0

that all the geometrical configurations bring to an over-
constraint system. Nevertheless, the configuration (M2)
is less constrained than the others. Thus, we chose this
configuration which corresponds to the model with only
the inner diagonals in which the 4 diagonal springs have
the same stiffness constant noted kd .

Like in 2D, we begin the parameterization with the
shearing experiment. As mentioned above, the inner
diagonals fully define the shearing modulus. The prob-
lem is that there is only 1 diagonal spring variable for 3
shearing equations (see Table 1). Each equation, corre-
sponding to one particular direction i (i ∈ {x0,y0,z0}),
leads to a different solution (using the same reasoning
as in 2D):

kdi =
E i ∑ j∈{x0,y0,z0} j2

8(1+ν)Π{l∈{x0,y0,z0},l 6=i}l
.

However an unique solution can be obtained for a cu-
bic element (i. e. with x0 = y0 = z0). In this case kd is
well defined proportionally to G, with:

kd =
3Ex0

8(1+ν)
. (2)

Thus, we constrain the mesh element to a cube and
we continue our parameterization with the elongation
experimentations to obtain the stiffness constants of the
others edge springs. The non-diagonal edges are iden-
tical and their spring stiffness constant is noted kx. This
stiffness coefficient has to satisfy two relations (E and
ν). One solution can be found for the Poisson’s ratio
ν = 0.25 but this is not a versatile solution, thus un-
satisfying (a complete demonstration can be found in
Appendix A).

Since the number of equations is greater than the
number of degrees of freedom, we introduce as in 2D,
correction forces. Thus, two new forces induced by the
elongation are added. For the sake of symmetry, the
amplitude of the forces is identical in both directions.
This amplitude F⊥ is the new degree of freedom (see
Fig. 3).

This new additional variable leads to a system of 2
equations with 2 unknowns. After resolution, we ob-
tain the following relations for i∈ {x0,y0,z0} (using the
same reasoning as in 2D):

kx =
Ex(4ν +1)

8(1+ν)
, F⊥i =−Fi (4ν−1)

16
.

Since all the stiffness coefficients and the added com-
pressive forces are now determined for a mesh element,
we can tackle the simulation of any object composed
of mesh elements. Then, the simulation of an object
results from the simulation of the deformation of each
single element that constitutes the object. For this, we
need to:

1. Compute all the forces applied to an element. These
forces can be (i) internal, including forces due to
springs and correction forces, or (ii) external, like
gravity or reaction forces due to neighborhood.

2. Calculate accelerations and velocities according to
a numerical integration scheme such as explicit or
implicit Euler scheme, Verlet method,

3. Displace each mesh node consequently.

Note that, to compute the correction forces applied to a
mesh element face, we need to compute the elongation
force. This elongation force is the component of the
sum of all applied forces to a face, in the direction of
face normal vector.

The next section will describe numerical experimen-
tations.

4 EVALUATION OF THE 3D MODEL
We propose now to qualify the mechanical properties
of our system. For this, we have carried out several
tests. Note that, we do not provide some performance
results, because the main advantage of our method is to
propose a solution that do not add any cost in a classical
animation.

Deflection experiment
The deflection experience (construction or structural

element bends under a load) is recommended to vali-
date mechanical models. It constitutes a relevant test to
evaluate (a) the mass repartition, and (b) the behavior
in case of large deformations (inducing large rotations,
especially close to the fixation area).

This test consists in observing the deformation of a
beam anchored at one end to a support. At equilib-
rium, under gravity loads, the top of the beam is under
tension while the bottom is under compression, leaving
the middle line of the beam relatively stress-free. The
length of the zero stress line remains unchanged (see
Fig. 5).

In case of a null Poisson’s ratio, the load induced de-
viation of the neutral axis is given by:

y(x) =
ρg

24 EI

(
6 L2x2−4 L x3 + x4) (3)

for a parallelepiped beam of inertia moment
I = T H3/12, and with linear density ρ = M/L.

We notice that results are dependent of the sampling
resolution, as for any other numerical method, however
the fiber axis profile keeps close to the profile given by
equation (3). Figure 5 displays some results for a can-
tilever beam of dimensions 400×100×100 mm, with
Young’s modulus equals to 1000 Pa, Poisson’s ratio to
0.3 and a mass of 0.0125 Kg.m−3. By looking at the
displacement errors at each mesh node, we observe that
the error is decreasing when the sampling is improved:

WSCG 2009 Full papers proceedings 149 ISBN 978-80-86943-93-0

the maximum error in the sampling 4× 1× 1 is about
45% while it is about 5% compared to a FEM reference
result, for a resolution of 16×4×4, proving again the
convergent behavior of our technique.

(a) (b)

(c) (d)
(b) 4×1×1: M=16.31%, SD=2.83%, MAX=38%.
(c) 8×2×2: M=7.08%, SD=0.58%, MAX=16.7%.
(d) 16×4×4: M=0.68%, SD=0.03%, MAX=4.05%.

Figure 5: Deflection experiment: (a) Cantilever neu-
tral axis deviation, (b-d) the reference FEM solution (in
color gradation) with superimposition of various sim-
ulations performed for different sampling resolutions

(wire mesh).

Shearing experiment: Illustration on a non-
symmetric composition

For the shearing experiment, we have chosen a L-like
object fixed at its base. We apply a constant force to the
edges orthogonal to the base. Figure 6 shows our re-
sults superimposed to the FEM solution, with a map
of error in displacement. The object dimensions are
4000×4000×4000mm. The mechanical characteristics
are: Young’s modulus of 1kPa, Poisson’s ratio of 0.3
and an applied force of 0.3GN. In this experiment, we
have neglected the mass. Again we clearly observe that
our model behaves as expected: better mesh resolution
leads to better results. Moreover, the dissymmetry of
the geometry does not influence the accuracy of the re-
sults.

3D deformable object simulation
An example of application is depicted on Fig. 7. By

dragging points, we applied some external forces on an
initial hexahedral meshing of a puma, leading to pro-
duce the head lateral movement. Note that the initial
choice of a parallelepiped shape is absolutely not a con-
straint in most applications. This choice has been mo-
tivated by the fact that it is considered by the numeri-
cal community as stable and more precise for the same
number of elements than a tetrahedral mesh element.

This is to be counterbalanced by the fact that it requires
generally more elements to fit a non simple geometry.
Anyway, for better visualization or collision detection
purposes, it is easy to fit a triangular skin on our hexa-
hedral model, as shown on Fig. 7.

(a) (b)

(c) (d)
(b) 2×2×2: M=6.99%, SD=0.94%, MAX=18%.
(c) 4×4×4: M=3.37%, SD=0.20%, MAX=7%.
(d) 8×8×8: M=0.66%, SD=0.01%, MAX=1.6%.

Figure 6: Experiment on a non-symmetric object: (a)
load scheme, (b-d) the reference FEM solution (in color
gradation) with superimposition of various simulations

performed for different mesh resolutions.

Figure 7: A complete 3D application: simulation of the
head lateral movement at different steps.

WSCG 2009 Full papers proceedings 150 ISBN 978-80-86943-93-0

5 CONCLUSION AND FUTURE
WORK

We proposed a mass-spring model that ensures fast
and physically accurate simulation of linear elastic,
isotropic and homogeneous material. It consists in
meshing any object by a set of cubic mass-spring el-
ements. By construction, our model is well character-
ized by the Young’s modulus and Poisson’s ratio. The
spring coefficients have just to be initialized according
to simple analytic expressions. The precision of our
model have been given, by comparing our results with
those obtained by a finite element method, chosen as
reference.

In the future, we are looking to apply the same tech-
niques to other geometrical elements, for example tetra-
hedron or any polyhedron. This would increase the
geometrical reconstruction possibilities and would of-
fer more tools for simulating complex shapes, although
in the actual state, the hexahedral shape is not a con-
straint in many applications ranging from mechanics to
medicine. If desired, a triangulation of the surface can
be performed with ease and at reduced computational
cost.

Mesh optimization or local mesh adaptation would
probably improve the efficiency of the model. For ex-
ample, we can modify the resolution in the vicinity of
highly deformed zones, reducing large rotations of ele-
ments undergoing heavy load.

We exhibited that our model can support reasonably
large deformations. The accuracy increases with the
mesh resolution. This is a major improvement rela-
tively to early techniques, as it is generally dependent
to the mesh resolution and topology. However, it may
be interesting to investigate a procedure to update the
spring coefficients and corrective forces when the de-
formations become too large. In this case, the elastic
behaviour will be lost (the initial shape will not be re-
covered), but this may allow to handle strong topology
alteration, even melting.

APPENDIX A

Demonstration: nonexistence of a 3D general solu-
tion

Being a cubic element with edge of length x0. Con-
sequently, face diagonals are of length d f ace =

√
2 x0,

and cube diagonals dcube =
√

3 x0. Spring stiffness are
equal along the edges (Kx = Ky = Kz), as well for faces:
(Kxy = Kxz = Kyz, denoted Kxx).

By symmetry in the cube, all 6 shearings are equiva-
lent and can be resumed into a single equation. A shear-
ing stress due to a sliding η leads to the deformation of

the 4 cube diagonals as well as the 4 diagonals of the 2
lateral faces, respectively ∆dcube and ∆d f ace :

∆dcube =
√

(x+η)2 +2x2 −
√

3 x ∼
√

3
3 η

∆d f ace =
√

(x+η)2 + x2 −
√

2 x ∼
√

2
2 η

The static Lagrangian linked to shearing is reckoned in
the following way:

L = Fcisη−
4Kd

2
η2

3
− 4Kxx

2
η2

2

After resolution, they find the equation of shearing in
Kxx and Kd :

4Kd +6Kxx

3x
=

E
2(1+ν)

(4)

We can consequently incorporate the compressibility
law. For this, we apply an uniform pressure to the cube,
which generates an uniform distortion η . This defor-
mation leads as well to the (identical) deformation of
all the diagonals:

∆dcube =
√

3(x+η)2 −
√

3 x ∼
√

3 η

∆d f ace =
√

2(x+η)2 −
√

2 x ∼
√

2 η

Pressures being applied at each face are equal and
this implicates the same surface force Ff ace. The La-
grangian is as follows:

L = 3Ff aceη− 12Kx

2
η

2− 12Kxx

2
2η

2− 4Kd

2
3η

2

After resolution, compressibility equation is:

K = − ∆P
∆V/V0

Ff ace/(x+η)2(
(x+η)3− x3

)
/x3

∼
Ff ace

3xη

=
E

3(1−2ν)

Hence,

4Kx +8Kxx +4Kd

3x
=

E
3(1−2ν)

(5)

We can now deal with equations governing a tensile
stress η ; by symmetry other directions are compressed
of the same value, δ . So, two faces (f ace2) are shrieked
by keeping their square shape, while the other 4 are
stretched (f ace1). Diagonals are deformed in the fol-
lowing way:

∆dcube =
√

(x+η)2 +2(x−2δ)2 −
√

3 x ∼
√

3
3 η− 4

√
3

3 δ

∆d f ace1
=
√

(x+η)2 +(x−2δ)2 −
√

2 x ∼
√

2
2 η−

√
2 δ

∆d f ace2
=
√

2(x−2δ)2 −
√

2 x ∼−2
√

2 δ

WSCG 2009 Full papers proceedings 151 ISBN 978-80-86943-93-0

The Lagrangian associated to the tensile experiment:

L = Fη−2Kxη
2−16Kxδ

2−16Kxxδ
2

−4Kxx

(√
2

2
η−

√
2 δ

)2

−2Kd

(√
3

3
η− 4

√
3

3
δ

)2

After resolution, Young modulus and Poisson ratio def-
initions lead to:

E =
12KdKxx +24K2

xx +24K2
x +60KxKxx +24KxKd

x(6Kx +9Kxx +4Kd)

ν =
2Kd +3Kxx

6Kx +9Kxx +4Kd
(6)

These equations (eq. (4), (5) and (6)) cannot be
solved (except for ν = 0.25), what establish a strong re-
sult, since it implicates that it is unfortunately not possi-
ble to reproduce an elastic homogeneous behavior only
with this simplistic model. As in 2D corrective forces
should be introduced.

Aknowledgements
We thank the ETOILE (Espace de Traitement Oncologique par Ions
Légers, http://www.centre-etoile.org/) project for its support.

REFERENCES
[Bau06] Vincent Baudet. Modélisation et simulation paramétra-

ble d’objets déformables. PhD thesis, Université Lyon
1, 2006.

[BBJ+07] Vincent Baudet, Michaël Beuve, Fabrice Jaillet, Behzad
Shariat, and Florence Zara. A new mass-spring system
integrating elasticity parameters in 2d. Technical Report
RR-LIRIS-2007-003, February 2007.

[BO02] Cynthia Bruyns and Mark Ottensmeyer. Measurements
of soft-tissue mechanical properties to support develop-
ment of a physically based virtual anima model. In MIC-
CAI 2002, pages 282–289, 2002.

[Bou00] François Boux de Casson. Simulation dynamique de
corps biologiques et changements de topologie interac-
tifs. PhD thesis, Université de Savoie, 2000.

[Bou03] David Bourguignon. Interactive Animation and Model-
ing by Drawing - Pedagogical Applications in Medicine.
PhD thesis, Institut National Polytechnique de Greno-
ble, 2003.

[BSSH04] Gérald Bianchi, Barbara Solenthaler, Gàbor Székely,
and Matthias Harders. Simultaneous topology and stiff-
ness identification for mass-spring models based on
FEM reference deformations. In Springer-Verlag, edi-
tor, MICCAI 2004, pages 293–301, Berlin, 2004.

[CDA99] Stéphane Cotin, Hervé Delingette, and Nicholas Ay-
ache. Efficient linear elastic models of soft tissues
for real-time surgery simulation. Proceedings of the
Medecine Meets Virtual Reality (MMVR 7), 62:100–
101, 1999.

[Deb00] Gilles Debunne. Animation multirésolution d’objets dé-
formables en temps réel, Application à la simulation
chirurgicale. PhD thesis, Institut National Polytech-
nique de Grenoble, 2000.

[Del08] Herve Delingette. Triangular springs for modeling non-
linear membranes. IEEE Transactions on Visualization
and Computer Graphics, 14(2):329–341, 2008.

[DKT95] O. Deussen, L. Kobbelt, and P. Tucke. Using simulated
annealing to obtain good nodal approximations of de-
formable objects. In Springer-Verlag, editor, Proceed-
ings of the Sixth Eurographics Workshop on Animation
and Simulation, pages 30–43, Berlin, 1995.

[Fey64] R. Feynman. The Feynman Lectures on Physics, vol-
ume 2. Addison Wesley, 1964. chapter 38.

[KEH04] Michael Keckeisen, Olaf Etzmuß, and Michael Hauth.
Physical models and numerical solvers for cloth anima-
tions. In Simulation of Clothes for Real-time Applica-
tions, volume Tutorial 1, pages 17–34. INRIA and the
Eurographics Association, 2004.

[LJF+91] A. Luciani, S. Jimenez, J. L. Florens, C. Cadoz,
and O. Raoult. Computational physics: A modeler-
simulator for animated physical objects. In Proceedings
of Eurographics 91, pages 425,436, Amsterdam, 1991.
Eurographics.

[LPC95] Jean Louchet, Xavier Provot, and David Crochemore.
Evolutionary identification of cloth animation models.
In Springer-Verlag, editor, Proceedings of the Sixth
Eurographics Workshop on Animation and Simulation,
pages 44–54, Berlin, 1995.

[LSH07] B.A. Lloyd, G. Székely, and M. Harders. Identification
of spring parameters for deformable object simulation.
IEEE Trans. on Visualization and Computer Graphics,
13(5):1081–1094, Sept-Oct 2007.

[MBT03] Anderson Maciel, Ronan Boulic, and Daniel Thalmann.
Deformable Tissue Parameterized by Properties of Real
Biological Tissue, volume 2673 of Lecture Notes in CS:
Surgery Simulation and Soft Tissue Modeling, pages 74–
87. Springer, 2003.

[MC97] Philippe Meseure and Christophe Chaillou. Deformable
body simulation with adaptative subdivision and cut-
tings. In 5th Int. Conf. in Central Europe on Comp.
Graphics and Visualisation WSCG’97, pages 361–370,
1997.

[MLM+05] U. Meier, O López, C. Monserrat, M. C. Juan, and
M. Alcañiz. Real-time deformable models for surgery
simulation : a survey. Computer Methods and Programs
in Biomedicine, 77(3):183–197, 2005.

[NMK+06] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and
M. Carlson. Physically based deformable models
in computer graphics. Computer Graphics Forum,
25(4):809–836(28), December 2006.

[NT98] L. Porcher Nedel and D. Thalmann. Real-time mus-
cles deformations using mass-spring systems. Com-
puter Graphics International, pages 156–165, 1998.

[Pal03] Céline Paloc. Adaptative Deformable Model (allow-
ing Topological Modifications) for Surgical Simulation.
PhD thesis, University of London, 2003.

[PBP96] Emmanuel Promayon, Pierre Baconnier, and Claude
Puech. Physically based deformation constrained in dis-
placements and volume. In Proceedings of Eurograph-
ics’96, Oxford, 1996. BlackWell Publishers.

[PDA03] Guillaume Picinbono, Hervé Delingette, and Nicholas
Ayache. Non-linear anisotropic elasticity for real-time
surgery simulation. Graphical Model, 2003.

[Pro95] Xavier Provot. Deformation constraints in a mass-
spring model to describe rigid cloth behavior. In
Proceedings of Graphics Interface 95, pages 147,154,
Toronto, 1995. Canadian Human-Computer Communi-
cations Society.

[TW90] D. Terzopoulos and K. Waters. Physically-based facial
modelling, analysis, and animation. The Journal of Vi-
sualization and Computer Animation, 1:73–80, 1990.

[Van98] Allen Van Gelder. Approximate simulation of elastic
membranes by triangulated spring meshes. Journal of
Graphics Tools, 3(2):21–42, 1998.

[WV97] Jane Wilhelms and Allen Van Gelder. Anatomi-
cally based modelling. In Computer Graphics (SIG-
GRAPH’97 Proceedings), pages 173–180, 1997.

WSCG 2009 Full papers proceedings 152 ISBN 978-80-86943-93-0

CUDA based Level Set Method for 3D Reconstruction of
Fishes from Large Acoustic Data

Ojaswa Sharma
Department of Informatics and

Mathematical Modelling
Technical University of Denmark,

Denmark
os@imm.dtu.dk

François Anton
Department of Informatics and

Mathematical Modelling
Technical University of Denmark,

Denmark
fa@imm.dtu.dk

ABSTRACT

Acoustic images present views of underwater dynamics, even in high depths. With multi-beam echo sounders (SONARs), it
is possible to capture series of 2D high resolution acoustic images. 3D reconstruction of the water column and subsequent
estimation of fish abundance and fish species identification is highly desirable for planning sustainable fisheries. Main hurdles
in analysing acoustic images are the presence of speckle noise and the vast amount of acoustic data. This paper presents a level
set formulation for simultaneous fish reconstruction and noise suppression from raw acoustic images. Despite the presence of
speckle noise blobs, actual fish intensity values can be distinguished by extremely high values, varying exponentially from the
background. Edge detection generally gives excessive false edges that are not reliable. Our approach to reconstruction is based
on level set evolution using Mumford-Shah segmentation functional that does not depend on edges in an image. We use the
implicit function in conjunction with the image to robustly estimate a threshold for suppressing noise in the image by solving
a second differential equation. We provide details of our estimation of suppressing threshold and show its convergence as the
evolution proceeds. We also present a GPU based streaming computation of the method using NVIDIA’s CUDA framework to
handle large volume data-sets. Our implementation is optimised for memory usage to handle large volumes.

Keywords: 3D reconstruction, Level Set method, Acoustic images, Noise suppression, GPU, CUDA.

1 INTRODUCTION

One of the areas of interest in fisheries research is to
reconstruct moving schools of fishes in a water column.
Presence of strong speckle noise is a major problem in
segmenting acoustic images. This makes selection of
a threshold for binary segmentation very difficult [23].
The main contribution of this paper is to design a level
set formulation that is well suited to reconstruct fishes
from acoustic images captured using multi-beam echo
sounders. The evolution of the level set equation is cou-
pled with a solution of another differential equation that
effectively removes the noise, enabling the level set to
converge to the objects of interest in the image.

Although hyperspectral underwater imagers provide
better imagery of underwater scenes, multibeam echo
sounders are not outdated by them and complement
them very well. The hyperspectral optical devices have
very short range (sometimes less than 1 m in the North
sea and in the Baltic). Acoustic sensors are still widely
used in underwater surveys.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Speckle noise in acoustic images is generally mod-
elled by the Rayleigh distribution [6, 5]. Quidu et al.
[23] estimate an optimal image filter size to compute
an estimate of a good threshold by pixel correlation.
Gagnon [7] shows numerical results of a wavelet do-
main based method for noise removal. Chen and Ra-
heja [4, 1] show a wavelet lifting based method where
the spatial correlation of acoustic speckle noise is bro-
ken by multiresolution analysis. In another approach
to use wavelet based methods, Isar et al. [10] present
a Bayesian-based algorithm. In a novel attempt to use
the Markov Random Field (MRF) to segment acous-
tic images, Mignotte et al. [17] use an unsupervised
scheme by employing an iterative method of estimation
called Iterative Conditional Estimation (ICE). The au-
thors used a maximum likelihood estimation to com-
pute the MRF prior model.

Krissian et al. [11] provide a variation of the
anisotropic diffusion process [22] constrained by
speckle noise model. Anisotropic diffusion provides an
intelligent way to perform diffusion without affecting
prominent edges in an image.

Level set based methods have been shown to suc-
cessfully restore noisy images [24]. Osher and Rudin
[20] developed shock filters for image enhancements.
Malladi and Sethian [16] have shown image smoothing
and enhancement based on curvature flow interpreta-
tion of the geometric heat equation. In a more recent
approach to use level set methods for acoustic image

WSCG 2009 Full papers proceedings 153 ISBN 978-80-86943-93-0

segmentation, Lianantonakis and Petillot [14] provide
an acoustic image segmentation framework using the
region based active contour model of Chan and Vese
[2]. The authors comment that the level set based model
has good regularisation properties similar to those of a
Markov random field [14].

A relevant work by Balabanian et al. [1] shows an
interactive tool for visualization of acoustic volumet-
ric data using a well known volume visualization tech-
nique called Ray-casting. Authors in [1] develop a tool
for manual selection by region growing and visualiza-
tion of moving fish schools using graphics hardware.
The work presented in this paper is intended to develop
mathematical models to automatically extract meaning-
ful features from acoustic data with no user interaction.
This work does not provide any tool for visual analysis,
rather it presents a computational framework for noise
suppression and 3D reconstruction.

This paper concentrates on using the level set meth-
ods for simultaneous suppression of noise and 3D re-
construction of relevant features. We limit features of
interest to fishes from acoustic images and provide a
level set based framework for acoustic image segmen-
tation. Image restoration techniques based on level set
evolution are generally oriented to segment the image
or to remove noise from it. Work by Lianantonakis
and Petillot [14] is closest to our approach since they
use active contours using Mumford-shah functional for
seabed classification, but together with extraction of
Haralick feature set for textural analysis. Our method
differs from theirs since it is not possible to rely on tex-
ture based classification in the absence of any specific
textures in the image.

Since acoustic data resulting from marine surveys
can result in gigabytes of information, we employ
GPU (Graphics Processing Unit) based computations
for 3D reconstruction. The GPU is not very suitable
for data intensive applications due to unavailability
of large memory on commodity hardware. A number
of publications suggest schemes to circumvent this
situation by performing computations in a streaming
manner [13, 12, 9], but most of the implementations
process 2D sections to generate a 3D reconstruction.
We present a Level Set method implementation with
computations performed entirely in 3D using the
3D textures (read only) available to the CUDA 2.0
framework. CUDA (Compute Unified Device Archi-
tecture) is a parallel programming model and software
environment designed to develop application software
that transparently scales its parallelism to leverage the
increasing number of processor cores on the GPU.
It allows programming computationally intensive
algorithms to take advantage of the available graphics
hardware. Our method is streaming and is optimised
for memory usage, consuming only twice the CPU
memory of the input volume.

The paper is organised as follows. In Section 2, we
present the preliminaries on the active contour model.
In Section 3, we present the work of Chan and Vese [2]
on minimising the Mumford-Shah functional in images.
In Section 4, we present our work on the noise suppres-
sion model which is solved together with the level set
equation. In Section 5, we present our CUDA imple-
mentation for 3D reconstruction of the fishes based on
the parallelisation of the results of Section 4. In Sec-
tion 6, we present the experimental results. Finally we
conclude the paper in Section 7.

2 BACKGROUND
Let an image I(x,y) be defined on a bounded open sub-
set Ω : {(x,y)|0≤ x,y≤ 1} of R2, with ∂Ω as its bound-
ary. I takes discrete values between 0 and (2n − 1)
where n is the number of bits used to store intensity.
The basic idea in active contour model is to evolve a
curve C(s) : [0,1]→ R2 by minimising the following
energy functional [19]:

E(C) = α

∫ 1

0
|C′|2 ds+β

∫
0
|C′′|ds−λ

∫ 1

0
|∇I(C)|2 ds,

where, α , β , and λ are positive parameters. In the
above energy functional, the evolution of curve C is
controlled by the internal energy (first two terms that
define the smoothness of the curve) and the external en-
ergy (the last term that depends on the edges present in
the image). The curve C can be represented by an im-
plicit function φ , C = {(x,y)|φ(x,y) = 0}, where the
evolution of C is given by the zero level curve at any
time t of the function φ(x,y, t).

With this formulation, an edge detector is defined as
a positive decreasing function g(∇I) based on the gra-
dient of image [22] such that

lim
|∇I|→∞

g(∇I) = 0

Therefore, the zero level curve evolves in the normal di-
rection and stops at the desired boundary where g van-
ishes.

Evolving the curve C in normal direction amounts to
solving the partial differential equation (PDE) [21]

∂φ

∂ t
= |∇φ |F (1)

with the initial condition φ(x,y,0) = φ0(x,y), where
φ0(x,y) is the initial contour. Motion by mean curva-
ture allows for cusps, curvature and automatic topolog-
ical changes [21, 3]. This results in the speed function
F = div

(
∇φ

‖∇φ‖

)
in terms of the curvature of φ

∂φ

∂ t
= |∇φ |div

(
∇φ

|∇φ |

)
,φ(x,y,0) = φ0(x,y)

where div(·) is the divergence operator.

WSCG 2009 Full papers proceedings 154 ISBN 978-80-86943-93-0

3 MINIMISING THE MUMFORD-
SHAH FUNCTIONAL IN IMAGE

Chan and Vese [3] provide an alternative approach to
the edge based stopping criterion. The authors sug-
gest the stopping term based on Mumford-Shah seg-
mentation techniques [18]. The motivation behind us-
ing this alternative stopping term is that in many cases,
the edges in an image are not very well defined. Either
it is ambiguous to position the edges across the gradient
due to smoothly varying intensities [3] or it is difficult
to select prominent edges due to presence of noise (as
in the case of acoustic images). The method of Chan
and Vese [3] is minimisation of an energy based seg-
mentation. Assuming that the image I is composed of
two regions of piecewise constant intensities of distinct
values Ii and Io, and that the object of interest is repre-
sented by Ii, we define the curve C to be its boundary.
Using the Heaviside function H, and the Dirac-Delta
function δ0,

H(z) =
{

1, if z≥ 0
0, if z < 0 , δ0(z) =

d
dz

H(z)

the energy functional is formulated as

E(c1,c2,C, t) =µ

∫
Ω

δ0(φ(x,y, t))|∇φ(x,y, t)|dxdy

+ν

∫
Ω

H(φ(x,y, t))dxdy

+λ1

∫
Ω

|I(x,y)− c1|2 dxdy

+λ2

∫
Ω

|I(x,y)− c2|2 dxdy (2)

where, µ ≥ 0, ν ≥ 0, λ1,λ2 > 0 are fixed parameters.
c1 and c2 are average intensity values inside and outside
C. The constants c1 and c2 can also be written in terms
of I and φ

c1 =
∫

Ω
I(x,y)H(φ(x,y, t))dxdy∫

Ω
H(φ(x,y, t))dxdy

, (3)

c2 =
∫

Ω
I(x,y)(1−H(φ(x,y, t)))dxdy∫

Ω
(1−H(φ(x,y, t)))dxdy

(4)

The variational level set approach gives the following
Euler-Lagrange equation [3]

∂φ

∂ t = δε(φ)
[
µ∇ · ∇φ

|∇φ | −ν−λ1(I− c1)2 +λ2(I− c2)2
]

(5)

with the initial condition, φ(x,y,0) = φ0(x,y) and

δε(z) =
∂

∂ z
Hε(z) = π

−1
ε
−1
(

1+
z2

ε2

)−1

(6)

where, the regularised one-dimensional Heaviside
function is given by:

Hε(z) =
1
2

(
1+

2
π

tan−1
(z

ε

))
.

Despite the fact that this model has advantages
over the edge based model in that it is able to detect
boundaries with smoothly varying intensities and
blurred edges, the main limitation comes from the fact
that it can only discriminate regions with different
mean intensities [14]. In particular, strong textures
pose a problem with this approach. Lianantonakis
and Petillot [14] solve this problem by extracting the
Harlick feature set based on the co-occurance matrix.

The acoustic images considered by Lianantonakis
and Petillot [14] are of the seabed. Such images show
strong textural variations of the bottom surface of the
sea. In this paper, we restrict ourselves to acoustic im-
ages of freely swimming fishes. While such images are
also corrupted by speckle noise, they do not show spe-
cific textural patterns. Figure 1(a) shows part of such
an image where the fish cross sections are discrimi-
nated by very high intensities compared to the back-
ground. The presence of reflectance from air bubbles
mixing into water, also contribute to the noise. While
working with level sets, a standard procedure is to keep
φ to a signed distance function [19]. A direct appli-
cation of the level set equation given by equation (5),
with φ(x,y,0) = 0 initialised to set of squares regularly
distributed over the image, shows that the evolution of
the level set eventually stops at the wrong place (see
figure 1(b)). Furthermore, lack of any specific textu-
ral patterns leads us to formulate a successive noise
suppression scheme where the Mumford-shah energy
functional is minimised while simultaneously removing
noise from the image. The later aids in fast convergence
of the level curve in our formulation.

Iteration:0+1i/100

(a) Initialisation contour.Iteration:50/100

(b) Result at convergence.

Figure 1: Application of the level set equation (5) .

WSCG 2009 Full papers proceedings 155 ISBN 978-80-86943-93-0

4 NOISE SUPPRESSION MODEL
As discussed before, acoustic images suffer from heavy
speckle noise. At first thought, it might sound reason-
able to apply a global threshold to the image to get
rid of the noise. However, this is not a plausible op-
tion since for a particular chosen threshold there might
be echo intensities of fishes lower than it and therefore
such a threshold will result in loss of information [25,
sec. 5.4.6, 6.3]. An adaptive threshold might also not
provide a solution since the speckle has a high local in-
tensity, and therefore could show false positives. There-
fore, we resort to global energy minimising methods to
suppress noise.

Considering the image I to be time varying, the basic
idea behind noise suppression is to solve the following
equation as an update step to the level set equation res-
olution in a single pass:

∂ I(x,y, t)
∂ t

= k ·max(0, ĉ− I(x,y, t)) (7)

where k is a constant and ĉ is a scalar parameter that
is computed as an optimal threshold at any time step t
based on φ(x,y, t) .

The computation of ĉ is based on the bounded subset
Ii given by

Ii(x,y, t) = I(x,y, t) ·Hε(φ(x,y, t)).

The values given by the set Ii are used to compute the
weighted median [26] as shown in algorithm 1 which is
used as ĉ at that particular time step t.

