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Interactively Refining Object-Recognition System

Mike Eissele1 Harald Sanftmann2 Thomas Ertl1

1Visualization and Interactive Systems Group 2Visualization Research Center

Universität Stuttgart, 70569 Stuttgart, Germany

{eissele|sanftmann|ertl}@vis.uni-stuttgart.de

ABSTRACT

Existing techniques for object recognition often make use of a combination of multiple algorithms and sensors to achieve

adequate results. In this paper we propose a real-time system to efficiently combine multiple object-recognition techniques,

appropriate for mobile Augmented Reality applications. We focus on the challenge to differentiate objects with only marginal

distinguishing features that can often only be identified from specific points of view, and solve this problem by interactively

guiding the user during the recognition process. The system is based on a hierarchy to organize model data and control the

corresponding feature-detection techniques as shown in a prototypical implementation. Furthermore, recognition techniques

are chosen based on context information, e.g. feature type, reliability of sensor data, etc.

Keywords: Multi-Technique Object Recognition, Mobile Augmented Reality.

1 INTRODUCTION

The problem of object recognition is a common issue in

many real-world applications. Marker-based systems

are efficient for object identification and pose estima-

tion, but require a deployment of markers to target ob-

jects. In contrast, there are numerous scenarios where

markers cannot be used, either because of esthetic rea-

sons or technical problems. Therefore, other methods

have evolved to provide a marker-less object recogni-

tion. For interactive applications it is further required

that the recognition processed is performed in realtime.

Examples are most Augmented Reality (AR) applica-

tions where mobile users interactively control the cam-

era via direct manipulation.

Most available recognition techniques have specific

advantages and disadvantages in certain situations.

Therefore, many setups exist which make use of

multiple sensors—optical, inertial, etc.—with different

algorithms to achieve improved results. However, most

of these systems are not applicable to mobile scenarios

and are designed for very specific problems and do not

focus on an easy extensibility with additional sensors or

algorithms. Therefore, we proposed a general concept

to combine arbitrary object-recognition techniques

to build a robust, reliable, and efficient real-time

object-recognition system. In contrast to existing

sensor-fusion methods the proposed system detects and

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

selects the most appropriate algorithm to differentiate

objects based on various context information.

A specific goal of the proposed system is to effi-

ciently differentiate object classes with a huge number

of only marginal different entities. The differentiation

can be so fine granulated that even individual object can

be uniquely identified. Thereby, distinguishing features

might not be captured by any of the available sensors

from some locations. The system is targeted for interac-

tive mobile AR applications where virtual geometry is

accurately aligned with a real-world image as depicted

in Figure 1b,c. Therefore, a primary challenge—when

supporting multiple, possibly alternative, algorithms for

object recognition—is to prevent a degradation of per-

formance due to numerous object-algorithm combina-

tions that have to be evaluated.

The proposed system prevents such a performance

degradation by utilizing a hierarchical structure to or-

ganize model data. During the recognition process, the

hierarchy is traversed and the number of possible object

matches is continuously reduced. The hierarchy also

allows to present intermediate recognition results, e.g.

object classes, and trigger actions that are needed to fur-

ther descent the hierarchy, if the system cannot differen-

tiate an object. This triggers can effectively be used to

initiate user-operated sensor adjustments on handheld

devices that commonly lack of mechanical installation

to, e.g., change the view direction of a camera.

2 CONTEXT AWARENESS

The usage of context information to support object

recognition is already motivated by Oliva and Torralba

in [13]. They show the importance of context for the hu-

man visual system and propose to use context data also

in Computer Vision systems. They focus on semantic

context information of captured scenes, in contrast, we

Journal of WSCG 1 ISSN 1213 – 6972 



a) b) c)

Figure 1: Steps of an interactive refining object recognition: a) recognition of the object class Auto Data Switch

and presentation of a hint to capture further distinguishing features, as seen in b) or c). For illustration, different

models of the Auto Data Switch shown in b) and c) are augmented with enhancements.

propose to widen this concept and further include arbi-

trary information related to the current situation.

Acquisition, (pre-)processing, and storage of arbi-

trary context data can easily be provided by Nexus, a

framework for mobile context-aware applications [4,

5]. The open system offers the possibility to query

basic context information or even an estimation of a

high-level situation description. The concept allows to

connect any data provider and any data consumer. The

support of quality metrics further helps to weight the re-

ceived context data. Using Nexus as an underlying ser-

vice enables access to a variety of data—e.g. user po-

sition, lighting conditions, available hardware, etc.—to

control and enhance the process of object recognition.

An overview of the proposed system is given in Sec-

tion 4.1 followed by a detailed description of the hier-

archical structure of model data. The execution of an

object-recognition operation is detailed in Section 4.3.

Prototype implementation and results are discussed in

Section 4.5.

3 MULTI-TECHNIQUE OBJECT-

RECOGNITION METHODS

For the survey of previous work, we primarily concen-

trate on methods which utilize multiple different tech-

niques/sensors for the recognition of objects.

In general, research on object recognition can be sep-

arated in two categories: marker-based and marker-

less techniques; both are supported by the proposed

framework. Object identification and pose estimation

based on synthetic markers is, amongst others, shown

by Ababsa and Mallem in [1].

The advantage of using hierarchies in terms of de-

cision trees is proposed, e.g., by Mehrotra et al. [12].

They group distinctive features of objects to generate

the tree and traverse it during the object recognition

phase. Our work is based on this general concept, how-

ever we extend several aspects: Support for multiple

techniques to evaluate the decisions, even on a per-node

basis, the possibility to return intermediate results, and

therewith the triggering of actions to allow an unam-

biguous object recognition or even identification. Also,

Viola and Jones propose to use a degenerated deci-

sion tree to achieve fast recognition results [16]. They

concatenate multiple weak continue/reject classifiers to

build stronger classifiers, however near-equal objects

that cannot be differentiated in arbitrary captured views

are not handled adequately. Grabner et al. use SIFT-

like features in [8] to distinguish objects. The system

groups similar objects in a hierarchical structure, how-

ever only a single recognition technique is utilized.

Dhome et al. propose a method to find an analytical

solution for the attitude of a 3D object in space [7].

Simplifications for the special cases of coplanar

lines and three-line junctions are given which reduce

the problem to four-degree equations. Beier et al.

present an application of Dhome’s method on mobile

devices [2]. In addition, a simple image-based 2D

filter is used to differentiate similar objects. Lowe

presents an algorithm that iteratively refines an initially

guessed view point via Newton’s method [11]. Kang et

al. propose a technique to efficiently extract topology

information, i.e. line junctions, within an image [9]

and use it to perform object recognition and pose

estimation [10]. Vacchetti et al. present in [15] a

marker-less registration method based on the combi-

nation of image feature points and edge tracking. The

authors compare different setups for sensor fusion and

show that with multiple hypotheses the initial result can

be improved. A system which uses vision and inertial

sensing for tracking is proposed by You et al. [17]. An

inertial sensor provides changes in orientation since

the previous frame to estimate new camera orientations

used as input for a Computer Vision approach.

If objects that have to be recognized are very similar

often a single view is insufficient to distinguish the ob-

jects, independent of the applied method. Therefore,

a number of systems have been presented that eval-

uate the best view of an object to achieve a reliable

recognition. After a first recognition phase, these ac-

tive vision systems build rules to, e.g., move the cam-

era to a view, which allows further refining the object

recognition. However, most active-vision approaches

assume that a automated camera movement is available,

which is practically impossible for handheld devices.

Journal of WSCG 2 ISSN 1213 – 6972 
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Figure 2: Overview of the object-recognition framework.

Borotschnig et al. present a comparison of three ap-

proaches for these so-called active object-recognition

systems [3]. The examined techniques are based on

different uncertainty calculi: probability theory, possi-

bility theory, and Dempster-Shafer theory of evidence.

Reinhold et al. present a statistical appearance-based

object-recognition approach combined with an active

view point selection [14]. Deinzer et al. presents a non-

realtime method which uses a training set to learn good

next views unsupervised [6].

4 HIERARCHICAL RECOGNITION

There are already existing methods (e.g. [9]) which pro-

vide promising results for recognition of dissimilar ob-

jects. Most are not well suited for the task of recogniz-

ing many similar objects. In contrast, similar objects

motivate a grouping of objects with partially equal fea-

tures, e.g. same overall shape. By iteratively repeating

this division within the resulting subgroups an object

hierarchy is generated, thereby each distinguishing fea-

ture may be detected using a different algorithm.

4.1 System Components

The architecture of our presented object-recognition

system is illustrated in Figure 2. All algorithms for ob-

ject recognition need some information about the mod-

els that have to be recognized. This can be reference

images, texture information, 3D models, or any other

information. Such information—in the following re-

ferred to as metadata—is typically generated in an off-

line preprocessing task for each node and stored in the

Metadata Store as shown in Figure 2.

The data contained in the metadata store is primarily

accessed by integrated solvers. The framework is based

on the concept that multiple different solvers—seen in

the center of Figure 2—are utilized subsequently dur-

ing the object recognition. This way, arbitrary object-

recognition techniques using various metadata can be

integrated and combined to calculate the final result of

the object recognition. In addition, solvers have access

to a further data source the so-called Context Store.

The context store’s content can be considered as data

that describes the current conditions of the application,

environment, or any other attribute which might dy-

namically influence the recognition. We use this store

for locally acquired sensor data, intermediate recogni-

tion results, and external context data from Nexus [4].

The previously mentioned hierarchy with different al-

gorithms (Fx) to detect features is shown in the upper

left corner of Figure 2. The traversing of this hierarchy

is controlled by a simple controller which executes the

referenced solvers (Fig. 2, dashed arrows).

4.2 Organization of Recognition Nodes

The hierarchical structure used for the recogni-

tion (recognition tree) utilizes several node types that

define different behaviors that are triggered during the

traversal of the graph.

A basic node type is the Search Node F . It refer-

ences multiple alternative solvers Sx that are adequate

to iterate through all of the Search Node’s children and

search for the best matching. A behavior similar to sim-

ple traditional recognition systems that iterate through

all integrated object models can be simulated this way,

where all models Mx are checked for a match in se-

Journal of WSCG 3 ISSN 1213 – 6972 



quence. A corresponding example recognition tree is

shown in Fig. 3. During traversing, solver SA and SB ac-

cess corresponding metadata, referenced by the current

node, e.g. relevant line features of real-world objects.

SB

SA

M1

F1

M2 M3 Mn...

Figure 3: A simple recognition tree to simulate a tra-

ditional recognition system which linearly checks each

model to search for the best match.

An advantage of the hierarchical structure is that it

allows to group similar objects based on common fea-

tures. These intermediate group nodes reference com-

mon metadata of all their child objects that is stored in

the Metadata Store. Meta information that is only ade-

quate for intermediate nodes may also be stored in the

metadata store as it is required by solvers to match in-

termediate nodes, like a model of common feature lines

of a group of objects. Furthermore, the framework is

able to present intermediate results of the object recog-

nition even if it cannot entirely differentiate all objects,

referenced by a Search Node. Applications may already

benefit from such intermediate results—as presented in

our prototype in Section 4.5—to, e.g., show a coarse

3D proxy model presenting the common appearance of

the entire model group. An example configuration is

depicted in Figure 4. The search node F1 will execute

solver SA during object-recognition traversal to differ-

entiate models M1..3 and the group of models subsumed

under F2. Models M4..6 are further distinguished based

on the referenced metadata of F2.

SC

SB

SA

M1

F1

M2 M3 F2

M4 M5 M6

Figure 4: Hierarchical organization of the models. F1

differentiates models M1..3 and the model group of F2.

Models M4..6 are distinguished via node F2.

Context-Switch Node C is a node type that is able to

route the traversing of the tree dependent on context at-

tributes. Context-switch nodes can also have a number

of child nodes but do not reference any solvers, they

only evaluate context data to decide how the travers-

ing continues. This way, alternative sequences for the

recognition can be integrated in the mostly static hierar-

chy. Figure 5 shows a configuration where the context-

switch node C1 decides into which child the traversing

descents, based on context information like the current

pose of the to-be-identified object. As can be seen in

Figure 5 the two subgraphs are simply swapped ver-

sions of each other. This way, sequences where the sys-

tem benefits most—e.g. does not have to request user

interaction (Section 4.3)—can dynamically be selected.

C1

F1

M1 F2

M2 M3

F2

M2 F1

M1 M3

Figure 5: Alternative sequences for the recognition pro-

cess via a Context Switch C1.

4.3 Object Recognition by Traversing the

Recognition Tree

The object recognition is performed by traversing

the recognition tree and, dependent on the node type,

processing the results after executing the referenced

solvers to select the child node in which to descend.

Exemplary setups of recognition trees are illustrated in

Figure 6. We integrated multiple solvers that identify

objects based on completely different features: 3D

geometry, color, patterns, or line features. A more

detailed description of the utilized techniques is given

in Subsection 4.5. An important aspect of the proposed

system is that the knowledge gained about the current

and previous iterations of the object recognition, e.g.

the pose of the to-be-identified object or the estimated

camera position in previous iterations, is gathered

and stored as context data. During traversing of the

recognition tree, subsequent solvers have access to this

information and may consume, correct, or extend it.

If a leaf of the hierarchy is reached during the travers-

ing then a model has unambiguously been identified

and the recognition task is finished, returning the iden-

tified object and the gathered context information (see

Figure 6a, following steps I1:1, I1:2, I2:1). An impor-

tant advantage of using a model hierarchy is that our

system is able to descent the hierarchy as soon as an

adequate match is found in the referenced models, as

similar models will be summarized using a group in the

hierarchy. In contrast, simple approaches would have

to linearly check each referenced model if it matches to

find the best matching which could potentially be the

last reference.

Whenever a node can no further distinguish its

children and therefore cannot further descend the

recognition tree, intermediate recognition results are

returned. For that purpose, our system supports a novel

interactive refinement of intermediate recognition

results by triggering actions that help the system to

further differentiate the objects as can be seen in

Figures 7, 1a, and 6a, following steps I1:1, I1:2, and

I1:3. This feature can be used, e.g., to instruct the user

to perform appropriate camera movements and opti-

mize the point of view to capture additional features

(see Fig. 6a step I2:1). User performed adjustments

are therefore utilized to compensate for the lack of

automatic (e.g. mechanical) installations, which are

Journal of WSCG 4 ISSN 1213 – 6972 



SC

SB

SA

M1

F1

M2

M6

M4M3

M5

F2

F3

I1:1

I1:2

I2:1

Intermediate Result:
Trigger

Camera Move
I1:3

a)

I1:1

SC

SA

M4

F3

M5 M7

M3 F4

F1

M1 M2
I2:1

I2:2

F2

M6
b)

Figure 6: Hierarchical organization of models via multiple search nodes Fx. The recognition performed in a) stops

at the intermediate model referenced by F3. Afterwards a trigger is executed to request a camera movement (I1:3)

to capture further distinguishing features. In b) the previously identified model has changed, therefore the system

performs a backtracking (I1:1) and initiates the next iteration at F2.

Figure 7: During object recognition the system trig-

gered a request to adjust the lighting condition.

unavailable on handheld devices. Within our prototype

we limited these actions to manual camera-movement

(Fig. 1a) and light-adjustment (Fig. 7) commands,

but other actions—automatic or requests for manual

adjustments—like adjusting camera shutter/focus

might be triggered.

For achieving a high performance in the recognition

phase, the hierarchy helps in two ways: First, the num-

ber of models that have to be searched within each

search nodes are reduced due to the tree-like structure

and second, the temporal coherence—i.e. in most sub-

sequent frames the same object is captured—can effec-

tively be used to skip large parts of the recognition tree.

This is achieved by starting the traversing at the node re-

turned in the previous iteration, symbolized as double-

framed nodes in Figure 6. If the starting node is not

the recognition-tree root the system has to check if the

to-be-recognized object is still the same. Furthermore,

some context information might got invalid since the

previous frame and has to be updated, e.g. due to slight

camera movements. Therefore, the system has to en-

sure that the information required by subsequent nodes

are up-to-date by executing the corresponding solvers.

This dependency can be determined and stored in a pre-

processing step. For the prototypical implementation,

we optimized the restart by using a combined solver

that checks for a change of the object and estimates its

new pose. The system simply checks if the object is

still the same by trying to match line features that are

referenced by the node where the recognition process

continued. The matching is executed quite fast since

line features are already known and a good approxima-

tion of the camera position is provided as a result of

the previous iteration. For the prototype (Section 4.5)

the estimation of the camera movement between subse-

quent iterations was improved using an inertial sensor

to measure the acceleration and approximate the new

camera position.

If the matching returns a positive result, the newly

corrected pose estimation is stored as context informa-

tion and the traversing continues, thereby keeping all

recognition results of previous iterations. This is il-

lustrated by step I2:1 in Figure 6a. In contrast, if the

verification fails the system assumes that the object

which has been recognized in the previous iteration has

changed and therefore has to check if other objects are

present in the captured scene.

Therefore, the system can simply reset and start the

recognition from the root of the recognition tree. This,

however, will result in an inefficient behavior whenever

an object cannot be recognized continuously in subse-

quent iterations: The system will have to descent the

entire hierarchy. To overcome this limitation a simple

backtracking mechanism is integrated to ensure that the

system remains efficient, i.e. restarting the recognition

from a previous node on the node path back to the root.

This recursive process continues until the recognition

is able to descend the hierarchy again or—in the worst

case—a restart of the recognition is initiated at the root

node of the tree.

During construction time of the recognition tree a

link can be stored per node that is followed during back-

tracking to skip in-between nodes to increase the effi-

ciency as shown in Figure 6b step I1:1. Afterwards, a

following iteration (I2:1, I2:2) traverses again to a leaf

node.

In the proposed interactive refining, special cases oc-

cur that are annoying for users: The system might re-
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quest a camera movement to the right to continue the

traversing. However, a following search node might

request a movement back to the left whereby it pos-

sibly would have been satisfied with the camera posi-

tion at the beginning. In worst cases, users are required

to adjust the, e.g., camera view multiple times whereas

one adjustment would have been sufficient. Our system

overcomes such scenarios by integrating context-switch

nodes C to select alternative sequences for the recogni-

tion. The subgraphs of C nodes are simply permuted

in their order of execution as illustrated in Figure 5 and

selected based on the current context.

4.4 Using external Context Information

for Recognition-Technique Selection

During traversing of the hierarchy the system gath-

ers context information required by subsequent solver

nodes to perform their task. In addition to this inter-

nally generated data, external context information also

helps to control and improve the recognition process.

Each search node of the recognition tree that sum-

marizes multiple nodes, references at least one tech-

nique to search through its children. The selection of

the solver to differentiate features of referenced models

is done in a preprocessing step during the recognition-

tree construction. Therefore, an algorithm is chosen

which is assumed to deliver best results on average in

terms of reliability, robustness, or performance. How-

ever, selecting the most adequate technique to distin-

guish groups of similar objects during the setup of the

recognition tree in a pre-processing step is not always

possible: Changes in the environmental context, appli-

cation states, sensor quality, etc. might occur during

runtime and therewith invalidate the selection of recog-

nition algorithms based on these attributes.

In order to overcome this limitation, the proposed

system allows to assign multiple alternative recogni-

tion techniques per node that are dynamically selected,

based on internal or external context information. The

external context information is provided via Nexus [4,

5], as mentioned in Section 2.

4.5 Prototype System and Results

The presented recognition system has been specifically

designed to share the context and metadata store with

other application parts. Therefore, Augmented Reality

visualizations can easily access the position and orien-

tation information using the context store. The proto-

typical implementation of a mobile interactive assistant

system to help users to identify and augment objects

makes use of this concept. A key concept of the sys-

tem is that very similar objects are differentiated using

the proposed refining technique for controlled user in-

tervention. An exemplary target application for the pro-

totype is an information system for customers and con-

sultants who are interested in HIFI appliances. These

Figure 8: The prototype hardware in use. A standard

TabletPC was equipped with a webcam (top middle)

and an inertial sensor (top left).

items have many similar aspects which cannot easily

be differentiated. Augmented Reality provides an intu-

itive way to present different instances of an object—

probably not yet available—like extra attachments, dif-

ferent colors, or even custom case modifications. For

evaluation of the proposed concept, a prototype as seen

in Figure 8 was built.

4.5.1 Implementation

Multiple solvers have been implemented to support

the recognition of various feature types that might

be useful to differentiate similar objects. The most

advanced solver is—in addition to identification—also

able to estimate the pose of objects. It is implemented

using Computer Vision methods: First, feature lines

and three-junctions are searched in the captured image.

These are linked to the model’s geometry description—

stored in the metadata store—to generate hypotheses of

possible models and their orientation [7]. The second

part of the solver is based on a technique proposed by

Lowe [11] and is used to check generated hypotheses

and further improve the pose-estimation accuracy by

minimizing the matching error. We refer to this solver

as edge-model solver SE .

A cut-down version of the edge-model solver is inte-

grated to differentiate similar models, where one model

has additional feature lines. A prerequisite for this

solver is a pose estimation, calculated by any previ-

ous search node in the recognition tree. The solver

can then project the additional line features, stored for

one specific object of a group, and search for match-

ing edges in the captured image, therefore the solver

is termed as diff-edge solver SD. Distinguishing fea-

tures, e.g. additional lines, might be visible only from a

specific point(s) of view therefore a differentiation of

the objects based on a captured image from an arbi-

trary view is not always possible and an intermediate

result might be returned. As our approach is especially

targeted for mobile clients, where often only a single

camera with a fixed viewing direction is available, we

cannot expect that other sensors might capture a dis-

tinguishing feature. The novel approach of our pro-

posed interactive refining technique to solve such un-
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a) b) c)

Figure 9: Rendering of augmented camera images at different steps of the recognition process. Detected and vec-

torized edges of the camera images are shown in a). A hypothesis (blue) generated by the approach of Dhome [7]

and model’s feature lines are seen in b). A finally checked and improved solution—based on Lowe [11]—is

displayed in c). The red line segment could not be matched in the camera image.

determined cases is that solvers can report intermediate

results with hints/triggers that state which changes have

to be made in order to continue the recognition. This in-

cludes change requests for, e.g., camera movements or

lighting conditions that are displayed to the users as can

be seen in Figure 1a and Figure 7.

In contrast to line features, the color-spot solver SC is

able to check the color value at pre-defined locations on

the object surface. It simply projects pre-defined color-

probe locations using the previously estimated object

pose to the image space and examines the pixel color in

the captured image. Therefore, objects with (partially)

different colors can efficiently be identified even if col-

ored features are only visible at specific points.

Similar real-world objects are often labeled or

marked in order to express their differences. Good

examples are electronic appliances like HIFI compo-

nents which might only be different in their insides and

probably their serial numbers. Our prototype utilizes a

recognition approach to compare previously acquired

reference images to the captured image information

to support an identification based on patterns. This

pattern solver SP benefits of a previously calculated

pose estimation in two ways: It is able to determine

if the pattern is entirely visible in the camera image,

i.e. it is not hidden or occluded, and the perspective

distortion is a priori known due to the previously

calculated object orientation and the pattern location in

model coordinates, stored as metadata.

Many additional techniques can easily be integrated

to detect more complicated features like, e.g., a solver

to recognize curved surfaces. But also identification

components like optical character recognition or bar-

code scanners can be applied.

The proposed recognition system is applicable for

various applications, for the prototype we chose to im-

plement an Augmented Reality rendering module to

present real-world aligned virtual information. It is

used to show information about the traversal of the

recognition tree and object information. If the system

is unable to totally identify an object, only its category

is displayed. We further make use of AR rendering to

track and evaluate the recognition process and its accu-

racy. The precision of the object’s pose estimation can

easily be seen via an augmentation of the camera image

with superimposed 3D geometry model (see Fig. 9).

For the proposed scenario, presentations based on AR

further benefit from the possibility to show different

virtual instances of objects, similar to the illustrations

in Figures 1b,c. These renderings depict two different

augmentations, which might represent future configu-

rations or not-in-stock items.

As mentioned in Section 4.3, intermediate nodes may

trigger actions to improve the recognition. We imple-

mented triggers to initiate camera-movement requests

which display messages to guide users interactively

how the camera should be positioned in order to achieve

better recognition results, as seen in Fig. 1a, and Fig. 7.

4.5.2 Results

For the evaluation of the prototype implementation

a data set with five computer-appliance objects were

used. Two objects are identical except for a red stripe

on one object. Therefore, these objects can only be

distinguished if the part where the red stripe is located

on is within the camera view. A direct comparison to

existing systems cannot be given, since the proposed

setup is rarely examined, often a specialized algorithm

is utilized where the objects used to evaluate the

system fit to the proposed algorithm. The theoretical

complexity in terms of executions of solver-model

pairs in the hierarchical implementation is optimally

O(log(n)). For a simple linear search method the

complexity is O(n) which corresponds to the worst

case of our approach. In practical setups the system

therefore achieves a performance in-between both

extremes. However, these numbers strongly depend

on the number, type, and quality of the objects and

the structure used for the recognition tree. The im-

plemented recognition algorithms and the selected

techniques also have a great influence to the overall

performance.

Measurements in Table 1 present the performance for

an Intel Core2 Quad Q6600@2.4GHz CPU (only a sin-
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gle core was utilized). The video stream of the camera

was simulated with a static 320×240 resolution image

in order to achieve comparable results.

non-coherent coherent

Preparation 21.3 21.3

hypOther 163.1 -

hypValid 5.8 -

hypCheck 0.8 0.8

Rendering 1.4 1.4

Overall 192.4 ms 23.5 ms

Table 1: (Re)start performance of an object-recognition

process utilizing temporal coherence.

The first phase of our approach is equal for both

cases: Undistortion of the camera image, generation of

a monochromatic image, execution of a Sobel/Canny

edge detection, and the merging of collinear line frag-

ments which is summarized as Preparation. In the non-

coherent case, where no object registration and pose es-

timation is available from previous frames, a large num-

ber of hypotheses have to be evaluated. The timing val-

ues of hypOther refer to hypotheses that are evaluated

with 3D object models which do not correspond to the

captured camera image. The hypValid measurements

refer to hypotheses that are evaluated with a matching

3D object model. In the coherent case we already have

a valid object pose from a previous iteration which is al-

ready accurate, as the camera is fixed during the evalu-

ation. Timings of hypCheck refer to the Lowe based ap-

proach for checking and improving the pose-estimation

hypothesis. Timings for display of the captured camera

image and optional augmentations are summarized in

Rendering.

The measurements show the benefit of utilizing tem-

poral coherency as the most time-consuming part of the

algorithm is efficiently skipped. With the previously

mentioned performance improvement due to the uti-

lized hierarchy the system is especially suited for mo-

bile, interactive applications.

5 CONCLUSION

We have presented an approach to combine arbi-

trary recognition techniques within a single object-

recognition and pose-estimation system. A hierarchical

structure is utilized to achieve highly efficient and

robust object recognition. The recognition process

is performed by traversing the hierarchy whereby

referenced solvers are executed. The returned result

is either the unambiguous object identification or an

intermediate result. To improve intermediate results

the system can trigger actions—e.g. relocation of

the camera—in order to capture additional important

features for the recognition process. These triggers

are used to implement an interactive process to refine

recognition results by providing hints to guide users

how to improve the recognition, thereby providing

the possibility to adjust an otherwise static setup to

sensors.

In future we will concentrate on automatic construc-

tion of a balanced model hierarchy.
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ABSTRACT

In this paper we present an improved approach to full spectral rendering. The technique is optimized for quasi-Monte Carlo ray
tracing, however the underlying physical theory can be applied to any global illumination scheme. We start with explanation
of the necessity of full spectral rendering in any correct global illumination system. Then we present, step by step, a rendering
scheme using full spectrum simulation. First, we give details on a random point sampling as a method of representing spec-
tra, then we introduce improved spectral sampling technique, designed to reduce variance of image of wavelength dependent
phenomena, and finally we show how to integrate the novel sampling technique with selected ray tracing algorithms.

Keywords: Full spectrum, quasi-Monte Carlo, ray tracing, rendering.

1 INTRODUCTION
The color phenomenon is caused by a spectral mix-
ture of light, perceived by the human visual system.
However, the human visual system cannot distinguish
between arbitrary spectral light distributions. Differ-
ent spectra, which are indistinguishable by human ob-
servers, are called metamers. The space of colors rec-
ognizable by human observers contains only three in-
dependent values, hence the popularity of three compo-
nent color models.

There are many color models in computer graphics,
however most are designed for a specific purpose only.
The most common are: RGB designed for displaying
images, CMYK for printing and HSV for easy color
selection by user. All of these models are to some de-
gree hardware dependent. There is, however, a standard
model based on XYZ color space, which is independent
of any hardware and can represent all the colors rec-
ognizable by a human observer. It was defined by the
CIE (Comission Internationale de l’Eclairage) as three
weighting functions to obtain x, y and z components
from arbitrary spectra. Nevertheless, neither of these
models is well suited for rendering, where direct calcu-
lations on spectra are the only way to produce correct
results [4, 9].

2 NECESSITY OF FULL SPECTRUM
The RGB model is often used for rendering color im-
ages. However, this is an abuse of it, since RGB based
rendering does not have any physical justification. The

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

model was designed for storage and effective display of
images on a monitor screen, but not for physically ac-
curate rendering. The light reflection computation un-
der the assumption of elastic photon scattering is per-
formed by a multiplication of a spectrum that represents
an illumination and a spectrum describing a surface
reflectance. This multiplication actually must be per-
formed on spectral distribution functions, not on RGB
triplets, in order to get proper results.

The RGB based reflection of white light, or light
with smoothly varying spectrum, from a surface with
smoothly varying reflectance, typically does not pro-
duce substantial inaccuracies. However, when at least
one of spectra has large variation, the simulation us-
ing RGB model becomes visibly incorrect (see Figure
1, for example). Moreover in global illumination, due
to multiple light scattering, even white light becomes
colorful, causing scattering inaccuracies to accumulate.
This makes RGB based global illumination results un-
able to accurately capture the physical phenomena.