Input: I(x,y, t), Hε(x,y, t)
Output: ĉ
V = {vi : vi = I(x,y, t), x ∈ [1, l], y ∈ [1,m],

i ∈ [1,n], n = l ·m}
W = {wi : wi = Hε(x,y, t), x ∈ [1, l], y ∈ [1,m],

i ∈ [1,n], n = l ·m}
Sort V in ascending order
W ←W\{wz}∀wz = 0
V ←V\{vz} ,{vz : vz ∈V, ∀z where wz = 0}

S←
n

∑
k=1

wk, wk ∈W

Find largest index i such that
i

∑
k=1

wk ≤ S
2 ,wk ∈W

Find smallest index j such that
n

∑
k= j

wk ≤ S
2 ,wk ∈W

Median M = {vi,v j}
ĉ←min(vi,v j)
Algorithm 1: Computation of weighted median

The use of median filtering to remove noise is not
new in image processing [8, 15]. We now show that
the estimate of ĉ based on the weighted median is a
good approximation for the grey-level threshold that

separates the noise from the signal, and is robust in a
way that the evolution of the level set converges with
increasing t.

Hε(z) attains values close to zero for regions outside
C and values close to one inside C. In fact, lim

z→∞
Hε(z) =

1.0 and lim
z→−∞

Hε(z) = 0.0. At the start of level set evo-

lution, Ii covers most of Ω and therefore, Hε(z) attains
values close to one for most of the intensity values. This
results in computation of ĉ which is equivalent to an un-
weighted median for values in Ii. A median is the cen-
tral point which minimises the average of absolute devi-
ations. Therefore, a median better represents the noise
level when the data contains high intensity values that
are fewer in number, and a majority of intensity values
that correspond to the noise. As a result, the initial iter-
ations of the solution suppress the intensity values that
are less than the median to a constant level (the median
itself). One should expect the median value to increase
as the level set contracts, but since we use a regularised
Heaviside function as weight for the intensity values,
the weighted median converges to zero since most of I
contains intensity values of zero with near-zero weight.

Other variations of estimation of ĉ are certainly possi-
ble, but we find that a weighted median based approach
results in effective noise removal with very small in-
formation loss. For instance, a value of ĉ taken to be
c1, the mean intensity inside C, does a similar suppres-
sion but with a high signal loss compared to the former.
Furthermore, the mean does not converge as fast as the
median does and might result in relatively higher values
for large fish cross sections. It must be noted however,
that the computation of the median is costly as com-
pared to that of the mean.

5 CUDA IMPLEMENTATION FOR 3D
RECONSTRUCTION

Equation (5) can be solved by discretization and lin-
earization in φ [3]. Discretization of equation (7) in I
gives

In+1(x,y)− In(x,y)
∆t

=k ·max(0, ĉ− In(x,y))

=
{

0, if In(x,y)≥ ĉ
k · (ĉ− In(x,y)),otherwise

(8)

With k = 1
∆t , and tn+1 = tn + ∆t. The above time dis-

cretization yields the following

In+1(x,y) =
{

In(x,y), if In(x,y)≥ ĉ
ĉ, if In(x,y) < ĉ (9)

Acoustic images captured by echo-sounders are gener-
ally taken as planar image scans by moving the echo-
sounder in one direction, thereby sweeping a volume.

WSCG 2009 Full papers proceedings 156 ISBN 978-80-86943-93-0

Let us denote individual images as I(x,y,τ) for im-
ages taken after every δτ time interval. A volume is
constructed by stacking these individual images in se-
quence and applying geometric correction for distance
δτ(v) between individual slices, where v is the instan-
taneous speed of the instrument (the current data was
captured with constant unidirectional instrument veloc-
ity). It must also be noted that the individual acous-
tic images are obtained from a set of acoustic inten-
sity signals along beams by a polar transformation. The
level set equations for curve evolution in R2 extend uni-
formly to surface evolution in R3. The second differ-
ential equation also holds true for noise suppression in
a volume. Therefore, it is possible to reconstruct 3D
moving fishes with the level set evolution of these equa-
tions combined.

Processing a huge dataset demands that a minimum
of memory is consumed. We propose to keep two vol-
umes in the host memory, one for the intensity values
(I) and the other for the signed distance function (the
implicit function, φ). The CPU manages the memory
scheduling by dividing the volumes into small subvol-
umes that can be processed on the GPU. We keep two
small 3D textures of size 128× 128× 128, IGPU and
φGPU . A complete level set update is divided into a set
of subvolume updates. Each subvolume in the two vol-
umes is fetched to the GPU via 3D textures (read only,
but with good cache coherence). Results of computa-
tions are written to CUDA memory and then transferred
back to the CPU volumes. A simplified diagram of this
is shown in Figure 2.

!"#$

%&'()*&$

!"#$

+,-).&$

/"#$

0)123,-$

/"#$

+,-).&$

%&'()*&$4&(56$

!"#$7*8(&$

9&385&$(,$:,;($5,<=$

Figure 2: Streaming computation.

CUDA exposes a set of very fast 16KB shared mem-
ory available to every multi-processor in a GPU. How-
ever, a 16 KB memory chunk is shared only between a
thread block, and thus to make use of it the application
must load different data for different blocks. Further-
more, the 16 KB limit poses a restriction on the amount
of data that can be loaded at any point of time. Here,
we use 3D textures for reading the data. Since we do
not want to write back to the same texture (before a sin-
gle step of filtering is complete), using the read-only
3D textures available to CUDA is a natural choice. 3D
texturing has hardware support for 3D cache which ac-
celerates any texture reads in succession. To load a

3D data (a small subset of the volume) from the global
memory into the shared memory could be a little tricky
and might not result in the same performance as pro-
vided by the specialised hardware for 3D texture cache.
In our application, data writes are made to the global
memory. The latency in writing is hidden in the data
processing since we do not synchronise the threads un-
til the end of a subvolume processing. These can further
be optimised by making use of coalesced writes.

The solution of the PDE is computed in iterations
over the full volumes. Following are the CUDA ker-
nels that were used in the updates.

5.1 Signed Distance Transform
Signed distance transform is a global operation and can-
not be implemented in a straightforward manner. We
compute a local approximation of the Euclidean dis-
tance transform using the Chamfer distance. A narrow
band distance transform is computed layer by layer us-
ing, what we call a d-pass algorithm. Every pass of
the method adds a layer of distance values on the ex-
isting distance transform. The distance values are local
distance increments computed in a 3×3×3 neighbour-
hood. Therefore, every single pass needs only local in-
formation to compute the distance values except at the
border of the sub-volume. We therefore support every
sub-volume with a one voxel cover from other adjoin-
ing sub-volumes, thereby reducing the computational
domain to a volume of size 126×126×126. The CPU
scheduler takes care of the voxel cover. At the begining,
the interface (zero level) is initialised to a used specified
bounding cuboid or a super-ellipsoid.

5.2 Average Intensities
Computing average intensities (c1 and c2) is an opera-
tion that cannot be easily computed in a parallel fash-
ion, and a reduction like method is required for the
same. We employ a slightly different scheme to com-
pute averages by using three accumulator sub-volumes
on the GPU. These accumulators are essentially 3D
sub-volumes of the same dimensions as of the textures.
Every voxel in the accumulators accumulates (adds up),
the values for H, I ·H, and I · (1−H) for all the sub-
volumes in the CPU volume(s). We then sum up the
small sub-volume on the CPU to get the final sum and
compute c1 and c2 values from it. Using a mixed mode
CPU-GPU computation not only reduces the complex-
ity of an inherently non-parallel operation, but also per-
forms better by moving less expansive parts of the com-
putation to the CPU.

5.3 Median computation
Computing median on the GPU is not very straightfor-
ward since it is an order statistic and requires that the
data be sorted. Therefore the computation of weighted

WSCG 2009 Full papers proceedings 157 ISBN 978-80-86943-93-0

median is very different than the one for average in-
tensity value. Since sorting values of order of millions
in every iteration of the solver is not a computationally
good solution, we resort to the alternative definition of
the median. A median is a value that divides the data-
set into two sets of equal cardinalities. This definition
is generalised for a weighted median. Therefore, for a
data-set V with weights W associated with each value
in the set, the median value Vk is the value for which the
following holds:

k

∑
i=0

Wi =
n

∑
i=k+1

Wi

This equation can only be solved iteratively, starting
with a guess index value k0. In our CUDA implemen-
tation, we start with Vk0 to be the mean value c1 and it-
eratively reach the weighted median ĉ (= Vk). In every
iteration, the increment4i for the index k0 is computed
as:

4i =



k

∑
i=0

Wi−
n

∑
i=k+1

Wi

k

∑
i=0

Wi

, if ∑
k
i=0 Wi > ∑

n
i=k+1 Wi

n

∑
i=k+1

Wi−
k

∑
i=0

Wi

n

∑
i=k+1

Wi

, if ∑
n
i=k+1 Wi > ∑

k
i=0 Wi

The increment 4i can be adaptively controlled to give
results as precise as desired.

5.4 Solver update

A PDE update in the level set method comprises of
computing the curvature energy and the external en-
ergy. In order to compute the curvature term (involv-
ing double derivatives) for a voxel in a sub-volume
by centered differencing, we need information from a
5× 5× 5 neighbourhood with the current voxel at its
center. Therefore, the sub-volume size needs a cover
of two voxels on all sides, thus reducing the computa-
tional domain further down to 124× 124× 124. The
memory schedular performs additional computations to
effectively cover the whole volume with the new setup.
Once the energy terms are computed, the PDE solver
kernel updates φGPU and uses ĉ to update IGPU . These
sub-volumes are then updated to the CPU main volume.

It is often convenient to perform anisotropic diffu-
sion on the input image so that the evolution of the level
curve is smooth and φ is well behaved. Finally, the zero
level surface is extracted from the evolved φ using the
Marching-cubes method.

6 EXPERIMENTAL RESULTS
We present experimental results on sample acoustic 2D
images to show that the suppression scheme works well
on such images. Figure 3 shows evolution of the level
set. The parameters for this evolution were chosen to
be: µ = 0.0005, ν = 0, λ1 = λ2 = 1, and ε = 2.5. It
can be seen that the original image suffers from speckle
noise as seen in figure 4 and that the final zero level
contour approximates the fish boundaries very well.

(a) Initial image

Iteration:4/100

(b) Zero level set and image after
four iterations

Iteration:10/100

(c) Zero level set and image after
ten iterations

Iteration:16/100

(d) End of evolution after 16 iter-
ations

Figure 3: Level set evolution on sample image. ε = 2.5.

Figure 4: The final contour shown on the part of the
original image.

We next show results of application of the level set
equation and ths noise suppression scheme on a small
3D volume of size 150× 100× 50. Fish intensities
can be identified in dark green against a noisy back-
ground. The level set equation was initialised with the
zero level set of φ0 as the bounding box of the volume.
The level set is then allowed to evolve with parameters,
µ = 0.0005, ν = 0, λ1 = λ2 = 1, and ε = 1.0. Figure 5
shows the evolution at different time steps and the final
level surface.

We test the CUDA solver on a larger volume of size
686×1234×100. This volume uses about 470 MB of
CPU memory along with the same amount of memory
consumed by the signed distance field. Figure 6 shows
the extracted fish trails. We test our implementation

WSCG 2009 Full papers proceedings 158 ISBN 978-80-86943-93-0

(a) Initial zero level surface, φ0

(b) Zero level surface after four iterations

(c) Zero level surface after six iterations

(d) End of evolution after nine iterations

Figure 5: Level set evolution on sample volume. ε =
1.0.

with the mobile GPU, GeForce 8600M GT (NVIDIA
CUDA compute capability of 1.1) with 256 MB of
memory on a Mac OS X notebook. The total number
of iterations required until convergence were 29, with a
compute time of about 67 seconds per iteration. Simi-
lar test on a faster GPU, GeForce 8800 GTX with 768
MB of memory yielded a compute time of 25 seconds
per iteration (see Table 1 for computation times for var-
ious solver operations). The signed distance field was
reconstructed in a narrow band of width 20 voxels in ev-
ery iteration. With the commodity graphics hardware,
we expect to get better speedups. Furthermore, a better
GPU with more onboard memory should allow loading

larger subvolumes, thus reducing the overhead of mul-
tiple memory transfers.

GPU→ 8600M GT 8800 GTX
Signed Distance 39.52 sec 9.47 sec

Average Intensity 3.17 sec 1.10 sec
Weighted Median 18.92 sec 11.45 sec

PDE Update 5.63 sec 3.37 sec

Table 1: Computation times for various operations
tested on two GPUs. Processed volume size is 686×
1234×100.

Figure 6: Fishes extracted from a volume of size 686×
1234×100.

In order to compare the 2D and 3D reconstructions,
we show an overlay of 2D curves over the extracted 3D
surface. This is shown in figure 7. The results agree
very well when the 2D image contains high intensity
objects. The acoustic images were taken by scanning
fishes in an aquarium and the images corresponding
to the bottom of the aquarium (time slices with higher
depth, 30 to 50 in figure 7) contain almost no fishes.
Therefore, these images contain very little useful infor-
mation. The 2D level set evolution fails to detect fishes
in these images. It is also worth mentioning that the
suppression of noise is based on weighted median and
if the images do not contain high intensities, it is pos-
sible that the estimated threshold value does not accu-
rately represent the noise level. Therefore, the 3D re-
sults should be trusted since the 2D reconstruction does
not consider information present in other image planes.
We would like to comment that a ground truth segmen-
tation is not practically possible for open sea. Evalu-
ation of the extracted fish trails/schools by domain ex-
perts is under process because of marine surveys.

While we claim that this method works on acoustic
images with high variance in intensity values resulting
in a binary segmentation of the image, it is certainly
possible to perform a segmentation resulting in more
than two segments [2].

7 CONCLUSIONS
In this paper, we presented augmentation of level set
formulation based on the Mumford-Shah functional to a

WSCG 2009 Full papers proceedings 159 ISBN 978-80-86943-93-0

Figure 7: Comparison of zero level 2D curves with the
zero level 3D surface.

noise suppression scheme, well suited for object recon-
struction from acoustic images. Our method is based
on computation of a threshold by weighted median of
intensity values. We prove that the method converges
with evolving level set and show that the experimental
results comply with that. We show a 3D reconstruc-
tion of objects from time series images which is useful
in tracking moving objects and to observe their kinet-
ics. An optimised GPU based implementation has been
presented for streaming computation of the large volu-
metric data.

ACKNOWLEDGEMENTS
The acoustic data was collected in collaboration with
the Danish Institute of Fisheries Research (DIFRES) in
Denmark, and the authors are thankful for their support.

REFERENCES
[1] J. P. Balabanian, I. Viola, E. Ona, R. Patel, and M. E. Gröller.

Sonar explorer: A new tool for visualization of fish schools
from 3d sonar data. In Data Visualization - EuroVis 2007, pages
155–162. IEEE, 5 2007.

[2] T.F. Chan and L. Vese. A level set algorithm for min-
imizing the Mumford-Shah functional in image processing.
IEEE/Computer Society Proceedings of the 1st IEEE Work-
shop on Variational and Level Set Methods in Computer Vision,
pages 161–168, 2001.

[3] T.F. Chan and L.A. Vese. Active Contours Without Edges. IEEE
Transactions on Image Processing, 10(2), 2001.

[4] Y. Chen and A. Raheja. Wavelet Lifting for Speckle Noise Re-
duction in Ultrasound Images. Engineering in Medicine and
Biology Society, 2005. IEEE-EMBS 2005. 27th Annual Interna-
tional Conference of the, pages 3129–3132, 2005.

[5] J. Dunlop. Statistical modelling of sidescan sonar images.
OCEANS’97. MTS/IEEE Conference Proceedings, 1, 1997.

[6] V. Dutt and J. F. Greenleaf. Adaptive speckle reduction filter for
log-compressed B-scan images. Medical Imaging, IEEE Trans-
actions on, 15(6):802–813, 1996.

[7] L. Gagnon. Wavelet filtering of speckle noise-some numerical
results. Proc. on the Conference Vision Interface (’99), Trois-
Rivieres, Canada, pages 1–8, 1999.

[8] R.C. Gonzalez and R.E. Woods. Digital Image Processing.
Prentice Hall, 2007.

[9] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast computation of database operations using
graphics processors. In SIGGRAPH ’05: ACM SIGGRAPH
2005 Courses, page 206, New York, NY, USA, 2005. ACM.

[10] A. Isar, D. Isar, S. Moga, J.M. Augustin, and X. Lurton. Multi-
scale MAP despeckling of sonar images. Oceans 2005-Europe,
2, 2005.

[11] K. Krissian, K. Vosburgh, R. Kikinis, and C.F. Westin.
Anisotropic diffusion of ultrasound constrained by speckle
noise model. Department of Radiology, Brigham and Women’s
Hospital, Harvard Medical School, Laboratory of Mathematics
in Imaging, Tech. Rep, 4, 2004.

[12] A. E. Lefohn, J. M. Kniss, C. D. Hansen, and R. T. Whitaker. A
streaming narrow-band algorithm: Interactive computation and
visualization of level sets. IEEE Transactions on Visualization
and Computer Graphics, 10:422–433, 2004.

[13] J. Li, C. A. Papachristou, and R. Shekhar. A "brick" caching
scheme for 3d medical imaging. In ISBI, pages 563–566, 2004.

[14] M. Lianantonakis and Y. R. Petillot. Sidescan sonar segmenta-
tion using active contours and level set methods. Oceans 2005-
Europe, 1, 2005.

[15] T. Loupas, WN McDicken, and P. L. Allan. An adaptive
weighted median filter for speckle suppression inmedical ul-
trasonic images. Circuits and Systems, IEEE Transactions on,
36(1):129–135, 1989.

[16] R. Malladi and J. A. Sethian. Image Processing Via Level Set
Curvature Flow. Proceedings of the National Academy of Sci-
ences of the United States of America, 92(15):7046–7050, 1995.

[17] M. Mignotte, C. Collet, P. Perez, and P. Bouthemy. Unsu-
pervised Markovian segmentation of sonar images. Acoustics,
Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE
International Conference on, 4, 1997.

[18] D. Mumford and J. Shah. Optimal approximations by piecewise
smooth functions and associated variational problems. Com-
mun. Pure Appl. Math., 42(5):577–685, 1989.

[19] S. Osher and R.P. Fedkiw. Level sets and dynamic implicit sur-
faces. Springer New York, 2003.

[20] S. Osher and L.I. Rudin. Feature-Oriented Image Enhancement
Using Shock Filters. SIAM Journal on Numerical Analysis,
27(4):919–940, 1990.

[21] S. J. Osher and J.A. Sethian. Fronts propagation with curvature
dependent speed: Algorithms based on Hamilton-Jacobi formu-
lations. Journal of Computational Physics, 79(1):12–49, 1988.

[22] P. Perona and J. Malik. Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(7):629–639, 1990.

[23] I. Quidu, J. P. Malkasse, G. Burel, and P. Vilbé. A 2-D Filter
Specification for Sonar Image Thresholding; 2001. Advanced
Concepts for Intelligent Vision Systems (ACIVS’2001) confer-
ence, Baden-Baden, Germany, 2001.

[24] J.A. Sethian. Theory, algorithms, and applications of level set
methods for propagating interfaces. Acta Numerica 1996, pages
309–395, 1996.

[25] E.J. Simmonds and D.N. MacLennan. Fisheries Acoustics:
Theory and Practice. Blackwell Publishing, 2005.

[26] L. Yin, R. Yang, M. Gabbouj, and Y. Neuvo. Weighted median
filters: a tutorial. IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, 43(3):157–192, 1996.

WSCG 2009 Full papers proceedings 160 ISBN 978-80-86943-93-0

GPU-only Terrain Rendering for Walk-through

Sunyong Park

Soongsil University
Sangdo-dong
Dongjak-gu

 156-743, Seoul, South Korea

aknyong@ssu.ac.kr

Kyoungsu Oh

Soongsil University
Sangdo-dong
Dongjak-gu

 156-743, Seoul, South Korea

oks@ssu.ac.kr

ABSTRACT
Accurate terrain representation takes a very significant role in making a scene more realistic. In this paper, we

present a full GPU-based real-time terrain rendering algorithm by ray-casting. Since it requires no geometrical

structure like a polygonal mesh, it doesn't need any LOD (Level-Of-Detail) policies. Most of them are processed

on CPU and may give much burden on the CPU. As a result, it enhances the whole performance of the system.

Our method grants a complete freedom to the view point and its direction, so objects can move around so freely

in the air or on the surface that it can be directly applied to any computer games and VR (Virtual Reality) system.

To better the rendering quality, we applied curved patches to the height field. On the way, we suggest a

simplification for evaluating a ray-patch intersection. We implemented all the processes on GPU, and obtained

tens to hundreds of frame rates with a variety of resolutions of height maps: 256ⅹ256~8192ⅹ8192 (texel
2
).

Keywords
Height field · Ray-casting · PDM (Pyramidal Displacement Mapping) · Quad-tree · GPU-based Rendering

1. INTRODUCTION
In computer graphics, accurate representation of

terrain plays an important role in making a scene

more realistic. We cannot imagine any world without

it at all. Its applications are, therefore, wide-ranged

over many areas from GIS to virtual reality and

computer games; None the less, terrain still remains a

challenging area to game or VR creators. To

represent or simulate terrain, we usually use the

height map, which is also called the height field as a

space. The height map is an image each pixel of

which contains a height value of the corresponding

position. There are two main approaches to

construct-ing terrain from the height information.

The first is the polygon-based method [Gro95, Duc97,

Paj98, Hwa04, Los04, and Asr05]. It generates a

terrain mesh from a height map either in regular grids

or adaptively to local complexity and map the

corresponding height value to each vertex of the

mesh. They are basically fast because they can utilize

parallelized GPU capabilities. However, the number

of polygons gets bigger as the complexity of terrain

increases, so it may require too much time and

storage. To relieve this inefficiency, LOD (Level Of

Detail) is used on the basis of distance from view

points and variation of heights. Even though it

improves the performance of system, other serious

problems are entailed between polygons of different

levels, such as popping or cracking etc. Worse, most

LOD algorithms are processed on CPU, and a great

burden may be caused to the CPU.

The others are based on ray-tracing [Coh96, Ser97,

Wri92, Lee95]. They render terrain just with a height

map. More than one ray per pixel are made, cast, and

traced into the height field until they intersect with

the field. Once an intersection is found, the pixel is

shaded using the positional information. They are

based on a hierarchical data structure, and therefore

less affected by geometrical complexity, whereas

they are not fit to real-time applications.

In this paper, we present a real-time algorithm based

on GPU ray-casting. Our method was much inspired

by the Pyramidal Displacement Mapping by Oh et al

[Oh06]. The PDM renders the height field using a

pyramid of depth images. Here we use the term

height inversely with depth (Figure.1). The image

pyramid is a set of images that its width and height

decrease by 1/2 as a level goes up, which has the

original depth image at level 0. Each texel of sub-

image has the minimum depth (or maximum height)

of adjacent 4 texels of the immediate lower level.

Finally, the highest level of the pyramid has just one

texel whose value is the minimum of the entire depth

map. We can efficiently and accurately find ray-

Permission to make digital or hard copies of all or part

of this work for personal or classroom use is granted

without fee provided that copies are not made or

distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first

page. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific

permission and/or a fee.

WSCG 2009 Full papers proceedings 161 ISBN 978-80-86943-93-0

height field intersections by this data structure.

When a ray goes down, the ray can safely move

down to the maximum height of one texel area

without any intersections, and then the current height

of the ray is read from the next lower level. The ray

moves forward in the same way until it reaches level

0. If the height from the lowest level is equal to or

higher than the current position of the ray, we can say

that the intersection is found. There are, however,

some problems if the PDM is applied to terrain as it

is. As the displacement mapping handles down-

displacement from the mapping plane, the view point

always looks downwards (Figure.1-1). In terrain

rendering, the view point can go under the mapping

plane near the surface and look upwards. We gave

some significant revision to the original PDM to cope

with this situation. The ray traverses the same

hierarchy as downward cases, but the way to trace a

ray is slightly different. When the current texel area

is lower than the current ray, there cannot be any

intersections within the area, so the ray can safely go

up to the boundary of the texel, not the maximum

height this time. If the current texel in level 0 is

higher than the ray, we get the intersection. If not, the

ray keeps going forward until it finds an intersection.

There occurs one more problem that the surface

looks like staircases as the view point gets closer to

the surface. To this, we reconstructed the surface

with bilinear patches. One bilinear patch is built from

four adjacent height elements, and a ray-patch

intersection is evaluated there. We simplified the ray-

patch intersection method given in [Ram04], and

made it feasible for the pixel shader.

Our method is based on the idea that the ray has no

intersections to the maximum height in downward

directions, and to the texel boundary in upward

directions. However, when we reconstruct the surface

with bilinear patches, some part of one patch may be

higher than the maximum height of the correspond-

ing texel, where the ray may pass through the patch.

To solve this problem, we devised a new depth map

(we call it the bounding map) which has as a texel

value the height of each bounding volume that

encloses each bilinear patch. The ray traversal on this

map is exactly the same as that of the original map.

Our algorithm runs fully on GPU, so it allows the

CPU to be dedicated to other tasks, like physics-

based rendering, resource managements and AI etc.,

so it enhances the whole system performance.

The major contributions of our work are as follows:

1. Overhaul the existing PDM algorithm to give the

full freedom of view point and direction, allowing

freely fly through and walk through terrain.

2. Dramatically improve the visual quality of the

terrain surface by applying curved patches.

3. Enhance the system performance by carrying out

the whole process on GPU.

The remainders of this paper consist of follows.

Section 2 summarizes related works and section 3

overviews our system. Section 4 describes rendering

terrain using a hierarchical data structure without

curved patches. Section 5 applies curved patch to the

terrain. Section 6 shows finally rendered results.

2. Related Work
So far, most terrain rendering techniques that provide

sufficient freedom to the position of view point and

its direction have been based on polygonal structure

[Gro95, Duc97, Paj98, Hwa04, Los04, and Asr05].

Gene-rally, they render terrain in fashions that make

terrain meshes and map textures to them. Those

methods are well fit to the rendering pipeline of GPU,

and therefore have some advantage on rendering time,

whereas the mesh should be prepared in advance and

the number of polygons should be controlled,

otherwise it may impose a big load on the system.

We usually use LOD (Level Of Detail) to handle this

problem, whose purpose is to reduce sub-sampling

artifacts. However, the problems accompanied like

cracking and popping etc., since they should be

processed on CPU, incur more inefficiency.

Naturally main concerns in polygon-based methods

have been focused on handling re-meshing due to the

LOD.

There have been many researches from this point of

view. Markus et al. introduced the adaptive quad-tree

meshes for regular grids of terrain data using dyadic

scaling of the wavelet transform [Gro95]. Pajarola

suggested restricted quad-trees (RQT), which is an

adaptive, hierarchical triangulation model and is used

to triangulate a parametric surface [Paj98].

Duchineau et al. used preprocessed bin-tree triangles

with view-dependent, guaranteed error metrics to do

re-meshing in real-time (ROAM: Real-time

Optimally Adapting Meshes) [Duc97]. Pomeranz

presented RUSTiC (ROAMing Using Surface

Triangle Clusters), which is the ROAM that every

triangle bin should have the same boundaries on the

shared edges in order not to have any cracks [Pom00].

Lok et al. replaced the triangle bin-tree with the

diamond data structure. Their method uses an

efficient out-of-core algorithm with GPU memory as

Figure 1. In the displacement mapping, the

view point cannot go under the mapping

plane, so there are just downward rays (1),

but in terrain, upward rays are frequent (2).

WSCG 2009 Full papers proceedings 162 ISBN 978-80-86943-93-0

Figure 2. System overview: In our system, all processes are carried out on the GPU except building

the hierarchical map, which is performed just once and doesn’t have any influence on the system.

a cache. Hoppe et al. presented “the geometry clip-

map” in [Los04] as a variant of texture clip-map

[Tan98]. The geometry clip-map has an importance

in that it processes the LOD on GPU. The clip-map

caches terrain data in nested regular grids and it is

refilled incrementally and toroidally as the viewpoint

moves, where the vertices of grids are stored in a

vertex buffer. However, it has a fixed grid resolution,

and when a view point moves near the surface (like

walk-through), bottlenecks may occur in updating

clip-maps. In [Asr05], they upgraded the above clip-

map to the GPU-only version using vertex texture.

Unlike polygon-based methods, ray-casting based

ones directly cast and trace rays into height field, and

find intersections. Cohen et al. [Coh96] introduced a

CPU-based ray-casting algorithm. They used a voxel

map made in regularly spaced heights from height

map and top-down pyramid traversal. In [Coh96],

they more developed this and implemented “visual

fly-through” over vast amount of terrain data through

the proper memory pre-fetching. Though this method

was much advanced compared to other CPU-based

algorithms [Ser97][Wri92][Lee95], still it was

performed on CPU and just used for a fly-through

purpose, not general.

In this paper, we propose a GPU-only algorithm that

utilizes a hierarchical depth image. Several GPU-

based techniques for displacement mapping have

been introduced with a good performance and quality.

Parallax occlusion mapping approximates ray-height

field intersections with linearly interpolated parallax

displacement [Tat06]. Relief mapping mitigated the

artifacts using the binary search, but they have some

problems in specific view directions and high

frequency area respectively [Pol05]. Dynamic

parallax occlusion mapping relieves the artifacts by

varying sampling rates according to the ray’s

direction and frequency of the height field, but it just

relieved the problem [Tat06]. Oh et al.’s Pyramidal

Displacement Mapping solved above problem

completely [Oh06] using a hierarchical data structure

and a traversal algorithm fit to the hierarchy. Tevs et

al. applied the similar scheme and used the bilinear

patch for visual artifacts, but since they adopted the

binary search to get intersections, it shows the same

problem as [Pol05] in grazing angles [Tev08].

The method proposed in this paper is based on the

PDM, which is a kind of displacement mapping and

therefore is not fit to applying to terrain. We got rid

of all these limitations. We are assured that this is the

first case to apply GPU-based ray-casting to terrain.

3. System Overview
Our system consists of a preprocessing on CPU and a

ray-tracing on GPU.

In the preprocessing step, a virtual space where a

height field resides is constructed and the PDM of the

height map is made. Ahead of that, the height map

should be transformed into a depth map. We will use

depths from the mapping plane (Figure 1) over the

whole system. Since this step is performed just once

and doesn’t have much influence on the system.

In the ray-tracing step, per-pixel eye-rays are made

and cast into the height field. In vertex shader, four

rays connecting a view point and four corners of a

screen-aligned rectangle are set up, and per-pixel

rays are made through the rasterizer, the number of

which is the same as the resolution of display. The

pixel shader casts each ray into the virtual space and

gets an intersection with the height field. The cast ray

traverses the hierarchical map from top to leaf.

Figure 2 illustrates these two steps in more detail.

4. Terrain Rendering with a Depth Map

The Pyramidal Displacement Map (PDM)
The PDM is an image pyramid of depth maps whose

sublevel pixel has the lowest value of quadrant pixels

of the immediate superlevel. Since the original PDM

is for displacement mapping, it has some constraints

that viewpoints cannot go under the mapping plain

and its direction always looks downwards (Figure 1).

In this paper, we lifted all these constraints and

enabled view points to go down around the surface

and look toward any directions.

A Virtual Space and Per-pixel Rays
To render the height field, we first establish a base

space in which a height field will be located and into

which all related coordinates will be transformed. In

Figure 3 (a) shows a virtual space defined within the

world coordinate system, and finally the space is

scaled to the 3D unit space [0, 1]
3
 so as to be aligned

with a height field (texture space). Since we represent

high-and-lows of terrain by depth from the mapping

plane, we use the coordinate system as described in

Figure 3(c) for convenience. After the virtual space is

set up, per-pixel eye-rays are generated using the

WSCG 2009 Full papers proceedings 163 ISBN 978-80-86943-93-0

Figure 4. General cases of ray-traversal: (a) the

ray can safely advance to the maximum height

or the boundary of the current texel without

intersections, (b), and the ray can advance to

the boundary of the current texel.

rendering pipeline. We make a viewport-aligned

rectangle, which can be obtained by inversely

transforming four points (1, 1), (1,−1), (−1, 1) and

(−1,−1) of the projection space into the view space.

In vertex shader, four basic rays connecting the view

point(Vp) and four points P0, P1, P2, and P3 are made

and, through rasterizer, per-pixel rays are

obtained(Figure 3-b).

Ray Casting
Traversal algorithms adopted in [Ser97, Wri92,

Lee95] are just related to downward rays since any

view point cannot go under the mapping plain

(Figure 3). However, because in case of terrain

rendering, the view point can be located around the

surface, naturally upward rays are generated. We

made it possible for the ray to travel in any directions

at arbitrary view points with some improvements.