Figure 1: Left image: copper sphere illuminated by
a D65 white light. Right image: copper sphere illu-
minated by a triangular spectral distribution stretched
from 535nm to 595nm. Top left half: an RGB model
with 645nm, 526nm and 444nm wavelengths. Right
bottom half: our full spectral model. For clarity, only
diffuse reflection is calculated.

In addition, the most visually distracting error from
using an RGB model appears in simulation of phenom-
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ena like dispersion. Whenever RGB based light, from
a light source with almost parallel output rays, hits a
prism, it is scattered into three bands instead of contin-
uous full spectrum, and the rest of the image remains
dark (see Figure 2), which looks unrealistic. Using a
full spectrum representation gives a continous rainbow
of colors. However, good-looking results may be ob-
tained by an RGB representation if the light source an-
gular distribution is conical and divergent enough. A
similar trick is a basis of a simple Nvidia shader demo
[5]. An address of the texture on a surface, which is
seen through glass, is offseted independently for each
channel. If texture data is blurred enough, the result-
ing ’spectrum’ is smooth. Nevertheless, both of these
methods do not have any physical significance, and ob-
viously are incorrect, but, in some conditions, can look
convincing.

Figure 2: Dispersion on a prism. Top row: RGB model
with 645nm, 526nm and 444nm wavelengths. Bottom
row: physically correct full spectrum. The light colli-
mation is controlled by a Phong-like function I cosn(φ),
with exponent n decreased four times in each subse-
quent column, and intensity I doubled to compensate
light scattering.

3 RELATED WORK
A general description of many popular color models
can be found in Stone [16]. Devlin et al. [1] provide
references related to data structures for full spectral
rendering and algorithms for displaying spectral data.
There are several works dedicated to simulation of par-
ticular spectral based phenomena. Wilkie et al. [22]
simulated dispersion by means of classic (determinis-
tic) ray tracing. Rendering of optical effects based on
interference attracted a fair amount of attention. Reflec-
tion from optical disks is presented in Stam [15] and
Sun et al. [17]. Algorithms for accurate light reflection
from thin layers can be found in Gondek et al. [7] and
Durikovic and Kimura [3]. The latter paper also shows
how this algorithm can be run on contemporary GPUs.

Many papers present methods for representing and
operating on spectral data. Peercy [12] designed a spec-

tral color representation as a linear combination of basis
functions, chosen in a scene dependent manner. Dif-
ferent algorithm using basis functions is described by
Rougeron and Peroche [14]. It uses adaptive projec-
tion of spectra to hierarchical basis functions. Sun et
al. [18] proposed a decomposition of spectra on smooth
functions and set of spikes. Evans and McCool [4] used
clusters of many randomly selected spectral point sam-
ples. Johnson and Fairchild [9] extended OpenGL hard-
ware rasterization to support full spectra.

Dong [2] points that typically only a part of the scene
needs a full spectral simulation and using RGB together
with full spectrum can accelerate rendering at cost of
only slight quality loss. Ward [21], however, designed a
three-component model optimized for rendering, which
typically produces images with an acceptable yet im-
perfect quality, but the model is not general enough and
cannot simulate wavelength dependent phenomena like
dispersion.

4 REPRESENTING FULL SPECTRA
Full spectral rendering requires an efficient method for
representing spectral data. The most common tech-
niques are based on linear combinations of carefully se-
lected basis functions [12, 14, 18] and point sampled
continuous functions [4]. Effectiveness of the linear
combination approach is strongly dependent on the ac-
tual functions and their match to scene spectral distri-
bution. However, the natural solution in Monte Carlo
based rendering system is a random point sampling.

4.1 Random Point Sampling
Random point sampling produces noise at low sam-
pling rate, but well-designed variants of this technique
converge quickly. Point sampling can effectively han-
dle smooth (like tungsten bulbs) light distributions and
very narrow spikes (like neon bulbs) in the same scene.
The two greatest strengths of this technique are: ran-
domly selected wavelengths and well defined wave-
length value for each spectral sample. The first one
ensures correctness, since when more samples are com-
puted, the more different wavelengths are explored, and
due to the law of large numbers, the rendering result
converges to the true value. The second allows simulat-
ing wavelength dependent effects like dispersion at the
cost of additional color noise.

It is worth to note that wavelength dependent phe-
nomena cannot be simulated correctly with algorithms
based on linear combinations of basis functions with
non-zero extent in wavelength space. Even if spec-
tra are represented by unique non-zero coefficients, the
corresponding basis functions still have some finite ex-
tent, which prevents from doing exact computations
with explicit wavelength required.

The simplest approach to point sampled spectra is
generation of a single spectral sample per light trans-
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port path. However, according to Evans and McCool
[4], this technique is inefficient, since it causes a lot of
color noise. They proposed using a fixed number of
several spectral samples (called a cluster of samples)
traced simultaneously along a single light path, which
substantially reduces variance with minimal computa-
tional overhead.

4.2 Basic Operations

The implementation of multiplication, addition, mini-
mum, etc. operators are obvious, since it is enough to
perform appropriate calculation per component, as in
RGB model. However, when using full spectrum, com-
puting luminance is a bit more difficult. Particularly,
luminace of a spectrum which describes reflectivity of
a surface, by definition must be in [0,1] range.

However, computing luminance as a Monte Carlo
quadrature of product of reflectance spectrum r(λ ) and
scaled CIE y weighting function, may randomly lead
to numerical errors causing luminance to exceed 1.0
threshold. The equation:

L≈
n

∑
i=1

r(λi)y(λi)
p(λi)

/ n

∑
i=1

y(λi)
p(λi)

, (1)

where r(λ ) is the reflectance, y(λ ) is CIE y weight and
p(λi) is a probability of selecting given λi, solves the
issue. It guarantees that the luminance is in [0,1] range,
provided that r(λ ) is also in the specified range.

Wavelength dependent effects can be handled as pro-
posed by Evans and McCool [4] for specular dispersion
– by dropping all but one spectral sample from a clus-
ter. This is done by randomly selecting a sample to pre-
serve, with uniform probability. All the samples, except
the selected one, are then set to zero, and the power of
the chosen one is multiplied by the cluster size. Then
the wavelength parameter becomes well defined, and
further computations are performed with usage of its
actual value. However, when simulated phenomena are
not optically perfect, like in Phong-based glossy refrac-
tion, it may be more efficient to trace the whole cluster,
scaling power of each sample independently. We exam-
ine this approach in detail in the next section.

5 SAMPLING OF SPECTRA

Evans and McCool [4] simulate wavelength dependent
phenomena by tracing only one spectral sample per
path. This particular approach is always correct, and
is necessary when a phenomenon is optically perfect,
such as refraction on idealized glass. However, when
the scattering is not ideal, dropping all but one spectral
sample from a cluster, while still being correct, might
be extremely wasteful and inefficient. In this section
we propose a substantially improved technique.

5.1 Single Scattering Model
For testing purpose, a refraction model with an ad-
justable, wavelength dependent refraction and imper-
fection introduced by Phong-based scattering [13], with
controllable glossiness is used. An extension to Walter
et al. microfacet based refraction [20] supporting dis-
persion gives better results, but their model is much
more complicated and therefore would make evaluation
of spectral sampling difficult. Nonetheless, since we
have never made assumptions about scattering model,
our results are general and, as we have tested, applica-
ble to any wavelength dependent phenomena. For clar-
ity, all tests are based on a single scattering simplifica-
tion (i.e. light is refracted once, when it enters into glass
only). The x component in CIE XYZ space in outgoing
direction ωo is then described by the following formula:

ICIEx(ωo) =
∫

Λ

∫
Ω

fs(ωi,ωo,λ )Lλ (ωi,λ ) ·

·wCIEx(λ )dσ
⊥(ωi)dλ , (2)

where Λ is the space of all visible wavelengths, Ω is the
space of all direction vectors, Lλ (ωi,λ ) is the radiance
incoming from direction ωi, wCIEx is the CIE weight for
x component, and σ⊥(ωi) is the projected solid angle
measure. The y and z components can be evaluated in a
similar way. In the rest of this section, the Formula (2)
is written in a simplified, still not confusing, form:

I =
∫

Λ

∫
Ω

f (ω,λ )L(ω,λ )w(λ )dσ
⊥(ω)dλ . (3)

5.2 Basic and Cluster Based Monte Carlo
Estimators

The Monte Carlo method (Equation 14) can be applied
to evaluate the two integrals from Formula (3), which
leads to the following estimator:

I ≈ 1
N

N

∑
i=1

f (ωi,λi)
pΩ(ωi,λi)

w(λi)
pΛ(λi)

L(ωi,λi), (4)

where pΩ is the probability of selection of a given
ωi evaluated with the σ⊥(ω) measure on Ω and pΛ

is the probability of selection of a given λi. Quality
of this estimator, and all the further estimators in this
section, relies on the assumption that scattering model
offers proper importance sampling (Equation 15), i.e.
f (ω,λ ) ∝ pΩ(ω,λ ) is roughly satisfied. However, this
basic estimator is inefficient, because it forces the num-
bers of spectral and directional samples to be equal.
Each directional sample requires additional rays to be
traced, which is computationally expensive, while spec-
tral samples are almost for free. This explains the ad-
vantage of clusters of spectral samples over a single
spectral sample approach.

The main improvement over Evans and McCool
method is tracing a full cluster of spectral samples,
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even when wavelength dependent phenomenon is en-
countered. Wavelength dependence can be defined pre-
cisely as the dependence of pΩ on λ . If scattering is
not wavelength dependent, directional sampling is not
wavelength dependent as well, i.e. pΩ(ω,λ )≡ pΩ(ω).
In our method, a particular spectral sample λ s

i is se-
lected at random from a cluster, and its value is used
for sampling ωs

i . This leads to the color estimator in
the form:

I ≈ 1
NC

N

∑
i=1

C

∑
j=1

f (ωs
i ,λ

j
i )

pΩ(ωs
i ,λ

s
i )

w(λ j
i )

pΛ(λ j
i )

L(ωs
i ,λ

j
i ) =

=
1

NC

N

∑
i=1

1
pΩ(ωs

i ,λ
s
i )
·

·
C

∑
j=1

f (ωs
i ,λ

j
i )

w(λ j
i )

pΛ(λ j
i )

L(ωs
i ,λ

j
i ), (5)

where N is the number of traced clusters, C is the num-
ber of samples in each cluster, and pΩ is the probability
of selecting scattering direction, calculated for the se-
lected wavelength λ s

i . The estimator (5) can be more
efficient than estimator (4), since it traces C spectral
samples at the minimal additional cost. On the other
hand, it may deteriorate the importance sampling qual-
ity significantly. This happens because all samples with
potentially wildly different f (ωs

i ,λ
j

i ) values are traced,
and just one probability pΩ(ωs

i ,λ
s
i ) which matches the

shape of f (ωs
i ,λ

s
i ) only, is used. Whenever a direc-

tion ωs
i with low probability pΩ(ωs

i ,λ
s
i ) is chosen at

random, and at least one of the f (ωs
i ,λ

j
i ) has a rela-

tively large value in that direction, the value is no longer
cancelled by the probability, leading to the excessively
high variance in the rendered image. Moreover, the esti-
mator (5) is incorrect whenever ∃λ s

i ,ω
s
i : pΩ(ωs

i ,λ
s
i ) =

0 and ∃λ j
i : f (ωs

i ,λ
j

i ) > 0, particularly when a wave-
length dependent phenomenon is optically perfect, i.e.
its f is described by a δ distribution. Thus, the ini-
tial version of our new approach is not always better
than the traditional technique of tracing only one spec-
tral sample. The question is when the new technique
exhibits lower variance and when it does not.

5.3 Multiple Importance Sampling Esti-
mator

Fortunately, the variance issue can be solved automati-
cally. Simple modification of the estimator (5), which
incorporates Multiple Importance Sampling [19] (see
Appendix A), gives a better estimator with variance as
low as possible in a variety of conditions. The new im-
proved estimator is constructed from the estimator (5)
multiplying each cluster by C and a weight W s

i equal to:

W s
i =

pΩ(ωs
i ,λ

s
i )

∑
C
j=1 pΩ(ωs

i ,λ
j

i )
, (6)

where pΩ(ωs
i ,λ

s
i ) is the probability with which the scat-

tering direction is selected, and the values pΩ(ωs
i ,λ

j
i )

are hypotethical probabilities of selecting the sampled
direction if using λ

j
i value instead. This leads to the

final estimator:

I ≈ 1
NC

N

∑
i=1

CW s
i

pΩ(ωs
i ,λ

s
i )
·

·
C

∑
j=1

f (ωs
i ,λ

j
i )

w(λ j
i )

pΛ(λ j
i )

L(ωs
i ,λ

j
i ) =

=
1
N

N

∑
i=1

1

∑
C
j=1 pΩ(ωi,λ

j
i )
·

·
C

∑
j=1

f (ωs
i ,λ

j
i )

w(λ j
i )

pΛ(λ j
i )

L(ωs
i ,λ

j
i ). (7)

Assuming that a scattering model provides proper im-
portance sampling, the estimator (7) leads to a low
variance result. Moreover, the estimator (7) is cor-
rect whenever scattering model is correct, i.e. when-
ever ∀ω,λ : f (ω,λ ) > 0 pΩ(ω,λ ) > 0, so it is appli-
cable even to optically perfect wavelength dependent
phenomena. However, in this case it does not provide
any benefit over estimator (4). The comparison between
the new estimators (5) and (7) and the previous sin-
gle sample estimator (4) is presented in Figure 3. The
glass sphere has linearly varying refraction from 1.35
for 360nm to 1.2 for 830nm and uses Phong based scat-
tering with n = 1000. Images are created using only
two 16-sample clusters, to show error more clearly.

Figure 3: Comparison between new initial estimator
(left), new improved estimator (middle) and previous
method (right). The new initial estimator exhibits more
variance due to lack of proper importance sampling.
The color noise from single sample approach makes the
rightmost image barely legible.

5.4 Generation of Clusters
In order to generate clusters efficiently, two issues have
to be solved, namely: how many samples should a sin-
gle cluster contain, and how to generate them. The
number of spectral samples in a cluster is an important
decision for achieving best possible performance. Un-
fortunately, optimal number of such samples is highly
scene dependent. The more variation emission and re-
flectance spectra have, the more spectral samples a sin-
gle cluster should contain. Assuming that a scene con-
tains rather smoothly varying spectra (this assumption
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Figure 4: Selection of optimal number of spectral samples for a single cluster: 4 samples (left), 8 samples (middle),
12 samples (right). All images were rendered in 640x480, with 200k image samples (i.e. spectral clusters).

typically is satisfied), it is possible to balance excessive
color noise and computational overhead. After a few
tests we have found that eight spectral samples are op-
timal1. Four samples cause significant noise and twelve
give barely visible improvement (see Figure 4). Ren-
dering time differences between these images have been
less than 1%, which confirms the efficiency of a cluster
approach.

The efficient generation of spectral samples proves to
be more difficult. Spectra should be importance sam-
pled, but there are at least three factors, which should
affect choice of pΛ, namely: sensor (camera, human
eye, etc.) sensitivity, light source spectral distribution
and reflectance properties of materials. However, of-
ten only sensor is taken into account, and it is assumed
that its sensitivity is well described by CIE y weighting
function. Unfortunately, despite producing good qual-
ity grayscale images, importance sampling wavelength
space with respect to the y function causes excessive
color noise, and, contrary to common knowledge, is
suboptimal. Ideally, a sampling probability should take
into account all three x, y, and z components. After
some experiments, we found that following probability
gives good results:

pΛ(λ ) = N−1 fΛ(λ ), fΛ(λ ) =
1

cosh2(A(λ −B))
, (8)

where A = 0.0072nm−1 and B = 538.0nm are empiri-
cally evaluated constants and N =

∫
λmax
λmin

fΛ(λ )dλ is a
normalization factor. Results of this improved tech-
nique are presented in Figure 5.

Moreover, since spectra are typically smooth, sam-
pling them with quasi-Monte Carlo (QMC) low dis-
crepancy sequences instead of random numbers im-
proves results. However, care must be taken when
QMC sampling is applied to cluster based spectra.
When a wavelength dependent effect is to be simulated,
a single sample from the cluster has to be chosen. This
choice is tricky due to peculiarities of QMC sampling.
In case of true random numbers, selection of first sam-

1 Due to Intel SSE instruction set optimization, our implementation re-
quires the number of samples to be divisible by four.

ple from a cluster always works correctly. On the other
hand, it is a serious error to select an every nth sample
from a low discrepancy sequence. In the latter case, we
assign a separate (pseudo)random sequence for a such
selection of a spectral sample, in addition to sequence
used for randomizing cluster samples. Results of QMC
sampling are presented in Figure 5.

Figure 5: Various methods of sampling spectra. Top
row: 2000K blackbody radiation. Bottom row: D65
spectrum. Left column: spectra sampled using random
numbers and our importance sampling, with various
numbers of samples. Middle column: comparison of
luminance based importance sampling (top halfs) with
our pΛ (bottom halfs) using 128 spectral samples. Right
column: spectra sampled using Sobol low discrepancy
sequence and our pΛ, using 4 and 8 spectral samples.

5.5 Results and Discussion
Some more comparison between single spectral sample
approach and improved technique is presented in Fig-
ure 6. Images in top row use previous settings (refrac-
tion coefficient from 1.35 for 360nm to 1.2 for 830nm
and glossiness coefficient n = 1000). Next, images in
bottom row use much sharper settings (refraction coef-
ficient from 1.5 for 360nm to 1.2 for 830nm and glossi-
ness coefficient n = 4000). Images from first and sec-
ond column are rendered to have approximately the
same quality, and images from second and third col-
umn are rendered with the same number of samples (i.e.
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Figure 6: Imperfect refraction with dispersion. Top left
image uses previous approach with a massive number
of 900 samples per pixel. Top middle image uses new
technique with just 50 samples per pixel, yet it has sim-
ilar quality. Top right image again uses previous ap-
proach, but with 50 samples per pixel. However, gains
from using the new technique are less spectacular when
glossiness or dispersion is increased. Bottom row im-
ages use 900, 100, and 100 samples, respectively.

Settings C MIS SSS

n = 1000
η = [1.35,1.20]

1 1.26 ·10−1 2.47 ·10−1

4 6.67 ·10−2 2.02 ·10−1

16 2.63 ·10−2 1.34 ·10−1

64 1.22 ·10−2 7.56 ·10−2

256 5.32 ·10−3 3.83 ·10−2

n = 4000
η = [1.50,1.20]

1 2.07 ·10−1 2.46 ·10−1

4 1.33 ·10−1 1.96 ·10−1

16 7.39 ·10−2 1.29 ·10−1

64 3.84 ·10−2 7.37 ·10−2

256 1.74 ·10−2 3.72 ·10−2

Table 1: Comparison of error of our method (MIS) and
a single spectral sample approach (SSS), for C 8-sample
spectral clusters per pixel. The error is evaluated as a
difference between the tested image and the reference
image, averaged over all pixels and color components.
The pixel values are normalized to [0,1] range.

traced rays). The average numerical error for various
numbers of rays for scene from Figure 6 is summarized
in Table 1.

Analysis of two limit cases could give more insight
into how this new technique works, and when it is most
effective. The analysis is based on the assumption that
f (ω,λ ) ∝ pΩ(ω,λ ) is roughly satisfied. Otherwise, the
multiple importance cannot help much in reducing vari-
ance. First, when wavelength dependence is negligible,
all the scattering probabilities become more and more
independent on λ : pΩ(ωs

i ,λ
j

i ) ≈ pΩ(ωs
i ). The weight

W s
i then becomes:

W s
i =

pΩ(ωs
i ,λ

s
i )

∑
C
j=1 pΩ(ωs

i ,λ
j

i )
≈

pΩ(ωs
i )

∑
C
j=1 pΩ(ωs

i )
→ 1

C
, (9)

and the estimator:

I ≈ 1
N

N

∑
i=1

Wi

pΩ(ωs
i ,λ

s
i )
·

·
C

∑
j=1

f (ωs
i ,λ

j
i )

w(λ j
i )

pΛ(λ j
i )

L(ωs
i ,λ

j
i )→

→ 1
NC

N

∑
i=1

C

∑
j=1

f (ωs
i ,λ

j
i )

pΩ(ωs
i )

w(λ j
i )

pΛ(λ j
i )

L(ωs
i ,λ

j
i ),(10)

which is an estimator of a simple, wavelength indepen-
dent, scattering. On the other hand, when scattering
becomes more and more glossy and wavelength depen-
dence is significant, with probability close to one the f
becomes close to zero for all directions except ωs

i . The
rare cases, when f (ω j

i ,λ j
i ) is large and j 6= s, have low

weight W s
i , and therefore cannot affect the estimator

much. Moreover, all the probabilities but the selected
one go to zero, and therefore W goes to one, which
leads to estimator equal to:

I ≈ 1
N

N

∑
i=1

W s
i

pΩ(ωs
i ,λ

s
i )
·

·
C

∑
j=1

f (ωs
i ,λ

j
i )

w(λ j
i )

pΛ(λ j
i )

L(ωs
i ,λ

j
i )→

→ 1
N

N

∑
i=1

f (ωs
i ,λ

s
i )

pΩ(ωs
i ,λ

s
i )

w(λ j
i )

pΛ(λ j
i )

L(ωs
i ,λ

j
i ), (11)

which is equivalent to the one sample estimator. This
behaviour of estimator (7) is presented in Figure 7.

The former approach to spectral rendering separates
scattering into two cases: wavelength independent scat-
tering, and costly simulation of wavelength dependent
phenomena using single spectral sample estimator. On
the other hand, our method does not depend on such
classification. Due to automatically computed weights,
it adjusts itself to these two limit cases, and to the
broad spectrum of intermediate cases, when scattering
is wavelength dependent, but imperfect. The computa-
tional cost of our method depends on strength of wave-
length dependence and optical perfection of material.
These factors cause the cost to increase, but it never ex-
ceeds the cost of single spectral sample estimator.

6 SAMPLING OF LIGHT TRANSPORT
PATHS

In this section we describe an integration of our full
spectral sampling with selected light transport algo-
rithms – a case when there is more than one wave-
length dependent scattering encountered on the same
light path. The extension of single scattering approach
for Path Tracing [10] and Bidirectional Path Tracing
[19] is, however, obvious. The wavelength λ s

i is se-
lected once for a whole path, and reused at each scat-
tering. The weight W s

i is therefore computed for the
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Figure 7: Analysis of behaviour of estimator (7) with increasing glossiness and wavelength dependence of scat-
tering. Wavelength independent scattering (leftmost image). Optically perfect wavelength dependent scattering
(rightmost image). Intermediate cases (middle). All the images are rendered with just four clusters.

whole path, using products of probabilities instead of
probabilities of single scatterings. Assuming that the
sampled path is build by recursively sampling fs and
tracing rays in sampled directions, the W s

i is given by
the following expression:

W s
i =

∏
m
k=1 pΩ(ωs

ki,λ
s
i )

∑
C
j=1 ∏

m
k=1 pΩ(ωs

ki,λ
j

i )
, (12)

where k is the number of a scattering event and m is the
length of the sampled path. Intuitively, a weight W s

i is a
ratio of probability of generating the whole path using
selected wavelength λ s

i to the sum of probabilities of
generating such a path using each wavelength from a
cluster. If a light transport algorithm generates a path
in a different way, or does not use a concept of light
transport paths, the weight W s

i has to be computed in a
different manner.

The notable case, where spectral sampling causes dif-
ficulties, is Jensen’s Photon Mapping, designed to work
with RGB triplets [8]. There are two issues: first, there
are no light transport paths, which connect light source
and camera, and second, millions of individual photons
have to be stored, causing excessive memory consump-
tion if full spectrum is used to describe them. A recent
work [11] addresses memory issues. Unfortunately, this
algorithm converts photons’ spectra to RGB prior to
storing them in a map, and converts RGB to spectra
again when searching through photons.

Our approach, on the other hand, is designed to con-
verge always to the true result with increased number
of photons, and therefore significant compression of
spectral data is unsuitable. We trace and store clus-
ters of photons with different wavelengths, instead of
describing them by RGB triplets. First, in order to
explore wavelength space properly, each emitted pho-
ton cluster must have individually chosen wavelengths.
The obvious place for optimization is that one emitted
photon cluster typically corresponds to several stored
photon clusters, and therefore cluster wavelengths are
stored once for each emission. Moreover, for storing
energy, one can experiment with a non-standard float-
ing point format instead of IEEE single precision. Us-
ing 8-sample clusters requires 32B of data for individ-
ual stored photon, not to mention an additional 32B for

Figure 8: Full spectral rendering of a non-trivial scene.
Dispersion is slightly exaggerated to render spectral
sampling quality more prominent.

each emission, which is far more than 12B required by
an RGB based implementation. If a compact float for-
mat with shared exponent is used, the latter can be com-
pressed even to 4B, however, with potential loss of im-
age quality. We have left this for further research.

When a photon is about to be stored, its energy is
multiplied by weight given by Equation (12), which ac-
counts for all encountered wavelength dependent scat-
tering events. In the second pass, rendering of photon
map is performed. Camera rays should be weighted
similarly prior to photon map lookups. In the classic
Photon Mapping, photons are searched in a sphere cen-
tered around the intersection point. The sphere radius
should be chosen carefully: too small causes noise and
too large – blurriness. We extend this approach to wave-
length search as well. If a photon cluster is decided to
be used in a flux estimate by a sphere test, additional
tests are performed on individual photons (with associ-
ated wavelengths) using a spectral search distance in a
wavelength space. Similarly as with the spatial radius,
the spectral distance must be chosen carefully.

7 CONCLUSIONS
We have presented an improved approach to full spec-
tral rendering. Full spectral algorithms realize a model
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which is necessary to achieve physically plausible il-
lumination in 3D scenes. The result image rendered
with proposed spectral sampling, extended Walter et al.
microfacet refraction [20], and Bidirectional Path Trac-
ing is presented in Figure 8. The computational cost of
a full spectral simulation in comparison with an RGB
model is significant only for simple scenes containing
few primitives. The computational complexity of ray
tracing typically is logarithmic with respect to the num-
ber of primitives, and independent of a color represen-
tation. Therefore, when a scene becomes sufficiently
complex, the overhead of a physically correct algorithm
becomes negligibly small. On the other hand, the mem-
ory overhead depends on a particular algorithm. It is
negligible for Path Tracing and Bidirectional Path Trac-
ing, but is substantial for Photon Mapping.

A MONTE CARLO ESTIMATORS
This section briefly describes Importance and Multiple
Importance Sampling methods. Consult [6] and [19],
for more details. Let I be the integral to evaluate:

I =
∫

Ψ

f (x)dµ(x). (13)

The basic Monte Carlo estimator of this integral is:

Ĩ ≈ FN =
1
N

N

∑
i=1

f (Xi)
p(Xi)

, (14)

where ∀x : f (x) 6= 0 p(x) > 0.
A variance of estimator (14) usually can be decreased

if the p is made near proportional to f , or at least to a
part of it. This technique is called Importance Sam-
pling. Particularly, when p ∝ f , the variance is zero.
However, to obtain normalization constant, f must be
integrated analytically. This is impossible, otherwise
Monte Carlo integration would not be necessary.

Suppose that there are i potentially good probability
densities pi for sampling f . If Importance Sampling is
used, the pi used for sampling f (x) has to be chosen at
algorithm design time. This can have disastrous conse-
quences, if the pi poorly matches the actual f (x) shape.
In this case, Importance Sampling can actually increase
variance over sampling with uniform probability. How-
ever, Multiple Importance Sampling [19] has been de-
signed to improve the Importance Sampling when the
appropriate pi cannot be chosen at the design time. The
algorithm samples from each of these pi and calculates
the final estimator as a weighted sum of these samples:

Ĩ =
n

∑
i=1

1
m

m

∑
j=1

wi(Xi j)
f (Xi j)
pi(Xi j)

, ∀x
n

∑
i=1

wi(x) = 1. (15)

The appropriate choice of weights wi:

wi(x) =
pi(x)

∑
n
j=1 p j(x)

(16)

is crucial for obtaining low variance results.
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ABSTRACT

This paper proposes a novel technique to measure fabrication artifacts through direct comparison of a reference surface model
with the corresponding industrial CT volume. Our technique uses the information from the surface model to locate correspond-
ing points in the CT dataset. We then compute various comparison metrics to measure differences (fabrication artifacts) between
the two datasets. The differences are presented to the user both visually as well as quantitatively. Our comparison techniques
are divided into two groups, namely geometry-driven comparison techniques and visual-driven comparison techniques. The
geometry-driven techniques provide an overview, while the visual-driven techniques can be used for a localized examination.

Keywords: Difference measurement; Surface model; Volume rendering.

1 INTRODUCTION
Comparison of two almost identical datasets is very im-
portant for the continuously rising demands of quality
control in industrial engineering. Recently much work
has been done in the area of mesh comparison. A high
number of vertices and edges are hard to process in
real time due to the limited processing power available
in hardware. This initiated research to simplify mesh
datasets in such a way that the rendering speed is in-
creased while the mesh distortion is limited. Distortions
introduced through mesh simplification led to research
on mesh comparison.

In the manufacturing industry, it is necessary to pro-
duce industrial components as close as possible to the
computer aided design model (CAD) of the part. En-
gineers use CAD tools like AutoCAD, Pro Engineering
etc. for designing. The CAD model is considered to
be the ground truth during the manufacturing process.
To verify the accuracy of the production process, man-
ufactured components are scanned with an industrial
computed tomography (CT) machine. The volumetric
dataset obtained from the CT scan is then compared to
the CAD model of the part (called surface model hence-
forth). The comparison between the two datasets is sup-
posed to clearly identify erroneous regions.

The comparison process uses various methods to
measure differences between the two datasets. The
differences present between the surface model and the
volume data are the result of fabrication, measurement,
and surface reconstruction artifacts. We are primarily
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interested in detecting the fabrication artifacts as
these are introduced in an industrial part during the
production phase. The goal of the comparison process
is to minimize all post-production artifacts so that
the differences measured between the datasets mainly
correspond to fabrication artifacts.