4.1.1 Downward Ray
The hierarchical structure helps us find an

intersection more quickly. When a ray descends, the

ray can safely move to the maximum height or the

texel boundary because the ray has no intersections

in that area, and then the position is read from the

next lower level. This process is repeated until the

ray reaches level. If the depth read from level 0 is

equal to or lower than the end point of the ray, we get

the intersection. Figure 4(a) illustrates its general

algorithm. After the ray arrives at the level, however,

if it did not have an intersection, it searches the

height field linearly. In the worst case, its time

complexity is O(n). We improved the performance to

O(log2n). A ray crosses one grid, and if its position is

still higher than the surface, the level of the PDM

raises one level up by force so that the ray skips

twice as long distance as the previous level. We

reduced the number of node-crossings greatly in this

way.

4.1.2 Upward Ray
The ways a ray goes up is a bit different from

downward cases. The ray moves just to the texel

boundary, not the maximum height this time. If the

current texel value in level 0 is larger than or equal to

the height of the current ray, we have got an

intersection. As a view point stays around the surface,

more upward rays are generated and should be

treated more efficiently. One straightforward method

is to linearly search the height field. The linear search

is very easy, but its cost increases proportionally to

the resolution of height map. We take advantage of

the quad-tree structure to reduce the cost (the number

of advances). Nevertheless, when a view point is

located in a deep valley, the linear search at the

location of level 0 is inevitable. It usually takes up a

considerable portion of the cost. We raised one level

up each time a ray fails to find an intersection at each

advance and thus improved the performance.

Figure 3. (a) A space for the height field is built.

(b) In the vertex shader, four basic rays are set

up, which are on lines connecting a viewpoint

and four corners of image plane. Interpolating

them, per-pixel rays (E) are generated, (c) All

coordinates are transformed into the

normalized virtual space [0, 1]
3
 for the space to

be aligned with the texture space. We have the

z-axis turned-over as we use the depth map.

WSCG 2009 Full papers proceedings 164 ISBN 978-80-86943-93-0

Figure 6. (a)A bilinear patch is built from the

nearest four texels. Because the uv plane of

height field is of uniform grids, we can make

3D coordinates by just sampling depths (b) A

bilinear patch built (c) Four patches

Rendering Results using PDM
Figure 5 shows results rendered with a depth map

and above mentioned algorithms. As shown in the

figure, when the terrain is flown through (a), it

appears to be no problem, but as the view point

approaches the surface (b), it looks like staircases. To

alleviate this visual discomfort, we reconstruct the

surface with curved patches(to be explained in the

next section).

5. Terrain Rendering with a Depth Map
To improve the quality, we covered the height field

with bilinear patches, considering computational

efficiency and implementability in shader program.

Ray-Bilinear patch Intersection
A bilinear patch is built from the nearest four texels

of the location where a ray hits the height field. Since

the height field consists of uniform square grids, we

can immediately know x, y coordinates, and therefore

we just need four depth values (z’s) to complete full

3D coordinates(x, y, z). Figure 6 illustrates this and a

bilinear patch made from the process. A ray-patch

intersection can be evaluated mathematically by

parametric equations shown in Figure 7. While this

procedure was hinted by [Ram04], we simplified it

significantly. Generally we need three quadratic

equations with two parametric variables to express a

bilinear surface in 3D space, one equation for each

dimension, which can be written PB(u, v)= (PB(u,v).x,

PB(u,v).y, PB(u,v).z). In the same way, a line is PL(t)=

(P0.x + t · E.x, P0.y + t · E.y, P0.z + t · E.z). As a result,

to get an intersection of a curved surface with a ray,

we get three variable quadratic equations with respect

to u, v, and t. We simplified these into one variable

quadric equation, which come from substitution of

two linear equations into a quadratic equation, (u, v,

PB(u, v).z) = (P0.x + t · E.x, P0.y + t · E.y , P0.z + t · E.z) .

1However, the proper solution should be inside the

bilinear patch. Figure 12 shows how to discriminate

it from two real solutions of the equation (1). Any

rays first start on a boundary of the bounding volume

of a texel, where t = 0. In the concave case (a), if the

smaller t is less than 0, since it is located behind the

patch, the boundary is performed for the other larger

t. If the larger t is inside the patch, that’s the proper

solution, otherwise, the ray moves forward more until

it finds an in-patch intersection with the next patch

(c). In the convex case (b), simply the smaller t is the

appropriate solution.

1 This paragraph will be easy to understand after

reading the following sections on the ‘bounding map’

Figure 5. When we look at a height field from

the far, it appears to be no problem (a), As we

get closer, it shows some visual artifacts (b)

Figure 7. A simple ray-patch intersection

 1) Bilinear patch

PB(u,v)

=(1-u){P00(1-v)+01v+P01v}+u{P10(1-v}+P11v}

=(u, v, (1-u)(1-v)z00+v(1-u)z01+u(1-v)z10+uvz00)

,where 0≤u, v≤1.

2) Ray

PL(t) = P0+tE = (P0.x+tE.x, P0.y+tE.y, P0.z+tE.z)

3) Ray-Bilinear Patch Intersection

PL(t) = PB(u,v)

⇔ (P0.x+tE.x, P0.y+tE.y, P0.z+tE.z)

 = (u, v, (1-u)(1-v)z00+v(1-u)z01+u(1-v)z10+uvz00)

⇔ u = P0.x+tE.x

 v = P0.y+tE.y

 t = {uv(z11-z10-z01+z00)+u(z10-z00)+v(z01-z00)+z00-P0.z)/E.z

 = (uvA+uB+vC+D-P0.z)/E.z

 , where A= z11-z10-z01+z00,

 B= z10-z00, C= z01-z00, D= z00.

⇔ E.x·E.y·At2

 +{(E.x·P.y+P.x·E.y)A+E.x·B+E.y·C-E.z)t

 +(P.x·P.y·A)+P.x·B+P.y·C+D-P0.z)=0∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙equ.(1)

WSCG 2009 Full papers proceedings 165 ISBN 978-80-86943-93-0

Figure 9. The Bounding Map. (a) The new map

becomes a big bounding volume of the whole

height field(we call it the bounding map) (b) One

bounding volume enclosing a bilinear patch

Challenges to Finding Intersections
To trigger building a bilinear patch, a ray should first

meet the height field. Figure 8 illustrates three cases

hard to get ray-patch intersections by the method of

the previous section: (1) the ray meets the height

field but doesn’t meet with the patch. In this case, the

ray advances more grids one by one, and then finds a

valid intersection with a patch. (2) The ray has an

intersection with a patch, but because it doesn’t meet

the height field, it passes through the right patch, (3)

the ray is very closely related to the ray which passes

through the right patch. If (2) is properly handled, it

never occurs. The last two cases make jaggies or

holes in the middle or at the silhouette of terrain.

The Bounding Map
To keep a ray from passing through the right patch,

we use a new depth map. Figure 9 shows how to

build the new map. As shown, the new map forms a

big bounding volume of the entire height field

(Figure9-b), so we call it the ‘bounding map’, which

consists of texel-sized bounding volumes (Figure 9-

c). It can be noticed that any ray with an intersection

should first meet a bounding volume (Figure 9-b).

To build the bounding map, we pick the maximum

height every four adjacent depth out and write it on

the corresponding position of the new map. This

bounding map is made into a pyramid. The original

map keeps its original shape and is used to build the

bilinear patch and find intersections by positional

information handed over from the bounding map.

Ray-Casting and Ray-Patch Intersection

in different maps

We evaluate a ray-patch intersection on two different

maps with two separate processes. Firstly, a ray is

cast into the bounding map. If an intersection with

the height map exists, its position is handed over to

the original map. And then, a ray-patch intersection

is calculated. If it hits, the proper pixel is shaded. If

not, the ray gets back to the bounding map and keeps

to traverse until it finds an intersection (Figure 11-c,

d). Figure 10 shows interactions between two maps.

Final results with Bilinear-Patching
Figure 11 shows rendering results without and with

bilinear-patches. We can see a staircases-like surface

in (a). After the surface is bilinear-patched, which we

shaded it by point sampling to clearly see the shape

of bilinear patches, those artifacts almost disappeared

(b). (c) is the final scene that the bi-linear sampling is

applied, where its quality is greatly improved.

Figure 8. Three cases hard to find ray-patch

intersections. (1) The ray meets with the height

field but not with the patch. (2) It doesn’t even

build a patch since it doesn’t meet the height

field. (3) The ray should have already

intersected with the previous patch. If the case

(2) is properly handled, it cannot occur.

Figure 11. Results (a) without patches (b)

bilinear patching + point sampling (c) bilinear

patching + bi-linear filtering

Figure 10. Quad-tree traversal and Bi-linear

patching on the two maps

WSCG 2009 Full papers proceedings 166 ISBN 978-80-86943-93-0

6. Experiments and Results
We implemented our method with DirectX 9.0 on

ATI 2900 graphic card and 2.33Ghz Intel CPU.

[Table 1] compares our method to a polygonal one,

where each terrain mesh has twice the number of

triangles than that of height map. If the meshy terrain

is rendered without an 2LOD/ VFC, the performance

is sharply down at the resolution of 1024
2
 and at the

higher resolution, memory overflows since the

number of triangles exceeds the 3maximum primitive

count of hardware. Even though it applies an LOD/

VFC, the same problems ultimately occur at higher

resolutions. On the contrary, our method, due to its

hierarchical structure, is less affected by the increase

of resolution and causes no memory overflows to the

maximum resolution the hardware supports.

Figure 13 visualizes the number of node-crossings

through spectrum. When the view point flies through

(Figure.13-d), 90% of intersections are found within

16 (blue, sky-blue). Figure (b), (c), which are viewed

on the surface, show more than 85~90% are done in

2LOD : Level Of Detail/ VFC : View Frustrum Culling
3 The ATI 2900 Graphics card has the maximum primitive
count of 8,388,607.

35. Just around 5% are more than 85, which occurs in

grazing angles. Figure 14 shows rendering results

carried out with various height maps.

Res.
Our method 4Polygonal method

PreProc
(sec)

Fly/ Walk
(fps)

NO LOD
(fps)

LOD/VFC
(fps)

2562

5122

10242

20482

40962

81922

0.6
1.8
4.0
8.1
17.5
36.0

105~115/ 66~99
53~75/ 47~56
40~44/ 37~40
58~98/ 54~85
40~82/ 37~80
32~67/ 30~45

250~285
75~83
19~22

overflow
overflow
overflow

290~340
180~230

75~80
37~41
6~14

overflow
Table 1. Time Performance-Resolutions

7. Conclusions
Thus far, we have presented a ray-casting based

GPU-only terrain rendering method. We got rid of

restrictions of displace mapping on the viewpoint and

direction so that the viewpoint could freely move

anywhere, and the problem that the surface looks like

staircases near the ground was improved by applying

bilinear patches. Our approach can be used in various

fields, such as computer game, virtual reality, and

flight simulation etc. In addition to that, our method

will be better-suited for the ray-tracing based

graphics hardware that will emerge in the near future.

8. ACKNOWLEDGMENTS
This research was supported by the Ministry of

Culture, Sports, and Tourism, Korea, under the

CTRC (Cultural Technology Research Center)

support program supervised by the KOCCA and was

also supported by Seoul R&BD Program (10581).

4The test was done on OGRE 3D using the octree for the
spatial partition and with MaxMipMapLevel=5 for LOD.

Figure 13. Spectrums representing the

number of node-crossing (a) reference image,

(b) and (c) walk-through, (d) fly-through

Figure 12. The ray always starts on the

boundary of a bounding volume (t=0). There is

two types of intersection either with a convex side

(a) or a concave side of the patch (b). (a) Each t

(≥0) is checked if any intersection is made inside
the patch. If not, the intersection occurs beyond

the patch, so (c) the ray advances more until it

finds an in-patch intersection with the next patch.

(b) The real smaller t is the proper solution.

WSCG 2009 Full papers proceedings 167 ISBN 978-80-86943-93-0

9. REFERENCES
[Asr05] Asirvatham, A., Hoppe, H.: Terrain

Rendering using GPU Based Geometry clipmaps.

GPU Gems 2 (2005)

[Coh96] Cohen-Or, D., Rich, E., Lerner, U., Shenkar,

V.: A real-time photo-realistic visual flythrough.

IEEE Transactions on Visualization and

Computer Graphics 2(3), 255–265 (1996)

[Duc97] Duchaineau, M., Wolinsky, M., Sigeti, D.,

Miller, M., Aldrich, C., Mineev-Weinstein, M.:

Roaming terrain: Real-time optimally adapting

meshes. vis 00, 81 (1997)

[Gro95] Markus H. Gross, Roger Gatti, and Oliver

G.: Fast multiresolution surface meshing. vis 0,

135 (1995)

[Hwa04] Hwa, L.M., Duchaineau, M.A., Joy, K.I.:

Adaptive 4-8 texture hierarchies. In: VIS ’04:

Proceedings of the conference on

Visualization ’04, pp. 219–226 (2004)

[Lee95] Lee, C.H., Shin, Y.G.: An efficient ray

tracing method for terrain rendering. In:

Proceedings of International Pacific Graphics’95,

pp. 180–193 (1995)

[Los04] Losasso, F., Hoppe, H.: Geometry clipmaps:

terrain rendering using nested regular grids. In:

SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers,

pp. 769–776 (2004)

[Oh06] Oh, K., LEE, C., Ki, H.: Pyramidal

displacement mapping : A gpu based artifacts-

free ray tracing through an image pyramid. In:

Proceedings of the ACM Symposium on Virtual

Reality Software and Technilogy(VRST’06), pp.

75–82 (2006)

[Paj98] Pajarola, R.: Large scale terrain visualization

using the restricted quadtree triangulation. vis 00,

(1998)

[Pol05] Policarpo, F., Oliveira, M.M., Comba, L.D.:

Real-time relief mapping on arbitrary polygonal

surfaces. In: I3D ’05: Proceedings of the 2005
symposium on Interactive 3D graphics and games,

pp. 155–162 (2005)

[Pom00] Pomeranz: Roam using surface triangle

clusters(rustic). Master’s thesis, California

University (2000)

[Ram04] Ramsey, S.D., Potter, K., Hansen, C.: Ray

bilinear patch intersections. journal of graphics

tools 9(3), 41–47 (2004)

[Ser97] Sergei I. Vyatkin, Boris S. Dolgovesov,

Valerie V. Ovechkin, Sergei E. Chizhik, Nail R.

Kaipov “Photorealistic imaging of digital terrains,

freeforms and thematic textures in real-time

visualization system Voxel-Volumes”, GraphiC-

on ’97, Moscow (1997)

[Tan98] Tanner, C.C., Migdal, C.J., Jones, M.T.: The

clipmap: a virtual mipmap. In: SIGGRAPH ’98:

Proceedings of the 25th annual conference on

Computer graphics and interactive techniques, pp.

151–158 (1998)

[Tat06] Tatarchuk, N.: Dynamic parallax occlusion

mapping with approximate soft shadows. In:

I3D ’06: Proceedings of the 2006 symposium on

Interactive 3D graphics and games, pp. 63–69

(2006)

[Tev08] Tevs, A., Ihrke, I., Seidel, H.P.: Maximum

mipmaps for fast, accurate, and scalable dynamic

height field rendering. In: SI3D, pp. 183–190

(2008)

 [Wri92] Wright, J.R., Hsieh, J.C.L.: A voxel-based,

forward projection algorithm for rendering

surface and volumetric data. In: VIS ’92:

Proceedings of the 3rd conference on

Visualization ’92, pp. 340–348 (1992)

Figure 14. Final results rendered with a made

height map (a), (g) and arbitrary height maps

obtained from the web (b), (c), (d), (e), (f).

WSCG 2009 Full papers proceedings 168 ISBN 978-80-86943-93-0

Development and evaluation of a virtual reality

patient simulation (VRPS)

Simon Nestler Manuel Huber Florian Echtler Andreas Dollinger Gudrun Klinker

Institut für Informatik / I 16
Technische Universität München

Boltzmannstraße 3
85748 Garching, Germany

nestler|huberma|klinker@in.tum.de

ABSTRACT
In disasters and mass casualty incidents (MCIs) paramedics initially determine the severeness of all patients'
injuries during the so-called triage. In order to enhance disaster preparedness continuous training of all
paramedics is indispensable. Due to the fact that large disaster control exercises are laborious and expensive,
additional training on a small scale makes sense. Therefore we designed and developed a virtual reality patient
simulation (VRPS) to train paramedics in this disaster triage. The presented approach includes gesture based
interactions with the virtual patients in order to simulate the triage process as realistically as possible.
The evaluated approach focuses on the training of paramedics in disaster triage according to the mSTaRT
(modified Simple Triage and Rapid Treatment) triage algorithm on a multi-touch table top device. At the
Munich fire department fully-qualified paramedics performed 160 triage processes with the triage simulation.
The accuracy of the triage processes was compared to previous disaster control exercises with real mimes. The
presented results of this explorative evaluation will be the basis for future, larger evaluations.

Keywords
VR User Interfaces, Graphical user interfaces, Disaster triage, Training and simulation

1. INTRODUCTION
In disasters and mass casualty incidents (MCIs)
paramedics have to perform numerous tasks, which
are regularly trained in disaster control exercises.
These tasks include establishing organizational
structures, diagnosing all involved patients,
medicating the patients according to their injuries
and transporting them to hospitals. Affected patients
expect receiving medication and being transported to
the hospital quickly. Usually there are not enough
paramedics available to treat all injured patients at
once. Therefore during the so-called triage, the
paramedics initially determine the severeness of all
patients' injuries. In order to guarantee all patients a
fair and equal treatment, the triage may not exceed

45 seconds per patient and the paramedics perform
clearly defined procedures, e.g. the mSTaRT
(modified Simple Triage and Rapid Treatment)
algorithm. When triaging on the basis of mSTaRT,
the paramedics examine the patient regarding the
following vital parameters: ability to walk, fatal
injuries, breathing rate, peripheral pulse, spurt
bleedings and consciousness [Kan06].
According to these vital parameters the patients are
classified in four categories: T1 (immediate care), T2
(urgent care), T3 (delayed care) and Deceased (no
care) [Bak07]. The paramedics do not start the
medication before the triage of all patients is
finished. The order of the medication is derived from
the triage categories. First of all the T1 (red) patients
are medicated and transported to hospital if required.
Afterward the T2 (yellow) and T3 (green) patients are
medicated. To increase the chances of survival of all
affected patients, an accurate and prompt triage of all
patients is of utmost importance. The overestimation
of the patient's injuries (overtriage) is inaccurate, as
well as the underestimation of the patient's injuries
(undertriage). The so-called critical overtriage is the
T1 classification of patients who do not need

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or
distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WSCG 2009 Full papers proceedings 169 ISBN 978-80-86943-93-0

immediate care, the critical undertriage is the wrong
classification of patients who need immediate care
[Gut06]. The aim is to decrease the overtriage rates
as well as the undertriage rates, therefore paramedics
are regularly trained in disaster control exercises.
In this paper we give a short motivation for the
development of the VRPS, continuing with a short
overview on related work. Afterwards we explain our
patient model, our patient patterns and gesture based
interactions which are the basis of the VRPS. Finally
we present the evaluation design and the evaluation
results.

2. MOTIVATION
On the one hand frequent disaster control exercises
are essential to regularly train the paramedics in
accurate and quick triage, on the other hand the
organization of disaster control exercises is
expensive and time-consuming. For instance, so-
called mimes play the role of the patients in a disaster
control exercise to make the practical training as
realistic as possible. When training in large scale
disaster control exercises with a hundred victims, a
hundred volunteers are required. Furthermore these
mimes have to be masqueraded and instructed during
the preparation phase. Due to these organizational
challenges smaller triage trainings are arranged
additionally to large scale exercises. These trainings
concentrate on the triage process and do not include
further tasks, such as medication and transportation.
The number of different mimes is limited in these
trainings; every paramedic performs only about 10
different triage processes [Pro06, Man04].
The introduction of a virtual reality patient
simulation (VRPS) gives rise to the possibility to
combine the advantages of both exercise types. A
VRPS is highly scalable while at the same time the
preparation phase is short. By using a multi-touch
table top interface instead of a desktop based
computer, intuitive interaction metaphors can be
applied. Instead of performing WIMP (window, icon,
menu, pointer) based interactions [Eng68, Gre91],
the paramedic can use both hands and manipulate the
simulated patient directly. Due to the fact that the
technical implementation has already been published
previously [Nes07], the focus of this paper is the
development of such a VRPS and the evaluation of
its usability in a real setting. The interaction on table
top interfaces, however, is not as natural as
interacting with real mimes. Considering the fact that
the focus of a triage exercise is on the general triage
process, and not on the acquisition of basic skills
(such as taking pulse, checking the breathing or
bandaging spurt bleedings), training on a table top is
a new and promising possibility. Training on table
top interfaces does not replace disaster control

exercises, but gives the paramedics the possibility to
improve triage skills which are essential in disaster
operations.

3. RELATED WORK
Patient simulations for doctors and paramedics have
been proposed by different research groups.
Saunders et al., for instance, model emergency
department operations in a computer simulation
[Sau89]. Moenk et al. analyzed the different
available patient simulations, in Germany alone
about 90 different patient simulations are used for the
further training of doctors [Mon99].
Evaluation results of triage processes based on real
disaster control exercises were presented by Gutsch
et al. [Gut06]. In addition to the evaluation of time
aspects (see Table 1) they also evaluated the triage
accuracy (see Table 2) and the triage of the critically
injured (see Table 3 and 4). Their evaluation bases
on the triage of 132 patients, which were triaged by
11 triage teams. The duration of the mSTaRT
procedure required 35 seconds in median.
Furthermore Gutsch et al. state that fast triage can
accelerate medication and transport of injured
victims with life threatening conditions [Gut06]. In
our evaluation we will compare the results from our
VRPS to their results from real life.
Vincent et al. taught mass casualty triage skills by
training medical students in a fully immersed three-
dimensional VR environment. They found out that
the triage skills of untrained students could be
improved regarding speed and efficacy [Vin08]. The
training of first responders by means of an immersive
simulation was performed by Wilkerson et al. Their
simulation trains the paramedics in adhering to triage
protocols, avoiding overtreatment, communication
(interagency, intraagency and scene-to-hospital) and
hazards (static and dynamic). Both simulations
require extensive technical equipment, this factor
results in a substantial higher lead time as opposed to
our VRPS.
On the interface side Lee et al. were one of the first
who proposed a multi-touch table top interface
[Lee85]. The table top interface which is used for the
VRPS was inspired by the work of Jeff Han [Han05]
and bases on the principle of FTIR (frustrated total
internal reflection). This multi-touch interface
enables developers to include gesture based
interactions in their applications. He found that
multi-touch interaction promises great improvements
in usability, intuitiveness and efficiency.
Additionally multi-touch interfaces facilitate multi-
user interactions, because multiple users can easily
interact with the computer simultaneously [Han06].

WSCG 2009 Full papers proceedings 170 ISBN 978-80-86943-93-0

Shen et al. focus on the collaboration aspects when
working on horizontal interactive surfaces. Their
concepts include the presentation of private and
personal information on multi user table top devices
in a way that privacy and security is guaranteed
[She03]. Furthermore they state that the interaction
on a table top is similar to the interaction with paper
when collaborating around-the-table. Their vision is
that the table has to disappear into and become a part
of the human to human interaction. They state,
however, that this vision is a big challenge which has
not been solved yet [She06].
This brief overview on related work shows that
virtual reality simulations are playing an increasingly
important role in skill training. Simulations,
however, are not identical to events in real life. In
fact computer simulations confront the doctors with
life-like situations which require their immediate
feedback, e.g. decisions and actions. Issenberg et al.
furthermore emphasise that simulation technology,
which is now gaining wider acceptance in medicine,
is already well established in other disciplines
[Iss99].

Value Reference [Gut06] Table top
n 132 160

AVG 41s 22s

Minimum 10s 3s

25%-Quantile 25s 12s

50%-Quantile 35s 20s

75%-Quantile 49s 28s

Maximum 121s 71s

Table 1. Time needed in the reference exercise
[Gut06] and the table top evaluation

Value Reference [Gut06] Table top
Accurate
triage 84.85 % 89.37 %

Overtriage 8.33 % 6.25 %

 critically 5.30 % 5.63 %

 non-critically 3.03 % 0.62 %

Undertriage 6.82 % 4.38 %

 critically 3.03 % 2.50 %

 non-critically 3.79 % 1.88 %

Table 2. Overtriage and undertriage rates of
reference evaluation [Gut06] and table top

evaluation

4. PATIENT MODEL AND PATIENT
PATTERNS
The aim of the triage is to check all patients' vital
functions. For that purpose the paramedics have to
interact with the patients. Paramedics, for instance,
have to check whether the patient is able to walk.
Additionally they have to determine the breathing
rate, have to stop serious wounds from bleeding and
have to feel for the patient's peripheral pulse. All
these interactions influence each other, therefore
additionally to an initial patient condition a complete
patient model is required.
The patient model can be represented by a finite state
machine (FSM) as shown in Figure 1. The most
important state is the neutral state in which the
VRPS rests when no interaction has been performed
recently. Paramedic interactions such as touch, check
breathing, take pulse, check bleeding and assign
card temporarily transfer the virtual patient into other
states in which the virtual patient exhibits appropriate
reactions before returning to the neutral state. The
touch interaction, for example, will either lead to the
state no reaction or to the state reaction. The
transition from the state reaction back to the neutral
state in this case is performed by a time trigger (for
the benefit of clarity the time triggered transitions
have been left out in the figure). These interactions
may change the condition of the patient and
influence the vital functions. For instance patients
might breathe again after the removal of foreign
bodies from their airways (this interaction is shown
in Figure 2).
Depending on the patient position (lying, standing or
sitting) different transitions are feasible. It is not
possible, for instance, to perform a head tilt - chin lift
manoeuvre with standing patients. The different
patient positions and the transitions are shown in
Figure 3. The same interaction might get a lying
patient to stand up or lead to no change due to the
fact that the patient is not able to stand up. Therefore
this FSM is non deterministic.
Whereas all possible interactions are contained in the
general patient model, the concrete patient
information is contained in a specific patient pattern.
These patterns contain the information in what way a
transition changes the patient's state. Our partners
from the fire department Munich have already
designed about 300 different patient patterns; some
of these patient patterns have already been
transferred to our VRPS.
The extension of the general patient model by
specific patient patterns leads to an adapted patient
model which can be represented by a deterministic
FSM. When performing a touch interaction, the
adapted automaton either always changes to the state

WSCG 2009 Full papers proceedings 171 ISBN 978-80-86943-93-0

reaction or always changes to the state no reaction.
Only the deterministic behaviour of the simulated
patients guarantees the reproducibility of triage
trainings.

Figure 3. Changing the patient position

Some transitions, however, still influence other
transitions. As a consequence, the underlying
deterministic FSM is getting more complex than the
non-deterministic one as shown in Figure 4. Before
the foreign body has been removed, the breathing
transition leads from the initial state Z0 to the no
breathing state (the dotted transition to the breathing
state has been removed in this adapted patient
model). After the removal of the foreign body, the
breathing transition leads from the state Z0* (which
uses the same visualization as the initial state Z0) to
the breathing state. The paramedic, however, is not
able to distinguish between state Z0* and Z0,
therefore from his point of view the system does not
seem to be deterministic.

Figure 2. Removing foreign bodies

Figure 1. The patient model

Figure 4. Deterministic FSM of an advanced
patient model

5. GESTURE BASED INTERACTION
The examination of all patients' vital parameters
(ability to walk, fatal injuries, breathing rate,
peripheral pulse, spurt bleedings and consciousness)
are performed by gestures on the table top interface.
Additionally bandages can be pressed on spurt and
non-spurt bleedings and a colored triage tag can be
attached to the patient. Not all these interactions
make sense in a disaster triage. Pressing bandages on
non-spurt bleedings, for instance, is not required
[Kan06]. Furthermore counting out the patients
breathing rate or checking his peripheral pulse is not
necessary if the patient is able to walk. Nevertheless
in the triage simulation these interactions can also be
performed in order to give the paramedics the
possibility to make mistakes and learn from them,
similar to a real exercise. In order to achieve a
realistic simulation, the time for all gestures in the
VRPS correlates to the time needed in reality. This
correlation was worked out by the Munich fire
department.
In Figure 5 and 6 the gesture for the change of the
patient's position is shown (the underlying patient
model is shown in Figure 3). The paramedic helps
the patient up by touching both his shoulders as
shown in Figure 5 and helps him down by touching
them again as shown in Figure 6. Helping standing
patients down is generally not reasonable during the
disaster triage, the reason for offering the paramedics

WSCG 2009 Full papers proceedings 172 ISBN 978-80-86943-93-0

this interaction anyhow is the same as mentioned
above. The red boxes illustrate the sensitive areas for
this gesture. During the training, however, they were
naturally not visible for the triaging paramedic as
shown in Figure 7.

Figure 6. Lying the patient down

Figure 5. Propping the patient up

6. EVALUATION DESIGN
The evaluation design has to consider the fact that
usually paramedics perform the disaster triage in
teams of two. The triage training on the table top was
therefore also performed in triage teams. Due to the
fact that we used a multi-touch table top interface,
this multi-user requirement could be fulfilled very
easily. The function of the triaging paramedic is to
interact with the patient and to check his vital
functions, whereas the supervising paramedic mainly
controls the accuracy of the triage process.
Furthermore a basic documentation, a numerical
logging of the quantity of patients in every category,
is done by the supervising paramedic as shown in
Figure 7.

The evaluation was performed with eight paramedics
who triaged in four teams (team 1-4). Every
paramedic performed 2 trainings with 10 triage
processes each. Altogether 160 triage processes have
been performed on the table top, and the results can
therefore be compared to a previous disaster control
exercise with real mimes and 132 triage processes
[Gut06]. Due to the fact, that real disaster control
exercises are quite laborious and expensive, a
between-subject design had to be chosen. The group
which participated in our evaluation has an education
which is very similar to the education of the group
from [Gut06], because of the fact that both groups
are from Munich fire department. Therefore we can
draw first conclusions in our explorative study, even
if our sample size is rather small for a in-between-
subject design.
In real disaster control exercises there are no breaks
between any triage processes, but the teams usually
change their roles within the team. Thus the order of
the triage processes was the following: team 1A,
team 1B, team 1A, team 1B, team 2A, team 2B, and
so on. The first team member (A) triaged 10 patients
and was supervised by the second team member (B),
after 10 triage processes paramedic B triaged 10
patients and was supervised by paramedic A. All
interactions which the paramedics performed on the
table top interface were logged and additionally the
triage trainings on the table top were recorded by two
cameras. One camera focused the table top device
and the other one focused on the triage team.
Furthermore we used voice recording to document
the verbal collaboration between the two paramedics.

7. RESULTS
Due to the fact that the time for each triage process
has been logged on the table top, the triage times can
be compared to the triage times in the real disaster
control exercise as shown in Table 1. The average
time for one triage process is nearly half as long as in
real disaster control exercises (22s opposed to 41s),
and also the median is lower (20s opposed to 35s). In
order to simulate all interactions as realistic as
possible the table top application uses empirical
values for the time need of the different interactions.
These were provided by the Munich fire department.
They experienced, for instance, that propping up
lying patients or counting out the breathing rate takes
usually about ten seconds. The evaluation results,
however, show that the time needed for these
interactions definitely has to be estimated higher. The
evaluation is adequate to identify first results and
gain a first impression on the usability of this VRPS.
For an advanced statistical interpretation, however, a
within-subject design has to be used in the next
evaluation.

WSCG 2009 Full papers proceedings 173 ISBN 978-80-86943-93-0

In addition to the time aspects of the triage training,
the accuracy of this training is of essential
importance as mentioned above. Therefore we
compared the overtriage and undertriage rates
evaluated in the table top based training to the results
from the disaster control exercise with real mimes as
shown in Table 2. The results of both evaluations are
quite similar, whereas in the real disaster control
exercise about 85 percent of all patients were triaged
correct, in the table top training 89 percent of all
patients were triaged correct. This difference is too
slight to be interpreted statistically due to the
between-subject design. On basis of the critically
overtriage and undertriage rates shown in Table 3
the diagnostic effectiveness of the triage processes
were compared in Table 4.