Datasets of industrial components, unlike medical
datasets, mostly consist of materials with distinctive
density values. There is a high signal to noise ratio
and the interfaces in the volume data are easy to de-
tect. For this reason the most common method for first
part inspection is to generate an iso-surface mesh from
the CT scan and to compare it with the surface model.
In various cases this is not the ideal approach: First,
the generation of a mesh from the CT dataset requires
a surface extraction algorithm. Industrial components
have sharp edges and corners and therefore a lot of sur-
face reconstruction artifacts are introduced [6]. Second,
mesh generation for a given iso-value is not interac-
tively possible during the comparison process. There-
fore, the need to do a comparison with a higher or lower
resolution mesh will lead to a delay in the examina-
tion process. Third, a CT dataset goes beyond a surface
model and has information about the interior of the me-
chanical part as well. Losing this information limits the
examination possibilities of the CT dataset.

Figure 1 shows a CAD model in (a), direct volume
rendering (DVR) of the industrial CT scan in (b) and an
iso-surface mesh extracted from the CT scan in (c). In
figure 1(c), all the internal information of the volumet-
ric dataset is lost. Areas marked with black rectangles
in figure 1(b) and 1(c) are shown as zoom-ins. We ob-
serve surface reconstruction artifacts in figure 1(c).

In this paper we present a novel approach to
perform a comparison directly between the surface
model (which is the ground truth) and the volumetric
dataset obtained from the industrial CT scan. We
calculate the difference between the surface model
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(a) CAD (b) CT scan (c) Iso-surface mesh

Figure 1: (a) CAD model of test-part-1 (surface model: 200,000 triangles, volumetric dataset: 561x559x436 voxels). (b) Direct volume
rendering of the scan of test-part-1. (c) Iso-surface mesh extracted from the volumetric dataset in (b).

and an interface of the volume data and also compare
the relative surface smoothness. We ensure that the
differences we measure represent fabrication arti-
facts (section 4). The uncertainty of the measurement
process is also evaluated and presented to the user.

Color coding, glyphs, ray profiles, and 3D box plots
are provided for visualization and the results are also
displayed quantitatively. The proposed method is im-
plemented on the Graphics Processing Unit (GPU). It
provides interactive comparison and visualization. We
successfully avoid reconstruction artifacts by compar-
ing the surface model directly with the volume data.
Delays in the examination process are also avoided by
embedding the complete comparison and visualization
pipeline in a single system.

2 PREVIOUS WORK

Large numbers of triangles are inefficient to render and
also hard to stream over a network. Subsequently, al-
gorithms are proposed to simplify meshes [2]. Mesh
simplification distorts the original shape, especially on
sharp edges and therefore techniques are proposed to
measure the differences between the two meshes.

Many public domain mesh comparison tools have
been released in recent years [3, 9]. Metro [3] scan con-
verts one of the surfaces into a set of points and then
measures the Hausdorff distance between each point
and the other surface. Aspert et al. [1] propose to use an
approximation of the Hausdorff distance for measuring
differences which is computationally and memory wise
efficient. Pichon et at. [7] propose to use the gradient
of the Laplacian equation to measure distances between
the surfaces.

Weigle and Taylor [11] investigate visualization
methods for distance and local shape comparison.
Their study shows that glyphs are better in conveying
deviation information between surfaces than color
coding alone. They use intersecting surfaces with
known alignment for their study.

There has been some recent work on the comparison
between a surface model and an industrial CT dataset.
These methods however introduce a pre-processing step
to the comparison process, where an iso-surface mesh is

generated from the CT dataset. Heinzl et al. [5] propose
a method for generating a feature preserving mesh from
a CT dataset. They use filtering to suppress noise and
a watershed segmentation to create a binary dataset. In
the final step a surface model is created using elastic
surface nets. The creation of a surface model is a time
consuming and an error-prone process.

Geomagic Qualify [8] is a well-known software prod-
uct, used for quality control in industrial engineering.
A surface model and an iso-surface mesh of the vol-
umetric dataset are inputs to this tool and it performs
distance analysis between the two datasets. Methods
for extracting an iso-surface mesh from a volumetric
dataset [4, 5, 6, 10] have to be used in a pre-processing
step for performing comparison using Geomagic Qual-
ify. Geomagic Qualify works independently from the
surface extraction process and therefore does not take
into account surface reconstruction artifacts during the
comparison process. However such errors are intro-
duced in the pre-processing step.

3 COMPUTATION & VISUALIZATION

Our comparison system is divided into geometry-driven
and visual-driven analysis techniques. Geometry-
driven techniques provide an overall visualization of
the differences between the surface model and the
volumetric dataset. Visual-driven techniques are used
on top of the geometry-driven comparison techniques
for a user guided analysis and for obtaining precise
quantitative information.

An overview of the system is shown in figure 2.
The Iterated Closest Point (ICP) algorithm performs
rigid registration and produces a transformation matrix
as output. The output matrix transforms the surface
model (moving dataset) through translation, and rota-
tion to closely orient it to the CT dataset (fixed dataset).
Registration is not the major scope of our work. We
performed it with high accuracy (see section 4.1) using
a well known algorithm in a semi-automatic way. Fully
automatic registration techniques have not been inves-
tigated but might be applied.

Both types of comparison, i.e., geometry-driven and
visual-driven comparison techniques (figure 2), query
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Figure 2: System overview. Geometry-driven comparison tech-
niques color code the datasets and render glyphs. Visual-driven com-
parison techniques provide localized information about differences.

the registered surface model for the necessary informa-
tion but work completely independent from each other.
The results of the query, i.e., meta data from the CT
dataset and the chosen visualization technique, are used
to compute quantitative data and to produce images.

Geometry-driven comparison techniques consist of a
distance analysis and a normal analysis. The distance
analysis calculates the differences between the surface
model and an interface in the volumetric dataset as Eu-
clidean distances. It also measures the uncertainty of
the measurement process. The normal analysis pre-
cisely locates differences in curvature and compares the
surface smoothness of the two datasets.

We provide a ray-profile analysis and a magic lens as
building blocks of the visual-driven comparison. The
ray-profile analysis visually presents the data and dif-
ferences at a user specified location and also displays
the information quantitatively. The magic lens extracts
the differences between datasets at a user specified
neighborhood and displays them using glyphs, i.e., box
plots.

3.1 Geometry-Driven Comparison

Distance and normal analysis methods require the spec-
ification of a corresponding point in the CT dataset for
each surface point on the surface model. Starting from a
surface point we have to locate the corresponding point
in the volumetric data. The search direction is approx-
imately along the surface normal. In high curvature ar-
eas the search should be extended to nearby directions
as well to ensure robustness.

Consider the blue rectangle and the gray object in fig-
ure 3(a) to be a surface model and a volumetric dataset
respectively. Black spheres represent surface points. A
pair of red and green lines originating from each surface
point indicates the conical space in which we search for
a corresponding point in the volume data. The space is
larger for surface points in high curvature regions (see
the surface point at the corner in figure 3(a)).

For each triangle of the surface model we evaluate
the facet normal and the three vertex normals. The an-
gle between the facet normal and each of the vertex
normals is computed and the maximum of the three
angles (called search-angle henceforth) is stored. The
search-angle indicates the local curvature of the sur-
face model. In areas of high curvature, a large search-
angle will be calculated whereas the search-angle will
approach zero in planar areas of the surface model.

In figure 3(b) we indicate the search-angle as a red
arc between the facet normal (black arrow) and one of
the vertex normals (green arrow) of the blue triangle.
Using the search-angle we can construct a double cone
with the opening angle set to twice the search-angle.
The double cone is depicted in figure 3(b) with the apex
placed on the surface of the triangle. We then extract
the spatial locations and the normal vectors for a set of
uniformly distributed surface points on the triangles of
the surface model. At each surface point the apex of
a double cone is placed and the cone axis is oriented
along the surface normal. A triangle therefore bisects
the double cone at its apex (figure 3(b)). We call the
nappe of the double cone that lies on the front face of
the triangle as outside nappe, while the nappe on the
back face of the triangle is called inside nappe. The
double cone defines a region in which we can search
for an interface point in the volumetric dataset. An ap-
propriate interface point found inside the double cone
will be associated with the surface point of the triangle
for further computations.

In order to search for an interface point in the vol-
ume data, we start from the surface point and traverse
the volume data along several rays distributed inside
the double cone. The rays originate from the surface

(a) (b)

d
en

si
ty

 d

ray direction

(c)

fir
st

 o
rd

er
 d

er
iv

at
iv

es
 d

’

ray direction

(d)

Figure 3: (a) Pairs of red and green lines depict the space in which
we search for a corresponding point in the volume data (gray ob-
ject) for each surface point (black sphere) on the surface model (blue
rectangle). (b) Double cone representing the search space in 3D. A
density profile and the first order derivative of a density profile are
illustrated in (c) and (d) respectively.
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(a) test-part-1 (distance analysis) (b) test-part-2 (distance analysis) (c) test-part-3 (distance analysis)
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Figure 4: (a) test-part-1, (b) test-part-2 (surface model: 152,054 triangles, volumetric dataset: 408x351x355 voxels), and (c) test-part-3 (sur-
face model: 25,880 triangles, volumetric dataset: 329x527x181 voxels) rendered using distance analysis. The image resolution is 512x512.

point and are directed towards the two bases of the dou-
ble cone. The density profile of each ray is used to
identify the interface point as the position with high-
est/lowest gradient magnitude (first order derivative is a
maximum/minimum and the second order derivative is
zero). The gradient magnitude at a spatial location must
be greater than a user specified threshold for that loca-
tion to be considered an interface point. Thresholding
is necessary to filter out small changes in gradient mag-
nitude which do not represent an interface. We also ap-
ply a median filter to the density values to reduce noise.
Among all the considered rays the interface point with
minimum distance to the surface point is stored for fur-
ther processing. The rays are distributed in concentric
circles inside the double cone. The density of the rays
is kept almost constant by taking more rays on the outer
circles compared to inner circles.

A density profile of a ray is illustrated in figure 3(c).
The graph of the first order derivative of such a density
profile is drawn as the blue curve in figure 3(d). The
dashed brown line shows a threshold for the first order
derivative. The first peak or valley with absolute deriva-
tive above the threshold is considered an interface point
in the volumetric dataset. The interface point is indi-
cated by a red cross in figures 3(c) and (d).

As we find an interface point in the volumetric
dataset, we store its spatial location, the nappe (inside
or outside) in which the interface point was found,
and the gradient. The information extracted from the
surface model and the CT dataset provides all the
required parameters to evaluate the metrics for distance
analysis and normal analysis.
Distance Analysis: The computationally intensive step
of finding for each point on the surface model a corre-
sponding interface point in the volume data has already
been done. The distance analysis shows the difference
between the datasets as Euclidean distances. We com-
pute the differences between the spatial locations on the
surface model and their corresponding interface points

in the CT dataset. We also have information about the
nappe of the double cone in which the interface point
was found. Using this information we color code the
dataset for distance analysis.

Figures 4(a) and (b) show test-part-1 and test-part-2
respectively. The test-parts are rendered using the dis-
tance analysis with distances measured in millimeters.
The color scale used for color coding is shown on the
right of figure 4. The distance has positive sign if the in-
terface point is found in the inside nappe of the double
cone.

Figure 4(c) shows test-part-3 rendered using our dis-
tance analysis technique. We render distance glyphs on
the zoom-in of the user specified area (black rectangle).
The arrow of the distance glyph is aligned with the nor-
mal vector of the surface and the diameter of the disc
is proportional to the diameter of the base of the dou-
ble cone. The color of the disc indicates if the differ-
ence was found in the inside nappe (yellow), outside
nappe (blue) or no difference was recorded (white).

So far we only consider the minimum distance be-
tween the surface model and the interface of the vol-
umetric dataset for distance analysis. The technique
does not take the interface shape into consideration.
The results have uncertainty in high curvature regions
which needs to be highlighted. For a double cone the
difference between the minimum and maximum dis-
tance from the surface model to the volume data will be
larger in high curvature regions compared to planar ar-
eas. Therefore the difference between the minimum and
the maximum distance serves as the uncertainty value
of the measurement process.

To determine uncertainty we look for the maximum
distance from the surface point to the interface in the
volume data. The search for the maximum distance is
conducted in the neighborhood of the ray along which
the minimum distance was found. The neighborhood
for searching the maximum distance has a radius of one
voxel. We choose this radius, as the search space should
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Figure 5: The maximum distance to the interface point is searched
in the neighborhood (brown cone) of the ray (cone vertex to black
sphere) along which the interface point was recorded. (b) Uncertainty
rendering for a zoom-in of test-part-3. A dotted and a dashed oval
highlight areas of high curvature and rough surface respectively.

be smaller than the smallest feature in the dataset. Any
feature less than the size of a voxel is not detectable in
the volumetric dataset anyway.

Figure 5(a) illustrates the uncertainty measurement
process. Let us assume that the closest interface point
was found along the ray which starts from the sur-
face point (cone vertex) and extends towards the black
sphere depicted on the base of the cone. In the neigh-
borhood around that ray (brown cone), we search for
an interface point with maximum distance to the sur-
face point. The difference between the minimum and
the maximum distance from the surface point to the in-
terface in the volume data is considered the uncertainty
of the measurement process.

The uncertainty in the case of test-part-3 is shown
in figure 5(b). It becomes apparent that areas of high
curvature or high surface roughness, which are high-
lighted using a dotted and a dashed oval respectively,
have higher uncertainty.

Normal Analysis: Normal analysis is proposed as an
efficient method to compare surface smoothness. Nor-
mal analysis compares the orientation of the normal
vectors extracted from the surface model with the gra-
dients obtained from the CT dataset. The angle between
the normal vector and the gradient indicates the differ-
ence in the curvature of the surface model and the inter-
face of the CT dataset. Normal analysis is easy and ef-
ficient to compute given that the surface points and the
corresponding interface points are already evaluated.

The type of difference shown by normal analysis
may pass undetected by distance analysis. Consider
the black plane in figure 6(a) to be part of the surface
model with the normal vector indicated by a black ar-
row. The interface of the volume data (blue plane) over-
laps the surface model in the area marked with a red
oval. The distance analysis will report no difference in
such a case. However, there is a difference in the ori-
entation of the two datasets as the normal vector and
the gradient do not point in the same direction. Such
differences can be emphasized using normal analysis.

Normal analysis will report a constant difference along
the entire surface in this example.

Figure 6(b) shows test-part-1 rendered using normal
analysis. Normal analysis detects differences at edges
and rough surfaces. As the volumetric dataset is gen-
erated from an industrial process, it does not match the
smoothness and exactness of the surface model, espe-
cially at the edges. The zoom-in in figure 6(b) shows
that the top of test-part-1 is quite rough. The color scale
can be changed dynamically by the user.

3.2 Visual-Driven Comparison

Visual-driven comparison techniques are grouped into
ray profile analysis and magic lens displays. Ray profile
analysis displays the differences between the datasets
both as 2D plots and as quantitative numbers. A magic
lens is used to zoom-in/out of the dataset and to view
the differences graphically.

A ray profile display (figure 7) is generated by plot-
ting the first derivative of the density values encoun-
tered along the ray in the volume data. The peaks and
valleys in the graph show the interface points. The loca-
tion of the surface point is marked on top of the graph.
The horizontal difference between the interface point
and the surface point in the plot shows the local dif-
ference. This provides precise information about the
differences in the datasets.

Figure 7 shows two ray profiles generated for posi-
tions on test-part-3 marked with black crosses. The ver-
tical red lines depict the points on the surface model.
The blue graph shows the first derivatives of the density
values encountered by the ray, along which the interface
point in the volume data was found. The peaks in the
blue graphs are the edges detected in the volume data.

(a)

(b)

0

45
degrees

Figure 6: (a) Normal analysis emphasizes differences in orienta-
tion. (b) test-part-1 rendered using normal analysis. The zoom-in
shows roughness at the top of test-part-1.
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The horizontal distance between a peak and a red line
indicates the local difference between the datasets.

In the ray profile on the left in figure 7, we observe
that the surface point (red line) and the interface point
(peak) overlap and thus there is very little difference be-
tween the two datasets. The ray profile on the right in
figure 7 however shows a difference between the sur-
face model and the volumetric dataset as there is a hor-
izontal difference between the red line and the nearest
peak. Our system reported a difference of 0.2 mm.

A ray profile shows the distance at one specific po-
sition. The next approach shows differences in a small
local neighborhood. A magic lens can provide a precise
graphical view of the differences by means of 3D or 2D
box plots (figure 8). The box plots are rendered in a
user specified area. Each box plot shows the minimum,
the maximum, the mean, and the standard deviation of
the differences between the two datasets at each local
neighborhood. Additionally, 3D box plots are oriented
along the normal vectors of the surface model. The di-
ameter of a 3D box plot is directly proportional to the
base of the double cone in which the interface point was
searched. 3D box plots therefore encode distance val-
ues, uncertainty, and the dependent variables (normal
vector and the base of the double cone) whereas 2D
box plots only encode the distance values and the uncer-
tainty of the measurement process (figure 8(a) and (b)).

Figure 8(c) shows 3D box plots over a user specified
area (black rectangle) on test-part-3. 3D box plots sim-
ilar to white planar discs indicate no difference in the
minimum, maximum, and the mean distances recorded
between the two datasets. The measurement is most
certain in areas where “flat” 3D box plots are rendered.

3D box plots are less suited for a relative comparison
as they are differently oriented along surface normals.
2D box plots make a relative comparison in a user spec-
ified area easier (figure 8(d)).

Figure 7: Two ray profiles are extracted for the locations marked
with crosses on test-part-3. The horizontal differences between the
red line (surface point) and the peaks in the graph (interface points)
depict the dataset differences.

4 RESULTS
We implemented a prototype on a Pentium 4, 3.4 GHz
CPU and an NVidia GeForce 8800 graphics board. We
used C++ and OpenGL/GLSL as programming lan-
guage. The system renders the volumetric data and the
surface model side by side in a volume view and a sur-
face view. We maintain a central queue for the events
performed in all views. An operation initiated in one
view also pushes an event into the central event queue
and releases a signal. The other view pops the event
from the queue and executes it. We implement first-
come, first-serve scheduling for the central queue.

4.1 Artifacts and Errors
An industrial computed tomography includes fabrica-
tion artifacts and measurement errors. Fabrication ar-
tifacts are introduced during each step of the manufac-
turing process whereas measurement errors are caused
by the CT machine. Additionally, two kinds of errors
are generated by the software that is used to process the
CT scan. Surface reconstruction artifacts are introduced
while extracting an iso-surface mesh from the volumet-
ric dataset. Registration errors are caused by the regis-
tration algorithm.

Quality assurance engineers are primarily interested
in measuring the fabrication artifacts. To accurately
compute the fabrication artifacts, errors caused by soft-
ware should be minimized. We perform registration
with high accuracy and unlike other contemporary tech-
niques avoid surface reconstruction artifacts.

We evaluate the ICP registration algorithm by per-
forming registration 20 times between test-part-3 and
a feature preserving mesh [5] of test-part-3. We use
a feature preserving mesh for testing purposes so that
the fabrication artifacts and the measurement errors are
minimized and we can monitor just the registration er-
ror. We measure the mean square error between the
mesh and the test-part-3 (see figure 9) and record an av-
erage registration error of 0.0152 mm. The registration
algorithm converged in 3.5 iterations on average.

Experiment number 18 produced a high error com-
pared to the rest of the experiments. The ICP regis-
tration algorithm requires user interaction and the large
error in experiment 18 is due to a bad specification of
control points. The maximum fabrication and measure-
ment artifact found in test-part-3 is 1.93 mm and the
mean difference recorded is 0.27 mm. Thus the aver-
age registration error introduced by the ICP algorithm
is considerably lower than the mean and the maximum
fabrication artifacts in the dataset.

Reconstruction artifacts are introduced while extract-
ing a mesh from a volumetric dataset. We use a syn-
thetic dataset with known fabrication artifacts to eval-
uate our technique. Measurement and registration er-
rors are not present in a synthetic dataset. This pro-
vides a good opportunity to analyze just the effect of
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(b) 2D box plot (c) 3D box plots (d) 2D box plots

Figure 8: (a) 3D box plot. (b) 2D box plot. (c) and (d) show box plots over a user selected area. The user can interactively switch between
3D box plots and 2D box plots.

surface reconstruction artifacts. Figure 10(a) shows a
surface model of a cube dataset and 10(b) shows a vol-
ume dataset with known fabrication artifacts. Fabri-
cation artifacts are marked with an oval. The surface
model consists of 12,288 triangles and the volume data
has a resolution of 256x256x256.

We generated a feature preserving mesh [5] of the
volumetric dataset and compared it with the surface
model using Geomagic Qualify (figure 10(c)). Surface
reconstruction artifacts are visible in the differences
shown by both zoom-ins. A difference is also reported
at the vertical edge of the mesh (lower zoom-in) even
though there should be no difference. The differences
at vertical edges is purely caused by surface reconstruc-
tion artifacts and is not present in the dataset (see fig-
ure 10(b)). Figure 10(d) shows the comparison using
our system. Our system correctly calculates no differ-
ence on vertical edges (lower zoom-in). The fabrication
artifacts in the volumetric dataset are also reported cor-
rectly (upper zoom-in). The color coding is smooth and
we do not observe any reconstruction artifacts.

The comparison of the maximum and average differ-
ence evaluated by Geomagic Qualify and our technique
is given in table 1. Our method calculates the differ-
ence very close to the ground truth. Geomagic Qual-
ify reports the maximum difference close to the ground
truth but the average difference has a large error. Re-
constructing a mesh from the volume data introduces
artifacts distributed over the entire mesh. This is why
the average error reported by Geomagic Qualify is very

Figure 9: Mean square error produced by point-set to point-set
registration on test-part-3 (60x100x30 mm).

small compared to the ground truth. As we avoid recon-
struction artifacts, our calculations are more accurate.

Table 1: Maximum and average voxel difference re-
ported by Geomagic Qualify and our system.

Ground truth Geomagic Our technique
Maximum 8.485 7.95 8.91
Average 3.42 0.195 3.51

4.2 Performance and Evaluation
The earlier solutions proposed for comparison
are divided into two major steps. For instance,
Heinzl et al. [5] propose a robust surface detection
pipeline for effective comparison. First, they extract a
feature preserving mesh from the volume dataset. The
mesh extraction part consists of a four step pipeline.
In the first three steps, an anisotropic diffusion filter,
a gradient filter and, a watershed segmentation are in
turn applied to the volume dataset. In the final step
constrained elastic nets are used. The mesh is then
compared to the surface model using some existing
tool like Geomagic. We combine the entire comparison
and visualization process into a single, interactive
system. Table 2 shows the runtime performance of our
system, in comparison to the robust surface detection
pipeline [5] and Geomagic.

The bottle neck in earlier methods has been the sur-
face extraction process. Due to parameter tweaking the
surface extraction took very long as opposed to the ac-
tual comparison process. Our method is more auto-
mated and requires much less user interaction.

Distance glyphs and the 3D box plots are additional
visualization techniques for showing differences and

Table 2: Comparison of the performance of our system.
Test-part-1 Test-part-3

Distance analysis (our method) 0.051 sec 0.033 sec
Robust surface detection pipeline 10.23 min 4.58 min

Distance analysis (Geomagic) 9.31 sec 8.51 sec
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Figure 10: (a) Surface model. (b) Volume data with known fab-
rication artifacts. Artifacts are highlighted with an oval. (c) Com-
parison between the surface model and a feature preserving mesh
of (b). (d) Direct comparison between a surface model and the vol-
ume data (our approach).

uncertainties. Two domain experts who have used vari-
ous mesh comparison systems in their professional ca-
pacity tested the usefulness of our visualization tech-
niques. They were both quite interested in using dis-
tance glyphs and 3D box plots to visualize differences
as compared to color coding alone.

They acknowledged that they acquired more valu-
able information about the surface (surface normal), the
measurement process (base of the double cone), and
the differences using distance glyphs and 3D box plots.
The idea of showing glyphs in a user specified area was
one of the issues which the users are missing in con-
ventional tools. The experts also appreciated the idea
of showing the uncertainty of the measurement process

along with the distance analysis. The robustness of the
registration algorithm was satisfactory for them.

5 CONCLUSION
We have presented techniques that compare a reference
surface model directly to the industrial CT scan of spec-
imens, especially in the preproduction phase of the in-
dustrial products. We avoid intermediate steps of data
enhancement and surface extraction. Two sets of tools,
namely geometry-driven and visual-driven techniques,
provide comprehensive comparison opportunities.
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Abstract

The real-time rendering of arbitrarily large textures is a problem that has long been studied in terrain visualization. For years,
different approaches have been published that have either expensive hardware requirements or other severe limitations in quality,
performance or versatility. The biggest problem is usually a strong coupling between geometry and texture, both regarding
database structure, as well as LOD management.
This paper presents a new approach to high resolution, real-time texturing of dynamic data that avoids the drawbacks of previous
techniques and offers additional possibilities. The most important benefits are: out-of-core texture visualization from dynamic
data, efficient per-fragment texture LOD computation, total independence from the geometry engine, high quality filtering and
easiness of integration with user custom shaders and multitexturing. Because of its versatility and independence from geometry,
the proposed technique can be easily and efficiently applied to any existing terrain geometry engine in a transparent way.

Keywords: Terrain rendering, virtual texture, clipmap, dynamic data, GIS, GPU.

1 INTRODUCTION
Terrain visualization typically involves both high res-
olution geometry and texture management. There are
numerous works on these two areas, whether on one
or other or on both. Focusing on the texture man-
agement, existing techniques require expensive hard-
ware or establish a strong coupling between geometry
and texture, both in databases and LOD management
systems. We propose a different technique based on
the programming capabilities of new GPU generations,
that efficiently solves these limitations as well as pro-
vides new features for emerging applications to interac-
tively visualize geographic information. The technique
enables real-time rendering of high resolution textures
composed of dynamic data that is periodically updated.
A working subset of the whole dynamic database is
cached in TRAM, in a clipmap-like structure [22], al-
lowing arbitrarily large textures to be mapped over any
geometry.

This virtual texturing engine can be applied to terrain
visualization as well as to other applications that require
a high detail 2D texture focusing on a center of interest.
The textured dynamic data can be raster or vectorial in
its source.

We start with a state of the art review, mentioning the
weaknesses and limitations of previous related work,
which have constituted our starting point for working
on and improving. We then present a new approach,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

describing its features, architecture and design through-
out section three. Finally, we present some quantitative
results from the current test implementation, in order
to analyze the performance of the system, followed by
the conclusions and future lines of research we are cur-
rently working on.

2 RELATED WORK
The use of wide area detailed textures for real-time ter-
rain rendering was first studied by Michael Cosman in
1994 [7]. Two approaches were described: to use a mo-
saic of small textures of a size supported by the hard-
ware or to use a unique virtual texture managed by spe-
cific graphics hardware.

The ideas given by Cosman were later retaken by
Tanner et al. when they described the clipmap architec-
ture [22]. This approach was similar as it was based on
specific graphics hardware to support arbitrarily large
virtual textures with a very limited amount of texture
memory. The clipmap technique became quite popular
and nowadays it is one of the most important references
in the field of real-time terrain texturing.

Later approaches to the large textures problem were
published, that avoided the strong hardware require-
ments of the previous ones. They were mainly based
on the texture mosaic approach, and so they suffered
most of the limitations described by Cosman. Some of
the most important techniques were described by Hüt-
tner (MP-Grid) [13], Rabinovich [19], Cline [6], Döll-
ner [9], Klein [14], Cignoni (BDAM/PBDAM) [4, 5],
Brodersen [3] and DachsBacher [8].

The biggest drawback of these techniques is the
strong coupling between terrain geometry and texture
regarding database structure and run-time LOD selec-
tion. Geometry must be tessellated and tile boundaries
must exactly match those of the tiles of the texture
mosaic.
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Lefebvre [15] et al. described a generic texture man-
agement system for arbitrary meshes but that does not
comply with all the requirements we state, detailed in
next section. They use a tile pool texture that does not
keep continuity, what difficults high quality filtering.

The clipmap approach has also been adapted to ge-
ometry rendering, as in the works of Losasso [16],
Holkner [12] and Asirvatham [1]. The use of texturing
is proposed in some of these works, but texture LODs
are fully coupled with geometry LODs and so they are
not chosen based on the texture space projection of each
fragment. This is an important drawback not only to
LOD selection, but also to texture filtering. Some tech-
niques have been proposed recently, as in Ephanov [10]
and Seoane [21], based on the idea of clipmapping and
trying to provide its advantages while not requiring ex-
pensive specific graphics hardware.

Seoane’s technique provides a cached window of the
virtual texture, for each texture level, as big as desired
up to the texture size limit of the hardware. As it is a
roaming window instead of a mosaic of textures, geom-
etry tessellation is not so constrained as in other tech-
niques. Geometry boundaries can be anywhere and as
soon as the texture cache window contains a geometric
primitive, it can be textured with this level of detail.

This decoupling between geometry and texture man-
agement is one of the main advantages of this tech-
nique. It can be used with different tessellations, even
non-rectangular ones, i.e. TINs. The one important
aspect is about geometry batch size, not shape. The
problem of this technique is that, in order to achieve the
highest texture LODs, geometry must be highly frag-
mented, which may result in performance loss.

Ephanov et al. propose two alternatives for their Vir-
tual Textures: using the OpenGL fixed function pipeline
or using pixel shaders. The first choice is similar to
Seoane’s approach in its relation between texture LODs
and geometry tessellation and in that it does not require
programmable hardware. But Ephanov does not use
the toroidal update like Tanner and Seoane. Instead of
the continuous update of a center of detail, the paging
centers hop to positions matching the geometry. This
means an undesired coupling between texture and ge-
ometry management systems: the texturing engine must
know the geometry structure.