Figure 7. The virtual reality patient simulation
(VRPS) on the multi-touch table top

reference
[Gut06] redpatient ¬redpatient sum

redtriage 30 6 36
¬redtriage 4 92 96
sum 34 98 132

table top redpatient ¬redpatient sum
redtriage 41 9 50
¬redtriage 7 103 110
sum 48 112 160

Table 3. Overtriage and undertriage of the
critically injured: The patient state (index patient)
is compared to the triaged category (index triage)
and the reference evaluation [Gut06] is compared

to the table top evaluation

value reference
[Gut06] table top

Sea 0.882 (0.73–0.95) 0.854 (0.75–0.95)
Spb 0.939 (0.87–0.97) 0.920 (0.87–0.97)
PPAc 0.833 (0.68–0.92) 0.820 (0.71–0.93)
NPA 0.958 (0.90–0.98) 0.936 (0.87–1.00)
PLe 14.4 (6.6–31.6) 10.63 (5.6–20.1)
NLf 0.125 (0.05–0.32) 0.159 (0.08–0.32)
Table 4. Diagnostic effectiveness when triaging

the critically injured in reference exercise [Gut06]
and table top training

aSensitivity
bSpecificity
cPositive predictive accuracy
dNegative predictive accuracy
ePositive Likelihood
fNegative Likelihood

8. CONCLUSIONS AND FUTURE
WORK
The explorative evaluation results show that the
introduction of our VRPS for the triage training does
not prevent the paramedics from making inaccurate
triage decisions. In order to provide a realistic
training it is important, that this possibility does not
get lost in the VRPS. Therefore a table top device
can be adequate to be used in disaster control
exercises. Due to the successful first evaluation we
expect that paramedics can train essential skills
which are needed in disaster operations, such as
disaster triage, on multi-touch table top interfaces in
addition to real life triage trainings. More frequent
trainings of the paramedics can help to be better
prepared for the case of disaster.
The question whether the training effects of a table
top training are similar to the training effects of
triage training with real mimes has not been
considered in this first evaluation, and therefore will
be the topic of our future work. We propose to
compare three groups of paramedics, the first group
trains on the table top, the second one performs no
training and the third one trains with real mimes.
Afterwards all three groups triage real mimes and the
time aspects and triage accuracy are evaluated.

9. ACKNOWLEDGMENTS
The authors would like to thank Mr. Tretschok for
organizing the evaluation of the proposed VRPS.
Furthermore we appreciate the interest of the
paramedics from Munich fire department to evaluate
our approach.

WSCG 2009 Full papers proceedings 174 ISBN 978-80-86943-93-0

10. REFERENCES

[Bak07] Baker, M.S. Creating order from chaos: Part

I: Triage, initial care, and tactical considerations
in mass casualty and disaster response. Military
Medicine, 172(3):232–236, 2007.

[Eng68] Engelbart, D. and William, K. A Research
Center for Augmenting Human Intellect, AFIPS
Conference Proceedings of the 1968 Fall Joint
Computer Conference, San Francisco, CA, Vol.
33, pp. 395-410, 1968

[Gre91] Green, M., and Jacob, R. SIGGRAPH '90
Workshop report: software architectures and
metaphors for non-WIMP user interfaces, ACM
ACM SIGGRAPH Computer Graphics, Volume
25 , Issue 3, Pages: 229 – 235, 1991

[Gut06] Gutsch, W., Huppertz, T., Zollner, C.,
Hornburger, P., Kay, M.V., Kreimeier, U.,
Schäuble, W., and Kanz, K.G. Initiale Sichtung
durch Rettungsassistenten. Notfall &
Rettungsmedizin, 9(4):384–388, June 2006.

[Han05] Han, J.Y. Low-cost multi-touch sensing
through frustrated total internal reflection. In
UIST ’05: Proceedings of the 18th annual ACM
symposium on User interface software and
technology, pages 115–118, New York, NY,
USA, ACM Press, 2005.

[Han06] Han, J.Y. Multi-touch interaction wall. In
SIGGRAPH’06: ACM SIGGRAPH 2006
Emerging technologies, page 25, New York, NY,
USA, ACM Press, 2006.

[Iss99] Issenberg, S.B., McGaghie, W.C., Hart, I.R.,
Mayer, J.W., Felner, J.M., Petrusa, E.R., Waugh,
R.A., Brown, D.D., Safford, R.R., Gessner, I.H.,
Gordon, D.L., and Ewy, G.A. Simulation
technology for health care professional skills
training and assessment. JAMA, 282(9):861–866,
1999.

[Kan06] Kanz, K.G., Hornburger, P., Kay, M.V.,
Mutschler, W., and Schäuble, W. mSTaRT-
Algorithmus für Sichtung, Behandlung und
Transport bei einem Massenanfall von Verletzten.
Notfall Rettungsmed., 9(3):264–270, 2006.

[Lee85] Lee, S.K., Buxton, W., and Smith, K.C. A
multi-touch three dimensional touch-sensitive
tablet. In CHI ’85: Proceedings of the ACM
Human Factors in Computing Systems
Conference, pages 21–25, San Francisco,
California, USA, ACM Press, 1985.

[Man04] Mann, N.C., MacKenzie, E., and Anderson,
C. Public health preparedness for mass-casualty
events: A 2002 state-by-state assessment. Prehosp
Disast Med., 19(3):245–255, 2004.

[Nes07] Nestler, S., Dollinger, A., Echtler, F., Huber,

M., and Klinker, G. Design and Development of
Virtual Patients, Vierter Workshop Virtuelle und
Erweiterte Realität der GI-Fachgruppe VR/AR,
Weimar, 2007

 [Mon99] Mönk, S., Baldering, H.-J., Vollmer, J.,
Buggenhagen, H., and Heinrichs, W.
Patientensimulation. Notfall Rettungsmed.,
2:297–306, 1999.

[Pro06] Prokoph, K., Rieger-Ndakorerwa, G., and
Paschen, H.R. Katastrophenschutzübung zum
Massenanfall von Verletzten. Notfall
Rettungsmed., 9(3):271–279, 2006.

[Sau89] Saunders, C.E., Makens, P.K., and Leblanc,
L.J. Modeling emergency department operations
using advanced computer simulation systems.
Ann Emerg Med., 18(3), 1989.

[She03] Shen, C., Everitt, K., and Ryall, K. Ubitable:
Impromptu face-to-face collaboration on
horizontal interactive surfaces. In UbiComp ’03:
Proceedings of the Fifth International Conference
on Ubiquitous Computing, pages 281–288, Berlin
Heidelberg, Springer-Verlag, 2003.

[She06] Shen, C. Multi-user interface and
interactions on direct-touch horizontal surfaces:
Collaborative tabletop research at MERL. In
TableTop ’06: IEEE International Workshop on
Horizontal Interactive Human-Computer
Systems, pages 53–54, 2006.

 [Vin08] Vincent, D.S., Sherstyuk, A., Burgess, L.,
and Connolly, K. Teaching Mass Casualty Triage
Skills Using Immersive Three-dimensional
Virtual Reality, Academic Emergency Medicine,
15(11), 1160-1165, Special Issue: Proceedings of
The 2008 AEM Consensus Conference: The
Science of Simulation in Healthcare: Defining
and Developing Clinical Expertise, 2008.

[Wil08] Wilkerson, W., Avstreih, D., Gruppen, L.,
Beier, K.-P., and Woolliscroft, J. Using
Immersive Simulation for Training First
Responders for Mass Casualty Incidents,
Academic Emergency Medicine, 15(11), 1152-
1159, Special Issue: Proceedings of The 2008
AEM Consensus Conference: The Science of
Simulation in Healthcare: Defining and
Developing Clinical Expertise, 2008.

WSCG 2009 Full papers proceedings 175 ISBN 978-80-86943-93-0

WSCG 2009 Full papers proceedings 176 ISBN 978-80-86943-93-0

 3D Skeleton Extraction from Volume Data
Based on Normalized Gradient Vector Flow

Sang Min Yoon

GRIS, TU Darmstadt
Rundeturmstrasse 10

Darmstadt
 64283 Germany

Sangmin.yoon@zgdv.de

Cornelius Malerczyk
ZGDV

Rundeturmstrasse 10
Darmstadt

64283 Germany
Cornelius.malerczyk@zgdv.de

Holger Graf
ZGDV

Rundeturmstrasse 10
Darmstadt

64283 Germany
Holger.graf@zgdv.de

ABSTRACT
Skeleton extraction and visualization of 3D reconstructed target objects from multiple views continues to be a
major challenge in terms of providing intuitive and uncluttered images that allow the users to understand their
data. This paper presents a three-dimensional skeleton extraction technique of deformable objects based on a
normalized gradient vector flow in order to analyze and visualize its characteristics. 3D deformable objects are
reconstructed by an image based visual hull technique from known extrinsic and intrinsic camera parameters and
silhouettes which are extracted from each camera. Our 3D skeleton extraction methodology employs the
normalized gradient vector flow which is a vector diffusion approach based on partial differential equations. The
euclidean distance of the magnitude of a normalized gradient vector flow is used to extract the medial axis of
volume data. A markerless 3D skeletonization of reconstructed objects from multiple images might be applied to
retrieve the 3D model or correct the 3D motion of the target objects.

Keywords
3D Skeleton extraction, 3D reconstruction, and Normalized Gradient Vector Flow(NGVF)

1. INTRODUCTION
The acquisition of three-dimensional real world
objects from a set of input images is an important
topic in computer graphics as well as computer
vision. Most techniques that have been developed
during last two decades have focused on how to
visualize and render the 3D motion of deformable
objects in an arbitrary viewpoint. The most common
representations for such objects are boundary meshes
or point-sets. However, applications such as editing,
animation, morphing or shape matching often need a
higher level understanding of the shape and its
structure. Such an understanding can be conveyed
through the use of a skeleton representation of the
object because a representation of deformable objects
efficiently show their characteristics based on low
level data.

Traditional 3D motion capture and skeleton
extraction systems are mainly based on two
approaches. One is to attach many sensors to the
joints of a target object, and the other is to analyze a
video sequences by feature detection, searching
correspondence between the features from multiple
views, recovering the 3D skeleton extraction and
connection from feature correspondences. Especially,
human skeleton extraction and sensor based motion
capture systems are already widespread within
comprehensive applications for the analysis of users’
performances, medical diagnosis, surveillance, and
3D model retrieval systems. However, sensor based
3D skeleton extraction has many constraints in terms
of user mobility and experimental environment even
if it is robust and fast to understand thee 3D skeleton
of target objects. On the other hand, markerless 3D
skeleton extraction gives users convenience in
moving, but it is difficult due to the fact that the
quality of a 3D skeleton is dependent on the
methodology of how to reconstruct the target object
and whether the reconstructed objects include
complex local topology, large missing data, and
noise. This in turn requires a robust and accurate
interpretation process.
In this paper, we propose a simple and efficient
skeletonization algorithm, which employs image-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2009 Full papers proceedings 177 ISBN 978-80-86943-93-0

based 3D reconstruction techniques and extracts a
3D skeleton based on a normalized gradient vector
flow technique, a vector diffusion approach based on
partial differential equations. In order to be able to
extract the 3D skeleton we need to know the cameras
extrinsic and intrinsic parameters of the multiple
camera alignment. Figure 1 shows the overview of
our proposed methodology to extract the 3D skeleton
of deformable volume data with normalized gradient
vector flow from multiple images, silhouette
extraction using background subtraction followed by
the 3D reconstruction.

Configuration of the paper
This paper is organized as follows: Section 2
describes the previous research about 3D
reconstruction from multiple images, background
subtraction to extract the silhouette of deformable
objects and 3D curve-skeleton extraction techniques.
Section 3 explains the 3D reconstruction of target
objects via image based visual hulls using the
silhouettes which are extracted by background
subtraction from multiple camera images. Such a
reconstruction utilizes the known intrinsic and
extrinsic camera parameters. Section 4 describes
methods for the computation of a 3D gradient vector
flow and the skeleton extraction of deformable
objects from 3D volume data. In section 5, we will
show our experimental results that qualify the
performance of the proposed approach. Finally, we
conclude and discuss our methodology in section 6.

2. PREVIOUS RESEARCH
Multi-view 3D Reconstruction
The topic of 3D scene reconstruction of deformable
objects based on multiple images has been
investigated during the last 20 years and produced
numerous results in the area of computer graphics

and computer vision. Especially, real-time 3D
reconstruction of target objects within a GPU
environment has been one of hot issues nowadays.
The 3D reconstruction research starts from a stereo
vision based reconstruction [MP79]. Okutomi et al.
[OK93] extended the conventional two-view stereo
reconstruction into a multiple camera environment.
Kang et al. [KSC01] developed a method of multi-
view stereo reconstruction from images to overcome
the large occlusions. These methods are designed to
reconstruct depth maps from particular viewpoints.
Hence, they are not suitable for a full 3D scene
reconstruction from images obtained from multiple
surrounding cameras.
Image based visual hull reconstruction [MBG00] is a
real-time 3D scene reconstruction technique from
multiple view images. The algorithm does not need
to solve the corresponding problem. Instead, it
simply calculates the convex hull of silhouettes in all
view images. While the visual hull method works
robustly when cameras surround the object, a
concave object cannot be reconstructed using the
silhouette alone. This problem was solved by a voxel
coloring method presented by Seitz et al. [SD97].

Background Subtraction
The principle of a background subtraction is to detect
moving objects by building the difference between
the current frame and a reference frame. A
comprehensive overview and indepth literature
review on background subtraction techniques can be
found in Picacardi et al. [Pic04]. Several methods for
performing background subtraction try to effectively
estimate the background model from temporally
trained sequences of images. Wren et al. [WAD97]
has proposed to model the background independently
at each pixel which is based on a Gaussian
probability density function. Stauffer et al. [SG99]
extended the uni-modal background subtraction
approach by using an adaptive multi-modal
subtraction method that modelled the pixel color as a
mixture of Gaussians. Oliver et al. [ORP00] used an
eigen-space model for background subtraction.
Recent techniques which combine multiple cues such
as color and depth maps are also used for video
surveillance and monitoring system [BLL03].

3D Skeleton extraction
3D skeleton extraction can be largely classified into
three categories according to [CSYB05]: voxel
topology, computational geometry, and continuous
implicit. The computation of skeleton extraction by
voxel topology is derived by topological thinning
[GS99] through iteratively removing its simple
points from the boundary of a voxel set. The medial
axis of a 3D shape by geometry is extracted using its
own distance field [WML03] or a refined geodesic

Figure 1. Overview of our proposed system

WSCG 2009 Full papers proceedings 178 ISBN 978-80-86943-93-0

field [DS06]. Implicit technique compute the
skeleton from the ridge points of 3D fields such as
fast marching [ZT99] or active contours [GG00].

3. 3D RECONSTRUCTION OF
DEFORMABLE OBJECTS
In this section, we will explain how we extract the
silhouette of target objects based on background
subtraction and reconstruct the deformable object
from the assumption that we know the intrinsic and
extrinsic camera parameters by camera calibration.
We first extract the silhouette of the target object
with background subtraction technique.

Kernel Density Estimation based
Silhouette Extraction
There exist many approaches to extract and segment
the target objects with the lowest possible false alarm
rates. Background subtraction is a method typically
used to detect the deformable objects in the scene by
comparing each new frame to a model of the scene
background. We use a non-parametric technique for
background modeling and foreground extraction.
Our approach is based on kernel density estimation
of the probability density function of the intensity of
each pixel within each image. Kernel density
estimation based background modeling aims at
capturing and storing recent information about the
image sequence, continuously updating this
information in order to capture fast changes in the
scene background [HCD04]. The intensity
distribution of a pixel can change quickly. So we can
estimate the density function of this distribution at
any moment of time given only very recent history
information if we want to obtain a sensitive detection.
Using the recent pixel information, the probability
density function of each pixel will have intensity

value I(x,y) at time t and can be non-parametric
estimated using the kernel, K as

∑
=

−=
N

i
itt IIK

N
Ipdf

1
)(1)((1)

where N is the recent pixel information for
comparing the current image’s pixel information. If
we choose our kernel estimation function to be a
Gaussain kernel for color image, then the density ca
be estimated as

∑∏
= =

−
−

=
N

i j

II

j

t
j

ijtj

e
N

Ipdf
1

3

1

2

)(1

2

2

2

2
11)(σ

πσ
(2)

where j is number of channel and σ is the standard
deviation of Gaussain kernel. The foreground area of
an image is segmented by an adequate threshold of
equation (2).
Figure 2 shows the input color images and extracted
target object. The origin of the world coordinate
system which is defined by camera calibration is also
displayed by a red(X), green(Y), and blue(Z) line.
Thus, in order to extract the silhouette of our target
objects, we use this kernel density estimation based
background subtraction technique.

3D Reconstruction with Image-based
Visual Hulls
In this section, we explain how we reconstruct the
target object from multiple images. The image based
visual hull methodology [MBG00] is usually
computed with respect to a finite number of
silhouettes. The image-based visual hull is defined
by the camera’s intrinsic and extrinsic parameters
and silhouettes from each view. Generally, it is the

(a) Input color images from multi-views (b) Extracted silhouettes by a kernel density based

background subtraction technique
Figure 2. Input color images and extracted silhouettes of a target object from multi-view

WSCG 2009 Full papers proceedings 179 ISBN 978-80-86943-93-0

maximal volume whose projections onto multiple
image planes result in a set of observed silhouettes of
an object. One efficient technique for generating the
3D reconstructed object by a visual hull computes
the intersection of the viewing ray from each
designated viewpoint with each pixel in that
viewpoint’s image.
In order to reconstruct the visual hull surface the first
intersection point of the ray traversing the box with
the visual hull must be found. A point on the ray is in
the visual hull if its projection lies within the
silhouette in all view images. A simple approach to
this problem is a ray matching algorithm: The ray is
sampled at regular intervals and each resulting point
is projected onto all views using the camera
calibration data. The necessary small steps for a good
approximation of the surface yield to a high
processing cost and a bad performance.
Figure 3 displays the 3D reconstructed target object
by image-based visual hulls in an arbitrary viewpoint.

4. 3D SKELETON EXTRACTION
BASED ON GRADIENT VECTOR
FLOW
Gradient Vector flow (GVF) [XP98] begins defining
the edge map of volume data as),,(zyxf derived
from the original volume data. The edge map should
have the property that),,(zyxf is large near the
image boundaries and small within the homogeneous
regions. The edge map of the original volume data is
defined as

2||),,(||),,(zyxIzyxf ∇−= (3)

The basic premise of the energy minimizing
formulation of deformable objects is to find a
parameterized curve that minimizes the weighted
sum of energy.

The GVF is the vector flow)(xV that minimizes
the following functional,

∫∫∫ ∇−∇+∇= dxfVfVVE 222 ||||||)(µ (4)

where µ),,,(zyxx = is a regularization parameter.
This variational formula consists of two terms. The
first term, the sum of the squares of the partial
derivatives of the vector field, makes the resulting
vector flow smoothly. The second term stands for the
difference between the vector flow and its initial
status. Thus minimizing this energy will force)(xV
nearly equal to the gradient of the edge map where

||),,(|| zyxf∇ is large.

The typical GVF methods cannot efficiently to
extract the medial axis when a weak vector makes a
very little impact on its neighbors that have much
stronger magnitudes.
The normalized gradient vector flow technique
(NGVF) [YB02] can tremendously affect a strong
vector, both on its magnitude and on its orientation.
One of the important properties of the ||)(|| xV over

(a) 3D NGVF of reconstructed objects

(b) Skeleton extraction of a deformable
object based on a 3D reconstruction

Figure 4. Normalized gradient vector flow of
the reconstructed object and its skeleton

from equation (5)

Figure 3. 3D Reconstructed target object
and rendering in an arbitrary viewpoint

WSCG 2009 Full papers proceedings 180 ISBN 978-80-86943-93-0

the Euclidean distance is that it does not form medial
surfaces for 3D objects because only one boundary
voxel contributes to the computation of distance
[HF07]. The 3D skeleton is extracted from the
medialness whose strength is controlled by the field
strength. q

1q0,)
||min||max

||min|),,(|(1),,(>>
−
−

−= q

VV
VzyxVzyxλ (5)

Figure 4 shows the extracted NGVF from the
reconstructed object and the extracted skeleton from
medialness function of equation (5).

5. EXPERIMENTS
We implemented our proposed 3D skeleton
extraction of deformable objects from multiple
images and conducted some experiments on a
standard PC with Pentium 4 2.2GHz CPU. Multiple
images from 4 cameras consist of a color image
which has 640x480resolution. For background
subtraction, we trained 20 background images per
each camera. The voxel size of target object is
128x128x128. Figure 5 shows the 3D reconstructed
object by an image-based visual hull and its extracted
skeleton. Those first experiments, showed the
robustness and efficiency of our proposed skeleton
extraction methodology.

6. CONCLUSION AND DISCUSSION
This paper presents a novel framework for
computing markerless 3D skeletons based on an
extraction from 3D reconstructed volumetric objects.
Both the efficiency and robustness of the proposed
framework have been validated within a controlled
environment as well as reconstructing different
deformable objects. The NGVF based 3D skeleton
extraction methodology provides a medial axis of the
3D deformable objects which are reconstructed by
image-based visual hulls. We need to benchmark our
system within the next steps of research in order to
precisely define the parameters and boundary
conditions for motion analysis and its applications.

7. REFERENCES
[ACK01] Amenda, N., Choi, S., and Kolluri, R. The

Power Crust, In proceeding of the ACM
Symposium on Solid Modeling and Applications,
pp249-260, 2001.

[BLL03] Barotti, S., Lombardi, L., Lombarid,
P.,Multi-module Switching and Fusion for
Robust Video Surveillance, In proceeding of
Image analysis and processing, 2003.

[BKS01] Bitter, I., Kaufman, A.E., and Sato, M.
Penalized Distance Volumetric Skeleton
Algorithm, IEEE Transaction on Visualizationi
and Computer Graphics, 7(3), pp.195-206, 2001.

[Blu67] Blum, H. A transformation for new
descriptors of shapes, MIT Press, pp.362-380,
1967.

[CSYB05] Cornea, N., Silver D., Yuan, X., and
Balasubramanian R., Curve-skeleton applications,
In IEEE Visualization pp.95-102, 2005.

[DS06] Dey T.K., Sun, J., Defining curve-skeletons
with medial geodesic function, In proceeding of
SGP, pp.143-152, 2006.

[GG00] Golland P., Grimson, W., Fixed topology
skeleton, In proceeding of CVPR, pp.1010-1017,
2000.

[GS99] Gagvani N., and Silver D., Parameter-
controlled volume thinning, Graph Models and
Image Processing, 61, 3, pp.149-164, 1999.

[HCD04] Han, B., Comaniciu, D., Davis, L.,
Sequential kernel density approximation through
mode propagation, In proceeding of ECCV, 2004.

[HF07] Hassaouna M.S, and Farag A.A., On the
Extraction of Curve Skeletons using Gradient
Vector Flow, In proceeding of ICCV, pp.1-8,
2007.

[KSC01] Kang, S.B., Szeliski, R., and Chai, j.
Handling occlusions in dense multi-view stereo,
in proceeding of Computer Vision and Pattern
Recognition, pp.103-110, 2001.

[MBG00] Matusik, W., Buehler, C., Gortler, S.J.,
and McMillan, L. Image-based Visual Hulls, In
proceeding of ACM SIGGRAPH, 2000.

[MP79] Marr, D.C., and Poggio. T. A computation
theory of human stereo vision, In proceeding of
the Royal Society of London, B204, pp.301-328,
1979.

[OK93] Okutomi. M, and Kanade,T. A multiple-
based stereo, IEEE Transaction on PAMI 15,
pp.353-363, 1993.

[ORP00] Oliver, M.M., Rosario, B., Pentland, A.P.,
A Bayesian computer vision system for modeling
human interactions, IEEE Transaction on PAMI,
2000.

[Pic04] Piccardi, M., Background subtraction
techniques: a review, In proceeding of IEEE
International Conference on System, Man, and
Cybernetics.

[SD97] Saitz, S.M., and Dyer, C.M. Photorealistic
scene reconstruction by voxel carving, In
proceeding of Computer Vision and Pattern
Recognition, pp.1067-1073, 1997. [SG99]
Stauffer, C., Grimson, W., Adaptive background
mixture models for real-time tracking,, In
proceeding of CVPR, 1999.

WSCG 2009 Full papers proceedings 181 ISBN 978-80-86943-93-0

[WAD97] Wren, C., Azarbayejani, A., Darrel, T.,
Pentland, A.P., Pfinder: real-time tracking of the
human body, IEEE PAMI, 1997.

[WML03] Wu, F.C., Ma W.C., Liou, P.C., Laing,
R.H., Ouhyoung M., Skeleton extraction of 3D
objects with visible repulsive force, In proceeding
of Pacific Graphics, pp.409-413, 2003.

[WP02] Wade, L., and Parent, R.E. Automated
Generation of Control Skeletons for use in
Animation. The Visual Computer, 18(2), pp.97-
110,2002.

 [XP98] Xu, C., Prince, J.L. Snake, shapes, and
gradient vector flow. IEEE Transaction Image
Processing, 7(3), pp.359-369, 1998.
[YB02] Yu, Z., Bajaj, R., Normalized gradient vector

diffusion and image segmentation, In proceeding
of ECCV, pp.517-530, 2002.

[ZT99] Zhou, Y., and Toga, A. Efficient
Skeletonization of Volumetric Objects, IEEE
Transaction on Visualization and Computer
Graphics, 5(3), pp.195-206, 1999.

Figure 5. 3D reconstruction of deformable objects and their extracted 3D skeleton with our proposed
methodology.

WSCG 2009 Full papers proceedings 182 ISBN 978-80-86943-93-0

The Elucidation of Planar Aesthetic Curves

1Gobithaasan R.U.

Sc. of Mathematical Sciences
Universiti Sains Malaysia
11800 Minden Penang,

Malaysia
gobithaasan@gmail.com

Jamaludin Md. Ali
Sc. of Mathematical Sciences

Universiti Sains Malaysia
11800 Minden Penang,

Malaysia
jamaluma@cs.usm.my

Kenjiro T. Miura
Dept. of Mechanical Engineering,

Shizuoka University, 3-5-1,
Johoku, Hamamatsu,Shizuoka,

Japan
tmkmiur@ipc.shizuoka.ac.jp

ABSTRACT

A compact formula for Logarithmic Curvature Histogram (LCH) and its gradient for planar curves have been
proposed. Using these entities and the analysis of Generalized Cornu Spiral (GCS), the mathematical definition
for a curve to be aesthetic has been introduced to overcome the ambiguity that occurs in measuring the beauty of
a curve. In the last section, detailed examples are shown on how LCH and its gradient represented as a straight
line equation can be used to measure the aesthetic value of planar curves.

Keywords
Shape Interrogation technique; Logarithmic Curvature Histogram; Aesthetic Curves; Spiral; Fairing; Curvature
Profile.

1. INTRODUCTION
A potential customer judges the aesthetic appeal of a
product before its physical performance [Pug91].
This clearly indicates the importance of aesthetic
shapes for the success of an industrial product.
Geometric modeling is the study of free-form curve
and surface design. It is one of the basic foundations
in the product design environment. Shape
interrogation technique is the process of information
extraction from geometrical model [Pat98]. The
inspection of a curvature profile is an example of
shape interrogation technique that is vital for product
manufacturing in order to verify a product’s
functionalities and aesthetic shapes are met.
There are many studies indicating the importance of
the curvature profile to characterize planar curves
(see [Nut88] & [Sap94] and references therein). A
curvature profile is a graph plotted with the values of
parameter t representing the x-axis against its
corresponding signed curvature values representing
the y-axis [Far96]:

ሻݐሺߢ ൌ ௫ᇲሺ௧ሻ௬ᇲᇲሺ௧ሻି௫ᇲᇲሺ௧ሻ௬ᇲሺ௧ሻ
ሺ௫ᇲሺ௧ሻమା௬ᇲሺ௧ሻమሻయ/మ (1)

Hence, the curvature profile has been highlighted as a
shape interrogation tool to fair B-spline curves and
surfaces [Sap90]. The designer arrives to the desired
curve by interactively or automatically tweaking the
control points and concurrently inspecting the
curvature profile. However, the curvature profile
alone is insufficient to identify the aesthetic value of
planar curves.
Planar curves which are visually pleasing has been
denoted with many terms, e.g., fair curves, beautiful
curves, aesthetic curves, spirals, monotonic curvature
curves and etc. In this paper, the term aesthetic curve
has been used to denote a visually pleasing curve.
Recently, a constructive mathematical formula
denoted Logarithmic Curvature Histogram (LCH)
and its gradient have been used to define a visually
pleasing. In this case, an aesthetic curve refers to a
curve with a constant gradient of LCH [Har99,
Kan06, Yosh02, Yos06, Yos07, Yos08]. 1
This paper promotes simplification of the formula for
the LCH and its gradient. The second part of the
work focuses on the mathematically elucidating the
definition of the aesthetic curve. This is contrary to
recent researches on LCH and constant gradient
[Har99, Kan06, Yosh02, Yos06, Yos07, Yos08].

1 Permanent Address: Dept. of Mathematics, FST,
University Malaysia Terengganu, 21030 Kuala
Terengganu, Terengganu, Malaysia. gr@umt.edu.my

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2009 Full papers proceedings 183 ISBN 978-80-86943-93-0

LDDC leading to LCH
Harada et.al have proposed the use of Logarithmic
Distribution Diagram of Curvature (LDDC) to
analyze the characteristics of planar curves with
monotonic curvature [Har99]. LDDC is the
relationship between the length frequencies of a
segmented curve with regards to its radius of
curvature is plotted in log-log coordinate system.
These graphs can be used to identify the aesthetic
value of a curve [Kan03, Har99] for automobile
design.

LDDC is generated to mathematically obtain the
locus of the interval of radius of curvature and its
corresponding length frequency. Thus, two curves
with different length would generate distinct LDDC
regardless of the similarities of the shape of curvature
profile.

For example, two circular arcs with the same radius
but different length would generate similar curvature
profile; but in the case of LDDC, different shapes
would be generated [Har99].

The steps involved in generating LDDC are as
follows [Yosh02]:

1. Compute the value of radius of curvature for
the curve,

2. Segregate the radius of curvature based on
the formulated classes and count its
frequency,

3. Plot the frequency against the radius of
curvature divided by the arc length on a log-
log coordinate system,

4. Compute the outline of this histogram and
estimate its gradient.

Some of the drawbacks of the LDDC method are; it
is computationally expensive, tedious and cannot be
used to investigate arbitrary monotone curves (see
[Har99 & Yosh02] for details) as well as high
numerical errors may occur due to approximation
process.
In 2003, Kanaya et.al proposed the generation of
Logarithmic Curvature Histogram (LCH) to
substitute LDDC [Kan03]. LCH is an analytical way
of obtaining the relationship between the interval of
curvature radius and its corresponding length
frequency.