The second approach proposed by Ephanov extends
the previous scheme by using the programmability and
multi-texturing capabilities of new graphics hardware.
This way, they can map a geometry primitive using
several textures to achieve a higher texture detail for
this geometry than was possible with the fixed pipeline.
The drawback is that it implicates the use of several tex-
ture stages, making it difficult to combine several Vir-
tual Textures or to use them in other advanced rendering
techniques without expensive multiple render passes.

Also, the use of mipmaps for level tiles imposes a
memory usage overhead for redundant data. More-
over, the use of double buffering duplicates the graphics
memory assigned to cache the Virtual Texture.

Ben Garney [11] published a technique that emulates
clipmaps with programmable hardware. The main lim-
itation of this technique is that it requires one texture
stage for each clipmap stack level used. This drasti-
cally limits the number of stack levels that are simulta-
neously usable and, specially, it difficults the combina-
tion of several textures with programmed effects.

Later works on the topic are Mittring’s Advanced Vir-
tual Textures [17] and Barret’s [2] Sparse Virtual Tex-
tures. Both of them need at least an additional texture
for cache addressing and do not keep the texture space
continuity, what difficults high quality filtering. More-
over, none of these techniques address the management
of dynamic textures.

3 VIRTUAL DYNAMIC TEXTURING
SYSTEM

3.1 Objectives
The goals established in this work were focused on
solving the main drawbacks and limitations described
in previously mentioned works, supporting some fea-
tures required for new applications. The technique
complies with the following characteristics:

• It is based on a standard, such as OpenGL 2.0, avoid-
ing the requirement of any vendor specific hardware.

• Texture LOD is computed and applied per fragment,
resulting in an efficient cache usage and no drops of
detail in geometry boundaries.

• Efficient memory usage. Unlike in some of the pre-
vious techniques, no redundant data is to be needed
for hardware mipmaps or double buffering.

• Allows for several texture filtering types, including
dynamically configurable anisotropic filtering.

• High performance, real-time update and texturing.

• Compatibility of virtual texture with any custom ver-
tex or fragment shader.

• Use of only one hardware texture stage, allowing its
combination with custom shaders and high perfor-
mance multitexturing. This minimizes the number
of texture binds (only one) without need to sort the
geometry batches.

• Total independence from geometry. Possibility to
apply an arbitrarily large texture to a single quad
and reach its maximum LOD when the camera
approaches the textured surface. This way, it allows
the geometry engine to dynamically modify the
meshes in size, shape or topology.
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Figure 1: Overall architecture.

• As texture contents may be dynamic, cache is up-
dated not only in space but also in time.

In summary, the proposed texturing system provides
the features present in systems such as Cosman [7] and
Tanner [22], also allowing for new capabilities such
as dynamic update, multitexturing and its combination
with custom-made shaders. Moreover, the only hard-
ware requirement is a consumer graphics card.

This system can be applied to static or dynamic data
and, in both cases, data sources can be raster as well as
vectorial rendered to a procedural texture.

3.2 System architecture
The texturing system proposed is based on a two-level
cache hierarchy, following the clipmap[22] structure,
adapting it to currently available consumer hardware
and improving it to support dynamic textures with con-
tents that are continuously updated as a function of
time.

The first cache level is the texture subset stored in
TRAM, while second level is stored in RAM. Each
cache level has an associated component whose task is
to load or generate the contents stored in this cache. The
overall architecture is illustrated in Figure 1.

Following the clipmap structure, the pyramid (com-
plete levels) as well as the stack (incomplete levels) are
cached on TRAM.

Because the use of a single texture stage is a require-
ment of the system, as previously mentioned in the ob-
jectives, only a single texture could be used to store the
cache contents. We chose to use an OpenGL 3D tex-
ture to store all cache contents, because it offers several
advantages to both quality and performance of the sys-
tem. Storing each stack level on its own texture slice,
continuity is kept so bilinear filtering in the level can
be automatically done by hardware without noticeable
overhead. Moreover, this continuity simplifies texture
addressing. Both advantages assume the toroidal up-
dating and addressing of the stack levels, as described
by Tanner. The clipmap pyramid can be stored com-
pletely inside two slices in case of square virtual tex-
tures or one slice in rectangular ones. The storage of
the clipmap structure in a 3D texture is illustrated in
Figure 2.

This storage in a single texture is a big advantage over
the mosaic of textures approach followed by many other

Figure 2: Clipmap structure on a 3D texture.

techniques, critical for the independence between tex-
ture management and geometry management, regard-
ing structure as well as LOD management. It also frees
precious texture units that can be used for other pur-
poses in a custom shader that use the dynamic virtual
texture proposed combined with other textures of any
kind. This way, a user can access several virtual tex-
tures and use them for any purpose beyond just apply-
ing them as fragment color. Some examples of inter-
esting applications for virtual textures beyond color are
described by Ephanov [10].

The NVIDIA SDK white paper [18] proposes a struc-
ture using texture arrays, that can be an alternative to
the use of 3D textures, and the algorithms described in
our paper can be applied to this structure as well.

3.3 Updating
The cached region of the virtual texture that will be used
in the render is computed from the center of detail sup-
plied by the user. As the center of detail is moved over
the virtual texture space, the contents of the caches must
be replaced to keep the right information.

The update process implies several decisions affect-
ing cache efficiency and so the final visual quality,
though they must never affect the real-time perfor-
mance of the system. To guarantee this premise,
update process is divided in both a synchronous and an
asynchronous update. The synchronous update uploads
texture data to TRAM, competing for time with the
render tasks, and so it has time restrictions to avoid
frame drops. These time restrictions are dynamically
changed in function of the render load.

The synchronous update, that feeds the first level
cache, involves several important decisions. First of all,
which levels to load, which regions inside each level
and, in both cases, the loading order. Apart from that,
there are also some other aspects we must take into con-
sideration, such as temporal updating of dynamic data
and asynchronous, predictive RAM cache updating to
minimize second level cache misses.
Level loading order Regarding the order of loading,
the classic bottom-up approach has the advantage of
making the larger areas available first and then refining
detail as soon as possible in progressively smaller areas
around the center of detail. This is the strategy followed
by the great majority of systems, including Cosman [7]
and Tanner [22]. Although it is the best solution for
static data, in a dynamic data texturing system such as
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the one proposed, it is not. This scheduling scheme can
lead to situations in which the camera is focused on a
small detail of the texture that will never be available
because coarser levels covering bigger areas are contin-
uously reloaded even though they are not needed at all.
This problem is more severe as the updating frequency
of the data increases.

Frequently updated dynamic textures require a dif-
ferent approach for the update scheduling. We need to
know in the update stage what texture LODs will be re-
quired (not in the fragment shader, as before), and that
introduces an extra computation for the CPU. The scene
must be examined to determine what range of texture
LODs will be needed.

The computation of the exact LOD range needed in
the render can be complex and costly, and so affect the
system performance. We compute a conservative esti-
mation of the LODs needed in function of the distance
of the viewer to the textured geometry, the field of view
of the camera and the screen resolution. The distance is
estimated by casting some rays through the corners and
the center of the viewport (and optionally some other
samples, depending on the available computing power)
to intersect the terrain. This approximation results quite
adequate and needs reduced CPU time.
Inter-level loading order Concerning the update inside
a texture level, there are two possible approaches for
updating the TRAM texture cache of one texture level:
updating variably sized regions of invalidated data ac-
cording to center of detail displacement, as described
by Tanner [22], or tessellate the virtual texture space in
square tiles of fixed size, as described by Seoane [21].

Although the first approach can gain a bit of perfor-
mance in some circumstances, while introducing more
complexity to the update and specially to the load time
control, the second approach guarantees that loaded
texture blocks have an adequate size to maximize trans-
fer rate, avoiding inefficient small block transfers and
leaving this time available for other tasks in this frame.

For this reason we use the second approach, loading
fixed-size square tiles of texture. Tile size is either spec-
ified in the configuration or automatically computed
at startup time. The adjustment of this parameter is
very important for tile loading, as the transfer rate from
RAM to TRAM is strongly affected by it.

In case of procedural textures (tile render on-
demand), the tile size is also critical because it affects
the render efficiency. The usual behavior is that the
bigger the block to upload or render, the higher the
transfer rate or the rendering efficiency. However, for
an adequate load time control, the load/render quantum
must not be too big. In the special case of very dynamic
textures, modified every frame, the best option is to
render each whole level in one pass (tile size = clip
size) as long as the render time of a level does not
exceed the available update time.

Figure 3: TRAM tiles loading order. Example for a
given flight direction.

Figure 4: TRAM tiles loading order for a single quad
around center of detail. Example for a given flight di-
rection.

Following with the case of loaded tiles (instead of
rendered ones), our tests showed that the optimum tile
size for loading texture is dependent on the graphics
hardware, but it is usually around 128 square texels. It
is the smallest size before a severe drop of transfer rate.

Whatever the source of data, raster loaded or vecto-
rial rendered to texture, the tiles loading order inside a
texture level is defined with the following goals:

• To prioritize the loading of tiles close to the center
of detail, that contain the information located in the
region that will capture the user’s main attention.

• To progressively load rectangular areas around the
center of detail, i.e. to construct, as soon and as big
as possible, areas directly usable in the render.

• To prioritize those tiles that, for the current flight
direction, will be kept valid for more time, i.e. load
first the tiles in the direction of movement.

Following these goals, the sorted list of tiles to load
is generated in concentric squares around the center of
detail (innermost to outermost), as showed in the exam-
ple in figure 3. The order in each of these concentric
squares is illustrated in figure 4.
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Temporal update In case of dynamic textures, cache
tiles must be updated, not only when the center of de-
tail is moved, but also in function of time. The time of
life of a tile can be determined in two ways. An asyn-
chronous mechanism allows the client of the texturing
engine to invalidate any single tile, level or the whole
cache. Nevertheless, the usual temporal update is man-
aged through a synchronous mechanism based on an
expiry timestamp assigned to each tile. When this ex-
piry time is reached, the data is no longer valid and must
be requested again to the next cache level.

This expiry scheme has a problem that produces visi-
ble flickering on the render because, when some texture
tiles reach their expiration time and so become obso-
lete, those tiles that could not be updated in this frame
will cause a drop of quality in the render.

We solved this problem with a two-level expiration
scheme, with hard and soft expiration times. Soft expi-
ration refers to that there is new data available and its
loading should be scheduled, but old data can be used
meanwhile. Hard expiration implicates that this data is
obsolete and while new data is not available, this tile
or buffer cannot be used. With this technique, dynamic
data will be updated smoothly, keeping the highest level
of detail.

The expiration time is established by the data source
as part of some metadata attached to each tile, so this
information is propagated and taken into consideration
in every cache level.

One of the other parameters in this metadata is the
“absent” flag that avoids continuous request to the
cache pipeline of elements that are not available in the
data source. This allows to efficiently manage texture
with incomplete levels or heterogeneous detail in the
virtual texture. This concept was introduced by Tanner
as “high resolution insets”.

The dynamic virtual texture can vary the available in-
formation through time, so the absent state also has a
lifespan assigned and, once expired, this data can be re-
quested again. Apart from supporting dynamic data that
change, not only in contents, but also in spatial and de-
tail availability, it allows the use of existing information
in a texture database while it is still being generated.

Asynchronous predictive updating First level cache
(TRAM) is updated by its loader from the information
available in the second level cache (RAM), that struc-
tures the virtual texture space in square buffers with a
size that is a multiple of TRAM tile size.

As the transfer rate from secondary storage or even
network to RAM is much slower than from RAM to
TRAM, this will be the bottleneck of the updating. This
is why a prediction system, instead of an on-demand
approach, must be designed to minimize cache misses
and so avoid loss of detail or a slow refinement.

Figure 5: Loading order of RAM cache buffers.

Buffer loading priority is critical. In our experience,
the best results have been achieved with the following
algorithm (illustrated in Figure 5).

For each texture pyramid level (from coarser to finer),
the set of buffers conforming the region that contains
the current clipmap stack is computed. This set is called
“region A”. The L-shaped set of buffers surrounding the
region A, following the movement of the center of de-
tail is called “region B”.

The buffers in each region are sorted and loaded by
priority. Region A buffers are loaded innermost to out-
ermost in concentric rings and each ring is loaded be-
ginning with the buffers in the position towards which
the center of detail is moving, in a similar way as de-
scribed for TRAM tiles. Buffers in region B are loaded
from the center to the edge of each arm, beginning with
the arm in the main direction of movement. This way,
buffers closest to the center of detail are loaded first to
have valid data as soon as possible. Also, higher load-
ing priority is assigned to those buffers that presumably
have a longer life expectation, because they are in the
direction of movement.

Region A contains the buffers immediately needed
by TRAMCache, so they have the highest priority. But,
there is an important design decision about how to do
the loading along the clipmap levels.

Loading region A first for each clipmap level from
coarser to finer and then beginning with region B in
the same order gives the user the highest detail as soon
as possible, but the camera movement can make the
clipmap levels invalid very soon.

The other alternative is to load region A and then re-
gion B for each level in the clipmap, from coarser to
finer. It takes a little more time to reach the highest lev-
els of the clipmap, but once they are loaded they will be
much more stable and suffer little or no drops of detail.

The first strategy is more adequate when the camera
movement is very slow or when the application needs
to show the information very quickly in some points,
instead of showing a smooth visualization of a flight.
As the behavior is application dependent, we decided to
make it configurable and support both strategies. More-
over, this behaviour can be dynamically changed in run
time, so RAM cache loading schedule can be set as a
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function of the speed and/or kind of movement of the
camera.

After completion of regions A and B, as described,
the surrounding buffers are prefetched (region C),
sorted by proximity and clipmap level, until the
memory allocated to the cache has been filled.

Once all the available buffer storage space is filled,
an LRU policy is applied to discard old buffers and load
new ones. Only region C buffers are in the LRU queue;
regions A and B buffers are always kept in RAM.

It is important to state that the RAM cache can be
shared between several TRAM caches in applications
with several views of the same scene with different cen-
ters of interest. Regions A and B are dependent on the
client (TRAM cache) and they can be overlapped. To
keep these buffers locked in cache, a reference count
mechanism is used, so no buffer is sent back to the LRU
until it is out of every client region A and B.

3.4 Rendering
The kernel of the texturing system is in the fragment
shader code. A GLSL function (VTfetch) is provided
to access the dynamic virtual texture inside any user
shaders for whatever purpose.

The GLSL source code for this function is gener-
ated at run-time, during the initialization phase of the
TRAM cache, depending on its configuration. This
way, this performance critical code is highly optimized
for the exact intended use.

The fragment shader uses several parameters, being
the most important the texture coordinate set, received
from the vertex shader.

Some of the parameters used are the texture sampler
used by TRAM cache, the virtual texture size in texels,
the number of levels in the clipmap pyramid and stack,
the clip size, the tile size, the wrapping mode of the vir-
tual texture, the LOD offset and the limit of anisotropic
samples allowed.

The function, as well as these uniform parameters are
prefixed with a texture stage identifier in order to allow
several instances of virtual textures to coexist in differ-
ent texture stages and so be combined in a user custom
shader.

The main tasks of VTfetch are to compute the texture
levels of detail needed for the fragment, check the avail-
ability of the needed texels in the cache and select the
most adequate level for the fragment, address the real
3D texture to fetch the needed samples and combine
them performing the desired filtering scheme.

The computation of texture LOD is done using the
partial derivatives of texture coordinates in screen
space. In case of isotropic filtering, it is done in
a similar way to the one described in the OpenGL
specification [20].

After calculating the LOD, it is clamped down to the
immediate equal or lower level present in cache for the

texel. The fragment shader needs to know the status
of the TRAM cache, i.e. the availability of each texel
in the virtual texture full pyramid. This information
is communicated to the fragment shader through a set
of parameters containing the rectangular valid area for
each level, computed by the update process described
before.

How many texels and in what coordinates they are
fetched depends on the filter used for the virtual texture.
To avoid interpolation errors because of hardware bilin-
ear filtering on the 3D texture, a border of half a texel
around the valid area is considered unavailable, which
means that immediate coarser level texels will be used
instead. Supported filters include nearest neighbor, bi-
linear, trilinear and anisotropic.

As texture fetches are the most time consuming oper-
ation in the fragment shader, the number of anisotropic
samples is limited by an uniform parameter that can be
dynamically updated each frame, depending on the cur-
rent system stress.

3.5 Stress management
A stress management system was developed with the
objective of sustaining the frame rate of the visualiza-
tion. It has, among others, the responsibility of dis-
tributing the available update time for each frame be-
tween the virtual textures. This way, the update time
adapts to the time available until the next screen buffers
swap and textures can be prioritized in function of their
relevance or update status.

It can also dynamically adjust some of the quality pa-
rameters, such as the number of anisotropic samples, in
function of the system stress to avoid frame drops. As
the limit of anisotropic samples is a uniform parameter
to the fragment shader, it can be changed every frame
with no cost.

Monitoring the camera movement enables the render-
ing engine to increase quality (e.g. by improving the fil-
tering) when the camera stops, in applications that are
not frame rate critical and can allow frame drops in this
situation, or to change the update scheduling strategy as
described before.

3.6 Scalability issues
When virtual texture size is big (for example texturing
the whole planet with submetric detail), several prob-
lems arise, affecting quality as well as performance and
required resources:

• Memory requirements increase due to the amount of
stack levels in the cache.

• Update time increases for the same reason.

• 32-bit numeric precision of graphics hardware is
insufficient to accurately address the virtual space,
producing visible deviations in the texture coordi-
nates.
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Filter Render time
Nearest neigbour 1.6 ms
Bilinear 1.6 ms
Trilinear 1.6 ms
Anisotropic (1 sample) 1.7 ms
Anisotropic (2 samples) 3 ms
Anisotropic (4 samples) 4.4 ms
Anisotropic (8 samples) 5.4 ms
Anisotropic (16 samples) 7.3 ms
Anisotropic (32 samples) 8.5 ms
Anisotropic (64 samples) 9.9 ms
Anisotropic (128 samples) 11 ms

Table 1: Rendering performance.

In such situations, we solve these problems by not
caching all the stack levels, but only a subset (floating
stack) that is located depending on the proximity be-
tween the camera and the textured objects. This place-
ment of this window of levels is computed in a similar
way to the one mentioned for the level loading order
in very dynamic textures. Apart from the reduction of
levels stored, the texture area managed by the texturing
system is reduced to an extension between the address-
ing limits of 32-bit arithmetic precision of the hardware.

Therefore, the application updates the location of this
floating stack, as well as the center of detail position.
The active texture area can be supplied by the geome-
try engine (that will suffer the same precision problems
for the vertex coordinates and so it must work in lo-
cal coordinate systems) or it can be automatically com-
puted by the texturing engine following the position of
the center of detail. The update of the floating stack
as the cached window is moved, is performed in a cir-
cular way to minimize memory transfers and optimize
performance.

4 RESULTS

The current implementation of the described technique
has been integrated in our real-time terrain visualiza-
tion system in order to test it in a real production en-
vironment. For debugging, testing and verification pur-
poses, a standalone texture visualization tool was also
developed, that provides detailed graphic information
about the internal state of the texturing engine. All
the tests presented in this section have been performed
on an NVIDIA GeForce 8800 Ultra with driver version
1.4.0.90 for Linux 32-bit.

For the rendering performance and quality analysis,
we used a 1048576×1048576 texels (20 levels) texture
with its cache fully updated, so no texture loads could
affect performance. The cached window for each level
(clip size) was 2048×2048 texels. This virtual texture
was mapped to a frame filling plane viewed from a shal-
low angle to force a highly anisotropic situation. Screen
resolution was 1280x1024 pixels. In table 1 we can see
performance measurements for the different supported
filter types and, in the case of anisotropic filtering, dif-
ferent number of samples.

For the testing of update performance, a dynamic tex-
ture with high update ratio was used. Texture virtual
size was 131072×65536 (17 levels), with a clip size of
1024×1024 and a TRAM cache tile size of 128×128.

The data source was taken from NASA Blue Marble
data set, showing the Earth appearance along a year.
Texture update rate was set to one second, with a grace
period of another second to reload the information be-
fore invalidating it.

This dynamic texture was applied to a model of the
Earth globe and moved around, zooming in and out to
examine different places as in a typical usage.

The update time assigned for each frame was 3 ms,
data was accessed through a network, and cache con-
tents were completely replaced every second. The high-
est detail was available for the most time, especially
with still camera or slow movements. Drops of detail
matched the fast movements of the camera (and so the
center of detail) but they were barely noticeable because
in these situations the user is far away and higher levels
are not applied.

The size of the cached window or clip size is an
important decision. With static data it is beneficial
to have a higher size, because it allows to make fast
moves, keeping the maximum detail, but with dynamic
data it can be counterproductive, because update time
is wasted with information that will expire before being
used. In highly dynamic information, it is very critical
to adjust the clip size to the minimum required for the
screen resolution. We usually chose 1024 for high up-
date ratios (near to a second) and 2048 for low update
ratios or static data.

The scalability of the system was successfully tested
with a static virtual texture of 227×226 texels covering
the whole planet, reaching a resolution of 0.25 m/texel
in the area of highest detail.

5 CONCLUSION AND FUTURE
WORK

We have developed a geospecifical, dynamic, virtual
texturing engine that fulfills the objectives proposed in
section 3.1 and we are beginning to successfully test
the system in real environments. We have focused on
terrain texture or similar applications, where detail is
located around a unique area, and not on other ap-
plications that need sparse detail textures. Planetary
sized dynamic textures with submetric resolution are
supported through the virtualization mechanisms de-
scribed.

One of the most important achievements of the pro-
posed system is to offer all the previously mentioned
features while keeping full geometry independence.
This allows homogeneous, high quality aerial image to
be mapped over irregularly tessellated terrain, enabling
us to use this virtual texturing engine in applications
like the one shown in Fig. 6, where terrain geometry
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Figure 6: Texturing a TIN-based terrain with embedded
3D models.

Figure 7: Examples of use of the texturing engine.

cannot have a regular tessellation because it must be
accurately adapted to a 3D model of a highway.

Multitexture capabilities have been tested blending
raster virtual textures together and blending them with
vectorial data rendered to another virtual texture, such
as technical drawings or GIS layers. Figure 7 shows
these examples, as well as the use of the texturing en-
gine within a shader that desaturates some regions de-
pending on their color.

Concerning dynamic update of textures, we have
found that quantitative results have outperformed
the needs of real applications managing dynamic
geographic information, where usual update cycles do
not fall below one minute.

We are exploring the benefits of the described tech-
nique in some fields of application, combining visual-
ization of high resolution aerial image with dynamic
raser and vectorial data over 3D terrain models. This in-
cludes projects in real-time traffic management, urban
planning, infrastructure project analysis and fire extinc-
tion, among others.
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ABSTRACT

Distant astrophysical objects like planetary nebulae can normally only be observed from a single point of view. Assuming
a cylindrically symmetric geometry, one can nevertheless create 3D models of those objects using tomographic methods.
We solve the resulting algebraic equations efficiently on graphics hardware. Small deviations from axial symmetry are then
corrected using heuristic methods, because the arising 3D models are, in general, no longer unambiguously defined. We
visualize the models using real-time volume rendering. Models for actual planetary nebulae created by this approach match
the observational data acquired from the earth’s viewpoint, while also looking plausible from other viewpoints for which no
experimental data is available.

Keywords: algebraic reconstruction, volumetric modelling, volume reconstruction, 3D modelling

1 INTRODUCTION

When stars not larger than a few sun masses die, they
often eject part of their matter until only a small glow-
ing nucleus is left in the center of a gaseous shell.
These objects are called planetary nebulae. Their
shape is often spherical or bipolar (i.e. cylindrically
symmetric), but irregular shapes exist as well. Due
to the radiation of the central star, the atoms in the
shell get ionized and begin to emit light of character-
istic wavelengths when the electrons recombine. Usu-
ally, there is not much absorption in the shell, so that
only emissive effects have to be taken into account for
reconstruction and visualization. A more comprehen-
sive introduction to planetary nebulae can be found in
[OF06].

In astrophysical research on planetary nebulae, be-
ing able to determine plausible models of their three-
dimensional shape is an important precondition for a
better understanding of the physical processes under-
lying their structure. For example, simulations of pho-
toionization processes rely on a model of gas volume
densities as input data and can in turn validate those
models with respect to their physical realism. Interac-
tive 3D visualizations of planetary nebulae can also be
useful for scientific and educational purposes, such as
digital planetariums.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Figure 1: The Cat’s Eye Nebula. Top: images
taken using filters for 487nm, 502nm and 656nm
that are assigned to the red, green and blue color

channels, respectively. Middle and bottom:
asymmetry-corrected reconstruction, view from

earth and from outer space.
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While some algorithms already exist to reconstruct
the 3D shapes of planetary nebulae using a single in-
put image, we present a fast, GPU-based approach
that not only outperforms existing solutions in terms
of computing time, but also includes asymmetric fea-
tures without requiring further input data.

2 RELATED WORK
While planetary nebulae are a common research
object in astrophysics and astronomy, their three-
dimensional visualization has been purely artistic
work for a long time. One notable exception is
the rendering of the Orion nebula by Nadeau et.
al. [NGN+01], who created a scientifically accurate
fly-through animation of that nebula, but the 3D model
they use had to be worked out by hand by astronomers.
A large amount of astronomical research work is done
on the subject of classifying [Cur18, KK68] and
explaining [KPF78, CP83] the three-dimensional
structure of planetary nebulae and to simulate the
physical processes inside planetary nebulae for the
proposed 3D geometries in order to confirm these
observational findings [MF89, AKR00, EMB+03].
However, the processes leading to the observed
structures are still not well understood, and reliable
determination of their 3D shape is an open problem.

Sabbadin et al. [Sab84, SCB+00] as well as
Saurer [Sau97] take a semi-automatic physics-based
approach for the reconstruction of the 3D geometry of
planetary nebulae. They assume that the velocity of
a certain region of gas around the nebula is strongly
correlated to its distance from the central star. Calcu-
lating the Doppler shift of some well-known emission
lines allows to get the velocity component towards
the observer. Combining these, depth information
can be reconstructed. However, the relation between
velocity and distance from the central star is generally
unknown, and exact Doppler shift measurement
requires elaborate experimental setups, while our
reconstruction approach relies on easily available
photographic images only.

Methods for tomographic reconstruction of axisym-
metric objects based on a single image have been pro-
posed by Hanson [Han93], who applies this approach
to man-made objects with known and theoretically
perfect axisymmetry.

Magnor et al. [MKHD04, MKHD05] present a hard-
ware accelerated reconstruction method for planetary
nebulae that works with a single photograph as in-
put. Their analysis-by-synthesis approach is based on
the assumption of axial symmetry and Constrained In-
verse Volume Rendering (CIVR). While they also pro-
pose corrections for small deviations from axial sym-
metry, these corrections are not realized in the pro-
vided examples. Furthermore, the reconstruction us-
ing their approach is computationally very expensive.

Linţu et al. have proposed a variant of the above al-
gorithm that estimates absorption and scattering using
an infrared image of the same object, allowing to re-
construct the dust density as well and thereby extend-
ing the range of reconstructible objects [LLM+07b,
LLM+07a].

Another piece of work by Linţu et al. [LHM+07]
describes a method to reconstruct the volume den-
sity distribution of dust in reflection nebulae using an
analysis-by-synthesis approach. The algorithm does
not rely on symmetry assumptions but exploits the
special properties of light transport in an environment
dominated by scattering and absorption to produce
non-exact but plausible 3D volumes. However, these
properties are not present in planetary nebulae which
are usually dominated by emission, and the method
can therefore not be applied.

3 ALGEBRAIC RECONSTRUCTION
A common approach for getting three-dimensional
volume models from two-dimensional images is tomo-
graphic reconstruction [KS88]. This method is used,
for example, in computed tomography (CT) to get
volume densities out of multiple x-ray images of an
object. While in the case of CT images the density of
the object causes absorption, the contrary is the case
for planetary nebulae, which emit light proportionally
to the density of ionized gas. The intensity Ii of a
certain pixel i in a discrete two-dimensional image
of a planetary nebula is just the integral over all the
emission densities along the incident light ray Ray(i)
of this pixel. Using a discrete volume model, this
can be written as a sum over all volume elements v j,
where each summand is the length of the ray that lies
within the volume element (denoted by |Ray(i)∩ v j|),
multiplied by its emission density ρ j:

Ii = ∑
j
|Ray(i)∩ v j| ·ρ j, (1)

This system of linear equations, usually written as
Ax = b with x j = ρ j, bi = Ii and Ai j = |Ray(i)∩v j|, can
now be solved for the ρ j. Under certain preconditions,
this gives a unique solution for the volume emission
densities.

For the solution to be uniquely defined, the rank
of the matrix A must be at least equal to the num-
ber of volume elements. This is usually achieved by
using images from multiple viewpoints. In practice,
the system will almost always be overdetermined, as
one would rather use more pixels than necessary to get
more stable results. An approximate solution can then
be computed using iterative algorithms that minimize
the 2-norm ||Ax−b||2 of the residual error.

For most astrophysical objects, getting images from
multiple viewpoints is impossible due to the large dis-
tance to those objects. This means that if a regular grid
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of volume elements (or voxels) is used, the linear sys-
tem is not uniquely defined and would in fact not yield
any information about the three-dimensional structure
of the object.

This problem can be solved by making additional
assumptions about the geometry of the object, e.g. an
axial symmetry that is common in planetary nebulae.
Such symmetries can easily be reflected in the choice
of voxels by combining all regions of space that are
assumed to have the same emission density into one
voxel (Fig. 2). This can reduce the three-dimensional
complexity of the voxels (x,y,z) to a two-dimensional
one in the case of cylindrical voxels (r,z) so that the
solution of the linear system is unique.

The appearance of axisymmetric models obviously
depends strongly on the choice of the symmetry axis.
Several possibilities exist for determining a plausible
symmetry axis, most of which involve physical rea-
soning and further observational data. One automatic
way to find a symmetry axis would be to determine its
angle within the image plane by principal components
analysis and then look for elliptical features in the im-
age that are likely to be circles in the real object. The
axis angle with respect to the image plane can then
be calculated from this projection, although a natural
ambivalence between backward and forward inclined
axes remains. For our test cases, the symmetry axes
were usually determined by hand.

Figure 2: A voxel representing the axial
symmetry of the geometry. Since all locations

that lie in the same voxel share the same intensity,
using voxels of this form guarantees axial

symmetry of the result.

While symmetries are common in planetary nebu-
lae, their symmetry is never perfect. To get more real-
istic results, the residual pixel intensities b−Axapprox
for some approximate (and perfectly symmetric) solu-
tion xapprox can be distributed among the voxels that
contribute to the intensity of the corresponding pixel.
Because no depth information is available for these un-
matched emissivity densities, the distribution among
the voxels is not uniquely defined and can in fact only
be chosen using heuristic methods.

4 A FAST RECONSTRUCTION AL-
GORITHM

4.1 Specifying the Linear System
In order to specify the system of linear equations
(eq. 1), we need to calculate the matrix elements Ai j
and the right-hand vector b. While the bi are already
given by the intensities of the pixels, setting up the Ai j
requires further calculations.

We recall that Ai j = |Ray(i)∩ v j| is the length of
the ray through pixel i that lies within the volume ele-
ment j. This means we have to calculate the intersec-
tion points of lines with voxels that have the form of a
hollow cylinder (cf. Fig. 2). Since the viewing angle is
usually very small due to the large distance to the ob-
ject, we can assume that all the incident light rays are
orthogonal to the image plane, so that they are defined
as

r(t) =

 px
py
0

+ t

 0
0
−1

 , (2)

where px and py are the pixel x and y coordi-
nates, respectively. This means we are using a
three-dimensionally extended version of the image
coordinate system for our calculations.

4.2 Solving the Linear System
The linear system Ax = b must now be solved for
the voxel intensities x. Since the system is usually
overdetermined, in general only an approximate solu-
tion minimizing the residual norm ||Ax−b||2 is possi-
ble. This solution can be determined by iterative algo-
rithms such as the Conjugate Gradient Least Squares
(CGLS) method [Han96].

The fundamental idea of the Conjugate Gradient al-
gorithm is that solving Ax = b with A symmetric and
positive definite is equivalent to minimizing f (x) =
1
2 xTAx − bTx. Starting from x = 0, each iteration
step k modifies the intermediate solution vector xk by
descending in the direction of the gradient of f (x),
so that xk+1 = xk + εk∇ f (x)|x=xk (where ∇ is the
gradient operator). For fast convergence, it is im-
portant that εk is computed such that xk+1 ends up
close to the one-dimensional minimum in direction
∇ f (x)|x=xk , and that the directions of descent are con-
jugate to each other, that means that for all directions
di = ∇ f (x)|x=xi , dj = ∇ f (x)|x=x j : di

TAdj = 0.
In our case, however, the matrix A does not fulfill

the above conditions. But since for any matrix A the
matrix product ATA is symmetric and positive defi-
nite, we can multiply our system Ax = b by AT and
solve ATAx = ATb instead. The CGLS implementation
does this multiplication implicitly, preserving sparsity
of the matrix A, which allows for more efficient (mem-
ory saving) algorithms.
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Since the norm ||x||2 of the intermediate solutions
increases monotonically during the iteration, it is nec-
essary to start the iteration with x = 0 in order to not
exclude any possible solution. The residual norm, on
the other hand, is guaranteed to decrease monotoni-
cally, so convergence is guaranteed if numerical er-
rors can be neglected. In practice, the iteration can be
stopped as soon as the convergence speed falls below
a chosen minimal value.

In the original algorithm, the value range for the vec-
tor x is not restricted in any way. Particularly, the en-
tries of the solution vector can be negative. Since neg-
ative emission intensities are impossible (they cannot
even be regarded as a physically valid model for ab-
sorption), the intermediate solutions have to be pro-
jected onto the subspace of positive solutions after
each step so that the positivity of the solution is guar-
anteed [IM04].

After this step, we have obtained a radial map of the
model, that is a 2D grid of densities whose axes are
the r and z cylinder coordinates of the corresponding
voxel. Rotating this map around the z axis gives the
full axisymmetric 3D model.

Implementations of iterative least-squares solvers
for linear systems are widely available (Matlab’s
x=A\b operation, for example), but normally do not
allow for additional restrictions to the solution vector
x. Since we need to guarantee x j ≥ 0 for all vector
components, we adapt an existing implementation
[han] to suit our needs.

For the matrix manipulations that are used in the
algorithm we make use of the GPU’s parallel com-
puting power using the nvidia CUBLAS 1 library.
This approach speeds up the reconstruction process
by two orders of magnitude (Fig. 3) with respect to a
purely CPU-based implementation of the same library
2. However, the matrix size in the GPU accelerated
version is limited by the graphics card memory and
the maximum texture size3, but the resulting limit on
the model size is usually not much smaller than the
limit imposed by the quality of available input images.

4.3 Correcting for Asymmetries
While from a macroscopic point of view many plane-
tary nebulae show axial symmetry, on a smaller scale
there is always some deviation from perfect symmetry.
This can be seen in the residual image that is left when
the projection of the reconstructed model onto the im-
age plane is subtracted from the real image. We dis-

1 http://www.nvidia.com/object/cuda_develop.
html

2 The UBLAS library from http://www.boost.org/doc/
libs/1_35_0.

3 On our setup with 768 MB of video RAM, the model is restricted
to about 7000 entries in the radial map, or about 120 slices and 60
rings.

Figure 3: Comparison of computing time for CPU
and GPU based implementations, in logarithmic

scale, for matrices of size 1x1 up to size
14000x14000.

tribute this residual intensity among the voxels of our
model so that the projection equals the original image
(cf. Fig. 5).

Since there is no depth information available for the
asymmetric part of the intensity, this distribution will
always be ambiguous, so we have to choose a “dis-
tribution function” that gives subjectively good results
when viewed from different angles.

To break up the axial symmetry, the model of cylin-
drical voxels is first converted into a model of cubic
voxels. For efficiency, the model is aligned to the im-
age plane, so that its x and y resolution equal the im-
age x and y resolution. The z resolution is chosen such
that the whole model fits into the voxel volume. Since
by that choice of the cubic voxel model every voxel
only contributes to a single pixel, we do not need to
take interdependencies between voxels into account.
So the only decision that is left is which voxels that
share common x and y coordinates will get how much
of the residual intensity of the pixel (x,y).

A convenient distribution function turns out to be
the following: Each voxel gets an amount of residual
intensity that is proportional to the amount of intensity
it already contributes to the pixel intensity4. So if the
reconstructed pixel intensity is Ip = ∑v∈V Iv where V
is the set of all voxels that contribute to the current
pixel, the residual intensity is Ir and the original pixel
intensity is Io = Ip + Ir, the new voxel intensities are

I′v = Iv +
Iv

Ip
Ir = Iv

(
1+

Ir

Ip

)
= Iv

(
Io

Ip

)
. (3)

As this is just a multiplication of all voxels that are
projected onto the same pixel with a common value

4 Alternative approaches could use more assumptions about where
asymmetries are likely to occur. For example, one might assume
that the exploding star itself is perfectly symmetric and only when
the expanding gas cloud hits small space debris, it is asymmetrically
deformed. This would imply that the residual should preferably be
applied to the outer regions of the shell.

Journal of WSCG 36 ISSN 1213 – 6972 



Io
Ip

, this is efficient to calculate knowing the projected
intensity Ip and the residual Ir. The function is also op-
timal in the sense that it guarantees non-negative voxel
intensities whenever possible, which in our case is al-
ways the case because the pixel intensities are always
non-negative. This means that the rendered model will
exactly reproduce the observed image when rendered
from the original point of view, provided that the voxel
resolution is large enough. It also preserves visual
coherence between neighboring voxels which usually
have similar intensities.

4.4 Visualizing the Results
The output of the reconstruction algorithm is a
three-dimensional grid of cubic voxels, each of which
has a certain emission density. To visualize this
grid from an arbitrary viewpoint, volume ray casting
can be used. Since the model is purely emissive,
this means that from each screen pixel a ray is cast
through the volume and intensities along the ray are
summed up. This volume ray casting process is well
suited for implementation on graphics hardware. The
voxel model, for example, can easily be represented
as a three-dimensional texture, and integrating the
intensities along a given ray can be approximated
by summing up the texture values at a number of
fixed-distance sampling points along the ray using a
fragment shader.

In order to get an impression of the chemical compo-
sition of a planetary nebula, reconstructed voxel mod-
els for different wavelengths can be shown simultane-
ously, assigning a color to each of them. Since the
interesting spectral lines are often too close to each
other (like the hydrogen and nitrogen lines at 656nm
and 658nm, respectively) or even invisible to the hu-
man eye, false-color display is used. In the simplest
case, when three different source images are to be dis-
played, these are naturally assigned to the red, green
and blue color channels.

5 RESULTS
5.1 An Artificial Test Case
In order to verify the accurateness of our reconstruc-
tion, we first reconstruct an artificial model with per-
fect axisymmetry. For this, a radial map of intensities
is drawn and projected into the image plane at differ-
ent inclination angles. The resulting images are then
reconstructed and the reconstructed intensity maps are
compared to the original. We can show that for inclina-
tions at least up to 45 degrees, the reconstructed radial
map very closely resembles the original (see Fig. 4).

5.2 NGC7009 (Saturn Nebula)
The Saturn Nebula (Fig. 5), discovered by William
Herschel in 1782, shows a bright, slightly S-shaped

Figure 4: An artificial “nebula” used for testing
the reconstruction (from top to bottom and left to
right): radial map, rendered view with 35 degrees

inclination, reconstructed radial map
(reconstructed with somewhat lower resolution
and scaled to the size of the original radial map)

and difference image of the radial maps

structure in the center, surrounded by a darker, barrel-
shaped one. The S-shaped structure has noticeable
reddish glowing tips. The original images were mod-
erately disturbed by stars, so slight preprocessing had
to be done.

5.3 Mz3 (Ant Nebula)
The Ant Nebula, discovered in 1922 by Donald Men-
zel, has a number of different gaseous outflows from
its bright center. The most visible outflow consists
of two approximately spherical lobes, but more sub-
tle “rays” can also be observed outside these lobes.
Interestingly, all these features share a common axis
of symmetry, so in principle the simultaneous recon-
struction of all important features would be possible
(Fig. 6). However, due to the large difference in inten-
sity and the linear scale chosen in the visualization,
these structures cannot be observed together in one
output image. Anyway, the interesting fine-grained
asymmetries of the spherical lobes are visible in the
asymmetry-corrected output (Fig. 7).

Due to the presence of many bright stars in the orig-
inal images, heavy preprocessing5 needed to be done.
This may have caused loss of fine-grained structures
in some areas.

Magnor et. al also reconstructed the Ant Nebula us-
ing their CIVR approach. The algebraic reconstruc-
tion algorithm that we implement outperforms CIVR
– which leads to results that are optically very simi-

5 including removing the background by thresholding, and removing
stars by masking and filling the masked regions by diffusion
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lar to the purely symmetric part of our reconstruction
– by far: while using CIVR, “the reconstruction of
a 128x32-pixel density map takes approximately one
day on a 2.4 GHz PC in conjunction with an nVidia
GeForce FX 3000 graphics card” [MKHD04], our al-
gebraic approach can reconstruct the nebula with com-
parable resolution in a matter of seconds, including
asymmetry correction.

5.4 NGC6543 (Cat’s Eye Nebula)
The Cat’s Eye Nebula (Fig. 1), discovered by William
Herschel in 1786, has a very complex and not quite
axisymmetric structure. Its reconstruction is neverthe-
less quite accurate due to the asymmetry correction.
Due to its relatively large brightness compared to the
surrounding stars, no preprocessing was needed to get
clean results.

6 CONCLUSIONS
We have presented an efficient algebraic reconstruc-
tion approach to derive 3D information from single
images of axisymmetric and purely emissive objects
like planetary nebulae. Axial symmetry is broken in a
controlled way in order to achieve closer resemblance
between the model and observational data. The cal-
culations are carried out efficiently by making use of
the GPU’s parallel computing power, and the resulting
models closely resemble the actual photographs.

There are, however, some limitations inherent to our
approach. The asymmetry correction is not based on
any physical measurement and can only be heuristi-
cally and ambigously determined, as long as no ad-
ditional data is provided. The reconstruction is also
only possible for nebulae whose axis of symmetry is
not too far inclined with respect to the image plane be-
cause no reliable 3D information can be derived if the
axis is close to parallel to the viewing direction. For
the same reason, objects without symmetry cannot be
reconstructed at all.

However, for axisymmetric objects the results
closely resemble the original. The CGLS algorithm
is guaranteed to converge, and small asymmetric
features can be included in such a way that the origi-
nal image is exactly reconstructed. For objects with
spherical symmetry, the algorithm is also applicable,
though it could be optimized further to benefit from
the stricter constraints.

The resulting three-dimensional models can be ren-
dered from arbitrary perspectives. This allows for a
wide field of applications, in scientific as well as artis-
tic contexts. They may help understanding the com-
plex structure of planetary nebulae and the physical
mechanisms that underlie their formation.

In ongoing research we evaluate the possibility of
allowing a wider variety of symmetry constraints. A
user-supplied set of model parts such as cylinders,

spheres, and other geometric primitives that may rep-
resent a physical explanation of the shape of the object
could be used instead of just a single cylinder. This
would allow to model more complex symmetries such
as the helix that is present in the Saturn Nebula.

In order to assure physical realism, depth informa-
tion from Doppler shift measurements could easily be
incorporated into the error function, which would al-
low to loosen the symmetry constraints where better
depth information is available.
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Figure 5: The Saturn Nebula. From top to
bottom: images taken using filters for 502nm,
555nm and 658nm that are assigned to the red,

green and blue color channels, respectively;
reconstruction without asymmetry correction;

reconstruction with asymmetry correction, from
earth; reconstruction with asymmetry correction,
from outer space. Note how the S-shape of the

original image is lost during reconstruction
because it violates the axisymmetry constraint,
and how the asymmetry correction restores this

important feature.
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Figure 6: Reconstruction of the Ant Nebula
without asymmetry correction: radial map (top)
and reconstructed view from earth (middle) and
from outer space (bottom). The red, green and

blue color channels are assigned to 673nm,
658nm and 487nm, respectively.

Figure 7: The Ant Nebula. Top: images taken
using filters for 487nm, 658nm and 673nm that

are assigned to the red, green and blue color
channels, respectively. Middle and bottom:

asymmetry-corrected reconstruction, view from
earth and from outer space. In the bottom image,

artifacts of the asymmetry correction due to
overly bright regions in the input image can be

observed as lines parallel to the viewing direction
of the original image.
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ABSTRACT

In high energy physics the structure of matter is investigated through particle accelerator experiments where particle collisions
(events) occur at such high energies that new particles are produced. Providing tools for interactive visual inspection of billions
of such events occurring in an experiment in an intuitive way is a challenging task. In order to solve this problem we built on
previous approaches for visual browsing through image databases and extend them in several ways in order to allow efficient
navigation through the collision event datasets. The key features of our novel browsing technique are its applicability to the very
large event datasets, a more intuitive selection method for specifying a region of interest, and finally a clustering-based technique
that further simplifies and improves the navigation process. We demonstrate the potential of our novel visual inspection system
by integrating it into an event display application for the COMPASS experiment at CERN.

Keywords: Interactive browsing, similarity-based visualization, Multidimensional Scaling, Earth Mover’s Distance.

1 INTRODUCTION

High energy physics (HEP) investigates the inner struc-
ture of matter by performing experiments where highly
accelerated particles collide with each other or with a
fixed target. Each such collision results in the birth
of multiple new particles with individual characteristics
(charge, momentum, etc.), which is called an event. A
particle accelerator experiment utilizes a setup of differ-
ent detectors to identify events and to be able to recon-
struct the trajectories of the new particles produced in
an event (called tracks) and thus their respective physi-
cal characteristics. A number of applications, typically
called event displays, have been developed for the pur-
pose of visualizing the reconstruction of an event and
its tracks. However, current state-of-the-art event dis-
plays (e.g. [18, 24, 16, 2, 7, 12, 17]) focus primarily on
visualizing single events in various ways [6].

With the ever growing size and energy of modern
particle accelerators, the number of events produced in
an experiment and used in later analysis constantly in-
creased over the last years. A typical event dataset en-
countered in analysis consists of millions of events, and
hundreds of such datasets are produced in the course
of a year. In the COMPASS experiment at CERN [1],
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Figure 1: The interactive browsing system (visible to the
right) in use in the COMPASS event display.

about 350 TB raw data per year are produced. Through
preprocessing and filtering this raw data is reduced by
factor 100, and the results are stored in several 2 GB
files containing roughly half a million events each.

In event displays, the visualization typically starts by
specifying an event dataset, from which events to be
visualized can be chosen using very simple techniques,
for instance by specifying the identification number of
an event or by moving the focus to the preceding or
following event in the time line. The CMS event display
further has an option to automatically display a random
event from the data source every 3 seconds [4].

These present tools for event navigation are neither
suited nor designed for purposeful navigation. We
therefore believe that a more sophisticated event nav-
igation tool, which permits interactive browsing of the
event dataset in an intuitive way will greatly simplify
the interactive analysis of physical event data. The in-
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teractive event browser described in this paper exactly
fulfills this purpose.

Its workflow was inspired by Rubner et al. [22], who
proposed a similar navigation for image databases. The
basic idea is to represent events on a two-dimensional
map where similar events are located close to each
other. To produce such two-dimensional maps, we fol-
low Rubner’s approach in that we use multidimensional
scaling and define a similarity measure for the events
based on the so-called Earth Mover’s Distance.

To make the approach scalable to very large numbers
of events, in terms of usability as well as computation
time, only subsets of events are shown on the map at a
time, but the map can iteratively be refined by the user
through selecting regions of interest.

While the use of two-dimensional maps has a great
potential for navigation through a complex dataset, a
major problem is the distortion of distances introduced
by the dimensionality reduction that is needed for cre-
ating the map. This is especially relevant when the user
selects a certain region of interest in the map to inter-
actively browse through similar events or to refine the
map to a certain subset of similar events. For this pur-
pose, the selection of similar events solely based on
a 2D neighborhood would certainly not be adequate,
since because of the generally unavoidable distortion,
some pairs of events shown close to each other may
exhibit significant dissimilarity (even though the dis-
tance of points in the map is in general proportional to
the dissimilarity of the respective events). Such out-
liers should not be included in the refined map to avoid
unnecessarily high distortions, which would hinder an
efficient navigation.

In this paper, we tackle this problem by defining a
new criterion for transferring a selected region on the
map to a selection of events in the non-Euclidean space
(Section 5). This technique accounts for local distor-
tions in the map projection and is robust to the afore-
mentioned kind of outliers. Another important aspect
of the new technique is that it can also be applied when
subsampling strategies have been applied during the
calculation of the maps, on which the user selects the
regions of interest, i.e. when only a partial Euclidean
embedding of the respective event set has been deter-
mined. This is of relevance because such subsampling
strategies are inevitable to make the approach applica-
ble also to very large datasets, as we will explain in
Section 3.2.

This improved strategy for selecting a region of in-
terest in the dataset allows for a better user control of
the navigation process since it avoids refining into re-
gions corresponding to unwanted outliers contained in
a selected map region. Additionally, the control over
the navigation process can be further improved by in-
tegrating a cluster selection technique which allows not
only to inspect certain clusters of interest more easily,

but also helps to produce less distorted maps during it-
erative refinement.

The paper is organized as follows: Section 2 sketches
the previous work on navigation approaches and also
briefly describes the basics of the fundamental algo-
rithms for dimensionality reduction and clustering used
in this paper. Section 3 describes how we define a sim-
ilarity measure for HEP event datasets, which is a pre-
requisite for being able to determine map representa-
tions of events. Additionally, it discusses how we make
this approach applicable to large-scale datasets by the
use of sampling. Section 4 describes the process of
interactive navigation through event datasets including
cluster selection and iterative refinement. Furthermore,
the applicability and limitations of recent approaches
to select a region of interest for the refinement are dis-
cussed. Section 5 describes the proposed new technique
for specifying the region of interest. Finally, Section 6
demonstrates the usefulness of the proposed navigation
technique on examples of real event datasets, and Sec-
tion 7 concludes with a summary.

2 PREVIOUS WORK
If a similarity measure in form of a metric can be sup-
plied for a specific type of data we speak of metric data.
We call the distance in the corresponding metric space
dissimilarity to emphasize the fact that the metric space
is in general not an Euclidean space.

2.1 Map Navigation
The general idea of a map representation of metric data
is to embed it into the Euclidean R2 where the dis-
tance between two points in the Euclidean space ap-
proximates the dissimilarity between the corresponding
objects according to the given metric.

In the context of image databases, Rubner et al. [22]
describe a navigation technique based on map represen-
tations of images. To compute such map representa-
tions, a metric for images is proposed based on color
distribution. Which images are shown on a map is spec-
ified by queries where a query itself is stated in terms
of a color distribution. In the navigation process de-
scribed in [22] the user can create a new map by select-
ing a point in the current map. For the selected point a
query is generated and the k images, which are the most
similar to the queried point according to its color distri-
bution, are shown on the new map. The number k of
visible images is decreased after each navigation step.

The semantic image browser by Yang et al. [27] also
makes use of map representations of images. To se-
lect which images are shown on such a map, the user
must specify a sample image and a dissimilarity thresh-
old which can be interactively chosen through a scaling
bar. Exactly those images are selected whose dissim-
ilarities to the specified sample image are not greater
than the specified threshold.
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2.2 Earth Mover’s Distance
For a dataset whose data items are described by
distributions, a metric can be defined by a solution
of the so-called mass transportation problem [9, 21].
This solution corresponds to a metric called Monge-
Kantorovich Distance, or in context of statistics, to
the Mallows Distance [14]. Also in context of image
databases, this similarity measure has been applied in
several works [19, 10, 22, 23, 27]. Here, it was given
the name Earth Mover’s Distance (EMD) [22].

The original mass transportation problem was
stated by Monge 1781, where he asks how a piece
of soil can be moved from fillings to excavations
with the least amount of work. Formally Monge’s
problem can be stated as a linear program in the
following way [21]: Let position and masses of
the fillings and excavations be given by the dis-
crete distributions a = {(x1, p1), . . . ,(xm, pm)} and
b = {(y1,q1), . . . ,(yn,qn)} where the sites xi and y j
are typically in Rd and the masses are normalized, i.e.
∑ pi = ∑q j = 1. The work to move a unit amount
of mass from site xi to site y j is quantified by the
real-valued function c(xi,y j) ≡ ci j, the so-called
ground distance. A solution is given by an assignment
µ : {1, . . . ,m} × {1, . . . ,n} → R of how much mass
is transported from a filling site to an excavation site.
The optimal assignment then is found by solving the
following linear program:

min
µ

m

∑
i=1

n

∑
j=1

µ(i, j)ci j (1)

subject to µ(i, j)≥ 0 i=1,...,m∧ j=1,...,n

∑
n
j=1 µ(i, j) = pi i=1,...,m

∑
m
i=1 µ(i, j) = q j j=1,...,n

As shown in [22], the solution to this linear program is
truly a metric.

In summary, solving the mass transportation problem
lets us define a metric between discrete distributions by
the means of an adequate ground distance ci j.

2.3 Multidimensional Scaling
The first Multidimensional Scaling (MDS) method, the
so-called classical MDS, was introduced by Torgerson
in 1952 [25]. For a detailed overview of this and more
recent MDS methods, including its metric and non-
metric variant, we refer to [3].

In general, MDS methods determine a coordinate
representation of dissimilarity data in low dimensional
Euclidean space such that the pairwise coordinate dis-
tances approximate the dissimilarity data. Because
no specific coordinate can be deferred from the pair-
wise distances only, a reference coordinate system is
choosen with the barycenter of the data as origin and an

Figure 2: Creation of an event map: First the set of events
to be visualized is embedded into the metric event space (de-
picted as cylinder) and subsequently MDS-projected onto an
event map (depicted as rectangle). Two events ei and e j are
shown with their dissimilarity δi j and distance di j.

arbitrary rotation. Thus, the resulting coordinates are
unique up to rotation and reflection.

To estimate the quality of approximation, one can re-
late the resulting coordinate distances di j to the original
dissimilarities δi j by the use of a stress function such as
Kruskal stress [13]:

sKruskal =

√
∑i< j(di j−δi j)2

∑i< j δ 2
i j

(2)

The Kruskal stress is zero for a perfect reconstruction,
while non-zero stress indicates a distortion of the data.

2.4 Clustering
An overview of the numerous work on cluster analy-
sis of high-dimensional data is outside the scope of this
paper. We refer to [26] for a recent survey.

Clustering algorithms that operate on metric data,
where no representation in an Euclidean space is
known, are usually called relational clustering algo-
rithms. An established relational clustering algorithm
that partitions the given metric data into a fixed number
of clusters is the Partitioning Around Medoids (PAM)
approach by Kaufman and Rousseeuw [11]. It is
similar to the non-relational k-means approach, but
tries to find k representative objects from the dataset,
called medoids, that minimize the sum of intra-cluster
dissimilarities. In our system, we will use a variation
of this approach, called Clustering Large Application
(CLARA) [11], designed to handle large datasets. It
first draws a random sample of the dataset, then uses
PAM to find representative objects from this sample,
and finally assigns all objects from the dataset to the
determined clusters. This is repeated for multiple
samples of the dataset, and the best solution is returned.

3 CREATING A MAP OF EVENTS
The similarity measure that we explain in Section 3.1
gives us an embedding of the event dataset into a metric
space which we call event space. The metric is defined
by the pairwise dissimilarity between two events. For
arbitrary subsets of this event space a two-dimensional
representation of the events can be produced via dimen-
sionality reduction by MDS. The structure of the events
can be visualized by showing this representation on a
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map, which is what we call an event map. The map
creation process is summarized in Fig. 2.

In the following we will show how the metric embed-
ding is solved and discuss the computational complex-
ity of the map creation process and the thereby resulting
need for subsampling of large datasets.

3.1 Embedding into metric space
An event is fully described by describing the therein
produced particles with their trajectories (tracks). The
number of tracks in an event is variable and the tracks
have no specific order. All tracks can be characterized
by the same fixed number p of real-valued physical pa-
rameters. Thus a track can be represented by a vector
t ∈ Rp, while an event in turn cannot be considered as
a vector of tracks.

In general, it is difficult to define a metric on events
because there exists no precise notion of similarity for
events in physics. But in contrast to that, defining a
metric on tracks is easier because we can exploit the
rich set of metrics in Rp. A suitable metric on tracks
must take into account (a) the inhomogeneous ranges of
the different physical parameters and (b) the correlation
between different parameters. Both requirements are
met by the statistical Mahalanobis distance

dMahalanobis( f ,g) =
√

( f −g)T Σ−1( f −g) (3)

where Σ is the covariance matrix for all parameters.
Events are sets of track and, since we can consider a

set as a special kind of discrete distribution by assign-
ing each item the same weight, we can use the EMD
as described in Section 2.2 to define a metric on events.
For this, we formalize an event e as an equally weighted
discrete distribution of its n tracks (represented as vec-
tors ti)

e = {(t1,1/n),(t2,1/n), . . . ,(tn,1/n)} (4)

and use the metric (3) as ground distance between
tracks.

3.2 Making the Approach Applicable to
Large-Scale Datasets

As stated in the introduction, our aim is to provide in-
teractive navigation for event datasets, which consist,
even when restricted to relatively short time-frames,
of millions of events. Similarly to the known naviga-
tion approaches for image databases (see Section 2.1),
also our navigation approach, which will be described
in Section 4, requires frequent recalculation of Eu-
clidean embeddings for different subsets of the dataset.
Unfortunately, it is practically infeasible to calculate
two-dimensional Euclidean embeddings for millions of
events in a way suitable for such an interactive applica-
tion. This is detailed in the following section. To cir-
cumvent this issue we use the strategy of subsampling
as described further below.

Feasibility of the map creation

Computing a map representation of a set of events in-
volves first the computation of all pairwise dissimilar-
ities based on the EMD, and second the calculation of
the Euclidean embedding via MDS.

According to [19], calculating the EMD is, in gen-
eral, in O(M3), where in our case M corresponds to the
average number of tracks per event. For certain spe-
cific ground distances such as the L1-metric, there ex-
ist faster algorithms for calculating the EMD [10, 15],
which utilize the special structure of the ground dis-
tance to solve the linear program more efficiently. How-
ever, for the Mahalanobis ground distance (3) used in
our approach these improvements are not applicable.

Therefore, in our case the time needed for calculat-
ing the full N ×N dissimilarity matrix for a set of N
events is in O(N2 ·M3). Since also the storage space re-
quired for the full dissimilarity matrix is quadratic with
respect to the number of events, computing and storing
the full matrix quickly becomes infeasible with an in-
creasing number of events. Therefore, instead of calcu-
lating the full dissimilarity matrix before constructing
the Euclidean embedding via MDS, we calculate the
dissimilarities on demand, i.e. at the time when they
are needed for the MDS calculation. This however im-
plies that new EMD evaluations may have to be per-
formed whenever new Euclidean embeddings are cal-
culated during the interactive navigation process.

In addition to the time required for calculating dis-
similarities, also the time required for calculating the
Euclidean embedding via MDS is of relevance in this
context. In case of the classical MDS, which has in
general a lower time-complexity than the metric or non-
metric MDS variant, this calculation requires O(N3)
time for a set of N events if singular value decomposi-
tion (SVD) is used for determining the basis of the Eu-
clidean space [20]. In our case where a dimensionality
reduction to only two dimensions is desired, the practi-
cal runtime of the MDS can be largely improved by us-
ing a Lanczos iteration [5] instead of the SVD to com-
pute only the first two eigenvalues and eigenvectors. In
addition, we use the fast approximation technique for
evaluating the MDS proposed by [28]. With these im-
provements we observe in our practical application that
the time for computing the MDS projection is rather in-
significant in comparison to the time required for the as-
sociated EMD evaluations. Nevertheless practical tim-
ings show the quadratic dependence of the overall run-
time on the number of events.