Generalized Cornu Spiral
Nutbourne et.al developed a technique for
constructing planar curves by integrating their
curvature profile functions [Nut72]; this technique is
well known as curve synthesis. There have been vast
interests in carrying out curve synthesis for linear
curvature functions whereby segments of Cornu
spiral are generated. Pal & Nutbourne [Pal77],
Schechter [Sch78] and Meek & Walton [Mee92]

have carried out extensive investigation on curvature
function consisting of piecewise linear curvature
functions.
Let a curve defined in the interval of 0 ൑ ݏ ൑ ܵ, and
its curvature function is represented by a bilinear
curvature element function or denoted as BLINCE
as:

ሻݏሺߢ ൌ ௣௦ା௤
௥௦ାௌ

 (2)

where p, q, (r > -1) and (S >0) are the free parameters
of the curve segment. The resultant curve upon curve
synthesis is a family of Generalized Cornu Spiral
(GCS) [Jam99]. It is noted that GCS contains straight
lines (p=q=0), circular arcs (q=r=0), Logarithmic
spiral (q=0, r≠0) and clothoid (q≠0, r=0). The values
of r is restricted to (r > -1) in order to ensure ߢሺݏሻ is
well behaved and continuous over the stated interval.
Let the arc length of the GCS curve segment be S and
the end curvatures are κ0 and κ1, then at s=0 and s=S,
we obtain κ(0)=κ0 and κ(S)=κ1. Thus, equation (2)
can further be reduced to the following set of
equations [Jam99]:
ݍ ൌ ଴ (3)ߢܵ
ܵ݌ ൅ ݍ ൌ ܵሺ1 ൅ ሻκଵ (4)ݎ
Solving for p in terms of r, we get ݌ ൌ ሺ1 ൅ ሻκଵݎ െ
κ଴. Finally, by substituting p and q in equation (2),
the curvature function becomes:

ሻݏሺߢ ൌ ሺசభିசబା୰சభሻୱା சబS
௥௦ାௌ

, 0 ≤ s ≤ S and r > -1 (5)

A GCS segment can be obtained by substituting the
derived curvature equation from (5) into equation (6):
ሻݏሺܵܥܩ ൌ
ሼݔሺ0ሻ ൅ ׬ cos ቂߠሺ0ሻ ൅ ׬ ௧ݑሻ݀ݑሺߢ

଴ ቃ ௦,ݐ݀
଴

ሺ0ሻݕ ൅ ׬ sin ቂߠሺ0ሻ ൅ ׬ ௧ݑሻ݀ݑሺߢ
଴ ቃ ሽ ௦ݐ݀

଴

(6)

Depending on the selection for end curvatures, a
GCS segment may only have one inflection point and
the monotonicity of the curvature function is always
preserved. Furthermore, it is claimed as a high
quality curve and has been used for a number of
applications [Cri03]. Thus, the measurement of
aesthetic value of GCS may further offer insights on
defining aesthetic curves.

2. LOGARITHMIC CURVATURE
HISTOGRAM
Theorem 1: Let a planar curve be defined as
ሻݐሺܥ ൌ ሼݔሺݐሻ, ሻሽ and its radius of curvature andݐሺݕ
arc length function is defined as ߩሺݐሻ and ݏሺݐሻ
respectively. The LCH for ܥሺݐሻ can be obtained
using:

ሻݐሺܪܥܮ ൌ ሼ݃݋ܮሾߩሺݐሻሿ, ݃݋ܮ ቂఘሺ௧ሻ௦ᇲሺ௧ሻ
ఘᇲሺ௧ሻ

ቃሽ (7)

WSCG 2009 Full papers proceedings 184 ISBN 978-80-86943-93-0

Proof. An analytical model of LDDC can be derived
when the number of segments՜ ∞ and the number of
radius of curvature classes՜ ∞ (as proposed in
[Kan03]):

ሻݐሺܪܥܮ ൌ ሼ݃݋ܮሾߩሺݐሻሿ, ݃݋ܮ ቂ ∆௦ሺ௧ሻ
∆ ௅௢௚ሾఘሺ௧ሻሿ

ቃሽ

The vertical value of equation can further be
simplified as [Kan03]:

ሻݐሺݏ∆
ሻሿݐሺߩሾ݃݋ܮ ∆ ൌ

ݐ݀/ሻݐሺݏ݀
݀ሺ ݃݋ܮሾߩሺݐሻሿሻ/݀ݐ ൌ

ሻݐᇱሺݏሻݐሺߩ
ሻݐᇱሺߩ ᇝ

3. THE GRADIENT OF LCH
Theorem 2: Consider a planar curve given as ܥሺݐሻ
and the first derivative of LCH for ܥሺݐሻ exists. Let
 ሻ be its radius of curvature and arcݐሺݏ ሻ andݐሺߩ
length function respectively, then the gradient of
LCH denoted as ߣሺݐሻ can be defined as:

ሻݐሺߣ ൌ 1 ൅ ఘሺ௧ሻ
ఘᇲሺ௧ሻమ ቆఘሺ௧ሻᇲ௦ᇲᇲሺ௧ሻ

௦ᇲሺ௧ሻ
െ ሻቇ (8)ݐᇱᇱሺߩ

Proof. The first derivative of LCH(t) is:

ሻݐሺܪܥܮ݀
ݐ݀ ൌ ൞

ሻሿݐሺߩሾ݃݋ܮ݀
ݐ݀ ,

݃݋ܮ݀ ൤ߩሺݐሻݏᇱሺݐሻ
ሻݐᇱሺߩ ൨

ݐ݀ ൢ

Hence, the gradient of LCH in Leibniz notation:

ሻݐሺߣ ൌ

݃݋ܮ݀ ൤ߩሺݐሻݏᇱሺݐሻ
ሻݐᇱሺߩ ൨

ݐ݀
ሻሿݐሺߩሾ݃݋ܮ݀

ݐ݀

ൌ
݃݋ܮ݀ ൤ ሻݐሺݏ݀

݀ሺ݃݋ܮሾߩሺݐሻሿሻ൨

ሻሿݐሺߩሾ݃݋ܮ݀

ሻݐሺߣ ൌ 1 ൅
ሻݐሺߩ

ሻଶݐᇱሺߩ ൭
ሻݐᇱᇱሺݏሻᇱݐሺߩ

ሻݐᇱሺݏ െ ሻ൱ݐᇱᇱሺߩ
ᇝ

Based on the gradient of LCH, the following
definitions are constructed.

4. ELUCIDATING AESTHETIC
CURVE
Hypothesis 1: A curve is said to be an aesthetic
curve if the gradient of LCH of the curve is constant.
The aesthetic value of a curve increases when the
gradient of LCH approximates to a constant value.
Hypothesis 1 has been proposed and well accepted
by researchers involved in the development of LDDC
and LCH [Har99, Kan06, Yosh02, Yos06, Yos07,
Yos08]. It is used as a standard definition to coin
aesthetic curves. However, the elucidation of what
makes a curve aesthetic is revealed upon the
investigation of GCS as found in the following
section.

The LCH of GCS
The specification of radius of curvature and arc
length for GCS in order to obtain the LCH function
and its gradient are as follows:

ሻݐ஼ௌሺீߩ ൌ ௥௦ାௌ
ሺசభିசబା୰சభሻୱା சబS

ሻݐ஼ௌሺீݏ , ൌ (9) ݐ

Hence, by substituting equation (9) and its’
derivatives into equation (7) and (8), the LCH
function and its gradient are obtained respectively:

ሻݐ஼ௌሺீܪܥܮ ൌ
ሼ݃݋ܮ ቂቚ ௥௧ାௌ

ሺசభିசబା୰சభሻ୲ା சబS
ቚቃ ,

݃݋ܮ ቂቚሺௌା௥ ௧ሻ ሺௌ ఑బା௧ ሺି఑బା఑భା௥఑భሻሻ
 ሺଵା୰ሻ S ሺ ఑బି ఑భሻ

ቚቃሽ
(10)

ሻݐ஼ௌሺீߣ ൌ ሺሺିଵା୰ሻ Sିଶ ୰ ୲ሻ ఑బାሺଵା୰ሻ ሺSାଶ ୰ ୲ሻ ఑భ
 ሺଵା୰ሻ S ሺ ఑బି ఑భሻ

 (11)

Equation (11) can further be simplified in a general
straight line equation as ݕ ൌ ݔ݉ ൅ ܿ:

஼ௌீߣ ൌ ቀ ଶ ୰ ሺି ఑బା ఑భା୰ ఑భሻ
 ሺଵା୰ሻ S ሺ ఑బି ఑భሻ

ቁ t ൅ ቀ ଶ ୰ ఑బ
 ሺଵା୰ሻ ሺ ఑బି ఑భሻ

െ 1ቁ(12)

whereby ீߣ஼ௌ represents y, x represents t, m
represents the slope and c represents the y intercept:

 ݉ ൌ ቀ ଶ ୰ ሺି ఑బା ఑భା୰ ఑భሻ
 ሺଵା୰ሻS ሺ ఑బି ఑భሻ

ቁ, ܿ ൌ ቀ ଶ ୰ ఑బ
 ሺଵା୰ሻ ሺ ఑బି ఑భሻ

െ 1ቁ (13)

Equation (12) indicates that the gradient of LCH can
be represented as a straight line. This element
prevails as a vital criterion for identifying aesthetic
curves.
Definition 1: A curve is said to be an aesthetic curve
if the gradient of LCH of the curve is either constant
(which denotes a horizontal line) or the gradient is
represented as a straight line with a certain degree of
slope. The aesthetic value of a curve increases when
the gradient of LCH approximates to a straight line.
Definition 2: The classification of the three patterns
of aesthetic curves is made based on the gradient of
LCH [Kan08]:

1. Convergent: the gradient of LCH is positive,
2. Divergent: the gradient of LCH is negative,
3. Neutral: the path of LCH is flat whereby the

gradient is zero.

5. NUMERICAL EXAMPLES
The examples are categorized based on three types of
gradients namely planar curves with constant
gradient, straight line function and inconsistent
gradient (the representation of gradients other than
constant and straight line function).

Planar Curves with Constant Gradient
Three types of spiral are analyzed in this section;
Cornu spiral (ܵܥሺݐሻ), circle involute (ܫܥሺݐሻ) and
Logarithmic spiral (ܵܮሺݐሻ). The respective formulas
in parametric form are:

ሻݐሺܵܥ ൌ ܤߨ ൭
׬ ୡ୭ୱ൤ഏೠమ

మ ൨ௗ௨೟
బ

׬ ୱ୧୬൤ഏೠమ
మ ൨ௗ௨೟

బ

൱ (14)

where ܤ is positive, parameter ݐ is non-negative and
the integrals are Fresnel integrals.
ሻݐሺܫܥ ൌ ሼcosሾݐሿ ൅ ݐ sinሾݐሿ , sinሾݐሿ െ ݐ cosሾݐሿሽ (15)

WSCG 2009 Full papers proceedings 185 ISBN 978-80-86943-93-0

where parameter ݐ represents the winding angle of a
circle.
ሻݐሺܵܮ ൌ ሼܽ݁௕௧ cosሾݐሿ , ܽ݁௕௧ sinሾݐሿሽ (16)
where ݐ is the angle from the x-axis, ܽ and ܾ are
arbitrary constants.
Table 1 shows the analysis of three types of natural
spiral which is considered aesthetic and these curves
have constant gradient of LCH.

Curves ࡴ࡯ࡸሺ࢚ሻ ࣅሺ࢚ሻ

Cornu Spiral ሼ݃݋ܮ ൤
ܤ
ݐ ൨ , ሿ -1ݐߨܤሾ݃݋ܮ

Circle
Involute ሼ݃݋ܮሾݐሿ,2݃݋ܮሾݐሿሽ 2

Logarithmic
Spiral

ሼ݃݋ܮሾܽඥ1 ൅ ܾଶ݁௕௧,

ሾ݃݋ܮ
ܽ√1 ൅ ܾଶ݁௕௧

ܾ ሽ
1

Table 1. Three types of spirals and its ࣅሺ࢚ሻ

Planar Curves with Gradient as a
Straight Line Function
In this section, GCS curve segment with various
configuration are examined. Figure 1 shows the
curvature function of GCS with the values of r
ranging from {100, 5, 2, 1, 0, -0.5,-0.9,-0.99} with
଴ߢ ൌ ଵߢ ,0 ൌ 2 and ܵ ൌ Figure 2 shows .ߨ
corresponding GCS segments for the BLINCE.
Figure 3 shows the corresponding LCH for GCS
segments and Figure 4 shows the corresponding
gradients of LCH for GCS segments shown in Figure
3.

Figure 1. The dashed line is obtained when r=0

and the curvature function goes higher as r
increases (r=1, 2, 5,100) and goes lower as r

decreases (r=-0.5, -0.9, -0.99).

Figure 2. Cornu spiral is obtained when r=0 and
the GCS segment curls to the left as r increases

(r=1, 2, 5) and flattens as r decreases to
(r=-0.5, -0.9, -0.99).

Figure 3. The LCH straightens as r decreases
from r=100 to r=0 and bends as r decreases

further to {-0.5, -0.9, -0.99}.

Figure 4. The slope of LCH’s gradient becomes

negative as r increases (r=1, 2, 5) and positive as r
decreases to (r=-0.5, -0.9,-0.99).

From Figure 4, it is clear that the gradient of LCH for
GCS is always a straight line regardless of the shape
of the LCH (Figure 3) and this example confirms the
validity of Definition 1. Hence, an aesthetic curve
does not necessarily has a constant value of ࣅሺ࢚ሻ, but
may comprise of ࣅሺ࢚ሻ represented as a straight line.
In general, GCS segments comprised of two types of
aesthetic curve which can be determined based on the

0.5 1.0 1.5 2.0 2.5 3.0 s

0.5

1.0

1.5

2.0

kHsL

r=2

r=5

r=1

r=-0.9

r=-0.99

r=-0.5r=0

0.5 1.0 1.5 2.0 2.5 3.0 x

0.5

1.0

1.5

y

r=100

r=0

r=-0.99

5 10 15 Log@rHtLD

-10

-5

5

Log@ r HtL s' HtL
r' HtL D

r=-0.99

r=0

r=5

0.5 1.0 1.5 2.0 2.5 3.0 s

-10

-8

-6

-4

-2

2

GHsL

WSCG 2009 Full papers proceedings 186 ISBN 978-80-86943-93-0

selection of its shape factor r, ߢ଴, ߢଵ and ܵ, whereby
the point of sign change for ߣሺݐሻ occurs when
ݐ ൌ ଵ

ଶ
ܵ ቀ ௞బ

௞బି௞భሺଵା௥ሻ
െ ଵ

௥
ቁ with ݎ ൐ െ1 and 0 ൑ ݐ ൑

ܵ. From the configuration of ሼߢ଴ ൌ 0, ଵߢ ൌ 2, ܵ ൌ
ݐ ሻ changes sign atݐሺߣ ,{ߨ ൌ െ గ

ଶ௥
. GCS segments

with the defined variables consist of the following
types of aesthetic curve:

i. Divergent : ݎ ൒ 0.5,
ii. Divergent-Convergent : െ1 ൏ ݎ ൏ െ0.5

Planar Curves with Inconsistent Gradient
In this section, two types of planar curves are
described namely parabola and logarithmic curve.
The general equation of LCH and its gradient are
derived followed by a numerical example for each
curve.

Parabola
A Parabola is defined in parametric form as:
ܾܲሺݐሻ ൌ ሼݐ, ଶሽ (17)ݐܽ
where a is positive constant and parameter t is non-
negative. Upon algebraic simplification, the LCH for
parabola can be written as:

ሻݐ௉௕ሺܪܥܮ ൌ ሼ݃݋ܮ ൥൫ଵାସ௔మ௧మ൯
య
మ

ଶ௔
൩ , ݃݋ܮ ൥൫ଵାସ௔మ௧మ൯

య
మ

ଵଶ௔మ௧
൩ሽ(18)

and the gradient for parabola is:

ሻݐ௉௕ሺߣ ൌ ଶ
ଷ

െ ଵ
ଵଶ௔మ௧మ (19)

Since ߣ௉௕ሺݐሻ is in a quadratic form, it has a critical
point at ݐ௖ ൌ ଵ

ଶ√ଶ௔
 which can be obtained by solving

ሻݐ௉௕ሺߣ ൌ 0. Hence, ߣ௉௕ሺݐሻ changes sign as follows:

i. ߣ௉௕ሺݐሻ ൐ 0 when ݐ௖ ൐ ଵ
ଶ√ଶ௔

ii. ߣ௉௕ሺݐሻ ൏ 0 when ݐ௖ ൏ ଵ
ଶ√ଶ௔

Figure 5 is an example of parabola with a=1 and for
simplification purpose, only the first quadrant is
shown here since it is symmetrical. Figure 5(d)
shows a graph plotted using equation (19) whereby
the gradient changes sign at ݐ௖ ൌ ଵ

ଶ√ଶ
. Parabola has

high esthetic value in the range of ଵ
ଶ√ଶ

൏ ݐ ൏ ∞

whereby ߣ௉௕ሺݐሻ ՜ ଶ
ଷ
.

5(a) Parabola 5(b) Curvature Profile

5(c) The LCH of
parabola

5(d) The gradient of
parabola becomes constant

when t՜ ∞
Figure 5. Parabola defined in ૙ ൑ ࢚ ൑ ૚ with a

black dot indicates ࢚ࢉ.

Logarithmic Curve
A Logarithmic curve is defined in parametric form as
follows:
ሻݐሺܿܮ ൌ ሼݐ, ሿሽ (20)ݐሾ݃݋ܮ ܽ
where ܽ, ݐ ൐ 0. The LCH and gradient of LCH for
Logarithmic curve is stated in equation (21) and
(22) respectively:

ሻݐ௅௖ሺܪܥܮ ൌ ൝݃݋ܮ ቈݐଶ ቀ1 ൅ ଵ
௧మቁ

య
మ቉ , ݃݋ܮ ൥൫ଵା௧మ൯

య
మ

ଶ௧మିଵ
൩ൡ (21)

ሻݐ௅௖ሺߣ ൌ െ ଻௔మ௧మାଶ௧ర

ሺ௔మିଶ௧మሻమ (22)

Similar to parabola, the ߣ௅௖ሺݐሻ for Logarithmic curve
can be classified as:

i. ߣ௅௖ሺݐሻ ൐ 0 when ݐ௖ ൐ ܽට଻
ଶ

ii. ߣ௅௖ሺݐሻ ൏ 0 when 0 ൏ ௖ݐ ൏ ௔
√ଶ

 and ௔
√ଶ

൏

௖ݐ ൏ ܽට଻
ଶ

Figure (6) illustrates an example of Logarithmic
curve where ܽ ൌ 2, its curvature profile, ܪܥܮ௅௖ሺݐሻ
and ߣ௅௖ሺݐሻ. There are two critical points occurring at
௖ݐ ൌ √2 and ݐ௖ ൌ √14. Figure 6(d) indicates that this
curve is aesthetically high in the range of √14 ൏ ݐ ൏
∞, in which ߣ௅௖ሺݐሻ ՜ ଵ

ଶ
.

6(a) Logarithmic curve 6(b) Curvature Profile

ææ

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-1

0

1

2

3

Log@rHtLD

Lo
g@

r
HtL

 s'
 Ht

L
r'

 Ht
L

D

1 2 3 4 5
t

-1.0

-0.5

0.0

0.5

1.0
lHtL

2 4 6 8 10
X

-2

2

4

Y

2 4 6 8 10
t

-0.3

-0.2

-0.1

0.1

0.2
kHtL

WSCG 2009 Full papers proceedings 187 ISBN 978-80-86943-93-0

6(c) The LCH of
Logarithmic curve

6(d) The gradient of
Logarithmic curve

becomes constant when
t՜ ∞

Figure 6. Parabola defined in ૙ ൑ ࢚ ൑ ૚ with a
black dot and a white dot indicates ࢚ࢉ.

6. CONCLUSION
In this paper, we propose a simple formula to obtain
LCH and its gradient in order to identify the aesthetic
value of planar curves. Based on the gradient of
LCH, we elucidate the identification of aesthetic
curves mathematically and classify these curves into
three groups. For numerical understanding, three
types of LCH gradient has been carried out to
illustrate the idea of measuring the aesthetic value of
planar curves. In the first case the natural spirals,
namely Cornu spiral, circle involute and logarithmic
spiral have constant gradient. The second case
indicates that the gradient of LCH for GCS can
always be represented as a straight line. Since the
latter is a general case as compared to the former, this
research concludes that the straight line
representation of LCH gradient is is the key
identification of aesthetic curves. The last case is
illustrated for the purpose of analyzing any arbitrary
planar curves in terms of LCH and its gradient.

7. ACKNOWLEDGMENTS
The first author acknowledges Ministry of Higher
Education Malaysia and University Malaysia
Terengganu for sponsoring his Ph. D studies. The
authors extend their gratitude to Ministry of Science,
Technology & Innovation Malaysia (FRGS grant No:
203/PMATHS/671192) and Universiti Sains
Malaysia (Institute of Graduate Studies) for
providing research grant which was utilized for this
research. The authors appreciate the comments of
three anonymous referees which have helped to
improve the presentation considerably.

8. REFERENCES
[Cri03] R. J. Cripps. Algorithms to support point-based

cadcam. International Journal of Machine Tools and
Manufacture, Volume 43, Issue 4, 425-432, 2003.

[Far96] Farin, G. Curves and Surfaces for Computer
Aided Geometric Design: A Practical Guide. Second
Edition, Academic Press, 1996.

 [Har99] Harada,T., Yoshimoto F., & Moriyama M. An
aesthetic curve in the field of industrial design. IN
Visual Language99, 38-47, 1999.

[Jam99] Jamaludin, M. A., Tookey, R. M., Ball, J. V.
and Ball, A. A. The generalized cornu spiral and its
application to span generation. Journal of
Computational and Applied Mathematics,
102(1):37-47, 1999.

[Kan03] Ichiroh Kanaya, Yuya Nakano & Kasuke Sato.
Classification of Aesthetic Surfaces. IN Proc.
VSMM 2003, 289-296, 2003.

 [Mee92] Meek, D.S. & Walton, D.J. Clothoid spline
transition spirals; Math. Comp., 59:117-133, 1992.

[Miu06] Kenjiro T. Miura. A General Equation of
Aesthetic Curves and Its Self-Affinity, Computer-
Aided Design & Applications, Vol. 3, No. 1-4, 457-
464, 2006.

 [Nut72] Nutbourne, A.W., McLellan, P.M. and Kensit,
R.M.L. Curvature profile for plane curves.
Computer- Aided Design, 4:30-34, 1972.

[Pa177] Pal, T.K. & Nutbourne A.W. Two dimensional
curve synthesis using linear curvature elements.
Computer- Aided Design, 9:121-134, 1977.

[Pat98] Patrikalakis, N.M. & Maekawa, T. Shape
Interrogation for Computer Aided Design And
Manufacturing: Springer-Verlag, Berlin, 1998.

[Pug91] Pugh, S. Total design; Addison-Wesley
Publishing Company, Great Britain, 1991.

[Sap90] Sapidis, N. & Farin, G. Automatic fairing
algorithm for B-spline curves. Computer- Aided
Design, 22:121-129, 1990.

[Sap94] Sapidis, N. Designing Fair Curves and
Surfaces; Society for Industrial and Applied
Mathematics, Philadelphia. 1994.

[Sch78] Schecter, A. Synthesis of 2D curves by
blending piecewise linear curvature profiles;
Computer- Aided Design, 10:8-18, 1978.

[Yos08] Yoshida, N., Hiraiwa, T. & Saito, T. Interactive
control of planar class A Bezier curves using
Logarithmic Curvature Graphs. Computer-Aided
Design & Applications, Vol. 5, No. 1-4, 121-130,
2008.

[Yos06] Yoshida, N. & Saito, T. Interactive aesthetic
curve segments. Visual Computer, 22, 896-905,
2006.

[Yos07] Yoshida, N. & Saito, T. Quasi-Aesthetic curves
in rational cubic Bezier forms. Computer-Aided
Design & Applications, Vol. 4, No. 1-4, 477-486,
2007.

 [Yosh02] Yoshimoto F., & Harada,T. Analysis of the
characteristics of curves in natural and factory products.
IN Proceedings of the Second IASTED International
Conference Visualization, Imaging and Image
Processing (VIIP2002), 276-281, 2002.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

7

Log@rHtLD

Lo
g@

r
HtL

 s'
 Ht

L
r'

 Ht
L

D
2 4 6 8 10

t

-5

-4

-3

-2

-1

0

1
lHtL

WSCG 2009 Full papers proceedings 188 ISBN 978-80-86943-93-0

Efficient Medial Voxel Extraction for

Large Volumetric Models

Takashi Michikawa
The University of Tokyo

4-6-1 Komaba, Meguro-ku,

Tokyo, 153-8904, JAPAN

michi@den.rcast.u-tokyo.ac.jp

Shun Nakazaki
The University of Tokyo

4-6-1 Komaba, Meguro-ku,

Tokyo, 153-8904, JAPAN

nakazaki@den.rcast.u-tokyo.ac.jp

Hiromasa Suzuki
The University of Tokyo

4-6-1 Komaba, Meguro-ku,

Tokyo, 153-8904, JAPAN

suzuki@den.rcast.u-tokyo.ac.jp

ABSTRACT

Here we propose a method for medial voxel extraction from large volumetric models based on an out-of-core framework. The

method improves upon geodesic-based approaches to enable the handling of large objects. First, distance fields are constructed

from input volumes using an out-of-core algorithm. Second, medial voxels are extracted from these distance fields through

multi-phase evaluation processes. Trivial medial or non-medial voxels are evaluated by the low-cost pseudo-geodesic distance

method first, and the more expensive geodesic distance computation is run last. Using this strategy allows most of the voxels

to be extracted in the low-cost process. This paper outlines a number of results regarding the extraction of medial voxels from

large volumetric models. Our method also works in parallel, and we demonstrate that computation time becomes even shorter

in multi-core environments.

Keywords:

medial surfaces, medial voxels, out-of-core algorithm, geodesic distance

1 INTRODUCTION

This paper outlines a method of creating medial voxels

from large CT images. A medial voxel is a volumet-

ric representation of medial surfaces or a set of voxels

across the centerline of a volume model.

Our work is motivated by the application of the tech-

nique to digital engineering [18]. Industrial companies

have recently started to utilize scanning technologies

such as X-ray CT scanners and range scanners to cre-

ate CAE or CAM models, which are used to accelerate

the engineering process. For instance, we can achieve

FEM simulation for real objects and feed the informa-

tion back to CAD models.

A primary issue to be resolved is the creation of mesh

models using scanned volumetric data from thin-plate

objects. We can obtain meshes from solid objects using

contouring algorithms [11, 8]. However, these meshes

are not good for thin-plate objects because they create

closed surfaces and it is hard to create FEM models

from them. Instead, it is better to use medial surfaces

because it is easy to create FEMmeshes from such open

structures.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Although medial surface extraction from polygonal

models has been well documented [1, 4, 21], this cannot

be used for volumetric models, and applying polygon-

based models to isosurfaces created using the Marching

Cubes algorithm [11] remains difficult. This is because

polygon-based methods are noise-sensitive. Scanned

CT images often involve noise, and the medial sur-

faces of such models become noisy or include many

branches. In addition, the number of polygons of iso-

surfaces is usually large. This is why we choose a volu-

metric approach or compute medial surfaces from me-

dial voxels of volumetric models. In this study, we fo-

cus on how to extract medial voxels from large volu-

metric models.

Medial voxels have a clear mathematical definition

[15], and there are several methods of computing me-

dial surfaces based on this definition. However, such

definition-based methods create many branches for noisy

volumetric models. Some voxel-based methods [16, 5,

19] are suitable for our purposes because the surfaces

of engineering objects must be smooth or branchless.

Such techniques evaluate each voxel using the geodesic

distance of its nearest boundary points on boundary sur-

faces. However, these approaches are not designed for

large models. Recent progress in scanning technology

enables us to obtain high-resolution CT images, and in-

dustrial companies need high-resolution models to en-

able simulation with high accuracy. Since the size of

volume models escalates the cubic order of the resolu-

tion, it is difficult for hardware devices to keep up with

the memory usage required.

WSCG 2009 Full papers proceedings 189 ISBN 978-80-86943-93-0

We propose a method for medial voxel extraction

from large volumetric models based on an out-of-core

framework. The method improves upon geodesic-based

approaches to enable the handling of large objects.

Given an input model, we first compute distance fields

from the input model using an out-of-core version of

the distance transform algorithm [13]. Next, we clas-

sify input volumes into medial voxels through multi-

phase evaluation starting with low-cost tasks. Basically,

each phase evaluates whether the geodesic distance be-

tween the two nearest boundary points is longer than

a threshold. First, we introduce pseudo-geodesic dis-

tance, which is a lower bound of the geodesic distance.

This can be computed from the difference vector to the

nearest boundary points, and is completely local. In the

latter phases, we use Dijkstra’s algorithm to compute

the correct geodesic distance with high cost. Then, we

propose a method for computing tight bounding boxes

to enable correct judgment of geodesic distance in small

spaces.

The main contribution of our work lies in the design

of medial surface extraction algorithms for large vol-

umetric models. For instance, PGD-based evaluation

is a completely local operation, and bounding box es-

timation reduces the computational costs as much as

possible. These improvements directly affect perfor-

mance for large objects. In particular, the out-of-core

data structure used in the distance transform algorithm

offers a range of benefits. First, very large-sized input

models can be handled using a hard disk drive. Second,

the method works in parallel; indeed, we have imple-

mented it using multi-thread technology to allow faster

results in multi-core environments.

2 RELATEDWORK

Medial surfaces are the centerline surfaces of models

(Figure 1 shows a simple example). The left image

shows a medial surface (a set of center points in con-

tact with two or more boundary points called nearest

boundary points (NBPs)). Medial voxels are volumet-

ric representations of medial surfaces (right).

Figure 1: An example of medial surfaces(left) and me-

dial voxels(right)

Studies on medial voxel extraction come from me-

dial axis extraction in 2D. An example of such a survey

is found in [9]. The possible methods can be classi-

fied into the thinning-based approach and the distance-

based approach.

The thinning-based approach removes voxels so that

topology is preserved. Sequential thinning algorithms

[2, 6, 7] remove voxels step by step; since each step

removes only one voxel, the object’s topology is kept.

However, this approach often generates bumpy surfaces

because thinning algorithms check only local topology

information and it is difficult to obtain smooth sur-

faces. On the other hand, the parallel thinning approach

[10, 20, 12] removes many voxels or boundary voxels

at the same time, generating relatively smooth surfaces.

However, the topology management is difficult in some

cases.

The distance-field-based approach resolves these is-

sues. Prohaska and Hege proposed geodesic-based me-

dial voxel evaluation [16] (Figure 2 shows a 2D exam-

ple of this). For each voxel v, two neighboring points vi
and v j and their corresponding NBPs N(vi) and N(v j)
are picked. It is considered that a voxel tends to be me-

dial if the geodesic distance between N(vi) and N(v j)
is longer (because the NBPs of medial voxels are lo-

cated on opposite surfaces), while the distance for non-

medial voxels is shorter. This technique computes me-

dial voxels using these criteria. Since geodesics rep-

resent global information, this method is robust for

noise, and hardly any unnecessary branches are gener-

ated. However, two neighboring voxels are specified for

evaluation, meaning that the thickness may change ac-

cording to the surface direction. While this is sufficient

for visualization purposes, it is not good for surface re-

construction. Fujimori et al. extended the above algo-

G
eo

d
esic p

a
th

Medial axis
(Surface)

Boundary voxel

vi

vj

N(vj)N(vi)

N(vi)

N(vj)

vi

vj
v

v

Figure 2: Geodesic-based medial voxel classification.

rithm in [5] to improve surface precision. Their method

defines cells between neighboring voxels and finds the

NBPs of these cells. Since such cells cover the voxel

completely, the method is robust for direction, and the

thickness is always one.

An alternative technique is the polygon-based ap-

proach, which obtains surface polygons of input vol-

umes by contouring, and computes medial surfaces

from these polygons. An example of this is the direct

computation from polygons proposed in [1, 3, 17, 21].

However, surface polygons created from CT images

have many and ill-shaped triangles, thus creating com-

plex results. In addition, the quality of the medial sur-

WSCG 2009 Full papers proceedings 190 ISBN 978-80-86943-93-0

input voxel

(196.7M FG voxels)

distance fields unknown voxels

(33.06%)

compositing result

(13.51%)

medial voxels

(6.30%)

non-medial voxels

(60.65%)

medial voxels

(7.21%)

non-medial voxels

(25.84%)

phase 1:

pseudo geodesic distance phase 2:

correct geodesic distance

Figure 3: An overview of our algorithm.

face affects that of the surface polygons, and many

branches are also generated.

3 MEDIAL VOXEL EXTRACTION

FOR LARGE VOLUMES

3.1 Overview

Our method is inspired by the geodesic-based medial

voxel extraction method proposed in [16, 5, 19]. A cell

is evaluated as a medial voxel if the geodesic distance

of the NBPs at that point is longer than the thresh-

old, as shown in Figure 2. We suppose the input vol-

ume model is too large to fit into the memory. Figure

3 shows an overview of this algorithm. Input in this

method involves a binarized volumetric model usually

obtained by CT scanners in our research. The tech-

nique consists of two phases, the first of which is a

distance field computation from binary images. Here,

we compute not only distance values but also vector

fields defined by the difference vector to the NBPs.