Subsampling

To make the approach applicable to large-scale datasets
despite the computational complexity discussed above,
we use sampling strategies as follows. Instead of cal-
culating the Euclidean embedding of the whole event
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dataset or of the whole set of events that the viewer is
currently interested in, the Euclidean embedding is con-
structed only for a subset of this set of events, whose
size allows for a rapid evaluation and thus for a prompt
feedback in the navigation process. We found that for
the most real datasets, the selection of a representative
subset is possible, that exhibits the same, or at least
similar, characteristics as the original complete set of
events. For a meaningful map representation of a set of
events, first of all its overall structure, which is charac-
terized by the formation of clusters and their position-
ing in relation to each other, is important for the viewer.
Dominant clusters that exhibit a large number of events
are retained in the map representation with high proba-
bility irrespective of the sampling strategy used. There-
fore, the use of random sampling is usually sufficient.

4 INTERACTIVE NAVIGATION
In this section we describe our approach for interactive
navigation through huge event datasets by the use of
event maps, which we call event browsing. There are
two motivations for employing such a browsing through
several event maps representing smaller and smaller
subsets of the dataset, corresponding to successively
narrower regions in event space:
• Stress. Due to the distortion of the MDS-scaling, an

event map of all events cannot convey the fine struc-
tures and sub-structures of the dataset. In contrast,
a map representation corresponding to a smaller re-
gion in event space exhibits less distortion and can
thereby convey finer structures.

• Subsampling. In most practical cases subsampling
of a huge event set is needed to create the event map.
On such an event map not all events are accessible.
But the subset of a small enough event space region
can be shown on an event map without subsampling.

The main navigation technique in this approach is a
technique we call refinement where the user selects a
region of interest on an event map and subsequently a
new map is computed based on the selection. Repeated
application of this refinement yields maps of smaller
and smaller subsets of the dataset until a sufficiently
narrow region of interest in event space is reached. We
call this interactive process iterative refinement.

The second technique used in our system is based on
clustering the event dataset. Besides improving the vi-
sualization of the dataset structure, clustering can sup-
port the navigation process by providing an alternative
selection method we call cluster selection.

We first describe the cluster selection in Section 4.1,
while the discussion of iterative refinement is post-
poned to Section 4.2.

4.1 Cluster Selection
The integration of clustering techniques (cf. Sec-
tion 2.4) into the interactive event browser was

motivated by the following observation: When ana-
lyzing an event dataset using the proposed similarity
measure, the contained events typically fall into several
clusters and sub-clusters of similar events. Therefore,
the detection and labeling of clusters in the event map
is an important component of our system to support
intelligent user navigation through the dataset.

To visualize the cluster membership of events, the
events on an event map can be colored according to
their cluster membership. This cluster visualization lets
the user recognize regions on the map where due to the
MDS projection separate clusters have been mapped on
top of each other. Furthermore, the user can select cer-
tain clusters and restrict the event map to show only
events from this clusters, i.e. in further iterative refine-
ment only events originating from the selected clusters
are considered. We call such a restriction of the event
set to events from selected clusters cluster selection.

Selecting and exploring clusters provides a strategy
to solve the problem of overlapping clusters in a map
representation. This can be seen as clutter reduction
technique [8] but additionally the cluster selection has
the advantage, that for the restricted set of events a new
map layout is calculated, which is usually less distorted.

4.2 Iterative Refinement
During iterative refinement, the user selects a region of
interest on the map from which a new event map is com-
puted which only consists of events inside the region of
interest. The underlying idea is to enable the user to ex-
amine a subset of the event dataset (which corresponds
to a narrower region in event space) in more detail. But
due to distortion introduced by MDS projection, a re-
gion on the map may contain events which are highly
dissimilar to most of the other events inside that specific
region. Providing a selection method which is robust to
such outliers is non-trivial.

Another requirement for a selection method emerges
from the fact that the event set has been subsampled
for the calculation of the map. By a selection, we want
to determine not only events from the subsample, but
rather a region in the event space. Directly mapping the
selected region (containing only visible events) into the
event space (containing the whole event dataset) is not
possible in general since the event space is a pure metric
space.

Applicability of recent selection methods

Classical 2D selection techniques like rectangular, el-
liptic, or freehand selection tools select only a subset of
the events visible on the map. Thus they do not meet
the requirements for a selection technique on subsam-
pled event maps in the context of iterative refinement.

A selection method similar to the navigation through
image databases as proposed by Rubner et al. [22]
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Figure 3: Scheme of previous selection methods.

(cf. Section 2.1) can be stated in our context of event
datasets as follows: Starting from a single selected
event ep, the pivot event, the set of k nearest neighbors
in the event space is determined, from which the new
event map can be computed (see Fig. 3). To allow an
iterative refinement by means of this method the pa-
rameter k should be decreased after every refinement
step. The main drawback of this selection method is
the missing visual feedback about the selected region
on the map that would give the user a spatial impres-
sion about the region that will be shown on the refined
map. Since this is especially important in the context
of large datasets where several subsequent refinements
are performed, Yang et al. [27] propose to mark the se-
lected k nearest neighbors on the map. But due to dis-
tortion, the k neighbors in metric space will probably
not be direct neighbors on the map. Furthermore, in
the presence of subsampling, most of them may not lie
on the map at all. Thus, because this method does not
take into account the described problems due to distor-
tion and subsampling, it is not suited for the iterative
refinement.

5 NOVEL SELECTION TECHNIQUE
FOR ITERATIVE REFINEMENT

Our novel selection technique incorporates the advan-
tage of classical 2D selection techniques to provide the
user a direct visual feedback about the selected region,
but further fulfills the requirements described in the
context of iterative refinement (see Section 4.2) by con-
sidering the distortion as well as the subsampling.

The distortion is taken into account by not consider-
ing outlying events in the selected region of interest. As
an indicator for outliers we use the distortion that a re-
spective event experiences. This is measured by the so-
called local stress which will be defined in Section 5.1.
Based on this, we present our novel selection technique
in Section 5.2.

5.1 Local Stress as Indicator for Outliers
Even though MDS generally tries to choose the dis-
tances of the points in the map proportional to the dis-
similarities of the respective events, it is not unlikely,
because of the dimensionality reduction to only two di-
mensions, that some distances in the map differ largely
from the respective dissimilarities. The stress of a map

Figure 4: Iterative refinement with the proposed technique.
Dependent on a radial selection of radius r around a pivot
event ep, a corresponding set of events in the event space with
a maximum dissimilarity ρ to ep is determined.

(see Section 2.3) describes the overall distortion of dis-
similarities. In analogy, to measure the local distortion
inside a selected region at a certain point, we define the
local stress of an event ei relative to a set E of neigh-
boring events on the map as

sE(ei) = ∑
e j∈E

di j/ ∑
e j∈E

δi j (5)

where di j is the distance after the projection between ei
and any event e j in the selection and δi j the dissimilar-
ity of the corresponding events. sE(ei) measures the av-
erage distortion of the dissimilarities between event ei
and all other events inside E. A value of 1 denotes that
these dissimilarities directly map to the respective map
distances on average, and sE < 1 indicates the amount
of distortion with respect to set E.

If certain events have a significantly high distortion
with respect to E, these events could be fundamentally
farther away in metric space than the distance on the
map suggests and can thus be considered as outliers.
Therefore, the local stress can be used to characterize
outliers concerning the current selection that should not
be considered in the further refinement.

5.2 Proposed Technique
The idea is to define the selection in the event space
as the set of all events which are similar to events con-
tained in the radial selection on the map which are not
considered as outliers.

Starting from a pivot event ep, the user specifies in-
teractively a radial selection region of radius r on the
map, see Fig. 4. The thereby selected region defines a
set K = K(ep,r) of events on the map.

To transfer the radial selection on the map to a selec-
tion in event space we estimate a dissimilarity ρ in the
event space such that all events which exhibit a dissim-
ilarity smaller than ρ towards ep can be considered to
be the region of interest in event space from which the
refined map is computed. Choosing a subset in this way
from the set of all events has the advantage that events
in the subset are similar to most of the events in the se-
lected radial region. Thus they are a good estimation
to the region of interest the user wants to explore by
the selection. We denote the dissimilarity estimation by
ρ = Φ(ep,r).
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As discussed in the previous section, the distortion
leads to outliers. Thus, to take the distortion in the cal-
culation of ρ into account, we identify outliers in the
selected region as follows: If the local stress of the re-
spective event deviates more than α times the standard
deviation σK from the local stress mean sK of all events
inside the radial region, then it is considered as outlier.
Thereby we can define the set of non-outliers as

Eα = {ei ∈ K(ep,r) | sK(ei) < (sK−α ·σK)} (6)

where the parameter α specifies the “strictness” of the
outlier classification. Under the assumption of normal
distribution, a choice of α ≥ 1 is reasonable.

Finally, ρ is estimated by the greatest dissimilarity a
non-outlying event inside the radial selection exhibits
towards the pivot event:

Φα(ep,r) = max{δip | ei ∈ K \Eα} (7)

However, in the case of very high stress or several
overlapping clusters inside the radial selection region,
the maximum dissimilarity ρ may be still overesti-
mated. Therefore optionally a λ -quantile can be ap-
plied, which means that only the most similar λ percent
of the non-outlying events in the radial selection region
for estimating ρ are considered.

The presented technique indeed gives the user feed-
back about the selected region, but further is also robust
against outliers. Navigation is greatly improved by the
fact that in response to a selected region, a new map of
events representing that region is shown. Parts of the
map can now be examined on different scales by speci-
fying repeatedly regions of differing radii. This is a real
improvement in contrast to previous selection methods
discussed in Section 4.2.

6 APPLICATION
This section demonstrates the potential of the event
browser within a real event display application. We
tightly integrated the event browser in an event display,
which has been developed for the COMPASS experi-
ment at CERN. Fig. 1 shows a screenshot.

Integration into an Event Display
We connected the event browser to the event display in
such a way that every event selected inside the currently
visible map is passed to the event display for visualiza-
tion and further analysis. This allows for a rapid ex-
amination of the events on the map. Because nearby
events on the map are in fact similar to each other (as
approved by physicists), the user can restrict the exam-
ination to several events from each visible cluster to get
an impression of the type of events represented by that
cluster or region on the map. In case of overlapping
clusters the user can perform a cluster selection and re-
strict the investigation to a single cluster.

(a) Overview map (b) 0.69%, Kruskal stress 0.46

(c) 3.01%, Kruskal stress 0.34 (d) 100%, Kruskal stress 0.28

Figure 5: Refinement example. (a)-(d) show successive re-
finements of the selected regions. Stress is color coded from
red (high) to green (low). The percentage gives the fraction
of the visible subsample to all events inside region of interest.

Browsing Example

An example browsing workflow is given in Fig. 5,
where three successive iterative refinements for a
dataset containing about half a million events are
shown. Starting with an overview map, which shows a
subsample of 1500 events of the complete dataset, in
each step a radial region (indicated by the blue circle) is
refined. The computation time of a refined map is about
30 seconds for 1500 events on our test system, a 3GHz
Pentium-4, and less than 10 seconds for 1000 events.
As expected, the overview map exhibits a high stress
(visible from the color coding) and no recognizable
structure despite the green cluster to the right. But in
the course of the following refinements, substructures
are revealed in successively less distorted maps (as
the Kruskal stress approves). Additionally, since the
investigated region in event space gets narrower and
narrower, the fraction of visible events increases until
potentially all events of the respective region are shown
after the last refinement step.

7 CONCLUSION
Based on navigation techniques known from the context
of image databases, we have developed an approach for
the interactive exploration of large HEP event datasets.
A central contribution of this approach is a new crite-
rion for transferring a selected region on the map to a
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selection of events in the non-Euclidean, metric space.
The proposed technique takes the local stress in the map
projection into account and is robust to outliers. This
makes the iterative refinement process more intuitive
and better controllable for the user compared to previ-
ous navigation approaches.

To make the interactive navigation feasible for large
datasets, we subsample the event set corresponding to
the region of interest in order to obtain a representative
subset consisting of not more than a certain fixed num-
ber of events before calculating its Euclidean embed-
ding. This is also taken into account when calculating
a refined map in such a way that all events in the event
space are considered and not just the subsample rep-
resented on the map where the region was selected by
the user. In addition, we integrated a second navigation
technique, namely cluster selection, into our approach
to further improve the navigation process.

The practical usability of the proposed approach was
verified by applying it to real large-scale datasets from
the COMPASS experiment.

It seems also important to note that our improvements
of the navigation process in comparison to the recent
work are independent of the transferring of these tech-
niques to the domain of HEP event datasets. Therefore,
as future work we would like to evaluate these improve-
ments also in context of other large-scale datasets.
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ABSTRACT

The quality of images generated by volume rendering strongly depends on the applied continuous reconstruction method.
Recently, it has been shown that the reconstruction of the underlying function can be improved by a discrete prefiltering. In
volume rendering, however, an accurate gradient reconstruction also plays an important role as it provides the surface normals
for the shading computations. Therefore, in this paper, we propose prefiltering schemes in order to increase the accuracy of the
estimated gradients yielding higher image quality. We search for discrete prefilters of minimal support which can be efficiently
used in a preprocessing as well as on the fly.

Keywords: Volume Rendering, Filtering, Reconstruction.

1 INTRODUCTION

An accurate reconstruction of a continuous function from its
evenly located discrete samples is an important issue in many
computer graphics applications. Although the reconstruction
is usually performed as a convolution-based filtering, it is of-
ten not obvious which filter to use for a specific data or re-
sampling task. Generally, an appropriate filter is chosen by
making a compromise between quality and efficiency. The
efficiency directly depends on the support of the given filter,
whereas the quality can be analyzed from different aspects.

According to the signal-processing theory, the sinc filter is
considered to be ideal as it can perfectly reconstruct a band-
limited signal sampled above the Nyquist limit [19]. Nev-
ertheless, the sinc filter is impractical since it has an infinite
support. Although there exist frequency-domain techniques
for ideal reconstruction [6, 8, 24, 25, 1, 10], all of them are
global methods mainly used for resampling the original dis-
crete representation on a transformed grid. On the other hand,
they do not support efficient local resampling. Therefore, in
practical applications requiring fast local resampling, the sinc
filter is either approximated by a filter of finite support or trun-
cated by an appropriate windowing function [14, 22] and the
convolution is performed in the spatial domain.

The quality of the reconstruction is mainly influenced by
the global frequency-domain behavior of the applied filter,
especially if the original signal is sampled near the Nyquist
limit. Therefore a filter is usually characterized by a fre-
quency plot and its quality is quantitatively evaluated as the
deviation from the ideal pass-band and stop-band behavior
[14, 2]. The main drawback of this approach is that practical

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen, Czech Republic.

signals can hardly be considered band-limited. Thus even the
sinc filter produces ringing artifacts due to the drastic cut-off
in the frequency domain [1].

A reconstruction filter can also be analyzed based on the
approximation theory. Here the major aspect is how fast the
approximate signal converges to the original one by decreas-
ing the sampling distance. This mainly depends on the ap-
proximation power of the reconstruction filter. The order of
approximation is L if the frequency response equals to zero
at the centers of all the aliasing spectra with a multiplicity of
L [21]. However, in order to fully exploit the approximation
power of a given filter, usually an appropriate discrete pre-
filtering is necessary (see Figure 1). Such a prefiltering can
ensure that a polynomial of L−1 or lower degree is perfectly
reconstructed. If this condition is satisfied, the reconstruction
scheme is quasi-interpolating of order L [7].

The prefiltering can improve the reconstruction from other
aspects as well. For example, depending on the applied
discrete prefilter, it can optimize the pass-band behavior of
the reconstruction [13], make a non-interpolating continuous
postfilter interpolating [3, 23, 4], or increase the accuracy of
the reconstruction in a sense of minimal approximation error
[7]. All these prefiltering techniques are of infinite impulse
response (IIR) and proven to yield k-EF (error function of or-
der k) reconstruction if the approximation order of the con-
tinuous postfilter is L = k [9]. This implies that the result
is a quasi-interpolation of order k. Practically, the order of
accuracy becomes important if the original signal is at least
relatively oversampled, that is, most of its energy is concen-
trated around the origin in the frequency domain and the over-
lapping between the replicas is minimal. This assumption is
valid for medical volume rendering as the resolution of CT
and MRI scanners has been significantly increased in the last
two decades.

In this paper, we demonstrate that prefiltering can be
optimized also for a gradient estimation of higher ac-
curacy. In volume-rendering applications the following
gradient-estimation scenarios can be distinguished:
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1. Precalculated gradients for semitransparent volume
rendering: The gradients are precalculated for each voxel
position. At an arbitrary sample location along a view-
ing ray the gradient is interpolated from the precalculated
ones. Although this approach requires additional memory
for storing the gradient components, the SIMD instruc-
tions of either the CPU or the GPU can be well exploited
for interpolating the components in one step.

2. On-the-fly gradient estimation for semitransparent
volume rendering: The gradients are calculated on
the fly for each sample location along a viewing ray by
applying a derivative filter. Although this approach does
not require additional memory, the gradient estimation is
more expensive computationally as the components are
calculated separately.

3. First-hit ray casting: Rays are cast into the volume and
the first intersection points between the rays and a prede-
fined isosurface are determined. At each intersection point
a gradient calculation is performed. The cost of the gra-
dient calculation, which is proportional to the number of
pixels, is negligible compared to that of the ray casting.

To support not just the first scenario, but the second and the
third ones as well, we search for discrete prefilters of finite
impulse response (FIR). Furthermore, we try to find filters of
minimal support which maximize the order of accuracy. Such
filters can be efficiently evaluated either in a preprocessing or
on the fly, and unlike the IIR filters, do not lead to unexpected
boundary effects.

Möller et al. classified the normal estimation schemes [16]
as follows (F denotes the original discrete function, whereas
symbols D and H denote the derivative and interpolation op-
erators respectively):

1. (FD)H Derivative first: The derivatives are first calcu-
lated for the discrete samples, and interpolated afterwards.
This scheme fits to the first scenario.

2. (FH )D Interpolation first: The derivative operator is
applied on the reconstructed function. This scheme fits
onto the second and third scenarios.

3. F (DH ) Continuous derivative: A continuous deriva-
tive filter is constructed by applying the derivative oper-
ator on the interpolation operator. This scheme is rather
theoretical and equivalent to the first two schemes.

4. FH ′ Analytical derivative: The analytical derivative of
the interpolation operator is used for calculating the gra-
dient components. This scheme fits onto the second and
third scenarios.

In practical volume-rendering applications, usually the tri-
linear interpolation and the central differences are used as the
interpolation and derivative operators respectively, since these
operators can be efficiently evaluated on the GPU. Sigg and
Hadwiger [20], however, demonstrated that current GPUs can
provide interactive frame rates even if tricubic filtering is ap-
plied for resampling. They efficiently implemented the tricu-
bic B-spline filtering in the fragment shader using the ana-
lytical derivative filter for the gradient estimation. Neverthe-
less, as it will be shown in this paper, nor the central dif-
ferences neither the analytical derivative filter can fully uti-
lize the higher approximation power of the tricubic B-spline.

Therefore, we propose to use either a slightly more expensive
discrete derivative filter instead of the central differences or
to use the analytical derivative filter on prefiltered data rather
than on the original data.

2 SPATIAL-DOMAIN FILTER DESIGN
In order to increase the accuracy of gradient estimation, we
slightly modify the framework of Möller et al. [17], which is
briefly summarized here.

The reconstruction of a continuous function f (t) from its
known samples fk is formulated as a convolution with the im-
pulse response w(t) of the applied filter:

f (t) ≈ f̃ (t) =
∞

∑
k=−∞

fk ·w(
t
T
− k), (1)

where T is the sampling distance. By the Taylor series expan-
sion of fk = f (kT ) about t, we obtain:

fk =
N

∑
n=0

f (n)(t)
n!

(kT − t)n +
f (N+1)(ξk)

(N +1)!
(kT − t)(N+1), (2)

where f (n)(t) is the nth derivative of f (t) and ξk ∈ [t,kT ].
Substituting the Taylor series expansion into the convolution
sum in Equation 1, leads to an alternative representation for
the reconstructed value at point t:

f̃ (t) =
N

∑
n=0

aw
n (τ) f (n)(t)+ rw

N(τ), (3)

aw
n (τ) =

T n

n!

∞

∑
k=−∞

(k− τ)nw(τ − k),

rw
N(τ) ≤

(
max
ξ∈R

( f (N+1)(ξ ))

)
|aw

N+1(τ)|,

or rw
N(τ) ≈ aw

N+1(τ) f (N+1)(t),

where τ is chosen such that t = (i+ τ)T , with 0 ≤ τ < 1 and
i ∈ Z. The error coefficients a only depend on the offset τ
to the nearest sampling point, that is, they are periodic in the
sampling distance T . Additionally, they characterize the as-
ymptotic error behavior of the given filter for decreasing sam-
pling distance T . Assume that N is the largest number such
that an = 0 for 0 < n ≤ N. In this case, the error function is
of order O(T N+1), and the reconstruction filter is classified as
k-EF, where k = N +1. Such a filter can perfectly reconstruct
a polynomial of Nth or lower degree, or in other words, it is
quasi-interpolating of order k.

discrete prefilter continuous postfilter

fk pk h(t)
f(t)

prefiltered reconstruction

w(t)

~

Figure 1: Prefiltered reconstruction: Input samples fk are
first convolved with a discrete prefilter pk and afterwards with
a continuous postfilter h(t). The resultant impulse response
is denoted by w(t).

Using the filter design approach of Möller et al. [18], the
parameters of piecewise polynomial filters are determined by
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solving a linear equation system such that the required ac-
curacy and smoothness criteria are satisfied. In this origi-
nal framework the option of prefiltering has not been consid-
ered. However, it can be exploited that the order of the error
function belonging to a prefiltered reconstruction can poten-
tially be higher than that of the non-prefiltered one. Using
prefiltered reconstruction, the original data is first convolved
with a discrete prefilter pk and afterwards with a continuous
postfilter h(t) (see Figure 1). Therefore, the resultant impulse
response w(t) is the convolution of p with h(t):

w(t) =
∞

∑
k=−∞

pk ·h(t − k). (4)

The error coefficients for the prefiltered reconstruction can be
derived as follows:

aph
n (τ) =

T n

n!

∞

∑
k=−∞

(k− τ)n

(
∞

∑
l=−∞

pl ·h(τ − k− l)

)
(5)

=
T n

n!

∞

∑
l=−∞

pl ·
(

∞

∑
k=−∞

(k− τ)nh(τ − k− l)

)
.

Substituting m for k + l in the inner sum, we get (note that
the sums are just formally infinite, as the filters p and h are
assumed to be FIR filters):

aph
n (τ) =

T n

n!

∞

∑
l=−∞

pl ·
(

∞

∑
m=−∞

(m− τ − l)nh(τ −m)

)

=
T n

n!

∞

∑
l=−∞

pl

[
∞

∑
m=−∞

(
n

∑
i=0

(
n
i

)
(m− τ)i(−l)n−i

)
h(τ −m)

]
,

which resolves to
aph

n (τ) = (6)

T n

n!

n

∑
i=0

(
n
i

)( ∞

∑
l=−∞

(−l)n−i pl

)(
∞

∑
m=−∞

(m− τ)ih(τ −m)

)

=
n

∑
i=0

ap
n−i(0)ah

i (τ).

Thus an error coefficient of the prefiltered reconstruction is
simply the convolution of the error coefficients belonging to
the discrete prefilter p and the continuous postfilter h. This
derivation was originally published by Möller et al. [16] but
in a different context, analyzing the numerical accuracy of
the normal estimation scheme F (DH ). In this scheme, the
discrete prefilter p and the continuous filter h play the roles of
the derivative operator D and the interpolation operator H
respectively.

In contrast, we use the discrete prefiltering in a more gen-
eral manner. To improve the accuracy of both function and
derivative reconstruction, we apply different prefilters com-
bined with either the continuous postfilter h or its analytical
derivative h′. In the following sections we illustrate our fil-
ter design approach with a concrete example, where h is the
cubic B-spline defined as follows:

β 3(t) =




1
2 |t|3 −|t|2 + 2

3 if |t| ≤ 1
− 1

6 |t|3 + |t|2 −2|t|+ 4
3 if 1 < |t| ≤ 2

0 otherwise.

(7)

The cubic B-spline has several advantageous properties. For
example, it provides an approximation order L = 4 with a

minimal support, and yields a C2 continuous reconstruction.
Furthermore, its 3D tensor-product extension can be effi-
ciently evaluated on the recent graphics cards by only eight
trilinear texture fetches per sample [20].

3 PREFILTERED FUNCTION RECON-
STRUCTION

It is easy to verify that the error coefficients of the cubic B-
spline are the following 1:

aβ 3

0 (τ) = 1, aβ 3

1 (τ) = 0, (8)

aβ 3

2 (τ) =
T 2

6
, aβ 3

3 (τ) = 0.

Since aβ 3

2 is non-zero, the cubic B-spline is a 2-EF filter. Nev-
ertheless, its approximation order is four, which can be ex-
ploited by a discrete prefiltering.

Let us assume that the discrete prefilter p has only three
non-zero weights, which are p−1, p0, p1 at grid points −T , 0,
and T respectively. Additionally, we search for a symmetric
filter, that is, p−1 = p1. Thus there are just two free parame-
ters to be determined. The error coefficients for the prefilter p
are the following:

ap
0(0) = p0 +2p1, ap

1(0) = 0, (9)

ap
2(0) = T 2 p1, ap

3(0) = 0.

The error coefficients for the prefiltered reconstruction can
be evaluated according to Equation 6:

apβ 3

0 (τ) = p0 +2p1, apβ 3

1 (τ) = 0, (10)

apβ 3

2 (τ) = T 2 p0 +8p1

6
, apβ 3

3 (τ) = 0.

To guarantee a 4-EF reconstruction, apβ 3

0 has to be equal to

one, while coefficient apβ 3

2 has to be equal to zero. Solv-
ing Equation 10 with these constraints, the following filter
weights are obtained: p−1 = p1 =− 1

6 , p0 = 8
6 (see Figure 2).

Note that, the resultant impulse response w = p∗h is exactly
the same as that of the C2 4-EF reconstruction filter designed
in [18]. However, there is a significant difference in the com-
putational costs. In our case, the discrete prefiltering with p is
performed in a preprocessing, while the continuous postfilter-
ing with h is evaluated on the fly from the nearest 64 voxels.
In contrast, a direct convolution with w would take the nearest
216 voxels into account. The discrete prefilter p can also be
obtained by a different derivation proposed by Blu and Unser
[5], therefore we do not consider it as a new result.

4 PREFILTERED DERIVATIVE RE-
CONSTRUCTION

In this section we show that using a simple discrete prefilter
not just the accuracy of function reconstruction can be im-
proved, but the accuracy of normal estimation as well. In
previous volume-rendering applications, when the cubic B-
spline is used for function reconstruction, the derivatives are

1 The cubic B-spline is the special case of the BC-splines [15]. The
asymptotic error behavior of this general family of cubic filters has
been analyzed in detail by Möller et al. [17].
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computed by either the central differences or taking the ana-
lytical derivative of the cubic B-spline as a continuous deriva-
tive filter [16, 20, 12, 11]. These techniques, however, do not
exploit the approximation power of the cubic B-spline.

The calculation of central differences on the reconstructed
function is equivalent to a filtering by a discrete derivative fil-
ter c, where the non-zero weights are c−1 = 1

2T and c1 =− 1
2T

at positions −T and T respectively. The error coefficients for
this discrete derivative filter are the following:

ac
0(0) = 0, ac

1(0) = 1, (11)

ac
2(0) = 0, ac

3(0) =
T 2

6
.

If the central differences are calculated on a function recon-
structed by the cubic B-spline, it is equivalent by a filtering
with a continuous derivative filter c∗β 3. According to Equa-
tion 6, the corresponding error coefficients are obtained as:

acβ 3

0 (τ) = 0, acβ 3

1 (τ) = 1, (12)

acβ 3

2 (τ) = 0, acβ 3

3 (τ) =
T 2

3
.

Thus the central differences combined with the cubic B-spline
yield just a 2-EF derivative filtering. This order of accuracy is
not improved even if the analytical derivative of the cubic B-
spline is used, which also leads to a 2-EF derivative filtering
[18].

One possibility for increasing the accuracy of the deriva-
tive filtering is to apply the analytical derivative of the cubic
B-spline on data prefiltered by the discrete filter p. The er-
ror coefficients corresponding to the analytical derivative fil-
ter β 3′ are as follows [17]:

aβ 3′
0 (τ) = 0, aβ 3′

1 (τ) = T, (13)

aβ 3′
2 (τ) = 0, aβ 3′

3 (τ) =
T 3

6
,

aβ 3′
4 (τ) =

T 4

12
τ(1− τ)(2τ −1).

If β 3′ is combined with the discrete filter p, the error coeffi-
cients are obtained from Equation 6:

apβ 3′
0 (τ) = 0, apβ 3′

1 (τ) = T, (14)

apβ 3′
2 (τ) = 0, apβ 3′

3 (τ) = 0,

apβ 3′
4 (τ) =

T 4

12
τ(1− τ)(2τ −1).

Thus, after the normalization by T , the combination of β 3′
and p results in a 3-EF derivative filtering.

In order to fully exploit the approximation power of the
cubic B-spline, we search for a discrete prefilter d with a sup-
port of 2, where the non-zero weights are d−2 = −d2 and
d−1 = −d1. The error coefficients for this discrete derivative
filter are the following:

ad
0(0) = 0, ad

1(0) = −2T (d1 +2d2), (15)

ad
2(0) = 0, ad

3(0) = −T 3 d1 +8d2

3
.