The second phase involves medial voxel classification

from distance fields. The main concept of this phase

is to apply multi-phase evaluation with the aim of re-

ducing memory usage. All voxels are first evaluated

by pseudo-geodesic distance (PGD) a process in which

trivial medial and non-medial voxels can be classified.

Next, the remaining voxels are evaluated through a cor-

rect geodesic-based method equivalent to Dijkstra’s al-

gorithm with high cost. Then, we introduce a method

of creating bounding boxes to reduce the computational

costs of correct geodesic length computation as much as

possible.

Notation

In this paper, italics represent scalar values, and bold

text indicates vector values. For instance, v denotes a

coordinate in volumetric space, and d(v) denotes the
distance field value at v. d(v) denotes the distance
vector or the difference vector to the nearest boundary

point N(v) or d(v) = N(v)−v.

3.2 Computing distance fields

Distance fields are first generated from binarized input

models. We use out-of-core distance transforms [13]

(an out-of-core framework for distance field computa-

tion) to compute these distance fields. This method de-

composes an input model into sub-blocked clusters and

applies distance transforms for each cluster. Inconsis-

tency in distances between clusters can be resolved by

inter-cluster propagation, and the propagated clusters

are subjected to distance transform again. The advan-

tages of this method include its ability to compute large

and exact distance fields with lowmemory usage and its

capacity to work in parallel. In our implementation, we

compute the difference vector to the nearest boundary

point to enable easy identification of NBPs.

3.3 Multi-phase medial voxel classifica-

tion algorithm

Once the difference vector fields have been obtained,

medial voxels are extracted from them.

Our strategy takes a multi-phase evaluation approach.

In the first phase, obviously medial and non-medial

voxels are evaluated using a rough but low-cost process.

In the second phase, the remaining voxels are evalu-

ated using a correct but expensive method. Angle-based

WSCG 2009 Full papers proceedings 191 ISBN 978-80-86943-93-0

evaluation [4] belongs to the first case, while the correct

geodesic-based method [16, 5, 19] would belong to the

latter case. In this paper, we introduce pseudo-geodesic

distance – a combination of the above two methods – to

accelerate evaluation.

In this method, we evaluate dual cells of voxels (Fig-

ure 4 shows a 2D example) as the number of neighbor-

ing voxels can be reduced from 26 to 8. For each dual

voxel p, we find the voxel pair (vi,v j) for which the
angle of d(vi) and d(v j) is the largest. Then, we need
to check only the four cases located at the diagonal po-

sitions. This is because the angle between the distance

vectors of diagonal voxels must be larger if medial sur-

faces exist. When the voxel pair (vi,v j) is found, we
can obtain the nearest boundary points N(vi) and N(v j)
and apply the processes outlined below for evaluation.

dual voxel primal voxel

Figure 4: Dual voxels (2D). Extension to 3D is straight-

forward.

Threshold ε

Here we derive a threshold ε from the user-given thick-

ness τ . If a voxel is a medial voxel, its NBPs are usually

located on opposite surfaces. The minimum geodesic

distance of NBPs ε is then a half circle length as fol-

lows (Eq. 1):

ε =
πτ

2
. (1)

Trivial non-medial voxel elimination

If two NBPs are 26-neighbors to each other, it is clear

that the voxel is not a medial voxel (Figure 5), so such

voxels must be eliminated first. Since we use vector

distance transforms to manage the difference vectors,

NBPs can be obtained from the point and distance vec-

tors of neighboring voxels.

Figure 5: 26-neighbor NBPs imply that the voxel is a

non-medial voxel.

Pseudo-geodesic distance

Pseudo-geodesic distance (PGD) is a simplified version

of geodesic distance without Dijkstra’s algorithm(Figure

6). Given a point v and its NBPs, PGD g̃(v) is defined
as follows (Eq. 2):

g̃(v) = d(v)θ , (2)

where θ denotes the angle between d(vi) and d(v j).
Note that this can be computed only for neighboring

voxels, making it a local operation.

correct geodesic distance

pseudo geodesic distance

Figure 6: Pseudo-geodesic distance.

PGD can be used for medial voxel evaluation instead

of CGD. If PGD is larger than a certain threshold ε , the

voxel is considered medial because it represents a lower

bound of CGD. A brief proof can be derived from the

definition of distance fields or there is no point q on

the correct geodesic path betweenN(vi) andN(v j) such
that ||v−q||< d(v). If CGD is shorter than PGD, point
q must exist on the inside of the arc. This is why CGDs

are always longer than PGDs.

Optimal bounding box estimation for computing cor-

rect geodesic distance

Some voxels are not classified into medial or non-

medial voxels by the PGD-based evaluation outlined in

the previous subsection; conventional correct geodesic

evaluation algorithms are applied to the remaining vox-

els. Note that correct geodesic paths are not required

here. We simply need to know whether the geodesic

distance is longer than the threshold. Here, we intro-

duce a tight bounding box to detect any geodesic paths

shorter than the threshold ε . The basic idea is to esti-

mate the region of the points at which the geodesic path

q can exist. Suppose we know point v, its distance d

and the two NBPs N(vi) and N(v j); in this case, we can
specify the region as follows:

• q can exist within an ellipsoid or ||N(vi) − q||+
||N(v j)−q|| < ε .

• q never exists on the inside of a sphere with center

point v and radius d(v) or ||v−q|| > d(v).

By compositing these criteria, we can obtain the region

where the path point q exists. A tight bounding box is

then formed, as shown in Figure 7 (a). However, the

computation of the bounding box shown in Figure 7 (a)

WSCG 2009 Full papers proceedings 192 ISBN 978-80-86943-93-0

is not simple, and we use a simple bounding box of a

bounding sphere for an ellipsoid with center point c =
1
2
(N(vi)+N(v j)) and a radius of ε

2
as an alternative (as

shown in Figure 7 (b)). Note that the bounding box of

the ellipsoid (in light blue) is also simple, and a tighter

bounding box can be obtained.

The region where
boundary voxels must not exist

The region where
boundary voxels may exist

q

v

N(v
j
)

d(v)

(a) Optimal box

Bounding sphere of an ellipsoid

N(v
i
)

N(v
j
)

c

(b) Simplified box

Figure 7: Estimation of bounding boxes for correct

geodesic distance computation.

Once the bounding box is obtained, Dijkstra’s algo-

rithm is run from one NBP (the source point) to the

other NBP (the target point), and evaluation is per-

formed as follows:

• If the propagation reaches the target point, v is eval-

uated as a non-medial voxel if the distance is shorter

than ε , otherwise it is a medial voxel.

• If propagation is stopped before reaching the target

point, v is evaluated as a medial voxel.

4 RESULTS AND DISCUSSION

We implemented the above algorithm on a Win32 ex-

ecutable. Figure 8 shows the experimental results for

large CT images of engineering objects. (a) shows

input voxels, and (b) shows extracted medial voxels.

White voxels represent those extracted through pseudo-

geodesic distance-based evaluation, while voxels in red

are those extracted using correct geodesic distance-

based evaluation. (c) shows the intersection of medial

voxels, with medial voxels in red and non-medial vox-

els in white. We can see that it is possible to compute

medial voxels from large scanned models.

Since the pseudo-geodesic distance guarantees the

lower bound of the correct geodesic distance, a set

of medial voxels obtained by this pseudo metric be-

comes a subset of medial voxels obtained by the correct

geodesic distance. In addition, it is clear that voxels

with NBPs that are in contact with each other are not

medial voxels. Thus, the results are the same as those

of the correct geodesic-based method.

The choice of a threshold ε or a thickness τ affects

quality. The algorithm becomes noise-sensitive with

small values of ε , but the computation time is faster be-

cause the bounding boxes become smaller. On the other

hand, the algorithm becomes noise-robust for large val-

ues of ε , but computation is slower. In addition, the

boundaries of surfaces will be shrunk.

Table 1 shows a number of related statistics. Most of

the computation time required is used for medial voxel

classification, and the time taken depends on the thick-

ness. However, the classification process is independent

of other voxels. Indeed, we developed this prototype for

a multi-core environment. We confirmed that the speed

of the two-thread mode is 1.5 times faster than that of

a single thread. However, the result for many threads is

somewhat slow (1.8 times faster for four-thread, twice

faster for eight-thread), which can be attributed to par-

allelization for each cluster. This means that the speed

depends on the computation time of the cluster, which

is why the speed is not as fast as we had expected.

It should be noted that about 60% of foreground vox-

els are judged at the pseudo-based evaluation stage.

This means that most voxels are locally processed, in-

dicating that our pseudo-metric contributes to cost re-

duction.

Our method has a number of limitations. First, cur-

rent implementation allows the user to specify only one

threshold or the thickness of thin plates. If CT im-

ages involve two or more thickness values, the quality

may deteriorate. For instance, a threshold that is too

small will result in branches(Figure 9(a)), and values

that are too large will create shrinkage of medial sur-

faces(Figure 9(b)). Distance fields will be used to esti-

mate thickness, as this allows adaptive specification of

a good threshold so that branches and shrinkage do not

appear. The other issue is the input data used; the sup-

position of input models as binary images means that

some grayscale information is lost.

5 CONCLUSION

We have introduced a medial voxel extraction algorithm

for large objects using a multi-phase evaluation strat-

egy. Each voxel is first classified by pseudo-geodesic

distance evaluation, which works locally and enables

the identification of trivial medial and non-medial vox-

els. The remaining voxels are classified using the con-

ventional geodesic evaluation algorithm. We also intro-

duced a method of constructing tight bounding boxes

to evaluate correct geodesic length at low cost, and ap-

plied the technique to several examples to show that

large medial voxels can be computed. In addition, the

method works in parallel, and faster results in multi-

core environments were confirmed.

In future work, we plan to develop a method to

automatically reconstruct CAX models of thin-plate

large engineering objects. To this end, we aim to de-

velop medial surface reconstruction from medial vox-

els. Since our algorithm still involves the formation of

small branches, we would like to remove these in the

surface reconstruction phase. For instance, weighted

WSCG 2009 Full papers proceedings 193 ISBN 978-80-86943-93-0

(a) input

(b) Medial voxels (Red: medial voxels obtained by correct geodesic distance evaluation. White: medial voxels obtained by

pseudo-geodesic distance evaluation)

(c) Intersection (Red: medial voxels)

Figure 8: Experimental results for crushed side-frame (left) and cylinder-head (right) CT images

Resolution Parameters Time (min.) Persentage (%)

Name (#clusters) τ Pseudo DF Medial Sum Pseudo Correct

Transmission cover 1,500 x 1,500 x 668 3 y 11.56 37.71 49.28 70.38 29.62

(10 x 10 x 7)

Crushed side frame 708 x 965 x 325 3 y 2.50 18.43 20.92 66.95 33.05

(7x9x3) 3 n 2.48 53.80 56.28 N/A 100.00

2 y 2.49 9.42 11.91 73.07 26.93

Table 1: Time comparison with different numbers of threads (measured on an Intel Xeon 3.16 GHz *2). DF :

distance field computation time. Medial : Medial voxel evaluation time.

Medial voxel

(a) small ε

Non-medial voxel

(b) large ε

Figure 9: Choice of ε makes (a) branches or (b) shrink-

age of medial surfaces.

Delaunay triangulation for polygonization of point sets

[14] may be suitable for this purpose.

ACKNOWLEDGEMENT

The authors would like to thank anonymous reviewers
and Yutaka Ohtake for valuable comments. Transmis-
sion cover data is courtesy of Toyota. This work is
partially supported by Grant-in-Aid for Young Scien-
tists(B) (No.20760096), Grant-in-Aid for Scientific Re-
search(B) (No.19360070) and RCAST grant for young
scientists from the University of Tokyo.

REFERENCES

[1] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri.

The power crust. In Proceedings of the sixth ACM sym-

posium on Solid modeling and applications, pages 249–

266, New York, NY, USA, 2001. ACM.

[2] G. Borgefors, I. Nystrom, and G. Sanniti Di Baja. Com-

puting skeletons in three dimensions. Pattern Recogni-

tion, 32(7):1225–1236, 1999.

[3] Tim Culver, John Keyser, and Dinesh Manocha. Accu-

rate computation of the medial axis of a polyhedron. In

Proceedings of the fifth ACM symposium on Solid mod-

eling and applications, pages 179–190, New York, NY,

USA, 1999. ACM.

[4] Mark Foskey, Ming C. Lin, and Dinesh Manocha. Ef-

ficient computation of a simplified medial axis. In Pro-

ceedings of the eighth ACM symposium on Solid mod-

eling and applications, pages 96–107, New York, NY,

USA, 2003. ACM.

[5] Tomoyuki Fujimori, Hiromasa Suzuki, Yohei

Kobayashi, and Kiwamu Kase. Contouring me-

dial surface of thin plate structure using local marching

cubes. International Conference on Shape Modeling

and Applications, 0:297–306, 2004.

[6] Jun ichiro Toriwaki and Kensaku Mori. Distance trans-

formation and skeletonization of 3d pictures and their

applications to medical images. In Digital and Image

Geometry, LNCS 2243, pages 412–428, 2001.

[7] Tao Ju, Matthew L. Baker, and Wah Chiu. Computing

a family of skeletons of volumetric models for shape

description. Computer Aided Design, 39(5):352–360,

2007.

[8] Tao Ju, Frank Losasso, Scott Schaefer, and Joe War-

ren. Dual contouring of hermite data. In Proceedings of

the 29th annual conference on Computer graphics and

interactive techniques, pages 339–346, New York, NY,

USA, 2002. ACM.

[9] L. Lam, S.W. Lee, and C.Y. Suen. Thinning

methodologies-a comprehensive survey. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,

14(9):869–885, 1992.

[10] Christophe Lohou and Gilles Bertrand. A 3d 6-

subiteration curve thinning algorithm based on p-simple

points. Discrete Applied Mathematics, 151(1-3):198–

228, 2005.

[11] William E. Lorensen and Harvey E. Cline. Marching

cubes: A high resolution 3d surface construction algo-

rithm. In Proceedings of the 14th annual conference

on Computer graphics and interactive techniques, pages

163–169, New York, NY, USA, 1987.

[12] A. Manzanera, T.M. Bernard, F. Preteux, and

B. Longuet. Medial faces from a concise 3d thinning al-

gorithm. IEEE International Conference on Computer

Vision, 1:337, 1999.

[13] Takashi Michikawa, Ken’ichiro Tsuji, Tomoyuki Fu-

jimori, and Hiromasa Suzuki. Out-of-Core Distance

Transforms. In Proceedings of the 2007 ACM sympo-

sium on Solid and Physical Modeling, pages 151–158.

ACM Press, 2007.

[14] Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Sei-

del. A composite approach to meshing scattered data.

Graphical Models, 68(3):255–267, 2006.

[15] Joseph O’Rourke. Computational geometry in C. Cam-

bridge University Press, 2nd edition, 2001.

[16] Steffen Prohaska and Hans-Christian Hege. Fast visu-

alization of plane-like structures in voxel data. In Pro-

ceedings of the conference on Visualization ’02, pages

29–36, Washington, DC, USA, 2002. IEEE Computer

Society.

[17] D. J. Sheehy, C. G. Armstrong, and D. J. Robinson.

Computing the medial surface of a solid from a domain

delaunay triangulation. In Proceedings of the third ACM

symposium on Solid modeling and applications, pages

201–212, New York, NY, USA, 1995. ACM.

[18] Hiromasa Suzuki. Convergence engineering based on

X-ray CT scanning technologies. In Proceeding of

JSME Digital Engineering Workshop, pages 74–77,

2005.

[19] Hiromasa Suzuki, Tomoyuki Fujimori, Takashi

Michikawa, Yasuhiko Miwata, and Noriyuki Sadaoka.

Skeleton surface generation from volumetric models

of thin plate structures for industrial applications. In

IMA Conference on the Mathematics of Surfaces, LNCS

4647, pages 442–464, 2007.

[20] Y.F.Tsao and K.S. Fu. A parallel thinning algorithm for

3-d pictures. Computer Graphics and Image Processing,

pages 315–331, 1981.

[21] Shin Yoshizawa, Alexander G. Belyaev, and Hans-Peter

Seidel. Free-form skeleton-driven mesh deformations.

In Proceedings of the eighth ACM symposium on Solid

modeling and applications, pages 247–253, 2003.

WSCG 2009 Full papers proceedings 195 ISBN 978-80-86943-93-0

WSCG 2009 Full papers proceedings 196 ISBN 978-80-86943-93-0

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen, Czech

Republic

Feature-supported Multi-hypothesis Framework for
Multi-object Tracking using Kalman Filter

Saira Saleem Pathan, Ayoub Al-Hamadi, Mahmoud Elmezain, Bernd Michaelis

Institute for Electronics, Signal Processing and Communications (IESK),
Otto-von-Guericke-University Magdeburg

Germany,

{Saira.Pathan|Ayoub.Al-Hamadi}@ovgu.de

ABSTRACT
A Kalman filter is a recursive estimator and has widely been used for tracking objects. However, unsatisfying tracking of

moving objects is observed under complex situations (i.e. inter-object merge and split) which are challenging for classical

Kalman filter. This paper describes a multi-hypothesis framework based on multiple features for tracking the moving objects

under complex situations using Kalman Tracker. In this framework, a hypothesis (i.e. merge, split, new) is generated on the

basis of contextual association probability which identifies the status of the moving objects in the respective occurrences. The

association among the moving objects is computed by multi-featured similarity criteria which include spatial size, color and

trajectory. Color similarity probability is computed by the correlation-weighted histogram intersection (CWHI). The

similarity probabilities of the size and the trajectory are computed and combined with the fused color correlation. The

accumulated association probability results in online hypothesis generation. This hypothesis assists Kalman tracker when

complex situations appear in real-time tracking (i.e. traffic surveillance, pedestrian tracking). Our algorithm achieves robust

tracking with 97.3% accuracy, and 0.07% covariance error in different real-time scenarios.

Keywords
Multi-object tracking, Traffic surveillance, Applications, Image Processing

1. INTRODUCTION
In computer vision research, tracking algorithms

have great significance. This is due to the existing

complexities in object tracking such as object

appearance, illumination variation, and shadow.

Besides, inter-object merge and split are the main

issues when tracking multiple moving objects. These

issues undermine the performance and efficiency of

the tracking algorithms.

Tracking using Kalman filter has been extensively

studied during last decades. A wide range of

literature is available but Maybecks [May79] provides

a comprehensive exposure to Kalman filtering in his

paper; whereas a detail review of Kalman filter in

visual tracking is given in [Fun03]. Nguyen et al.

[Ngu03] used Kalman filter in distributed tracking

system for tracking moving people in a room which

are monitored by different cameras. Chang et al.

[Cha01] used both Bayesian network and Kalman

filtering to solve the problem of correspondence

between multiple objects. In [Yu04], a video

surveillance system is proposed where detection,

recognition and tracking of the objects are done.

More recently Czyzewski and Dalka [Czy08] used

Kalman filter with traditional RGB color-based

approach to measure the similarity between moving

objects. The above mentioned methods used various

data association techniques to handle the complex

situations with Kalman tracker. However, single

feature-assisted criterion may fail in background

clutter, inter-object merge and split. Multiple-

hypothesis frameworks supported by multiple

features are more robust because it assures generation

of correct contextual information of moving objects

under diverse situations.

For feature-assisted tracking a good object descriptor

is essential. A well known color-based matching

technique is the RGB color histogram [Swa90]. This

approach has been used with various tracking

algorithms [Col05][Yan05]. Besides, color-based

tracking methods are also combined with statistical

and stochastic approaches. Limin [Lim04] used

color-based stochastic algorithm for object tracking,

whereas [Pér02] tracks objects in cluttered

environments using hue-saturation histogram with

the particle filter based probabilistic technique.

WSCG 2009 Full papers proceedings 197 ISBN 978-80-86943-93-0

However, these techniques are not robust to

illumination variation. In addition to color-based

techniques, object’s features such as, points and lines

are exploited to track vehicles [Bey97, Sta99]. Also

in [Pet99] active contour models of the vehicles are

extracted for tracking purpose. However, feature-

based tracking is sensitive to application and

therefore an accurate initialization is required to

extract the reliable features.

Recently, many hybrid approaches have been

proposed where multiple features are combined to

improve the robustness over the single feature-based

methods, for example [Isa98]. However, these

methods [Kum07] [Xio04] have shown the advantage

of using multiple feature-supported tracking using

various trackers such as the mean-shift estimator and

the particle filter respectively. However, the selection

and the integration of object’s features are still fuzzy.

In this paper we have proposed a multi-hypothesis

framework where the online hypothesis is generated

on the basis of the contextual association probability.

We proposed a multi-featured (i.e. spatial size, color

and trajectory) similarity approach in which the color

similarity is obtained by the proposed correlation-

weighted histogram intersection (CWHI). The

statistical similarity of the size and the trajectory is

computed using general method. These size and

trajectory similarity quantities are multiplied with the

fused normalized color correlation. A hypothesis is

generated on the basis of the accumulated association

probability which identifies the status of moving

object when inter-object merge or split is observed

and assist Kalman tracker to continue tracking.

This hypothesis is generated online and needs no

prior training, proving the efficiency of the proposed

framework. An overview of general tracking system

is shown in Fig.1. This illustration describes the

complex situation and the generation of respective

hypothesis during the real-time tracking.

This paper is organized as follows. Section 2

provides a detailed description of the proposed

tracking algorithms. Experimental results are

presented and discussed in section 3. Section 4 sums

up with the concluding remarks including the future

research direction.

2. ALGORITHM DESCRIPTION
Kalman filter is an optimal estimator that predicts

and corrects the states of the linear processes, such as

vehicle tracking or spacecraft. It is not only

practically smart but attractive in theoretical terms as

well. However, an accurate model of the process is

an essential requirement for efficient performance.

Following is the mathematical description of Kalman

Filter [Wel95]. We consider a tracking system, where

 is the state vector that represents the dynamic

behavior of the target with the subscript k indicating

discrete time. The objective is to estimate from

the set of the observed data . The Kalman filter is

described by the following set of equations.

 Process Equation

 (1)

 (2)

Where represents the transition matrix

and the state at time k-1 to time k; where

is the Gaussian process noise with normal

probability distribution .

 Measurement Equation

 (3)

 (4)

Where is the measurement matrix and is the

measurement observed at time k-1 to time k and is

the Gaussian measurement noise (.) with normal

probability distribution .

 Time Update Equations

Equation (1) and (3) describes a linear model at time

k. As is not measured directly therefore the

information provided by the measurement is used

to update the unknown state Apriori estimate of

state and covariance error estimate is obtained

for the next time step k.

 (5)

 (6)

 Measurement Update Equations

These equations are associated with the feedback of

the system. The objective is to estimate aposteriori

estimation which is a linear combination of the

apriori estimate and the new measurement .

The equations are given below:

 (7)

 (8)

Moving Object

SeparationOcclusion Features

0 10 20 40 5030 60 70

D
is

ta
n

ce

Time

Figure 1. Simplified overview of tracking concept

using Kalman Filter which describes the

confusing situation (inter-object split and merge).

WSCG 2009 Full papers proceedings 198 ISBN 978-80-86943-93-0

 (9)

Where is the Kalman gain, is the estimated

state of the target object with covariance error .

The time and measurement equation’s pair are

recursively repeated with the previous aposterior

estimate to predict the new aprior estimate. This

recursive behavior of estimating states is one of the

highlights of the Kalman filter.

2.1 Object Tracking using Kalman Filter
For tracking objects using Kalman filter, a motion

model is required. This model is defined in terms of

its states, measurement updates and noise. The

system consists of multi-tracker where each tracker is

associated with a moving object which enters in the

scene as illustrated in Fig 1. The state vector consists

of center of gravity of the object trajectories and

 at time k and k-1.

(10)

In order to assure tracking, we consider two states

which represent the trajectory of moving objects.

However, Accumulated Contextual Association

Probability (ACAP) which is described in section 2.3

is used to guide Kalman tracker in complex

situations. The measurement vector of the system

adopts the following from:

 (11)

Where A is the transition, and H is the measurement

matrix of our system with associated noise and :

Finally, we can write the equations for our tracking

system.

 (12)

 (13)

Tracking the moving object has several phases. Each

newly detected object is assigned a new tracker with

associated states (and). In the next frame,

normal updating state is done until any complex

situation arises. When the inter-object split or merge

appears our tracker system follows the generated

online hypothesis which is based on ACAP to help

the tracker to stick with its own object.

The main motivation is to track multiple objects

efficiently using Kalman filter with the proposed

ACAP based approach.

2.2 Multi-Hypothesis Framework
In this paper, a multi-hypothesis framework is

proposed which is based on multiple-feature

similarity criteria.

2.2.1 Color Similarity
We have proposed a CWHI (correlation-weighted

histogram intersection) technique where the idea is

adapted from Histogram Intersection (HI) which is

proposed in [Swa90]; and with a recently proposed

technique by Jia et al. [Jia06] for car number plate

matching. In this approach, Gaussian weights are

calculated to develop a relationship among the

distance differences of the histograms for the moving

object. However, for tracking multiple moving

objects, this technique is not computationally

efficient.

In our approach, a fused color correlation is used as

weights and applied to conventional HI. This

describes the relationship between the color distance

and the normalized correlation weights. A color

histogram is constructed using the hue and the

saturation values of the moving object. Result shows

that the incorporation of the correlation weights is

efficient to find the association of moving objects

under confusions.

The color histogram of each moving object is

extracted by calculating hue and saturation of each

pixel from the RGB values and then binning them to

create a histogram. The hue and saturation values of

the histogram are calculated for every moving object

and to compute the similarity between them.

Mathematically, we first compute the normalized

correlation of hue channel and normalized

correlation saturation separately. Where

and are the covariance of the hue values of

the object at time k and k-1 respectively. Similar,

convention is used for and . Also,

 and are the standard deviations for the

hue and the saturation of both the objects at time k

and k-1. These values are then combined to generate

the fused color correlation which is used with

HI to compute the .

 (14)

 (15)

 (16)

(17)

The color distance d in (17) is calculated using the

following equation:

 (18)

WSCG 2009 Full papers proceedings 199 ISBN 978-80-86943-93-0

Where represents the hue of the object at time k-1

and represents the hue of the object at time k.

Similar convention is used for saturation that is

and respectively.

2.2.2. Size Similarity
The size similarity probability is calculated at every

frame in video sequence which is then combined

with the fused color correlation (). The

product of these two shows the contextual association

with respect to the size of the moving object. It is

calculated as follows:

 (19)

Where represent the similarity probability and is

calculated by taking the size distribution of all

moving objects with each moving object.

2.2.3. Trajectory Similarity
The trajectory similarity probability of the moving

object is calculated at every frame of the video

sequence along with the corresponding normalized

correlation. The product shows the contextual

association with respect of moving object’s

trajectory. Following is the formulation of the

trajectory similarity:

 (20)

Where, and represents the fused color

correlation and the similarity probability of the

trajectory, respectively. The trajectory’s similarity

probability is calculated by finding the trajectory

distribution of moving objects with the individual

object.

2.3 ACAP for Hypothesis Generation
The ranks for respective hypothesis is calculated and

generated after the accumulation of multi-feature

similarity probabilities. On the basis of ranks, the

hypothesis is generated for respective moving object

on the fly. The contextual association probability is

calculated using the following equation:

 (21)

Where, ACAP represents the current contextual

association of the moving objects with respect to its

previous occurrences when inter-object merge occur.

In Figure 4, the graphs show the results of tri-feature

based contextual association probabilities of moving

objects. It is shown that the moving object identities

can easily be managed using multi-feature based

criterion.

3. EXPERIMENTAL RESULTS
The experimental result shows the performance of

the proposed framework. The proposed approach is

tested on both the real and the synthetic videos. The

sample recording is taken from IESK video analysis

repository1.

In Fig. 2, synthetic video is shown in which three

virtual cars are moving in different direction. When

two cars are merged (i.e. inter-object occlusion), the

trajectory of the occluding moving object is

connected (merged) with the occluder. It is observed

that in frame k+15, the two cars (i.e. labeled as blue

and red) are merged with the occluder object (i.e.

middle car). Whereas, when two merged moving

objects split, the overlapped track is also separated

into two tracks. The generation of hypothesis (i.e.

split or merge) is based on the result of ACAP where

the weak ACAP shows the merged moving object

(i.e. combined with other object) and strong ACAP

shows the occluder object (i.e. hide or impede other

moving objects).

Implementation on the real video sequences is

presented in Fig.3; it is observed that tracking of

moving objects is possible after inter-object merge

and split. Identities of both the moving objects are

managed through ACAP hypothesis generation

criteria. However, errors are noticed during the initial

states of merging and splitting. It is also observed

that both merge and split occurs at irregular interval

of time.

Fig 4(a) shows the Kalman tracking results. The

graphs show the result (i.e. synthetic video) of our

ACAP in Fig. 4(b) where the moving object

association represents the strong ACAP during

tracking and managed the respective hypothesis

online. The presented work is based on our initial

research analysis on multi-object tracking using

stochastic tracking algorithm and features supported

multi-hypothesis techniques.

1 Institute of Electronics, Signal Processing and

Communications, OvG University, Magdeburg,

Germany.

Frame k+2 Frame k+10 Frame k+15

Frame k+20 Frame k+35 Frame k+45

Figure 2. Tracking results of the moving cars

with motion trajectories are presented. Motion

trajectories are showing that the tracking of

objects using Kalman tracker is possible despite

of inter-object merge and split due motion.

WSCG 2009 Full papers proceedings 200 ISBN 978-80-86943-93-0

These results motivate us to further investigate the

feature-based matching techniques together with

stochastic tacking algorithms. Particularly, more

distinctive techniques such as, fuzzy logic with

learning classifier will be investigated. The result of

proposed algorithm shows good tracking with 97.3%

accuracy and 0.07% covariance error.

4. CONCLUSION
A multi-hypothesis assisted framework is proposed

for tracking multi-object in complex situations (i.e.

inter-object split and merge). A multi-featured

corresponding hypothesis (i.e. split, merge, and new)

on the basis of accumulated contextual association

probability. The graphs show that the individual

moving objects can be identified via maximum

similarity probability during inter-object merge and

split. Future research will be focused on investigating

fuzzy approaches with learning algorithm such as

AdaBoost or Support Vector Machine (SVM)

techniques in order to test large surveillance videos

with complicated real situations. The proposed

approach has shown good tracking results with

contextual association of the object identities on test

videos containing confusing situations.

0

1
2

0

1

2

0

1

2

0

1

2Frame k+2 Frame k+7 Frame k+12 Frame k+20

Frame k+2 Frame k+7 Frame k+12 Frame k+20

0
1

2

0

1
2

0

1

2

0

1

2

A.

B.

1
0

1
00

1
0

Frame k+2 Frame k+5 Frame k+12 Frame k+17

1
0

1
0

1
00

Frame k+2 Frame k+5 Frame k+12 Frame k+17

C.

D.

1

0 1

0
0

0

1

0

0 0
0

1

Frame k+2 Frame k+7 Frame k+12 Frame k+17

Frame k+2 Frame k+7 Frame k+12 Frame k+17

Frame k+2 Frame k+7 Frame k+12 Frame k+17

Frame k+12 Frame k+17Frame k+7Frame k+2

Figure 3. Analysis results of moving cars with motion trajectories (trajectories are associated with Index

Numbers). In A, the car are tracked through the indexes and shows the tracking in normal case. In B,

two moving people are fully occluded in the frame k+7. It is observed that the objects are tracked during

merge and split. In C, two moving cars with same color are traced after confusion because we are not

relying on single feature. So, we are able to maintain the identities of objects and assist Tracker. In D,

the merge occurs due to shadows but the ACAP assisted Kalman tracker is able to track both the cars

during the complex situations.

WSCG 2009 Full papers proceedings 201 ISBN 978-80-86943-93-0

5. ACKNOWLEDGMENTS
This work was supported by DFG (Tracer MI

377/12-2); and DFG grants (SFB/TR 62, TP C1).

REFERENCES
[Bey97] Beymer, D., Mclauchlan, P., Coifman, B., Malik,

J.: A real-time computer vision system for

measuring traffic parameters. Conference of

Computer Vision and Pattern Recognition, pp.

495–501, 1997.

[Cha01] Chang, T. H., and Gong, S.: Tracking Multiple

People with a Multi-Camera System. IEEE

Workshop on Multi-Object Tracking, pp. 19–

26. 2001,

[Col05] Collins, R., Liu, Y., Leordeanu, M.: Online

selection of discriminative tracking features.

IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 27, pp. 1631–1643,

2005.

[Czy08] Czyzewski, A., Dalka, P.: Examining Kalman

Filters Applied to Tracking Objects in Motion.

9th International Workshop on Image Analysis

for Multimedia Interactive Services, pp.175-

178, 2008.

[Fun03] Funk, N.: A Study of the Kalman Filter applied to

Visual Tracking. University of Alberta, Project

for CMPUT 652, 2003.

[Isa98] Isard, M., Blake, A.: Icondensation: Unifying low-

level and high level tracking in a stochastic

framework. European Conference on

Computer Vision,Vol. 1, pp. 893–908,1998.

[Jia06] Jia, W., Zhang, H., He, X., Wu. Q.: Symmetric

colour ratio gradients in spiral architecture.18th

International Conference on Pattern

Recognition, 2006.

[Kum07] Kumar, P. S., Guha, P., Mukerjee, A.: Colour

and Feature Based Multiple Object Tracking

Under Heavy Occlusions. International

Conference on Advances in Pattern

Recognition, 2007.

[Lim04] Limin,X.: Object tracking using color-based

Kalman particle filters. IEEE International

Conference on Signal Processing, pp. 679–682,

2004.

[May79] Maybeck, P. S.: Stochastic Models Estimation

and Control. New York, Academic Press, Vol.

1, 1979.

[Ngu03] Nguyen, N., Bui, H. H., Venkatesh, S., West, G.:

Multiple camera coordination in a surveillance

system. ACTA Automatica Sinica, Vol. 29, pp.

408-422, 2003.

[Pér02] Pérez,P., Hue, C., Vermaak, J., Gangnet, M.:

Color-Based Probabilistic Tracking. 7th

European Conf. on Computer Vision, pp. 661–

674, 2002.

[Pet99] Peterfreund, N.: Robust tracking of position and

velocity with Kalman snakes. IEEE

Transaction on Pattern Analysis and Machine

Intelligence, Vol. 21, pp.564–569, 1999.]

[Sta99] Stauffer, C., Grimson, W. E. L.: Adaptive

background mixture models for real-time

tracking. Conf., Computer Vision and Pattern

Recognition, Vol. 2, pp. 246–252, June 1999.

[Swa90] Swain, .M, Ballard, D.: Color Indexing. Third

IEEE International Conference on Computer

Vision, Japan, pp. 11–32, 1990.

 [Wel95] Welch,G., Bishop, G.: An Introduction to the

Kalman Filter. University of North Carolina at

Chapel Hill, Technical Report 95-041, 1995.

[Xio04] Xiong,T., Debrunner, C.H.: Stochastic car tracking

with line- and color-based features. Journal of

ITS, Vol 5, pages 324-328, 2004.

[Yan05]Yang,T., Li, S. Z., Pan, Q., Li, J.: Real-time

multiple objects tracking with occlusion

handling in dynamic scenes. IEEE Computer

Society Conference on Computer Vision and

Pattern Recognition, pp. 970– 975, 2005.

[Yu04] YU, H., Wang, Y., Kuang, F., Wan, Q.: Multi-

moving Targets Detecting and Tracking in a

Surveillance System. 5th World Congress on

Intelligent Control and Automation, China,

June, 2004.

Figure 4. (a, b) Graphs show the result of multi-

hypothesis based tracking using Kalman Filter.

The first plot represents the tracking trajectories

by the Kalman tracker, whereas, the second

graph represents the ACAP data association

hypothesis during the complex situations. It

shows clearly that the identity of moving object

is managed during the complex situations.

Frames

T
r
a

je
c
to

r
y

 y

0

50

100

150

200

250

300

350

400

A
C

A
P

-w
ei

g
h

ts

Frames

Merge Hypothesis

Split Hypothesis

5 10 15 20 25 30 35 40 500

WSCG 2009 Full papers proceedings 202 ISBN 978-80-86943-93-0

GPU-Based Adaptive-Subdivision for View-Dependent
Rendering

Gilad Bauman
Ben-Gurion University

Beer-Sheva, Israel
baumang@cs.bgu.ac.il

Yotam Livny
Ben-Gurion University

Beer-Sheva, Israel
livnyy@cs.bgu.ac.il

Jihad El-Sana
Ben-Gurion University

Beer-Sheva, Israel
el-sana@cs.bgu.ac.il

Abstract

In this paper, we present a novel view-dependent rendering approach for large polygonal models. In an offline stage, the input
model is simplified to reach a light coarse representation. Each simplified face is then assigned a displacement map, which
resembles the geometry of the corresponding patch on the input model. At runtime, the coarse representation is transmitted to
the graphics hardware at each frame. Within the graphics hardware, the GPU subdivides each face with respect to the view-
parameters, and adds fine details using the assigned displacement map.Initial results show that our implementation achieves
quality images at high frame rates.

Keywords: GPU Processing, Subdivision Surfaces, Level-of-detail.

1 INTRODUCTION

Interactive rendering of large polygonal models is vital
for various visualization and virtual environments ap-
plications. The drive for fine details and the availability
of technologies that simplify the design and acquisition
of graphics models have lead to the generation of large
models that exceed the interactive rendering capabili-
ties of contemporary graphics hardware. In addition,
some of these applications apply complex animation
effects to these models. These further reduce the ren-
dering frame rates. Level-of-detail rendering schemes
were suggested to bridge the gap between models’ com-
plexities and rendering capabilities.

View-dependent rendering approaches enable the
coexistence of different resolutions over the various
regions of a level-of-detail representation, based on
view-parameters. Early view-dependent rendering
algorithms rely on the CPU to extract an appropriate
level-of-detail representation. However, the CPU is
often incapable of extracting and transmitting the ge-
ometry of large datasets within the duration of a single
frame. In addition, these algorithms use hierarchies of
geometry, which are constructed offline. As a result,
they cannot support runtime deformations or animation
effects on the processed model, without additional
expensive update or reconstruction of the hierarchy.
To accelerate the selection of level-of-detail repre-
sentations, cluster-based view-dependent algorithms
were introduced. They overcome CPU incapabilities
by representing models using clusters or patches. In

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

such a scheme, the CPU extracts representations for
large models by switching between large amounts of
geometry, using a small set of operations. However,
the separation into patches often limits local adaptivity,
and therefore, cluster-based approaches may require
more triangles than earlier approaches to maintain the
same image quality. Current cluster-based approaches
use hierarchies of simplified patches, which prevent
efficient runtime deformations or animations.

In this paper, we present a novel view-dependent
level-of-detail rendering algorithm that does not use
geometric hierarchies and enables runtime deforma-
tion. In addition, the memory requirements of the sug-
gested algorithm are low with respect to previous view-
dependent rendering algorithms. In an offline stage, the
input model is simplified to reach a light coarse repre-
sentation, which is used to guide the sampling of the
original model. The sampling values are stored in dis-
placement maps, which are assigned to the faces of
the coarse representation. At runtime, the coarse rep-
resentation is transmitted to the graphics hardware at
each frame. Within the graphics hardware, the GPU
adaptively refines each face with respect to its orien-
tation and the assigned displacement map to generate
a view-dependent representation. Deforming or apply-
ing animation effects to large 3D models involves ex-
pensive computations that usually cannot be completed
within the duration of a single frame. For that reason,
such computations are usually applied to the skeleton
or the coarse representation of 3D models. In our ap-
proach, the CPU can deform the geometry of the coarse
representation before transmitting it to the GPU. In
such a manner, our algorithm provides interactive view-
dependent rendering of animated large models.

Our approach transfers most of the computationally
intensive operations into the GPU for interactive view-
dependent rendering of large models while enabling

WSCG 2009 Full papers proceedings 203 ISBN 978-80-86943-93-0

(a) (b) (c)
Figure 1: Screenshots of the Asian Dragon model (a) the control-mesh, (b) the sampling error, and (c) the shaded
model

fine-grained changes on the generated representation.
The coarse representation partitions an input model
into disjoint patches in an error-guided manner. These
patches are compactly encoded using displacement
maps. Our approach manages to eliminate the need
for geometric hierarchies, which are used to guide
the selection of the level-of-detail representations
in view-dependent rendering approaches. It also
dramatically reduces the CPU processing load and the
CPU-GPU communication load by processing a coarse
representation within the CPU and refining it within the
GPU. Eliminating the use of geometric hierarchies and
extracting the level-of-detail within the GPU enables
the CPU to dynamically modify the processed model
in real-time.

2 RELATED WORK
Traditional view-dependent schemes rely on hierar-
chies that encode the geometry of the original model
in multiple levels of detail. At runtime the CPU
traverses the hierarchy and extracts a level of detail
representation based on view-parameters [7,14,20,22].

To improve the selection of the level-of-detail rep-
resentations, cluster-based view-dependent algorithms
were introduced [9, 15]. In these approaches the CPU
extracts representations for large models by switching
between large amounts of geometry, using a small set
of operations. However, simplifying the patches inde-
pendently imposes severe difficulties in stitching adja-
cent patches or clusters seamlessly. To overcome these
difficulties, several approaches introduce dependencies
among patches [6, 26] or introduce sliver/degenerated
triangles [1, 25]. Transmitting the extracted level-of-
detail representation to the graphics hardware at each
frame reduces the rendering rates and forms a severe
bottleneck. Several algorithms utilize caching schemes,
such as Vertex Buffer Object (VBO), to upload geom-
etry into the video memory in realtime [6, 26] while
others use geometry streaming between the CPU and
GPU [5,23,24].

Current graphics hardware include GPUs that can al-
ter vertices, geometry, and fragments properties in a
parallel manner, which influenced the development of
view-dependent algorithms. Early GPU-based view-
dependent rendering algorithms were designed for ter-

rain visualization [2, 3, 19]. Terrain algorithms usually
cache the geometry within the video memory, and uti-
lize temporal coherence to improve performance and
reduce CPU-GPU communication [1, 4]. In later al-
gorithms, the programmable GPU was used to refine
coarse terrain tessellations using a predetermined tem-
plate of geometry [12,17] or to add fine details [8,11].

GPU-based algorithms for 3D models have lately
been presented. One of the starting points for GPU
based displacement mapping is the work of [21].
Several past algorithms cache the hierarchy within the
video memory and use the multi-pass procedures to
extract a view-dependent representation [13]. Others
extract a coarse view-dependent representation of the
model within the CPU and transmit it to the GPU for
refinement [16] or adaptively refine a mesh of a frame
to generate the mesh of the next one, in an incremental
fashion using the GPU [18].

3 OUR APPROACH
In this section we describe a GPU-based algorithm for
view-dependent level-of-detail rendering that does not
store multiresolution hierarchies of geometry. Instead,
it relies on GPU capabilities to adaptively refine various
regions of the model with respect to view-parameters.
Our algorithm is divided into offline preprocessing and
runtime rendering.

The preprocessing stage starts by creating a simpli-
fied representation of the input model, which will be
called thecontrol-meshand its faces will be denoted
thecontrol-faces. The control-mesh is used to recover
the original input model at runtime. The faces of the
control-mesh are subdivided according to a predefined
pattern that guides the sampling of the original model.
The mesh results from subdividing the control-mesh
will be called therefined-meshand we will refer to its
vertices as therefined-vertices. We will also refer to
the sampling of the original mesh as thesampled-mesh
and its vertices as thesampled-vertices. The sampling
of each face of the control-mesh is stored as a displace-
ment map (see Figure 2).

A polyline p is calledx-monotoneif it has one value
p(x) for eachx, e.g, p(x) is a function ofx (see Fig-
ure 3a). Similarly, we define a polylineq to be x̃-
monotonein the interval[a,b] along the x-axis if the

WSCG 2009 Full papers proceedings 204 ISBN 978-80-86943-93-0

Figure 2: From left to right: the control-mesh, the
refined-mesh, and the sampled-mesh

normalNx at the pointx ∈ [a,b] intersects the polyine
q at one point, whereNx is determined by interpolating
the two normals ata andb (as in Phong Shading, see
Figure 3b and 3c). InR2 we define a polygonal surface
s as x̃y-monotonewith respect to the trianglet if the
normal at any pointv∈ t, computed using the normals
at the vertices oft, intersects the surfaces once. The
intersection of the normals at the boundary of a triangle
t, with a polygonal surface spans a surface patchPt , and
defines a correspondence betweent andPt , i.e., the tri-
anglet corresponds to the patchPt and vice versa (see
Figure 4). A triangular meshM is x̃y-monotonewith
respect to another mesĥM if every patchPt in M is x̃y-
monotonewith respect to its corresponding trianglet in
̂M.

(a) (b) (c)
Figure 3: (a) anx-monotonepolyline, (b) an x̃-
monotonepolyline, and (c) a non-̃x-monotonepolyline

The control-mesh and the displacement maps as-
signed to its faces are used to recover the original
mesh, which is possible only if the original mesh is
x̃y-monotonewith respect to the control-mesh.

Figure 4: The trianglet and its corresponding patchPt

To generate a control-meshMc from an input mesh
M, our algorithm uses the edge-collapse simplification
operator with the quadric error metric [10]. It avoids
collapsing edges that may violate thẽxy-monotone
property. For that purpose, our algorithm maintains
a normal-cone for each vertexv, which encodes
the normals of its adjacent triangles, as well as the
normals of the triangles which collapsed onto it in
past iterations. An edge-collapse is defined asvalid if
it does not result in a normal-cone (for any affected
vertex) that exceeds a half-sphere. The simplification

algorithm executes only valid edge-collapses, ordered
by their quadric errors. It proceeds until it reaches a
predetermined target polygon count, or until no valid
collapses remain.

3.1 Mesh Sampling
Our algorithm uses the control-mesh to sample the orig-
inal model’s surface. A predetermined triangular grid,
which will be called thesampling-pattern, is used to
guide the sampling process for each control-face. A
ray is shot through each refined-vertexv along its inter-
polated normalNv and the intersection pointvx of the
ray with the original model surface is computed. The
distance betweenv andvx defines the elevation value,
which is stored in the displacement map assigned to the
processed face (see Section 3.2).

The sampling-pattern is a uniform subdivision of an
equilateral triangle in which the number of vertices
along each of the triangle edges is equal. We shall
refer to the number of vertices along an edge of the
sampling-pattern as thedegreeof the sampling-pattern.
A sampling-pattern of degreek hask(k+1)/2 vertices
and(k−1)2 triangles.

Figure 5: The sampling pattern (k = 9)

In the sampling phase the sampling-pattern is
mapped to match the processed control-face. The three
corner vertices of the sampling-pattern are assigned
the coordinates(1,0,0), (0,1,0), and (0,0,1), and
the coordinates of the remaining vertices are deter-
mined accordingly in a uniform fashion. Mapping the
vertices of the sampling-pattern onto a control-face
f is performed using Equation 1a, wherewx, wy, wz

are the coordinates of the pattern’s vertexw, andv0,
v1, v2 are the vertices off (see Figure 5). Similarly,
the interpolated normals at the mapped vertices are
calculated using Equation 1b.

T(w) = wx∗v0 +wy∗v1 +wz∗v2 (1a)

N(w) = wx∗n0 +wy∗n1 +wz∗n2 (1b)

The control-mesh usually provides a good approxi-
mation of the original mesh. As a result, the sampling
process can simply be implemented by computing the
normal-surface intersectionvx, as the sample valuevs.
However, sometimes the control-mesh fails to correctly
resemble the original surface. In such cases the naïve

WSCG 2009 Full papers proceedings 205 ISBN 978-80-86943-93-0

intersection-based sampling is insufficient. To improve
the sampling quality, we consider the neighborhood of
the intersection point in calculating the sample value.
Let v0,...,v7 be the adjacent vertices ofv on a control-
face f and r0,...,r7 be the rays shot from these ver-
tices along their interpolated normals. The intersection
points of r0,...,r7 with M will be denotedvx

0,...,vx
7, re-

spectively. The intersection pointsvx
0, . . . ,v

x
7 define a

rectangular patch, which is used to determine the sam-
pling valuevs. We define theneighborhoodof v as the
surface whose center isvx, and bounded byvx

0,...,vx
7 (see

Figure 6a).

(a) (b)
Figure 6: The sampling scheme (a) the neighborhood,
(b) the piecewise interpolation

The sampling pointvs, can be computed by interpo-
lating the triangles within the neighborhood ofvx. One
could bilinearly interpolate the centroids of these trian-
gles weighted by the size of each triangle and its Eu-
clidean distance fromvx. However, it is not easy to
distribute the triangle weight into the two factors i.e.,
the triangle size and its distances fromvx. For that rea-
son, we uniformly subdivide the rectangular patch into
roughly equal cells and perform a piecewise interpola-
tion. Each cell is assigned an elevation value, which
is computed by averaging the elevation of the triangles
that intersect it. Since the cells are roughly the same
size, we only need to consider their distance from the
intersection pointvx when interpolating their elevation
values (see Figure 6b). Note that large triangles may
fall in more than one cell, and computed separately for
each of these cells. The interpolation of all the cells’
values produces the elevation ofv.

3.2 Generating the Displacement Maps
Our algorithm assigns a single displacement map for
every face in the control-mesh. After the sampling
pattern has been mapped onto a control-facef , a
new displacement-mapD f is created forf such that
each vertexv of the subdivided face has an asso-
ciated elevation value inD f . The elevation values
are generated by sampling the original mesh and
the sampling-error∆ f of a face f are determined as
maxv∈Pf (minu∈ f (‖v−u‖)), where Pf is the corre-
sponding patch in the original mesh (see Figure 1).

3.3 Runtime Adaptive Subdivision
The runtime stage is executed almost entirely on the
GPU, with the CPU acting only as an interface. At

each frame, the CPU transmits the control-mesh to the
GPU, which recursively subdivides the faces that ex-
ceed a certain screen-space projection error. Finally,
the GPU elevates each of the refined-vertices according
to the displacement-maps assigned to the faces of the
input control-mesh.

The CPU transmits the faces of the control-mesh to
the GPU, which computes the screen space projection
for each face. Letfp be the projection of the facef
and letep be the projection of the edgee, which is the
longest edge offp. The length ofep, |ep|, is compared
against a predetermined screen space toleranceτ. If
|ep| > τ, the facef is subdivided into two new faces,
fa and fb, by inserting a new vertexvm in the middle
of edgee. The two faces,fa and fb, are then sent back
to the beginning of the adaptive subdivision process. If
|ep| ≤ τ then f is fine enough, and is sent to the next
rendering stage. Note that the generated vertices are
a subset of the refined-vertices. The edgee is usually
shared with another faceg, which will be subdivided
at the middle ofe by the time the subdivision process
is complete. Therefore, by the end of the subdivision
process each two adjacent faces have the same vertices
along the common edge (see Figure 7), i.e., the final
triangulation is crackless.

(a) (b) (c)
Figure 7: Various stages of the subdivision (faint lines
depict the current step of the subdivision) (a) a subdi-
vision of a single face, (b) a mid-process triangulation,
and (c) the final triangulation

This subdivision scheme results in a semi-uniform
screen space subdivision of the control-mesh. The GPU
generates a view-dependent adaptive subdivision of the
control-mesh, while enabling fine-grained changes that
depend on view-parameters. In such a manner, the
mesh structure is refined at every frame to adapt to
just the right level of detail necessary for visual real-
ism. Therefore, this approach manages to provide bet-
ter local adaptivity than existing cluster-based render-
ing schemes.

Performing face subdivision using the screen space
projection of edges does not take into account the cur-
vature of the model nor the sampling error. One could
argue that the curvature is encoded within the control-
mesh since small faces correspond to high curvature
and large faces correspond to low curvature. Neverthe-
less, the local curvature of a control-face, as well as the
sampling error, are encoded in its displacement maps
and it is important to take them into account. In our
approach, the edges guide the face subdivision in order

WSCG 2009 Full papers proceedings 206 ISBN 978-80-86943-93-0

to avoid T-junctions. For this reason, the curvature and
error of a face are encoded in its edges.

Let fa and fb be the two faces that share the edgee
and letha andhb be the maximum elevation value in
the displacement maps assigned tofa and fb, respec-
tively. Thegeometric curvature∆e of the edgee is de-
fined asmax(ha,hb) + max(∆a,∆b), where∆a and ∆b

are the sampling error offa and fb, respectively. When
a facef is subdivided into two triangles, the values for
the created edges are computed by averaging the previ-
ous edges’ values (see Figure 8).

Figure 8: Computing the generated edges errors

During the subdivision process, the product of screen
space projection of the longest edge,ef , and the geo-
metric curvature,|ef | ×∆e, is compared toτ to guide
the subdivision process. In such a manner, we consider
the local geometry and the sampling error of each face,
while generating its adaptive subdivision.

At the final stage of the rendering process, the GPU
displaced each vertex,v, according to its assigned ele-
vation value, based on the relative location ofv in the
face f . Note that the vertices generated by the adaptive
subdivision are subset of the refined-vertices off .

3.4 Optimizations
Fetching the elevation of a vertexv from the
displacement-map without considering its adja-
cent elevation values, may result in missing details
in the generated image. To prevent such cases, we
have constructed a MipMap hierarchy for every
displacement-map. Our algorithm fetches the elevation
of a vertex v from the MipMap hierarchy of the
appropriate displacement-map. In such a scheme, the
adjacent elevation values of a vertex are taken into
account in a view-dependent manner.

To improve GPU utilization, a rendering step that re-
moves invisible surfaces in the mesh is performed be-
fore applying the GPU-based subdivision step. Since
the surface generated for each control-facef is rela-
tively close to f , the visibility check of f is used as
the visibility check of its generated surface. The check
process, however, takes into account the difference be-
tween f and its generated surface by actually check-
ing the visibility of the bounding volume off ’s sur-
face, f v.The bounding volumef v of f is the triangular-
volume received when elevatingf using the minimum
and maximum elevation values stored inD f .

4 IMPLEMENTATION DETAILS
In our implementation, we have used the edge-collapse
operation with quadric error metric [10] to generate the

control-mesh. The visibility-check and the GPU-based
subdivision procedures run within the geometry pro-
cessors, while the elevation procedure is performed by
the vertex processors. The GPU-based adaptive sub-
division is implemented by using thestream-outcon-
trol, which allows the CPU to terminate the graphics
pipeline and emit into a VBO the triangles resulting
from one subdivision pass. The GPU performs a recur-
sive subdivision on the processed triangles by switching
between two VBOs for each pass.

A triangle is denotedfine-enoughif it passes the
adaptive subdivision test, i.e., it complies with the re-
quired screen-space precision and does not need any
further subdivision. Transmitting all the control-faces
to the GPU using a single VBO and executing the subdi-
vision test uniformly, usually forces many fine-enough
triangles to go through the subdivision phase and waste
expensive processing cycles. To avoid this waste, we
add a rendering pass, after each subdivision, which
passes all the fine-enough triangles from the VBO on
to the next step of the pipeline.

The size of large models often exceeds the capacity
of the available video memory. To support large mod-
els, we have implemented an External Video Memory
Manager, which uses a single 2D cached texture as a
video memory buffer [16].

5 RESULTS
We have tested our implementation using various
datasets of different sizes. This section reports exper-
imental results, obtained using an Intel Core 2 Duo
processor, 2GB of memory, and an NVIDIA GeForce
8800 GTX with 768MB.

5.1 Preprocessing
We have used sampling-patterns of degrees 17 and 33
that include 256 and 1024 triangles, respectively. To re-
cover the original models using approximately the same
number of triangles, the generated control-meshes are
0.4% and 0.1% the size of the original models, respec-
tively.

Model Memory (MB) Time

Dataset Size Original Sampled

(faces) Model Model (min)

A. dragon 7.2M 230 70 39

Lucy 28.1M 1112 158 156

David 56.2M 2113 317 311
Table 1: Preprocessing time, and memory requirement

The results of the offline preprocessing phase are pre-
sented in Table 1, which depicts the model size, the
memory requirements of the original model, and the
sampled model (the control-mesh and its displacement

WSCG 2009 Full papers proceedings 207 ISBN 978-80-86943-93-0

maps). Thetimecolumn reports the offline preprocess-
ing time, which includes the simplification, sampling,
and MipMap generation.

The displacement map-based representation reduces
the model size by approximately 70%. This is a re-
sult of storing a 4byteelevation value instead of three
4bytevalues (x, y, andz) for each vertex and without
mesh connectivity. The displacement maps of each face
are sampled from a relatively close surface (the origi-
nal surface). Therefore, further reduction in the mem-
ory size is achieved by using 2bytedisplacement maps
instead of 4byte displacement maps. However, using
2bytedisplacement maps may compromise the quality
of the recovered model (see Table 3).

The quality of the sampled-mesh is computed by es-
timating the difference between its surface and that of
the original model. We define the average geometric
distanced as(∑v∈M minu∈Ms(‖v−u‖))/ |M|, whereM
andMs are the original model and sampled mesh, re-
spectively.

Dataset Intersection Interpolation

A. dragon 0.010 0.009

Lucy 0.024 0.022

David 0.017 0.013
Table 2: The quality of the sampling techniques

Table 2 reports the quality of the sampled-meshes us-
ing the two sampling techniques,intersectionandinter-
polation. Both techniques give small sampling errors,
however, the interpolation based sampling provides bet-
ter quality than the intersection based sampling.

Dataset Degree 17 Degree 33

4bytes 2bytes 4bytes 2bytes

A. dragon 0.004 0.004 0.009 0.010

Lucy 0.009 0.010 0.022 0.022

David 0.005 0.006 0.013 0.013
Table 3: The effects of the sampling pattern degrees and
elevation values’ format on the model quality

Table 3 reports the quality of the sampled-meshes as
a function of the degree of sampling-pattern and the
depth of the displacement maps. In these experiments
the total number of triangles after refinement is simi-
lar to those of the original one, i.e., the larger the pat-
tern degree the coarser the control-mesh. Using smaller
patterns generates better approximations of the input
model. It is easy to conclude that a sampling-pattern of
degree 17 and 2bytedisplacement depth provides better
quality than a sampling-pattern of degree 33 and 4byte
displacement depth.

5.2 Runtime Performance
In the reported runtime experiments, we have used a
sampling-pattern of degree 33. These results were com-
puted by averaging the performance over a period of 30
seconds of interactive rendering.

Dataset τ ε Proc. Rendered f ps

A. dragon 2 2.13 45K 18K 220

Lucy 2 2.10 47.5K 19K 220

David 2 2.08 97.5K 39K 154

A. dragon 1 1.22 150K 60K 154

Lucy 1 1.11 190K 76K 81.4

David 1 1.18 200K 80K 81.4
Table 4: Runtime performance

Table 4 presents the runtime performance of our al-
gorithm. Theτ andε columns present the subdivision
threshold and the resulted screen-space error of the ex-
tracted geometry, respectively. Theprocessedand the
renderedcolumns present the number of the triangles
processed by the GPU and the triangles actually ren-
dered. Thefps column reports the number of frames
generated per second.

It is clear thatε is relatively close toτ, which implies
thatτ can be used to control the screen-space error. The
frame rates (fps) are determined by the number of the
processed triangles, which is dictated byτ. As a result,
similar τ values lead to similar frame rates, regardless
of the size of the original model. Refiningk control-
faces to generate a model withn triangles requires pro-
cessing at least 2n−2k triangles. However, some trian-
gles usually require finer subdivisions, which forces all
the triangles to be reprocessed by the geometric proces-
sor. For that reason, the column of processed triangles
shows a higher factor, 2.5 (on average). In addition,
view-frustum and back-face culling are applied to the
control-mesh and manage to remove up to 95% of the
invisible control-faces.

Our geometric error distribution scheme (see Sec-
tion 3.3) does not capture all possible cases. To evaluate
our error distribution scheme, we have experimentally
measured the bias between the actual geometric errors
and those computed using our scheme. Figure 9 shows
the measured bias using a 56K-triangles control-mesh
of the David model. The first column shows that our
error distribution scheme matches the actual errors for
about 32% of the faces; and about 2% have a bias of
0.5, i.e., the geometric error bias of the resulting trian-
gles is three times more than the error bias of the other
triangles.

Figure 10 presents the Asian Dragon model rendered
with and without using MipMaps (see Section 3.4). The
zoom-in window shows that using Mipmaps provides
smoother images. Figure 11 presents screenshots for

WSCG 2009 Full papers proceedings 208 ISBN 978-80-86943-93-0

Figure 9: The distribution of the error on the generated
faces when subdividing the control-mesh of the David
model.

(a) (b)
Figure 10: Close-up on the Asian Dragon model (a)
the result without MipMaps and (b) the result with
MipMaps

the David model atτ = 1. Figure 11c shows that the er-
ror in different regions of the generated representations
increases in the same rate as the sizes of the subdivi-
sion triangles (the green and the red colors represent
minimum and maximum errors, respectively).

(a) (b) (c)
Figure 11: Screenshots of the David model (a) the gen-
erated image, (b) the wireframe representation from a
different viewpoint, and (c) the geometric error

5.3 Animated Models
Our algorithm supports interactive view-dependent
rendering of large 3D models with animation affects,
which are applied to the vertices of the control-mesh,
using the CPU, at each frame. The deformed repre-
sentation is transmitted to the GPU, which generates
the view-dependent representation. We found that

the GPU’s performance remains unchanged when
deforming the model within the CPU. Since computing
the animation transformation is performed by the CPU,
it is important to avoid generating a control-mesh that
exceeds the CPU capabilities.

5.4 Comparison With Other Algorithms
We compared our algorithm to recent view-dependent
cluster-based approaches.

The Quick-VDR [26] and TetraPuzzles [6] algo-
rithms require 1.5n MB and 2n MB, respectively, to
represent the multiresolution hierarchies of a model of
sizen MB. Our algorithm requires 0.3n MB to store the
same model. Eliminating the use of multiresolution hi-
erarchies enables the support of large datasets without
using external memory.

Most cluster-based algorithms do not support local
adaptivity for the extracted geometry. Our algorithm
uses a GPU-based subdivision to adapt the generated
triangulation to the view-parameters. At 2pixelserror
our algorithm requires only 80% of the triangles re-
quired for cluster-based algorithms.

Cluster-based approaches render approximately
280M triangles per second. Our algorithm manages
to process only 88M triangles per second (176M with
culling algorithms).

6 CONCLUSIONS AND FUTURE
WORK

We have presented a GPU-based view-dependent
rendering algorithm. The control-mesh, which is
a simplified representation of the input model, is
an error-guided subdivision of the input model into
disjoint patches. The geometry of these patches is
encoded into displacement maps. At runtime a view-
dependent level-of-detail representation is generated
using a GPU-based adaptive subdivision. Such a
scheme minimizes the load on the CPU and makes
it available for other general purpose computations.
Our approach eliminates the need for multiresolution
hierarchies of geometry and enables real-time defor-
mation on large geometric models. Our algorithm
encodes the geometric errors within the edges of the
control-mesh, which generates manifold meshes and
stitches the refined faces seamlessly, without adding
extra dependencies or sliver polygons.

We observe three possibilities for future work. First,
displacement maps which are currently stored as raw
images consume significant portions of the video mem-
ory. Developing a GPU-based compression scheme for
textures could save expensive video memory. Second,
in our current method, the animation is applied to the
control-mesh, rather than the original mesh, which re-
sults in poor accuracy. It may be useful to develop an
"animation aware" simplification approach that gener-
ates a control-mesh that takes the input animation into

WSCG 2009 Full papers proceedings 209 ISBN 978-80-86943-93-0

account. Third, our current algorithm generates the
view-dependent level-of-detail representation from the
control-mesh at each frame. It is interesting to utilize
temporal coherence among consecutive frames.

REFERENCES

[1] A. Asirvatham and H. Hoppe.Terrain rendering using GPU-
based geometry clipmaps., chapter 2, pages 27–45. Addison-
Wesley Professional, 2005.

[2] X. Bao, R. Pajarola, and M. Shafae. SMART: An efficient tech-
nique for massive terrain visualization from out-of-core. In Pro-
ceedings of Vision, Modeling and Visualization ’04, pages 413–
420, 2004.

[3] J. Bolz and P. Schröder. Evaluation of subdivision surfaces on
programmable graphics hardware.Submitted, 2005.

[4] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio,
and R. Scopigno. BDAM – batched dynamic adaptive meshes
for high performance terrain visualization.Computer Graphics
Forum, 22(3):505–514, 2003.