If the discrete derivative filter d is combined with the cubic B-
spline then the error coefficients of the equivalent continuous
filtering are obtained as (see Equation 6):

adβ 3

0 (τ) = 0, adβ 3

1 (τ) = −2T (d1 +2d2), (16)

adβ 3

2 (τ) = 0, adβ 3

3 (τ) = −2T 3 d1 +5d2

3
.

To reconstruct the first derivative instead of some multiple of

it, the error coefficient adβ 3

1 (τ) has to be equal to one. Addi-
tionally, to maximize the order of accuracy, the error coeffi-

cient adβ 3

3 (τ) has to be equal to zero. By solving Equation 16
for these constraints we obtain: d1 = − 5

6T and d2 = 1
6T (see

Figure 2). It is easy to see that the error coefficient adβ 3

4 (τ)
is also zero for the combined filter d ∗ β 3. The error coef-

ficient adβ 3

5 (τ), however, is clearly non-zero. Therefore the
error function contains at least fourth-degree powers of T due
to the normalization. As a consequence, the combined filter
is a 4-EF derivative filter.

-T T T 2T-T-2T

8/6

-1/6

5/6T

-1/6T

(a) (b)

Figure 2: Discrete prefilters for a cubic B-spline reconstruc-
tion. (a): Prefilter p for 4-EF function reconstruction. (b):
Prefilter d for 4-EF derivative reconstruction.

5 FREQUENCY-DOMAIN ANALYSIS
The cubic B-spline can be obtained by successively convolv-
ing a symmetric box filter (the B-spline of order zero) three
times with itself. Since the Fourier transform of the symmet-
ric box filter is sinc(ω/2) = sin(ω/2)/(ω/2) and the consec-
utive convolutions in the spatial domain correspond to con-
secutive multiplications in the frequency domain, the Fourier
transform of the cubic B-spline is sinc4(ω/2). When the
cubic B-spline is combined with the discrete prefilter p, the
frequency response of the equivalent filter w(t) is W (ω) =
sinc4(ω/2) · P(ω), where the Fourier transform of the pre-
filter p is P(ω) = (4− cos(ω))/3. Figure 5 shows that the
combined filter represents a kind of compromise, as its pass-
band behavior is better than that of the non-prefiltered cubic
B-spline but worse than that of the Catmull-Rom spline. On
the other hand, the Catmull-Rom spline improves the pass-
band behavior at the cost of a much higher postaliasing.

The Fourier transform of our discrete derivative filter d is
D(ω) = i(5sin(ω)− sin(2ω))/3. Combining it with the cu-
bic B-spline, the frequency response of the equivalent contin-
uous derivative filter is W (ω) = sinc4(ω/2) ·D(ω), which is
shown in Figure 6. The derivative filter d ensures much bet-
ter pass-band behavior than the central differences. Although
the analytical derivative of the cubic B-spline performs even
better in the pass-band, its postaliasing effect is significantly
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(a) (d)

(b) (e)

(c) (f)

Figure 3: Reconstruction of the Marschner-Lobb signal from
40× 40× 40 (a-c) and from 60× 60× 60 (d-f) samples. (a,
d): Cubic B-spline. (b, e): Catmull-Rom spline. (c, f): Cubic
B-spline prefiltered by the discrete filter p. The isosurface is
shaded based on the analytical gradient of the reconstructed
function.

higher. The best pass-band behavior is achieved if the ana-
lytical derivative of the cubic B-spline is applied on data pre-
filtered by p (the frequency response of the equivalent con-
tinuous derivative filter is W (ω) = iωsinc4(ω/2) ·P(ω)), but
this technique causes also the highest postaliasing.

6 EXPERIMENTAL EVALUATION
In order to empirically analyze our discrete prefilters, we im-
plemented a high-quality ray caster and rendered artificial and
real-world data sets. We used the classical Marschner-Lobb
signal to separately evaluate the effects of the prefilter p and
the discrete derivative filter d. Figure 3 shows the shaded iso-
surface of the test signal reconstructed by the cubic B-spline
(a, d), the Catmull-Rom spline (b, e), and the cubic B-spline
prefiltered by the discrete filter p (c, f). Here the gradients
used for the shading computation are the exact analytical gra-
dients of the reconstructed function. Note that the highest
quality is ensured by the prefiltered cubic B-spline recon-
struction even for the low-resolution volume representation,
but its superiority is much more apparent if the resolution is
increased by a factor of 1.5. Theoretically, the C2 4-EF pre-
filtered cubic-B-spline is superior over the C1 3-EF Catmull-

Rom spline considering the order of both continuity and ac-
curacy. This is completely confirmed by our test results.

To fairly test our prefiltered derivative reconstruction
schemes independently from the effect of the prefiltered
function reconstruction, we calculated the exact intersection
points between the rays and the original test signal, but at
these hit points we evaluated the gradients using different
derivative filters. Figure 4 shows the angular errors of the
gradients reconstructed by the cubic B-spline combined with
central differences (first column) and our discrete derivative
filter d (second column). The third and fourth columns show
the angular error for the analytical derivative of the cubic
B-spline applied on non-prefiltered data, and data prefiltered
by the discrete filter p respectively.

The worst results are obtained by using the central differ-
ences combined with the cubic B-spline. The angular error is
significantly reduced if our discrete derivative filter d is ap-
plied instead of the central differences. It is interesting to
note, that the analytical derivative filter performs even bet-
ter for the the lower-resolution volumes, although it provides
slower convergence (2-EF) to the original signal if the resolu-
tion is increased. The best results, however, are achieved by
the analytical derivative filter applied on data prefiltered by
the discrete filter p.

Reconstruction and derivative filters that perform well for
synthetic data might not provide good results for real-world
measured data sets, which are usually corrupted by measure-
ment and quantization noise. Therefore, we tested the pre-
filtered derivative filtering schemes also on CT and MRI data.
The results are shown in Figure 7. The fine details are best
captured if the underlying signal is reconstructed from data
prefiltered by the discrete filter p. The benefit of prefilter-
ing in terms of gradient accuracy, however, is not so obvious.
For example, the analytical derivative of the cubic B-spline
applied on prefiltered data even emphasizes the quantization
noise, which leads to severe staircase artifacts. In contrast,
our discrete derivative filter represents a good compromise.
On one hand, it does not blur the gradients as much as the
central differences, thus it preserves the contrast and sharp-
ness of the contours. On the other hand, it does not introduce
so strong staircase aliasing as the analytical derivative of the
cubic B-spline applied on either prefiltered or non-prefiltered
data.

7 EFFICIENCY CONSIDERATIONS
The evaluation of our discrete prefilter d is twice as expen-
sive computationally as that of central differences. Therefore
we propose using it mainly for the first and the third volume-
rendering scenarios. In first-hit ray casting the cost of the
gradient estimation is negligible compared to that of the ray
casting, while in case of precalculated gradients the more ex-
pensive preprocessing is acceptable as it has to be performed
just once. Nevertheless, using the derivative filter d for on-
the-fly gradient computation significantly reduces the render-
ing performance.

Due to its good pass-band behavior, we propose to use
the analytical derivative of the cubic B-spline combined with
the discrete prefilter p especially for rendering synthetic data
which is not corrupted by prealiasing or quantization noise.
This gradient computation scheme can be efficiently applied
also for the second volume-rendering scenario, where only the
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c∗β 3, 2-EF d ∗β 3, 4-EF β 3′, 2-EF p∗β 3′, 3-EF

Gradient reconstruction from 40×40×40 samples.

Gradient reconstruction from 60×60×60 samples.

Gradient reconstruction from 80×80×80 samples.

Figure 4: Angular errors of the gradients reconstructed from the Marschner-Lobb test data sets of different resolutions.
Angular error of zero degree is mapped to black, whereas angular error of 30 degrees is mapped to white. First column:
central differences combined with the cubic B-spline. Second column: cubic B-spline combined with our discrete derivative
filter d. Third column: analytical derivative of the cubic B-spline. Fourth column: analytical derivative of the cubic B-spline
combined with the discrete prefilter p.

prefiltered function values have to be stored without precalcu-
lated gradient components. The drawback of this approach is
that the prefiltered data still requires at least a 16-bit floating-
point number per voxel to store. Note that, the computational
cost of the on-the-fly gradient computation is exactly the same
as if the analytical derivative of the cubic B-spline was used
on non-prefiltered data.

8 CONCLUSION
In this paper, different prefiltered gradient reconstruction
schemes have been evaluated both in the spatial domain and
in the frequency domain. We have shown that, applying a
tricubic B-spline reconstruction filter, the accuracy of the
gradients can be significantly increased if either our discrete
derivetive filter d is used instead of the central differences
or the analytical derivative of the tricubic B-spline is used
on data prefiltered by the discrete filter p. According to our
experiments, the former approach is more appropriate for
rendering real-world measured data sets, whereas the latter

approach performs better for synthetic data. It is interesting
to note that filters which are theoretically more accurate do
not necessarily provide the expected higher reconstruction
quality in practice. The well-known spatial-domain and
frequency-domain filter design criteria assume that the voxels
represent accurate samples of the underlying signal and the
sampling frequency is sufficiently high. These assumptions,
however, are usually not valid for practical data. Therefore,
in our future work, we plan to extend the classical filter
design approach by practical criteria like sensitivity to the
quantization noise.
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Figure 5: Comparison of the frequency response of the pre-
filtered cubic B-spline reconstruction scheme to that of the
non-prefiltered Catmull-Rom and cubic B-spline reconstruc-
tions (the horizontal axis represents the ordinary frequency
ν = ω

2π ).
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Figure 6: Comparison of the frequency response of our pre-
filtered derivative reconstruction scheme to that of the ana-
lytical derivative of the cubic B-spline and the central differ-
ences combined with the cubic B-spline (the horizontal axis
represents the ordinary frequency ν = ω
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(a): c∗β 3, 2-EF (b): d ∗β 3, 4-EF (c): β 3′, 2-EF (d): p∗β 3′, 3-EF

Figure 7: Real-world test data sets rendered by first-hit ray casting. The data is resampled along the rays by using the
cubic B-spline filter to find the first intersection points ((a-c): The data is not prefiltered. (d): The data is prefiltered by p.).
The derivatives at these hit points are calculated by different gradient estimation schemes: (a): Central differences. (b): Our
discrete derivative filter d. (c): Analytical derivative of the cubic B-spline. (d): Analytical derivative of the cubic B-spline applied
on data prefiltered by p.
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ABSTRACT
This paper describes a solution designed for efficient visualization of large and dense sets of particles, typically

generated by molecular dynamics simulations in materials science. This solution is based on a hybrid distributed

sort-first/sort-last architecture, and meant to work on a generic commodity cluster feeding a tiled display. The

package relies on VTK framework with various extensions to achieve statistical occlusion culling, smart data

partitioning and GPU-accelerated rendering.
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1. INTRODUCTION

Materials science increasingly uses numerical simula-

tions at different scales of space and time to better un-

derstand and predict the properties of matter. Molecular

dynamics is one of the most widely used approaches in

computational materials science. Thanks to the joint

advances in parallel computing and in physics mod-

eling, molecular dynamics can now be used to simu-

late systems with millions to hundreds of millions of

particles[Stre 05]. We focus here on such simulations at

nanoscopic to microscopic scales, which describe mat-

ter in dense states by large sets of particles.

Suitable and efficient visualization tools must be pro-

vided besides simulation codes in order to benefit from

these very detailed computations, and especially inter-

active tools that help to explore complex 3D features

such as blast waves, solidifications, dislocations, etc.

We are going to describe how we built a distributed

visualization tool to exploit a small graphics cluster

and tiled display for almost interactive exploration of

such datasets. The solution is quite standard since it

relies on widely used software components, such as

VTK[Schr 06], with various optimizations.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

After reviewing related work which partly inspired

us, we are going to describe the overall organization of

the system, then givemore details on some technical as-

pects of the algorithms we combined: culling by space

partitioning and statistical occlusion, particle rendering

and parallelization.

2. RELATED WORK

Only few existing solutions are specifically designed

for visualization of global phenomena inside large par-

ticle sets on a tiled display.

Many systems are especially designed for biolog-

ical molecular dynamics, like VMD[Hump 96] or

Molekel[Fluk 00]. Some exhibit very advanced ren-

dering techniques, via GPU programming, accelerat-

ing complex shape rendering like TexMol[Baja 04], or

global illumination like QuteMol[Tari 06]. Such tools

are generally optimized to represent domain specific

features or sub-structures with non-spherical shapes,

like ribbons, tubes, or molecular surfaces. These

representations cannot be used in materials physics

where there are no such apparent structures as pro-

teins parts, or identified zones like in Terascale Particle

Visualization[Ells 04].

Our application domain requires to focus on efficient

raw rendering of particles, basically represented as col-

ored opaque spheres. Opaque sphere representation is

very important because on dense particles systems from

materials science it can preserve graphical aspects of

several structure properties, such as some surfaces gran-

ularities, which are lost with non-opaque, point-only
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represented particles, or volume rendering solutions,

such as in Liang et al.[Lian 05] solution.

Moreover, most of the aforementioned tools cannot

be easily integrated in a distributed rendering architec-

ture. Another example in another application domain is

Kruger et al.[Krug 05] solution, a very efficient parti-

cle system rendering to visualize 3D flow fields. Such

a solution takes advantage of new GPUs rendering ca-

pabilities, but as all data is stored in graphic card mem-

ory, scalability and possible extensions to a distributed

architecture are compromised.

Very few solutions are scalable and designed to dis-

play raw real sphere representation of large sets of par-

ticles on large definition displays such as tiled displays.

Atomsviewer[Shar 03] is one of them: it uses efficient

optimizations for sort-first rendering of large sets of

particles: Z-order data organization, octree space parti-

tioning, probabilistic culling method. However, Atom-

sviewer has been adjusted to a specific hardware and

display configuration (ImmersaDeskTM)[Shar 02b].

All these observations have lead us to work on the in-

tegration of culling methods and hardware-accelerated

rendering in a generic distributed architecture.

3. GENERAL OVERVIEW

The main objective of our architecture is to provide new

optimizations while re-using VTK/Ice-T[More 01].

Ice-T is a sort-last rendering solution for tiled dis-

plays, which has been proven[More 03] to be more ef-

ficient than generic solutions for tiled displays such as

Chromium[Hump 02]. Sort-last rendering is scalable

with respect to the size of the data, but the known bot-

tleneck of such an approach is the network bandwidth.

Ice-T brings improvements to usual sort-last rendering,

such as an efficient distribution of images to be com-

posed, or a floating viewport technique. Nethertheless,

network bandwidth remains the bottleneck of such a

method. Our strategy is to achieve distributed sort-first

operations to increase spatial coherence of per process

data to reduce network bandwidth usage, and lower the

number of spheres to be displayed, to reduce the actual

sphere rendering stage. This can be considered to be

an attempt to transpose Samanta et al.[Sama 00] hybrid

architecture to non-structured particle systems visual-

ization.

Before data is to be displayed, we generate a space

partitioning Kd-Tree, and we reorganize the dataset to

gather all data attached to a same leaf of the tree. Each

node of the tree contains its bounds, its data storage

location, a link to its children if it has any, and a density

factor, which is described in section 4.

The global architecture of our system, described in

Figure 1, is meant to run on a cluster of N nodes, with P

of them actually connected to a display with P physical

or logical tiles. Each node runs a MPI process. Each

process has a complete copy of the tree, but only part

of the data, in memory. During a frame rendering, each

process computes frustum and occlusion culling for its

own part of the tree, then all processes merge their re-

sults to have a complete up-to-date tree. At that time

all processes know which data is really to be displayed.

Then they compute a balanced per process redistribu-

tion of the data, load missing data and unload useless

data if necessary, and render them. For the sort-last part

of the architecture, Ice-T library performs a distributed

rendering, and displays the frame.

Figure 1: Global Architecture.

In the following sections, we are going to describe

the tree for space decomposition and the culling algo-

rithms we designed to organize datasets and optimize

Ice-T rendering process. Then we will mention the

GPU optimizations for the sphere rendering stage, the

parallelization strategies, and finally we will highlight

the implementation and a few results.

4. CULLING IN DENSE MATERIAL

PARTICLE SYSTEMS

Although Atomsviewer is based on a specific archi-

tecture, some of the pre-rendering techniques it uses

are very effective, such as the idea of probabilistic

occlusion culling[Shar 02a]. This approach introduces

a notion of density of particles in the cells of an octree,

which is used to randomly drop part of the particles

displayed.

Dense material systems are often composed of large

groups of particles which are very close to each other.

The probabilistic occlusion can be pre-computed, as

our datasets are non-interactively generated. Atom-

sviewer’s density computation, which is the volume
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of particles divided by the volume of the cell, is not

a very good factor to use for culling, because it as-

sumes the distribution of particles is uniform in all cells.

In this section, we propose a complete pre-processing

solution adapted to dense material systems visualiza-

tion, which consists in a space partitioning algorithm,

and a cell density computation. We also propose a

culling algorithm which takes the pre-processing speci-

ficities into account.

Space partitioning

We use a Kd-Tree structure for space partitioning,

which aims at separating dense space and empty space,

in a very quick and simple way. We do not use the

Kd-Tree VTK implementation, because of specific tree

parsing methods and data order tests needs.

4.1.1 Empty space detection Kd-Tree

The algorithm described below is a simple way of

generating a Kd-Tree for empty space detection.

As seen in Figure 2, for each tree node, we check

particles positions for a given axis. If there is a left

or right space between particles and node bounds, an

empty space isolating split is done. Otherwise, a middle

split is performed. Then the particles are sorted by com-

paring their axis position with the split position. Axis

is alternatively x, y, then z.

Figure 2: Kd-Tree generation: empty space partition

The complexity of the generation isO(nln(n)), where
n is the number of particles, as the most consuming part

is the particle sort, which is very much like a global

quicksort, the split position being a pivot value. Opti-

mum depth of the tree is very dependent on particles

repartition in the scene, but empirical tests shows a 15

depth is a good overall value.

4.1.2 Kd-Tree optimization

The main goal of this space partition is to find dense

cells which can occlude other cells. So we want the

dense cells to be as large as possible. This is why we

can optimize the Kd-Tree generation by moving up

the effective splits, which are the empty space ones.

Density computation is explained in section 4.2.

Figure 3 explains such an optimization: when a mid-

dle split is performed, a temporary tree branch is com-

puted, until an empty space split is found, or maximum

depth is reached. On the first case, the empty space

split is applied on base node and the branch is computed

again, otherwise the branch is kept as it is.

V node is an empty space splitting node (Void

split)

M node is a middle splitting node

Figure 3: Kd-Tree optimization

Statistical occlusion culling

The following step in pre-processing is tree cells

density computation. Density must describe the culling

effect of a cell in relation to another one. We use a

Monte-Carlo method to compute the probability for a

ray to go through a space-partitioning cell containing

spheres.

We launchN rays with random position and direction

through the cell, and we check if the ray goes through

any of the spheres or not (see Figure 4). Sphere radii

are fixed attributes of the particles. It is a five degrees of

freedom problem, and Monte-Carlo basic method pro-

vides a 1/
√
N error convergence. A typical number of

casted rays for a 1% error on density for one cell is

100,000 casts.

Figure 4: Monte-Carlo method for computing cell den-

sity.

This provides a 0 to 1 density factor, which represents

the probability a ray has to go through the cell, and can

be used as a trust percentage of this cell to occlude an-

other. Each node of the tree has such a density factor.
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Culling algorithms

We had to make a choice between the two most

frequently used strategies for occlusion and frustum

culling. The first one is silhouette comparison in view-

port coordinates, like in [Coor 97]. The other one uses

occlusion maps[Zhan 97]. We chose a strategy similar

to the first one, because occlusion maps require a lot

of GPU memory, which we would like to keep for the

VBO cache system as described in section 5.2.

4.3.1 Silhouette computation

Occlusion culling is achieved by computing a silhou-

ette of the occluding cell, and checking if a potentially

occluded cell is inside the silhouette in viewport coor-

dinates (cf Figure 5). Graham scan algorithm[Grah 72]

gives us a y-sorted couple of point list which represents

left side and right side of the silhouette.

Figure 5: Block silhouette occluding another block

For each potentially occluded cell vertex, we find the

left and right segments of the silhouette that share the

same y-position as the top. Then we compare the x po-

sition of the top and the segments (see Figure6).

Figure 6: Silhouette occlusion check: X position com-

pared to Y including segment

Depth check is done by comparing the z position of

a vertex in relation to one or two planes. Planes are

defined by triangles made by silhouette points close to

the checked point, as seen in Figure 7. It is worth noting

that this depth check is possible because we compare

only disjoint cells.

4.3.2 Application to Kd-Tree

As seen in section 4.2, the Monte-Carlo pre-processing

gives us a trust factor for cell opacity. If we set a thresh-

old on this factor, we can consider some of the cells

Figure 7: Depth check: triangles for planes definitions

are completely opaque, and then make a global culling

comparison between tree nodes.

Each node has three possible states: not occluded

(visible), partially occluded, and occluded. By default,

all nodes are not occluded (visible). Leaves, as elemen-

tary undividable nodes, can only be tagged as not oc-

cluded (visible) or occluded.

As the tree is pre-computed, each node has a density

attribute, and a maximum density of all the nodes be-

neath it. Then we recursively browse the tree from root

to leaves, stopping as soon as a node with enough den-

sity is found.

For each occluding node, we perform the occlusion

test, as seen in Figure 8: if the potentially occluded

node (PON) contains no particle, or we already know it

is occluded by another node, it is obviously occluded. If

it is a child of the occluding node (ON), a test between

theON’s direct children and the PON. If theON and the

PON are the same node, and have children, they can po-

tentially occlude a part of themselves, so we achieve a

test between one of them and their children. If the PON

is already partially occluded, we know that part of his

children are already occluded, so we test his children.

Otherwise, the silhouette of the ON is computed, and

the occlusion is effective. Note that occlusion test be-

tween a node and one of is children can be meaningless

because they can share bounds.

4.3.3 Frustum culling

Frustum culling is rather simple: the whole silhouette

algorithm works in viewport coordinates. We only have

to check if all cell coordinates are out of bounds per

axis, i.e. if for any axis, cell coordinates are all either

lower than −1 or higher than +1 in viewport coordi-

nates.

5. PARTICLE RENDERING

In this section we describe some of the techniques we

used to manage GPU memory and rendering.

Sphere rendering

We use GPU OpenGL shaders[Kess 06] programming

to render particles as spheres. The big advantage of

this technique is the per pixel precision of the ren-

dering: thanks to the fragment shader program, all
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Figure 8: Occlusion Test

spheres are rendered pixel per pixel, and not with a

group of vertices. This provides a direct level of de-

tail feature, because rendering precision is only depen-

dent on the number of pixels the sphere needs to be dis-

played. This also allows non standard lighting effects,

like Phong[Phon 75] illumination, an example of which

is shown in Figure 9.

Figure 9: Phong illuminated spheres

GPU memory management

Vertex Buffer Objects (VBO)[Nvid 03] are a powerful

way of managingGPUmemory and RAM-to-GPU data

transfers. We use them to create a cache system on GPU

memory: for each tree leaf which is to be displayed, we

create a VBO containing actual particles data used in

rendering stage (positions, colors, radii). We unload it

only if GPU memory is full and the leaf not displayed.

6. PARALLEL ALGORITHMS

This section presents the distributed strategies applied

to previously described occluding and rendering algo-

rithms.

Sort-last stage

As said before, we chose to use Ice-T, with Reduce to

Single Tile[More 01] method: each process is assigned

to one of the display tiles. First it renders the part of

the scene which consists of the data loaded by this pro-

cess. Then each process splits the rendered image, and

for each part of the image, which is to be displayed by

a tile, sends the part to one of the processes of the tile

group. Each process receives a balanced number of par-

tial images to be displayed by the tile. Then the pro-

cesses of a same tile group compose their images by

binary-swap before display. Moreland[More 03] tests

on a generic architecture with a cluster and a tiled dis-

play were conclusive.

Since the Ice-T algorithm is very dependent on net-

work bandwidth, it includes some optimizations, like

floating viewport, which reduces the size of images

transfered for compositing by detecting not rendered

zones on the global viewport. This feature plays an im-

portant part in the sort-first algorithms efficiency and

we used it as is.

Sort-first stage

6.2.1 Partitioning of rendered tree parts

We try to share parts of the tree to balance per cluster

node rendering time and network transfers.

All processes have the complete tree structure loaded.

Tree nodes numbering is in Z-order, like in [Shar 02a],

which provides a good spatial coherence between nodes

with close numbers.

For each frame, we assign the first not occluded

leaves with an average number of particles to the first

process, the following leaves to the second process, and

so on, until all leaves are assigned, as seen in Figure 10.

This average number or particles is the nearest integer

to (Visibleparticles)/(Numbero f clusternodes), mod-

ulo the cardinality of the last leaf assigned to the current

process.

The per node data is then spatially coherent, which is

good for Ice-T floating viewport technique. Moreover,

as two successive frames have relatively similar trees,

cluster nodes have to render almost the same leaves, and

the cache system is efficiently used.

6.2.2 Overlapping culling algorithm

The occlusion culling algorithm was easily modified to

become distributed.
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Figure 10: Displayable leaves assignment

Each frame, each cluster node performs an occlusion

test, with only his previously assigned tree parts as po-

tentially occluded cells. Then all nodes broadcast a sig-

nature of the tree, and each node merge them to have

the entire tree configuration. The tree signature is a

(Numbero f leaves)/4 bytes buffer: each leaf is coded

with 2 bits, because it has three states. All untested

nodes are not occluded.

Although signature broadcast is not a very good scal-

able method, the really small size of the signature im-

plies that this part does not slow down the overall pro-

cess. As an example, with a typical depth of 15 for the

tree for the 32million particles dataset described in next

section, the signature has a size of 8192 bytes, which is

no more than Ethernet Gigabit maximum MTU (9000

bytes).

7. IMPLEMENTATION AND FIRST

RESULTS

Base framework

Ice-T is integrated in Paraview[Ahre 05], based on the

generic framework VTK. For our current implementa-

tion we use only core VTK and Ice-T, with a number of

additional C++ classes compliant with VTK. We also

created a vtkMapper family of classes to integrate VBO

usage in VTK rendering process.

Protocol

We use a 32 millions particles dataset, describing a typ-

ical atomic system used in molecular dynamics detona-

tion wave simulations. The graphics and display hard-

ware is a four-tiled, 2048x1536 display, with an 8-node

Gigabit Ethernet commodity cluster. Each node is a Bi-

Xeon 3.4Ghz with a NVidia Quadro FX 4500 graphics

board.

We compared three sort-first methods: a non hierar-

chical non ordered method, i.e. only a big VBO per

cluster node; a Z-ordered repartition without occlusion;

and the full occlusion method. In the first method, net-

work is only used to send synchronization signals: data

is distributed among nodes, and loaded once in GPU

memory.

Figure 11: 32 million particle cylinder displayed on the

4-tile, 2m wide screen (around 3.3 M pixels)

As the full solution was designed to globally explore

datasets, we tested two different camera movements:

a rotation with constant long or short distance from

dataset center; and a zoom towards a point of interest.
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Figure 12: Camera rotating around dataset

On Figure 12 we can see the importance of Z-order

in cluster nodes repartition.

We can notice that with eight nodes on the far view

tests, culling (in blue) does not bring much better re-

sults than the naive (in green) method. The reason is

that good Z-order data rendering repartition strongly re-

duces the floating viewport surfaces, which lower the

network bandwidth usage. For example, in the 8 nodes

far view test, bandwidth usage drops from 750Mb/s (ef-

fectivemaximumbandwitdth)with non Z-ordermethod

to an average 250Mb/s in both native and occluding

method. On the close tests, Figure 12 shows the ob-

vious efficiency of culling in such a situation. Z-order

repartition and culling each reveal their efficiency in

one of the different rotation scenarios.
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Figure 13: Camera zooming in dataset

Zooming results confirm this (Figure 13). As the

camera gets closer to the dataset, the scene takes more

and more space in the viewport. The network is sat-

urated (like rotation tests, from an average 250Mb/s

to 750Mb/s), and actual rendering becomes more and

more time-consuming. Z-order is not very important,

because the floating viewport is not activated here.

The rendering quality is a step function of the density

threshold. If the density threshold is high enough, there

is almost no difference between occluding and non oc-

cluding rendering. The threshold used for above re-

sults is 95%. For the camera rotation movement, 30%

to 60% of the particles were culled. In the zoom test,

culling got up to 94%. Lower threshold values obvi-

ously provide more interactive rendering, but artefacts

do appear, like holes in the displayed dataset (cf Figure

14).

Figure 14: Artefacts with low density threshold

As priority for such a solution is global exploration

and zone of interest detection, the most important fac-

tor in results is close rotation framerate. Our solution

provides twice the framerate as the GPU only solution.

It is important to note that density is used the same

way in far and in close cases. It should be interesting

to lower threshold as camera’s distance from datae in-

creases. This could greatly improve results in far cases.

8. CONCLUSION AND FUTURE

WORK

Our system provides a good framework for the ex-

ploration of large particle datasets representing dense

material simulations. Sort-first rendering based on

a specific Kd-Tree partitioning and statistical culling,

with Monte-Carlo density computation, improves Ice-

T sort-last strategies to reduce network bandwidth us-

age. Spheres rendering is also accelerated by GPU

shaders. Future scale up tests will be achieved on a

12 tiled display fed by a 12 nodes cluster. We could

further improve rendering by using better illumination

methods, like ambient occlusion[Tari 06], to exploit the

maximum potential of modern GPU power. Tests on

a lower-latency and higher bandwidth network such as

Infiniband should also be interesting.

Our next solution improvement will be to take cam-

era’s distance to the dataset into account to choose den-

sity threshold. We expect far camera tests framerate to

be greatly improved.