[5] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio,
and R. Scopigno. P-BDAM – planet-sized batched dynamic
adaptive meshes. InProceedings of Visualization ’03, pages
147–155, 2003.

[6] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and
R. Scopigno. Adaptive TetraPuzzles – efficient out-of-corecon-
struction and visualization of gigantic polygonal models.ACM
Transactions on Graphics, 23(3):796–803, 2004.

[7] L. De Floriani, P. Magillo, and E. Puppo. Efficient implemen-
tation of multi-triangulations. InProceedings of Visualization
’98, pages 43–50, 1998.

[8] W. Donnelly. Per-Pixel Displacement Mapping with Distance
Functions, pages 123–136. Addison-Wesley, 2005.

[9] C. Erikson and D. Manocha. Hierarchical levels of detailfor
fast display of large static and dynamic environments. InPro-
ceedings of symposium on Interactive 3D graphics ’01, pages
111–120, 2001.

[10] M. Garland and P.S. Heckbert. Surface simplification using
quadric error metrics. InProceedings of SIGGRAPH ’97, pages
209–216, 1997.

[11] G. Gerasimov, F. Fernando, and S. Green. Shader model 3.0
using vertex textures.Nvidia White Paper, 2004.

[12] L. Hwa, M. Duchaineau, and K. Joy. Real-time optimal adap-
tation for planetary geometry and texture: 4-8 tile hierarchies.
IEEE Transactions on Visualization and Computer Graphics,
11(4):355–368, 2005.

[13] J. Ji, E. Wu, S. Li, and X. Liu. Dynamic lod on gpu. InCom-
puter Graphics International ’05, pages 108–114, 2005.

[14] J. Kim and S. Lee. Truly selective refinement of progressive
meshes. InGraphics Interface ’01, pages 101–110, 2001.

[15] A. Lee, H. Moreton, and H. Hoppe. Displaced subdivisionsur-
faces. InProceedings of SIGGRAPH ’00, pages 85–94, 2000.

[16] Y. Livny, G. Bauman, and J. El-Sana. Displacement patches
for gpu-oriented view-dependent rendering. InProceedings of
GRAPP ’08, pages 181 – 190, 2008.

[17] Y. Livny, N. Sokolovsky, T. Grinshpoun, and J. El-Sana.A
gpu persistent grid mapping for terrain rendering.The Visual
Computer, 24(2):139–153, 2008.

[18] Haik Lorenz and Jurgen Dollner. Dynamic mesh refinement on
gpu using geometry shaders. InProceedings of WSCG 2008,
2008.

[19] F. Losasso and H. Hoppe. Geometry clipmaps: terrain render-
ing using nested regular grids.ACM Transactions on Graphics,
23(3):769–776, 2004.

[20] D. Luebke and C. Erikson. View-dependent simplificationof ar-
bitrary polygonal environments. InProceedings of SIGGRAPH
’97, pages 199–207, 1997.

[21] Kevin Moule and Michael D. Mccool. Efficient bounded adap-
tive tessellation of displacement maps. graphics interface 2002.
In In Graphics Interface, pages 171–180, 2002.

[22] R. Pajarola. Fastmesh: efficient view-dependent meshing. In
Proceedings of Pacific Graphics ’01, pages 22–30, 2001.

[23] A. Pomeranz. ROAM using triangle clusters (RUSTiC). Mas-
ter’s thesis, UNIVERSITY OF CALIFORNIA, 2000.

[24] J. Schneider and R. Westermann. GPU-friendly high-quality
terrain rendering.WSCG, 14(1-3):49–56, 2006.

[25] T. Ulrich. Rendering massive terrains using chunked level of
detail control. InProceedings of SIGGRAPH ’02, 2002.

[26] S. E. Yoon, B. Salomon, R. Gayle, and D. Manocha. Quick-
vdr: Interactive view-dependent rendering of massive models.
In Proceedings of Visualization ’04, pages 131–138, 2004.

WSCG 2009 Full papers proceedings 210 ISBN 978-80-86943-93-0

Flocking Boids with Geometric Vision, Perception

and Recognition

James Holland
Department of Computer Science

University of Colorado at Colorado Springs
Colorado Springs, CO, 80933-7150

jholland@uccs.edu

Sudhanshu Kumar Semwal
Department of Computer Science

University of Colorado at Colorado Springs
Colorado Springs, CO, 80933-7150

semwal@eas.uccs.edu

ABSTRACT

In the natural world, we see endless examples of the behavior known as flocking. From the perspective of
graphics simulation, the mechanics of flocking has been reduced down to a few basic behavioral rules. Reynolds
coined the term Boid to refer to any simulated flocking, and simulated flocks by collision avoidance, velocity
matching, and flock centering. Though these rules have been given other names by various researchers,
implementing them into a simulation generally yields good flocking behavior. Most implementations of flocking
use a forward looking visual model in which the boids sees everything around it. Our work creates a more
realistic model of avian vision by including the possibility of a variety of geometric vision ranges and simple
visual recognition based on what boids can see. In addition, a perception algorithm has been implemented which
can determine similarity between any two boids. This makes it possible to simulate different boids
simultaneously. Results of our simulations are summarized.

Keywords
Flocking simulation, geometry, Simple perception and recognition algorithms.

1. INTRODUCTION

Flocking is a method for generating animations that
realistically mimic the movements of animals in
nature. The most common ones we think of are birds
and fish. However, there are many other examples,
such as ant colonies, animal herds, and even human
pedestrians. This phenomenon has been observed
and studied by various scientists for many years.
From a biological or sociological view the main
question has been “Why do flocks form.” Our main
question has been “How do flocks form and how can
we simulate it.” Whether it is a school of mackerel,
flock of geese, a herd of wildebeest, or protesting
crowd moving through the streets, we must
understand the factors that create and maintain these

formations and then create algorithms that apply the
factors. From a biological view, flocking, schooling
and herding behaviors arise from a variety of
motivations. By forming large groups, the average
number of encounters with predators for each
member of the group is reduced. It also allows
predatory groups to overpower larger prey and to
control large groups of smaller prey [Shaw70].
Biologists have found that there is a balance between
both the need for members to be a part of the group
and the need to maintain an individual space, which
cause groups to form [Vehe87]. The concept of
attraction versus maintaining space has been the
focus of much of the research in simulating
animations of flocking behavior to date. In 1987,
Reynolds described a flock as the result of the
interaction between the behaviors of individual birds
[Reyn87]. To simulate a flock we need to simulate
the behavior of each individual bird. Once the basic
mechanics of motion for the boid is defined, the
behavioral model boils down to three rules:

 Collision Avoidance or Separation: avoiding
collisions with flock mates.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2009 Full papers proceedings 211 ISBN 978-80-86943-93-0

 Velocity Matching or Alignment: matching
velocity and direction with nearby flock
mates.

 Flock Centering or Cohesion: attempting to
stay near the center of the flock.

Since Reynolds’s inaugural research into flocking
behavior, others have extended his work in various
directions adding actions such as pursuit and evasion,
wandering, exploring, homing, and shepherding
[Reyn99]. Anderson et al. extended the path
following with the idea of constrained group
animation [Ande03]. Brogan and Hodges
implemented a visual model in which the number of
visible neighbors affect how separation, cohesion,
alignment and other factors are applied to decision
making [Brog97]. Jadbabaie et. al. experimented
with the nearest neighbor flocking algorithm in which
data from only one flock mate is used to modify a
boids path [Jadb03]. Other researchers have explored
the way boids think to create more realistic
animations. Bajec et al. introduce fuzzy logic into the
decision making process of the boids [Baje03].
Pedestrians and crowd simulation is in [Shao07,
Sull02]. Predefined paths are used in [Ande03]. By
applying global environmental knowledge, Bayazit et
al. implemented three new group behaviors: homing,
exploring and shepherding [Baya02]. Hartman and
Benes introduce the concept of leadership into the
flock in order to create a more realistic looking
behavior [Hart06]. Musse et al. applied flocking
rules to implement a Crown Model for Virtual
Environment [Muss98].

2. MOTIVATION: BOIDS WITH EYES

The inspiration for our work came while searching
for information about bird flocking. One web page
that came up in the search showed the following
images [Noll07] in Figure 1.

Figure 1. Avian field of vision.

Seeing these images and knowing that owls do not
flock, and that woodcocks do, made us ask this
question. Is flocking behavior related to vision? If it
is, then how is it related?

As the concept of visual perception in flocking had
not been explored especially in the context of Figure
1, we decided to explore how the boids visually
perceive their environment and how the information
gathered could be used to influence their decision
making process.
We started by considering vision in general. There
are two sides of the vision process. First there are the
physical aspects of vision. These attribute are based
on some physical attribute of the eye, either its
geometry or its light receptors. They define the
geometric field in which the eye can see, the range of
light and changes in light the eye can detect, and how
the eye can adapt and change to changes in the
environment to affect what is seen. These aspects
include, but are not limited to
(a) Light Reception Based -- Acuity: Clearness or
acuteness of vision. Spectral Response: Range of
light wavelengths the eye can detect. Dynamic Range:
The eyes ability to adapt to changes in light.
Accommodation: The eye's ability to adjust its optical
power in order to maintain a clear image or focus
objects at various distances. Resolution: Minimum
size detail the eye can detect or distinguish.
(b) Geometric -- Visual Field: Angular span of
vision. Perceptual Span: Angular span of vision in
which the eye can accurately focus. Eye Placement:
How and where the eye is positioned in the head.
Peripheral Vision: Vision that occurs outside the very
center of gaze. Binocular Vision: Vision in which
both eyes are used together to produce depth
perception. Eye Movement: Ability to move within
the eye socket.

The other important aspect of the vision process is
the visual perception. In psychology, visual
perception refers to the process of acquiring,
selecting, and interpreting visual sensory information.

After researching vision further, it was decided that
the implementation would be divided into three parts.
First, the physical aspects of vision will be defined by
a geometric model of bird vision. Next perception
algorithms will gather and interpret the data provided
by the model. Finally the interpreted data will be
applied to the flocking decision processes. We also
expanded the topic to include pattern recognition
during the simulation of the perception algorithm. In
order to accomplish this, each boid would need to
include a model of its physical appearance that the
other boids could perceive.

3. THE VISUAL MODEL

The visual model needs to model the geometric
aspects of vision discussed earlier as closely as

WSCG 2009 Full papers proceedings 212 ISBN 978-80-86943-93-0

possible. It needs to adapt easily to match the visual
characteristics of a variety of birds. And finally, it
needs be designed in a way that can be implemented
into the perception algorithms, the flocking
algorithms, and the graphical view. To satisfy these
requirements, the model will have four parameters
derived from the attributes of vision and the Owl and
Woodcock images in the previous section, as follows:
(a) Eye position angle (b) Direction of vision (c)
Field of vision (d) Range of vision. The Eye Position
Angle describes the placement of the eyes on the
boid’s head. As seen in Figure 2, in birds the
placement of the eyes varies between species. They
can be in the front of the head as in the Owl or on the
side as in the Woodcock. The vertex of the angle is at
the center of the head and is relative to the forward
direction. At the minimum angle, zero degrees, the
eyes appear on the front of the head facing directly
forward. At the maximum angle, 90 degrees, the eyes
appear on the side of the head, at a right angle to the
forward direction.

Figure 2. Eye position angle (Left) and Direction

of Vision (Right).

Figure 3a. Field of vision (Left) and range of
vision (Right).
The field of vision defines the limits of vision both
horizontally and vertically. Our model will not
distinguish between the two, but uses a single value
creating a circular cone of vision. As with the

direction of vision, the field of vision vertex is at the
center of the eye, see Figure 3a(left), and its angle is
relative to and symmetrical about the direction of
vision. The Range of Vision defines the maximum
distance which the bird can recognize objects. The
range is measured from eye radiating out in the
direction of vision. As seen in Figure 3a(right), the
range of vision specifies the height of the conical
visual field.
When combined in three dimensions, the visual
parameters create a circular conical visual field that
emanates from each eye. This visual field mimics the
visual abilities of birds and can be easily modified to
match a variety of bird visual models. Figure 3 (b)
shows Boids with eyes used in our implementation.
They appear as dots in simulations as shown later.

Figure 3b. Boid with eyes.

4. PATTERN RECOGNITION MODEL

A model for pattern recognition for birds is not
completely known; however we do know birds have
very acute vision. Their eyes have five times as many
receptors as human eyes. Some birds of prey can
track a rabbit from a mile away. The pattern model
we chose to represent the boids is a simple bit
pattern. Each boid is represented by a set of bits with
a length from 1 to 32 bits. Each bit or set of bits
would represent some attribute about the boid, such
as color, wing shape, etc. The comparison algorithm
performs a bit by bit or bit set by bit set comparison.

4.1 The Perception Algorithm
The purpose of the Perception Algorithm is to gather
information from boids environment base upon its
visual model. The algorithm first determines which
neighbor boids it can see. It then perceives the
following information about the visible neighbors:
location, direction of travel, speed, and appearance.
The perception algorithm is broken into three phases:
view, perspective, and pattern recognition.
View Phase

The View Phase creates the initial visible neighbors
list and uses the field of vision and range of vision to
eliminate objects that are outside the visual gield of
the boid. The first part of the algorithm calculates the
distance to each neighbor and compares it to the
Range of Vision. If the neighbor is beyond Range of
Vision it is removed from the list. The second step
calculates the angle to each neighbor relative to the

WSCG 2009 Full papers proceedings 213 ISBN 978-80-86943-93-0

direction of vision for both eyes. These angles are
then compared to the field of vision angle to
determine if the neighbor is within the Boid’s visual
field. If the angle is less than half the Field of Vision
angle then the boid is visible. Following this phase,
each neighbor boid will be marked as either not
visible, visible from either the left eye, right eye or
both eyes. Figure 4 below shows two object near a
boid. Both object are within the range of vision,
however only Object A is in view. The angle to
Object B is greater than half of the Field of Vision.

Figure 4. View phase.

Perspective Phase

In the perspective phase, the algorithm searches
through the list of neighbors looking for neighbors
which are obscured by closer neighbors. It starts by
sorting the list by distance from the boid. Starting
with the closest neighbor the algorithm checks each
further neighbor to determine if the closer neighbor
obscures the further one. Obscured neighbors are
marked as they are found. Partially obscured
neighbors are considered visible.

Obscured Object Culling

First the algorithm projects the neighbors’ bounding
circles onto the boid’s unit sphere. This is done by
dividing the radius of each object by its distance from
the boid.The algorithm then calculates the distance
between the projected centers of the neighbors, see
Figure 5a. We first project the centers onto boid’s
unit sphere. It then gets the offset vector between the
projected centers. The length of this vector is the
distance between the projected centers. In the
comparison phase, the projected radii are compared
to determine if the further object is obscured. There
are four possible outcomes of the comparison:

1. If the further object’s radius is greater than the
closer object’s radius, the further object is at
least partially visible.

2. If the distance between the projected circles
centers is less than or equal to the difference in

their radii, see Figure 5b, then the further object
is completely obscured.

3. If the distance between the projected circles
centers is greater than or equal to the difference
in their radii, see Figure 5c, then the further
object is partially visible.

4. If the distance between the centers is greater than
or equal to the sum of the radii, see Figure 5d,
then the further object is completely visible.

For our implementation, a neighbor is considered
obscured only if it is completely obscured.

Figure 5. Obscured object culling.

Pattern Recognition Phase

In the Pattern Recognition phase of the Perception
Algorithm, the pattern of each visible neighbor boid
is compared to the boids own pattern. It is assumed
that if the neighbor boid is visible then the pattern can
be discerned. The pattern match algorithm counts the
number of bits that are similar between the boid and
each neighbor. An exclusive-OR algorithm can
determine this count. This count (factor) is stored
and is used in the flocking/steering algorithms.

5. OpenSteer LIBRARY

The flocking and steering phase of the program is
based upon the algorithm developed by Craig
Reynolds in his OpenSteer Library. The OpenSteer
C++ library contains three algorithms for flocking
simulations: steer for cohesion, steer for separation,
and steer for alignment. We created two
modifications version of each of these algorithms that
employ the data derived by the perception algorithm
to influence steering decisions. The first version
employs the visibility and perspective variables to
limit the neighbors used in the steering calculation to
those that are visible. The second version applies a
pattern recognition based weighting to the decision
process.

WSCG 2009 Full papers proceedings 214 ISBN 978-80-86943-93-0

Steer for cohesion

The Steer for Cohesion algorithm keeps the flock
together. It does this by applying steering forces to
the boid that drive it towards the flock’s center. The
general algorithm calculates the center of all the
neighboring boids and applies a steering vector
toward this point. In the modified steer for cohesion
algorithm, only boids that are visible are used to
calculate the flock center. The algorithm calculates
the flock center by averaging the positions of all
visible neighbors. The steering vector is the
normalized difference between the boid’s position
and the flock center. When our pattern recognition is
applied, the steering vector is weighted based on the
pattern match value (factor) calculated in the
Perception Algorithm. Because each neighbor may
have a different pattern and therefore require
different weighting, the pattern recognition version
cannot look at the visible neighbors as a whole, but
must calculate steering vectors for each individually.
The final steering vector is the normalized sum of the
steering divided by the sum of the pattern weighting.

Steer for separation

Then steer for separation algorithm keep boids from
running into each other. In the basic steer for
separation algorithm, the boids are steered away from
their nearest visible neighbors. The algorithm
calculates a steering vector for each neighbor that is
opposite of the offset vector between the two boids.
The steering vector is divided by the squared distance
between the boid to get the 1/distance falloff. This
causes the magnitude of the vector to drop off as the
distance between the boids increases. When our
pattern recognition is applied, each neighbor’s
position relationship is weighted based on the pattern
match value.

Steer for alignment

In the steer for alignment algorithm, the boids are
turned toward the visible flock’s predominant
direction. The algorithm calculates the flock
direction by averaging the forward vector of all
visible neighbors. The steering vector is the
normalized difference between the boid’s forward
vector and the flock’s. When our pattern recognition
is applied, each neighbor’s alignment relationship is
weighted based on the pattern match value. The
Boid’s visual model defines its physical attributes of
vision and its perception algorithms perceive and
interpret its environment. The information gathered
then influences the Boid’s decisions.

6. IMPLEMENTATION DETAILS

The Simulation Mode generates the real-time
flocking simulations. Sequence of functions are
called during each update cycle. The processing is
broken into two phases, update and draw. During the
first phase, calls to the pluginUpdate and boidUpdate
functions generate new steering vectors and in turn
new position and orientation vectors for each boid in
the flock. The second phase calls to pluginRedraw
and boidDraw functions to display the boids using the
newly generated vectors. To facilitate the analysis
process, we used an automated script to generate
simulation files for all combinations of the following
parameters and values:

 Normal Mode and Pattern Recognition
Mode

 Flock Size: 20, 50, 100
 Direction of Vision: 0, 20, 40, 60, 80,

90
 Field of Vision: 30, 60, 90, 120, 150, 180
 Range of Vision: 10, 20, 40

The script generated 648 simulation files. During the
generation process, the application’s analysis
functions, extracted simulation and flock data sets for
statistical analysis. Details of statstical analysis is
presented elsewhere [Holl07]. Here we present the
main results.

Flock Simulation Analysis

In this section, we will subjectively analyze four
simulations out of a total of seven simulations we
perfomed in [Holl07]. Each simulation is with
different flock and visual settings. We will
characterize the simulation with the following
criteria: flock alignment, flock cohesion, and stray
boids. In each simulation, we took screen shots once
a second starting 3 seconds after simulation
initialization. The three seconds allows the boids to
form the initial flock. The number of screens taken
depends on how long the simulation continued to
generate interesting results. We have also perfomed
studies where pattern recognition is activated
(Sample 4) . In sample 4 simulation, there are four
types of boids visible. The table below show the
data for each pattern used in the simulations. As
described in the design and implementation [Holl07],
the patterns affect how the boids react to each other
based on the pattern match value.

WSCG 2009 Full papers proceedings 215 ISBN 978-80-86943-93-0

ID Pattern %of
Boids

Body
Color

Head
Color

Boid
1

00000000 35 Yellow Orange

Boid
2

00111010 35 Green Red

Boid
3

11000101 15 Blue Yellow

Boid
4

11111111 15 Red Magenta

Table 1. Boid patterns.

Simulation example -- Sample 1
Simulation 1 (Figure 7) contains 100 boids with the
following visual settings:

 Direction of vision: 20 degrees.
 Field of vision: 60 degrees.
 Range of vision: 20 units.

Figure 7. Simulation 1 Boid View.

The images in Figure 8 show the boids quickly
moving away in random directions. By the seventh
second, it is apparent that the initial flock will scatter
and that there is no flock cohesion or alignment.

Figure 8. Boids move in random direction in Left:
3 seconds, and Right: 11 seconds.

Simulation example -- Sample 2
Next we started 100 boids with the following visual
settings:

 Direction of vision: 90 degrees.

 Field of vision: 60 degrees.
 Range of vision: 20 units.

Figure 8. Simulation 2 Boid View.

The images in Figure 9 shows that within the first
few seconds, a cohesive flock has formed. The flock
maintains cohesion and alignment throughout the six
seconds of the simulation displayed.

Figure 9. Boids move in random direction in Left:
3 seconds, and Right: 7 seconds.

Simulation example -- Sample 3
The final simulation again contains 100 boids with
the following visual settings:

 Direction of vision: 90 degrees.
 Field of vision: 200 degrees.
 Range of vision: 20 units.

These parameters match those of the Woodcock
presented earlier. The image below, Figure 10, show
the field of vision the parameters define.

Figure 10. Simulation 3 Woodcock View.

WSCG 2009 Full papers proceedings 216 ISBN 978-80-86943-93-0

The flock illustrated by the images in Figure 11
maintains a consistent shape and size throughout the
ten-second simulation. Alignment and cohesion are
constant through every image.

Figure 11. Boids move in random direction in
Left: 3 seconds, and Right: 11 seconds.

Simulation Example -- Sample 4
Simulation 4 contains 100 boids with the following
visual settings:

 Direction of vision: 20 degrees.
 Field of vision: 180 degrees.
 Range of vision: 20 units.

As seen in Figure 12 below, the boids in this
simulation have a field of view that extend 110
degrees left and right.

Figure 12. Simulation 4 Boid view.

In this simulation, the affect of the Pattern Matching
is obvious and significant. Within one and a half
seconds (Figure 13 left), the colors are coalescing and
at three seconds (Figure 13 right), the colored flocks
are steering away from each other. Pattern cohesion,
alignment, and separation are all visible.

Figure 13. Different boids start to coalesce (left,1.5
seconds) and then steering away (right, 3 seconds).

7. RESULTS
Early on it in our simulation it became apparent to us
that side vision is significant for flocking behavior.
From the Direction of Vision Summary, we see that
in the first few seconds of a simulation, boids with no
side vision do not visually perceive their neighbors
and the flock quickly disperses. We also see a
general instability in the flock data for boids that have
more forward-looking vision.

We performed several other simulations to confirm
this observation. Simulations having a field of vision
of 60 degrees does not seem to be a wide enough
field of view to afford flock cohesion, however as we
compared the three simulation with direction of
vision moving from forward to a more lateral view,
cohesion and alignment improve.

From the field of vision statistics, we observed that
the greater the field of vision the more stable the
flocking. This result was expected. This is also
confirmed from field of vision statistics summary,
which can be found in [Holl07]. The graphs all
indicate that the flocks characteristic improve as the
field of vision widens. They also indicate that when
the field of vision drops below 90 degrees flock
cohesion breaks down and the flock will disperse.

We also observed that boids with narrower fields of
vision tend to fly fast and form elongated flock, is
due to a phenomenon which we have termed as the
leapfrog affect [Holl07]. The affect is most
noticeable when the direction of vision is near zero.
In simulations of boids with this visual model, the
boids form into flocks that are near single file lines.
As the flocks move, boids will leapfrog past the boids
in front of them moving to the front of the flock.
This leapfrogging continues as the flock moves
through space.

The cohesion steering algorithm causes the leapfrog
affect. For boids at the back or middle of the
elongated flock, the center of the flock, which they
are drawn towards by the cohesion algorithm, is a
point half way between them and the lead boid. The
cohesion steering causes them to accelerate toward
that point. The acceleration leapfrogs them past the
boids directly ahead of them. Once they reach a
point near or at the front of the flock the cohesion
affect lessens and they slow to match the flocks
speed. Simulation motivated from the woodcock
image, generated the expected results. Boids that can
see everything around them have no problem forming
and maintaining a cohesive flock. Similarly,
simulation motivated from the owl image, generated
the expected results as well. The owl flock did not

WSCG 2009 Full papers proceedings 217 ISBN 978-80-86943-93-0

have the stability and compactness observed in the
woodcock simulation.
8. CONCLUSIONS AND FURTHER
RESEARCH
We can now revisit the following questions we posed
earlier. Is flocking behavior related to vision? If it is,
then how is it related? Based on the simulation
generated, the answer to the first question is yes. The
analysis shows correlations between the visual
models and the flocking behaviors observed. Boids
with narrow forwards looking vision could not form
flocks. As the field of vision is expanded, the flocks
formed are elongated and exhibit odd behaviors. The
boids with visual models with direction of vision that
is more sideward than forward and fields of vision
that extend to give the boid backward view formed
stable flocks that exhibit behavior resembling those
of real birds. There are several aspects of vision that
the current model and algorithms do not implement—
(i) Binocular vision and depth perception;(ii) Accom
modation and motion-perception; (iii) Peripheral
vision and vision impairments (iv) environmental
aspects; (v) Visual medium variations; (vi)
Predator/prey relationships and behaviors; (vii)
Obstacles.

There are several areas related to the Pattern
Recognition that could be explored – (i) Obscure
portions of the pattern based the boids perspective;
(ii) Distort the pattern based on distance or
environmental conditions; (iii) The modeling concept
could be extended to other boid attributes; (iv) Flight
Characteristics of Birds(v) Swimming Characteristics
of Fish; (vi) Other Senses; (vi) Cognitive Abilities.

From the simulations it is also apparent that the visual
model is not the only factor that determines whether a
species of birds forms flocks. It may determine
whether a bird can form a flock, but not all birds that
have visual models that according to this work should
be able to form flock, do.

9. REFERENCES

[Ande03] Anderson, M., McDaniel, E. and

Chenney, S. Constrained animation of flocks.
Eurographics/SIGGRAPH Symposium on
Computer Animation, pp. 286-297, 2003.

[Baja03] Bajec, I., Lebar, M. Mraz, N.Z. Boids With
A fuzzy way of thinking. Proceedings of ASC,
pages 58-62, 2003

[Baya02] Bayazit, O., Burchan, JML., and Amato.
NM. Roadmap based flocking for complex
environments. Proceedings of the 10th Pacific

Conference on Computer Graphics and
Applications, 2002

[Brog91] Brogan, DC. And Hodgins, JK. Group
Behaviors for Systems with Significant Dynamics.
Autonomous Robots, 4, 137-153, 1997.

[Hart06] Hartman, C., Benes, B. Autonomous boids.
Computer Animation And Virtual Worlds 17, pp.
199–206, 2006

[Holl07] Holland, J. Flocking boids with visual
modeling and pattern recognition. MS Thesis
University of Colorado, Colorado Springs,
Advisor: SK Semwal, pp. 1-111, 2007.

[Jadb03] Jadbabaie A., Lin, J., and Morse, A.S.
Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE
Transactions On Automatic Control, Vol. 48, No.
6, June 2003

[Muss98] Musse, S.R., Babski, C., Capin, T.,
Thalmann, D. Crowd modeling in collaborative
virtual environments. In VRST’98: Proceedings
of the ACM Symposium on Virtual Reality
Software and Technology. ACM Press: New
York, pp. 115–123, 1998.

[Shao07] Shao, W. and Terzopoulos, D. Autonomous
Pedestrians. Graphical Models, 69(5-6),
September November, pp. 246-276, 2007.

[Sull02] Sullivan, C.O., Cassell, J., Vilhjalmsson, H.,
Dinglianna,J., Dobbyn, S., McNamee, B., Peters,
C., and Giang, T. Levels of details for Crowds
and Groups, Computer Graphics Forum, 21(4),
2002.

[Reyn87] Reynolds, C.W. Flocks, Herds, And
Schools: A Distributed Behavior Model. In
Computer Graphics: SIGGRAPH '87 Conference
Proceedings, volume 21(4), pp. 23-34. ACM
SIGGRAPH, 1987.

[Reyn99] Reynolds, C.W. Steering Behaviors For
Autonomous Characters. In 1999 Game
Developers Conference, pp. 763-782, 1999

 [Shaw70] Shaw, E., Schooling in fishes: critique and
review. Development and Evolution of Behavior.
L. Aronson, E. Tobach, D. Leherman, and J.
Rosenblatt (eds), W. H. Freeman: San Francisco,
CA, pp. 452—480, 1970.

[Vehe87] Veherencamp, S., Handbook of Behavioral
Neurobiology, Volume 3: Social Behavior and
Communication, P. Marler and J. G. Vandenbergh
(eds.), Plenum Press: New York, NY, pp. 354-
382, 1987.

[Noll07] Noll, P. Sense of vision for birds. Image.
www.paulnoll.com/Oregon/Birds/Avianvision.ht
ml, 2007.

WSCG 2009 Full papers proceedings 218 ISBN 978-80-86943-93-0

	!_WSCG2009_FULL_final_NUMBERED.pdf
	A05-full
	A11-full
	A17-full
	A19-full
	A53-full
	A83-full
	ABSTRACT
	Keywords
	1. INTRODUCTION
	2. PROPOSED ALGORITHM
	3. EXPERIMENT RESULT
	4. CONCLUSION
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	B07-full
	B29-full
	B37-full
	B43-full
	B47-full
	B79-full
	ABSTRACT
	Keywords
	1. INTRODUCTION
	2. FORMALIZATION OF DAMAGED CAD-MODELS
	3. CONCEPT OF BRIDGES
	4. MISSING SURFACE FIELD CONCEPT
	4.1 Scalar missing surface field
	4.2 Function missing surface field
	4.3 Using several missing surface fields
	5. INTERPOLATION MISSING SURFACE FIELD
	5.1 Interpolation concept
	5.2 Basic definitions
	5.3 Formalization of the field

	6. IMPLEMENTATION
	7. TESTS AND COMPARISON
	8. CONCLUSION
	9. ACKNOWLEDGMENTS
	This work is supported by the Russian Foundation for Basic Research, projects 08-07-00362, 08-07-00399.
	10. REFERENCES
	
	
	
	
	
	
	
	Figure F7.2
	
	
	ICADM:
	
	
	damage
	degree
	Square(Ᾱ)/Square(Α+Ᾱ)
	0.11
	0.29
	0.38
	relative
	1.0
	2.6
	3.5
	warping
	method cost
	absolute (sec)
	27
	34
	32
	relative
	1.0
	1.3
	1.2
	IFᾹF-based
	method cost
	absolute (sec)
	4.2
	12
	16
	relative
	1.0
	2.9
	3.8

	B89-full
	C05-full
	C19-full
	C37-full
	C47-full
	C53-full
	C59-full
	C79-full
	D05-full
	ABSTRACT
	Keywords
	1. INTRODUCTION
	2. Related Work
	3. System Overview
	4. Terrain Rendering with a Depth Map
	The Pyramidal Displacement Map (PDM)
	A Virtual Space and Per-pixel Rays
	Ray Casting
	4.1.1 Downward Ray
	4.1.2 Upward Ray

	Rendering Results using PDM

	5. Terrain Rendering with a Depth Map
	Ray-Bilinear patch Intersection
	Challenges to Finding Intersections
	The Bounding Map
	Ray-Casting and Ray-Patch Intersection in different maps
	Final results with Bilinear-Patching

	6. Experiments and Results
	7. Conclusions
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	D23-full
	ABSTRACT
	Keywords
	1. INTRODUCTION
	2. MOTIVATION
	3. RELATED WORK
	4. PATIENT MODEL AND PATIENT PATTERNS
	5. GESTURE BASED INTERACTION
	6. EVALUATION DESIGN
	7. RESULTS
	8. CONCLUSIONS AND FUTURE WORK
	9. ACKNOWLEDGMENTS
	10. REFERENCES

	D31-full
	D67-full
	D73-full
	D79-full
	E17-full
	E23-full