Interactive tree computation is already fast, but with

some optimizations, it could be done in real time. The

main problem is density computation. One of the solu-

tions could be to use General-Purpose computation on

GPUs (GPGPU), like NVidia CUDA technology to ac-

celerate the Monte-Carlo method.
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ABSTRACT

Large natural environments are often essential for todays computer games. Interaction with the environment is widely imple-
mented in order to satisfy the player’s expectations of a living scenery and to help increasing the immersion of the player.
Within this context our work describes an efficient way to simulate a responsive grass layer with todays graphics cards in
real-time. Clumps of grass are approximated by two billboard representations. GPU-based distance maps of scene objects are
employed to test for penetrations and for resolving them. Adaptive refinement is necessary to preserve the shape of deformed
billboards. A recovering process is applied after the deformation which restores the original that is to say the undeformed and
efficient shape. The primitives of each billboard are assembled during the rendering process. Their vertices are dynamically lit
within an ambient occlusion based irradiance volume. Alpha-to-Coverage completes the illusion as it is used to simulate the
semitransparent nature of grass.

Keywords: Grass Simulation, Interactive Environments, GPU-based Collision Handling

1 INTRODUCTION

State-of-the-art 3D games and realtime simulations
demonstrate the power of currently available graphics
hardware for rendering exciting natural sceneries in
real-time. As nature scenes often include a lot of plants
(blades of grass, shrubs, trees etc.) the rendering of a
large number of them is still challenging. Furthermore,
they cannot be displayed with complex geometry
in real time. Many of the approaches make use of
billboard representations to preserve the real-time
constraint while leaving out user interaction.

In general, static level design is more and more re-
placed by dynamic environments that can be modified
in real-time throughout the gaming process. Due to the
fact that natural phenomena are better approximated in
the game, the player feels a higher immersion while
playing [McM03]. Consequently, the dynamic environ-
ment is becoming a part of the game logic: Trees are
chopped to clear the path and objects need to be moved
in order to fulfill quests. The more the realism of the
scene is enhanced the more of the player’s expectations
are satisfied.

Following this trend, our paper takes dynamic en-
vironments one step further by integrating responsive
real-time simulation of ground vegetation. We propose
a highly efficient technique for GPU-based simulation

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

of responsive grass billboards. Our implementation tar-
gets Shader Model 4 graphics boards, including geom-
etry shaders and stream output. The collision detection
with dynamic scene objects, the response and the re-
covering are directly simulated on the GPU. An adap-
tive geometrical representation of the grass guarantes
a pleasing visual rendering in conjunction with a high
performance. Thus, the responsive grass approach has
the potential to significantly improve the challenges in
game play of modern games and may lead to a better
perception of interactive environments.

The structure of this paper is as follows: in Section 2,
an overview of the related work on grass simulation is
given, followed by a overview of the responsive grass
system in Section 3. Section 4 proposes the procedu-
ral generation process of the grass layer. In Section 5,
the realization of the collision system is described. The
rendering of the grass layer is presented in Section 6
and the results and performance of our technique is dis-
cussed in Section 7. Finally, Section 8 concludes the
presented responsive grass approach.

2 RELATED WORK
In recent years, most research applied to natural
sceneries focuses on the rendering and animation of
a great number of plants. For volumetric represen-
tations, as proposed in [BCF+05, BPB06], collision
detection and reaction is awkward to handle. Guerraz
et al. [GPR+03], however, presented an approach
which allows an object to tramp on the grass layer.
A primitive is moved along the character’s trajectory
while affecting the procedural animation process of the
grass. Nevertheless there still is no possibility to react
to collision, based upon the object’s geometry. The
reuse of grass tiles amplifies the problem of collision
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Figure 1: The system for responsive grass.

response. Billboards which represent a number of grass
blades as a semi-transparent 2D texture are more suit-
able in that case. The billboard representations stored
in a single vertex buffer [Wha05] are efficiently ani-
mated [Pel04, Bot06, Sou07] and rendered [BCF+05]
on the GPU.

As the collision detection for grass is less explored,
related algorithms on a wider range are examined. In
case large dynamic geometry is stored and processed
completely on the graphics memory, image-based
techniques [VSC01, KP03, HTG04, KLRS04, GLM05,
Sat06] are proven to solve the collision tests very
fast. Kolb et al. [KLRS04] offered an approach to
collision detection using distance maps which are
fully generated and accessed on the GPU. A lookup
into each distance map is used to decide whether a
vertex lies inside or outside of a object. Using the
normal information the vertex can be translated in the
direction of the shortest way out of the object. Their
approach fits best in case all computations, including
the collision reaction, are done on the GPU.

Cloth models [Pro95, FGL03, Zel07] are applied in
order to overcome the problems in the context of the
collision reaction. Fuhrmann et al. [FGL03] replace
the cloth forces [Pro95] by several length constraints
along the connection of two particles in order to avoid
problems which are caused by large time steps. Zell-
ner [Zel07] entirely offloads the model to the GPU and
handles the recursion via the stream output stage.

Regarding high quality rendering of massive ma-
terial scenery a precomputed irradiance volume is
employed [Oat06, CL07]. The volume stores the
irradiance information of the whole static scene.
Interpolation within the volume allows us to dynam-
ically lit the grass billboards at runtime similar to
the two-sided lighting proposed by Kharlamov et
al. [KCS07]. The Alpha-To-Coverage feature of todays
graphic cards [Mye06] avoids expensive depth-sorting
of the semi-transparent billboards while maintaining a
consistent visual appearance similar to David Whatleys
procedure [Wha05].

3 SYSTEM OVERVIEW

The pipeline for responsive grass comprises the follow-
ing components as shown in Figure 1:

• Procedural Generation:
For a given terrain mesh, a geometry shader auto-
matically generates billboards for grass blades. This
geometry shader is executed once for each tile of ter-
rain, and the results are stored in local video mem-
ory using the stream-out capabilities. We describe
the process in detail in Section 4.

• Dynamic Response:
A CPU-based broad phase working on the spatial or-
ganized grass tiles and a GPU-based narrow phase
working on the generated grass billboards consti-
tute the responsive component. During this stage the
grass layer will be adapted whenever external forces
like colliding scene objects make it necessary. This
process which is implemented within the collision
system is outlined in Section 5.

• Rendering:
Deformed or undeformed billboards are rendered
based on the output of the collision system. Pre-
computed occlusion volumes respectively irradiance
volumes may be employed to integrate ground veg-
etation into a dynamic global lighting environment.
We adapt such techniques for realistic rendering
of dynamic ground vegetation as described in Sec-
tion 6.

Figure 2: The top row shows the texture images for the
extent, direction and messiness and underneath the re-
sulting plant cover is displayed.
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Figure 3: Flow diagram for collision detection, reaction and recovering.

4 PROCEDURAL GENERATION OF
THE BILLBOARDS

A clump of grass is represented by a semi-transparent
textured quad. The individual billboards are created in
a pre-processing step performed by the GPU. A set of
texture images provides the information of the global
layout of the grass layer as shown in Figure 2. These
textures are in detail:

• a grayscale texture map which defines the regions of
the plant cover (extent),

• a RGB texture which defines the direction to which
the grass blades grow (for simplicity the direction is
chosen to be the same for all grass blades),

• a grayscalemessiness texture which defines the
amount of randomness for the blades.

The geometry shader creates a randomized set of
billboards representing the grass blades. Each billboard
stores an orientation, a position, a collision state,
and a texture index, addressing a 2D texture array,
which stores different semi-transparent images of
grass clumps. Each billboard is passed through the
pipeline as a point primitive, which allows the different
geometry shaders to handle its information en bloc
during the collision handling and rendering. When the
billboards are generated, they are streamed to one large
vertex buffer [Wha05] to minimize subsequent render

calls. For a coarse collision detection on the CPU,
the terrain mesh is used to divide the set of billboards
into an octree hierarchy. Each leaf node of the octree
stores a range of indices into the vertex buffer of the
billboards and state information described throughout
the next section.

5 COLLISION SYSTEM
The pipeline of the collision system is outlined in Fig-
ure 3. Without collision, the billboard quads can di-
rectly be rendered. The upper two vertices of each bill-
board quad are transformed with a procedural wind ani-
mation based on a weighted sum of trigonometric func-
tions with different frequencies [Pel04, Wha05, Bot06,
Sou07]. The collision system is split into a CPU-based
coarse handling and two GPU-based procedures, one
for executing the collision test and response and one
for performing the recovering. The different steps of
the GPU-based collision handling are outlined in Fig-
ure 4.

5.1 Coarse Handling on the CPU
At each frame, the bounding volumes of all dynamic
collision meshes are tested for collision with the axis
aligned bounding boxes (AABB) of the octree contain-
ing the grass blades. According to the current state in-
formation and the results of the collision test, each node
is marked as eitherpossibly colliding, non-colliding or
recovering. The geometry assigned to each octree node
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Figure 4: Collision detection, reaction and recovering for asingle billboard.

marked aspossibly colliding is streamed through a col-
lision pass on the GPU. A tile marked asrecovering will
stay active for a fixed amount of time after the collision
when the object has left the AABB of the octree node.
During that time a separate geometry shader recovers
the original shape of the grass blades.

5.2 Collision Detection
In the collision pass, a geometry shader receives all the
vertex information of a potentially colliding billboard
at once. The geometry shader computes the bound-
ing sphere of the animated billboard and performs a
collision test against the bounding spheres of the dy-
namic objects. These bounding spheres are managed
in a dynamic texture resource, which is updated every
frame. If the collision test is passed on the bounding
sphere level, a second and more exact collision test is
performed on a subdivided mesh of the billboard. The
geometry shader determines for each vertex whether it
lies inside or outside the dynamic collision object by
performing lookups into the depth cube map [KLRS04]
of the object. Dynamic objects capable of colliding
with the plant cover are represented by depth cube maps
for efficiency. These cube maps are computed by pro-
jecting the object’s mesh onto the faces of a bounding
cube and store the distance to the cube plane and the re-
spective object normal in the four texture components.
They are updated for each frame to account for ani-
mated objects. Thus, to perform the test each vertex
v = (vx,vy,vz,1)T is transformed to each of the six pro-
jection spaces:

v i = Ti
OC→DM v , i = 1, ..,6 , (1)

wherev i = (v i
x ,v

i
y ,v

i
z ,1)T is the transformed vertex

of the billboard.Ti
OC→DM is a transformation from the

object coordinate space to thei-th projection space from
where the current distance map was computed. Along
the projection direction the vertex lies within the object
if

di(v) = dmi(v i
x ,v

i
y)− v i

z < 0 , (2)

wheredmi(x,y) is the distance looked up within the dis-
tance mapdmi at pixel position(x,y). If the distances
for all the six facesi of the cube do not yield a dis-
tance valuedi(v) less than zero a collision with the bill-
board has been detected. Identifying the distanced(v)
between the closest surface point in the corresponding
depth cube face for a given pointv, the following for-
mula is used (for details see [KLRS04]):

d(v) =

{
max{di(v)} if di(v) < 0∀i

min{di(v) : di(v) > 0} else
(3)

5.3 Collision Response
If a collision has been detected, the vertex is moved out
of the object’s shape. Its position is translated along a
normal vectorn obtained from the depth cube map:

v← v+ s n , (4)

wheren is taken from the depth cube map facedmi pro-
viding the smallest distance.s is the reaction strength
that is to say the surface normaln multiplied with the
smallest distances to the surfaced(v):

s = d(v)
n
‖n‖

. (5)

In order to remember the collision, the data-structure of
the billboard is expanded by an additional value storing
its recover time. In case of a collision the recover time
is reset.

5.4 Shape Preservation
As the separate processing of individual vertices may
lead to visually unpleasant distortions, a cloth model
based on spring constraints [Pro95, FGL03, Zel07], is
applied to preserve the overall shape of the grass clump.
A network of structural and shear springs takes care of
the billboard mesh. Whenever such a spring is com-
pressed or stretched, which means the connected ver-
tices diverge or converge, the resulting spring force
translates the connected vertices.
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Figure 5: The interpolation between the vertices of the current mesh (deformed mesh) and the vertices solely
affected by the wind animation results in a smooth recovering over time.

Referring to Provot et al. [Pro95], a spring forcef ∈
R3 between two billboard verticesv1 andv2 is defined
as:

f = k(‖l‖− l0)
l
‖l‖

, (6)

wherel = v1−v2 is the direction of the connection be-
tween both vertices.l0 is the initial length of the spring
andk ∈ [0,1] is the stiffness of the spring. A stiffness of
1 results in a conservative spring in contrast to a value
of 0 which has no effect. Each spring force directly af-
fects the two connected vertices [FGL03, Zel07]:

v1← v1− r1 ∆t f
v2← v2 + r2 ∆t f ,

(7)

wherer1 is the responsiveness for vertexv1 andr2 is the
responsiveness for vertexv2 with r1+r2 = 1. We added
the responsiveness in order to distinguish between fixed
ground vertices and movable vertices. As a fixed vertex
should not be moved, the responsiveness is set to zero
whereas the other vertex then is completely responsive.
If both vertices are not fixed they are equal responsive
and thusr1 = r2 = 0.5.

As the relaxation of one spring affects the neighbour-
ing springs as well, in general more iterations over all
springs have to be applied to get a good result. In our
case two iterations yield visually pleasant results due to
the small number of vertices.

5.5 Recovering
The recovering is processed on each billboard that has
some recover time left. Since the animation is a state-
less process, solely based upon the position of the fixed
ground vertices and the current time [Sou07], it is pos-
sible to compute the original shape defined by the wind
without considering the current collision state. The lin-
ear interpolation between the deformed vertex and its
original position, with respect to the recover time left,
results in the current shape of the grass clump as shown
in Figure 5:

v← (1− t3)w + t3v , (8)

wheret ∈ [0,1] is the recover time left,w is the ver-
tex position obtained by the wind function andv is the
current respectively last recovered vertex position.

Collision tests are required in case that there are still
collision objects inside the AABB of the respective oc-
tree node. At every time without any collision, the re-
cover time will be decreased. After the recover time has
elapsed, the billboards will be handled again as simple
quads. However, the recovering does not preserve the
length of the billboards.

6 RENDERING
On the CPU level, grass tiles which previously have
been streamed and others that have not been affected
by neither collisions nor wind exist. The tiles run
through separate render passes: Collided billboards are
rendered using their current refined mesh whereas the
unaffected ones are animated and rendered using their
simple quad-representation. Furthermore, to overcome
problems caused by too much render calls, only batches
of visible tiles, which have not been culled by view or
occlusion queries, are rendered.

6.1 Global Illumination

si

si+1 v

Figure 6: The irradiance for each vertexv of the bill-
board is interpolated within the two closest texture
slicessi andsi+1.

Dynamic global illumination is achieved by
pre-computing a volume, with each voxel storing
ambient occlusion information for its location in
the scene [CL07]. The whole volume is then stored
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Figure 7: The result of the collision handling in a dense field of grass.

as an 2D texture array to allow linear interpolation
based on mip-mapping. In addition, a second volume
which covers the same space provides pre-computed
irradiance information for each point. The irradiance
is determined by sampling an environment map by
using the previously computed ambient occlusion
information [PG04].

The texture coordinate for the volume texture can
easily be obtained from the billboard’s vertex positions
in the geometry shader. Ambient occlusion and irradi-
ance information is trilinear interpolated between adja-
cent texture slices, and the incident light is evaluated
per vertex during the geometry shader process as il-
lustrated in Figure 6. Finally, the pixel shader uses
the texture index into the semi-transparent texture ar-
ray to receive the decal color and transparency of the
grass clump. Multiplying this decal value with the inci-
dent two-sided light [KCS07] results in the final semi-
transparent pixel color.

6.2 Alpha-To-Coverage

Since grass has a semi-transparent nature a feature of
modern cards, so-called Alpha-to-Coverage, is used to
blend the billboards without the necessity to perform
expensive depth-sorting. The alpha value is used to de-
termine the number of subpixels, that will be filled with
the current pixel color. Then, blending between the
subpixels is performed while resolving the multisample
resolution to the final image resolution [Mye06].

7 RESULTS AND PERFORMANCE

Achieving a high performance is one of the major aims
to real-time applications. All components concerning
the grass layer are designed to reduce the workload of
the CPU as much as possible. Thus, the simulation is
almost completely shifted to the GPU. All the tests are
performed on an AMD Athlon 64 3500+ 2.2 GHz pro-
cessor including a GeForce 8800 GTX graphics card
with 768 MB DDR3 memory. Figure 7 shows the re-
sponse of the grass after the scene object has moved
through the meadow. The scene, presented in Fig-
ure 2, is running at 40-80 frames per second by using

DirectX 10 and fourfold multi sampling anti aliasing
(4xMSAA). The grass layer contains 60000 grass bill-
boards requiring 12 MByte of graphics memory. All
invisible grass tiles are culled. The grass is pushed to
the side or is stamped down on the line of movement.
The object has left a clearly noticeable imprint on the
grass. We analyzed the performance of the scene with
the aid of the NVidia PerfHUD tool. In Figure 8 the
number of colliding grass tiles (red boxes) respectively
recovering grass tiles (green boxes) increases from top
down. The lower left overlay displayed in each im-
age shows the workload balancing of the programmable
render pipeline stages: The unified streaming proces-
sors are utilized to work on pixels with about 50 to
60 percent (the blue bar) whereas the geometry shader
unit of the pipeline is active by approximately ten per-
cent (the green bar). The remaining workload is caused
by frame buffer operations. Approximately 16 million
pixels are processed within the fragment shader result-
ing in many read as well as write accesses to the frame
buffer. Those are amplified by the Alpha-to-Coverage
feature which in that case requires a multisample res-
olution that is four times higher than the image resolu-
tion. The diagrams located at the right hand side of each
image in Figure 8 present the amount of time which is
consumed within each GPU pass: Please note that the
time spent within the recover process (R) and the colli-
sion pass (C) varies only by small amounts. In contrast,
the more grass billboards are deformed the more time is
spent rendering the collided and recovering grass tiles
(RA). This performance loss is caused by the primitive
generation as well as the rendering of the high number
of primitives. Referring to the utilization graph and the
time measurements the performance of the system de-
pends on the number of assembled primitives which are
passed through the rasterizer back-end. Thus, both the
memory operations as well as the workload shifted to
the fragment shader stage, are influenced by the num-
ber of colliding grass billboards. Consequently, it is
necessary to set up a low recover time and to provide
a low multi-sampling rate for the Alpha-to-Coverage
process to preserve the overall performance. In con-
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trast, the time spent within the collision handling de-
pends mainly on the number of scene objects moving
through the grass layer.

8 CONCLUSION AND FUTURE
WORK

In the past thousands of billboards were successfully
used to create an illusion of dense grass vegetation. In

combination with wind animation nice visual results
were achieved. But the visual perception was often
compromised by lack of interactivity: Objects are mov-
ing through the grass without leaving a trace. Due to
prior hardware constraints a visually pleasing collision
reaction for a large area of grass was unachievable. The
visual quality of dense vegetation and the good perfor-
mance give a proof of the great suitability of our imple-
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mentation strategies for large responsive grass layers in
todays real-time applications.

The results are demonstrating that collision response
works fine for regions where the flat structure of the
grass billboards is hardly recognized. However, in ar-
eas where grass is planted sparsely, for example at the
borders of the grass layer, due to the coarse mesh of
the billboards the visual impression could be improved.
Two different approaches might be promising when try-
ing to solve this problem: On the one hand the collision
handling for each billboard could be distributed over
several streaming passes which allows the spring con-
straints to work on a higher subdivided mesh. On the
other hand the displayed primitives could be assembled
by a higher order interpolation during rendering.
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ABSTRACT
We present a parallel system capable of rendering multi-gigabyte data sets on a multi-megapixel display wall at
interactive rates. The system is based on Residual Vector Quantization which allows us to render extremely large
data sets out of the graphics memory. At 0.75 bits per voxel, such large data sets can even be kept on a consumer-
level graphics card. As an example we compress the whole full color “Visible Human Female” data set, approxi-
mately 21GByte in size, down to 700MByte. Taking advantage of the fixed code length and the extremely simple
decompression scheme of RVQ, all decompression is done on the GPU at very high rates. For each frame the data
set is decompressed into small subvolumes which are rendered front to back. Classification and shading can be
moved into the decompression step, speeding up the rendering pass.

Keywords
Distributed and Parallel Graphics, Volume Rendering, GPU Programming
1. INTRODUCTION

Since quite some time volume rendering has made it
from a purely academic research area into a well-
established computer graphics application with high
economic relevance. Still, comprehensive platform
support as in the case of computer games, as an
example, is largely missing. Nevertheless, visualiza-
tion requirements steadily increase: data sets are get-
ting larger, rendering algorithms are getting more
complex, and display resolutions are increasing as
well. In this work we present a fairly extreme exam-
ple: volume rendering of a very large data set (about
7.5G voxels) on a high-resolution display wall
(65,536,000 pixels). This display system (see Fig. 3
at the end of the paper) consists of 16 LCDs with a
resolution of 2560×1600 pixels each. Each display is
driven by a PC, being equipped with a Dual-Core
2.4GHz Intel CPU, 4GByte of main memory and a
8800GT graphics card from NVidia. The latter in turn
has a video memory of 1GByte capacity. The PCs are
connected via GBit Ethernet. As a side note, each
display is connected to its PC via a dual-link DVI
cable no shorter than 20 meters.

While the PC-cluster would otherwise represent a
decent computing platform, given the task at hand it
is somewhat underpowered. Thus, we need to apply
efficient optimizations. Also, the workload should be
placed where the strongest computing resources are,
and notorious bottlenecks such as the network should
be avoided as much as possible, even if this causes
some amount of redundant computation. With respect
to computational power and memory bandwidth
there is an easy choice: GPUs are approaching and
surpassing the teraflops-mark, and peak memory
bandwidth on consumer-level cards approaches
150GByte/s. These numbers are unavailable any-
where else in a typical workstation. From these con-
sideration we derived the design choices of our
rendering system, which will be described in detail in
the following sections.

2. RELATED WORK

Other work related to our project falls into the areas
of parallel volume rendering, data set compression,
and GPU-based volume rendering.

2.1 Data Set Compression

A study on lossless compression for volume data is
presented in [6]. The authors report a maximum of
about 50% reduction in size for selected data sets,
however, the work was targeted at reducing storage
space rather than increasing rendering speed. The use
of vector quantization for volume rendering was first
proposed in [18]. The presented rendering system
operates directly on the compressed data. An
improved version can be found in [22], however, the
method provides only nearest-neighbor interpolation
and is thus limited in rendering functionality. In other
early work the authors used Block Truncation Coding
in a space-filling way to reduce memory bandwidth

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistrib-
ute to lists, requires prior specific permission and/or a
fee.
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[12]. Wavelet-based encoding, however, has received
the most attention in recent years [9],[17],[20],[21]. A
hierarchical wavelet representation of large data sets
is used in [7]. The authors claim to achieve a com-
pression rate of 30:1 without noticeable artifacts in
the image. A quality measure is derived from the
wavelet representation during rendering to minimize
the number of voxels to process. Interactive rendering
speeds for large data sets can be achieved on standard
PCs. We didn’t follow this approach since decom-
pression is most practically done on the CPU, and
sending pixel data over the bus to the graphics card
can severely limit performance (see Table 1).

2.2 GPU-based Volume Rendering

The use of graphics hardware for volumetric data pro-
cessing dates back to [1], [3] and [4]. Originally, 3D
texturing hardware was used for volume rendering.
Screen-aligned slices were swept through the 3D tex-
ture and blended in back-to-front order. Thus, a vol-
ume data set was treated as a light-emitting,
translucent material. Later improvements included
gradient shading [15], multi-dimensional transfer
functions [11], pre-integrated transfer functions [5],
and the processing of pre-segmented data sets [8].
Where it is possible and useful we try to integrate
these techniques into our framework. Some features
have lower priority, though. For example, data sets of
the size considered here are rarely pre-segmented due
to the large effort it takes. Thus, support for this fea-
ture is postponed to later versions.

2.3 Parallel Volume Rendering

Basically, parallel rendering can be done in two ways:
object-space partitioning, and screen-space partition-
ing (see Section 3.2.6). To a large degree, the perfor-
mance of systems using object-space partitioning is
limited by the alpha blending of the intermediate
images. Solutions are proposed in [14], [23] and [24].
In [24], it is described that for alpha-blending the
CPU is used instead of the much better suited GPU.
This highlights the difficulties of handling such large
data streams in the network.
Rendering to a display wall of about 63M pixels is
described in [16]. Here, isosurfaces are rendered from
a total of 470M triangles. An example is shown with a
rendering time of 15 seconds, demonstrating the chal-
lenges presented by these display systems.

3. THE GIGA-VOXEL SYSTEM

As previously mentioned, we prioritize the graphics
card for all computations, even if this means a certain
amount of redundant processing. A few benchmark
figures might further motivate this choice. On a Dell
XPS700 workstation, equipped with an Intel Core 2
Duo CPU at 2.13GHz and an NVidia GTX280
(optionally an 8800GT), we obtained the following
results (measured with the SiSoft Sandra benchmark
suite and “bandwidthTest” from the NVidia CUDA
SDK [19]):

Interestingly, the tools report the internal CPU cache
bandwidth to be lower than the bandwidth to the
external video memory on the GTX280. Thus the
design target was set to keep all necessary data locally
in video memory, and to use the GPU for all compute-
intensive tasks. As a side effect, this frees the CPU to
do supporting activities such as tissue simulations. In
a cluster environment this means that the data must be
replicated, and that pixel traffic must be kept to a min-
imum. Clearly, given the size of typical volume data
sets, the former can only be achieved using data set
compression. The compression scheme, however, has
to fulfil contradicting requirements: it must provide a
high compression rate at still high image quality, and
the decompression must be simple and extremely fast.
We found Residual Vector Quantization (RVQ) to be
an interesting candidate for this purpose.
Thus, rendering a data set using the Giga-Voxel Sys-
tem is a two-stage process: first the data set needs to
be compressed in an offline step, and then it can be
loaded on the graphics cards and rendered. We’ll start
the description of the process chain with the compres-
sion step.

3.1 Residual Vector Quantization

Residual Vector Quantization has first been described
in [10]. An excellent survey of RVQ and related tech-
niques can be found in [2]. RVQ is an extension to
standard vector quantization (VQ). In VQ, a (large)
set of vectors is replaced by a (small) set of represen-
tative vectors (here called codevectors), while trying
to minimize overall error. Often, clustering methods
are used to find a proper set of codevectors (collec-
tively called a codebook). A frequently used method
is k-means [13]. Starting from an initial set of random
codevectors (seeds), each vector is assigned to its
nearest codevector, thereby forming clusters. Once
finished, the codevectors are moved to the center of
their respective cluster, and then clustering is started
anew. This process is repeated until the system
reaches a stable state. Each vector will now be
replaced by the index of its codevector in the code-
book. Decompression merely consists of a table look-
up.
If the set of vectors is too large, or unknown at the
time of codebook construction, a subset of vectors
(training set) can be used to build the codebook. Any
further vector is then replaced by the index of the
best-matching codevector within the existing code-
book.
For RVQ, the set of difference vectors is constructed,
i.e., vector - codevector. This set of vectors, equal in
number and dimension to the original vectors, is now

Test Bandwidth

CPU ↔ Cache 98,520

CPU ↔ Memory, 16MB Blocks 2,100

CPU ↔ Graphics Card (PCIe 1.x) 1,500

GPU ↔ Video Memory GTX280 110,028

GPU ↔ Video Memory 8800GT 43,357

Table 1: Actual Bandwidth Measurements [MB/s]
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subjected to yet another VQ, giving a second set of
indices and codvectors. Each original vector is now
replaced by two indices, and the corresponding code-
vectors are simply added to give the decompressed
version of the vector. This process can be repeated for
the desired number of levels.
There are a number of quantities which affect the per-
formance of RVQ. The number of codevectors per
codebook and the number of codebooks define the
length of the index set (the codelength) in bits. The
number of dimensions of the original vectors and the
width of each component define the compression rate
relative to a given codelength.
From experiments with a large number of images we
have found that larger codebooks should be favored
over a high number of levels, since the image quality
in terms of PSNR is higher for a given codelength.
Clearly, however, there is a practical limit in code-
book size, both with respect to memory consumption
and compression time. Compared to an on-chip
decompressor, we can take advantage of the much
larger but still fast video memory. A number of tests
have shown that a high image quality can be achieved
using four levels, with a codebook of 4k codevectors
on each level. This gives a codelength of 48 bits.
Since our test data set is the “Visible Human Female”
in the full-color version, a pixel is a 24-bit RGB quan-
tity. A vector is formed by a 4×4×4 pixel cube in the
image stack, and so the vector dimension is 192. The
64 pixels in a cube are compressed into 48 bits, giving
a compression rate of 32:1, or 0.75bpp.
For the components of a codevector we use a higher
precision to account for rounding errors. The RGB-
fields of one pixel are packed into one 32-bit word in
11-11-10 format. Thus, a codevector consists of 64×4
= 256 Bytes. A codebook occupies 1MByte accord-
ingly, for a total of 4MBytes for all levels.

3.1.1 Compressing the Visible Human Female

Originally, these images have a resolution of
2048×1216 pixels [25]. There are a total of 5189
images. The cadaver was submerged in a blue gel,
which we have set to a black “empty space”. How-
ever, there is too much empty space around the data,
so we have cropped the images to a final resolution of
1608×896 pixels. This gives an input data set size of
20.9GByte.
Compression time for a data set of this size would be
too long, so we have selected a training set equivalent
in size to 300 images. Construction of the four code-

books took roughly 21 hours. However, the code was
running on CPUs (actually on an eight-core machine).
Since this is not the focus of this work, we haven’t yet
implemented a parallel cluster version, nor a GPU
version. Since codebook construction mainly consists
of nearest-neighbor searches which can easily be par-
allelized, there is reason to assume that compression
speed can be improved significantly.
Compressing a slice of 1608×896×4 using the exist-
ing set of codebooks takes roughly 30 seconds. Thus,
this second step adds about 10 hours to the overall
compression time.
We give the image quality in terms of PSNR. All
4×4×4 cubes which are completely background have
not been included into the PSNR computation. The
overall PSNR is about 27dB. An example of an origi-
nal image versus the decompressed image is shown in
Fig. 1b and c. Both images form a stack of four 64×64
pixel cut-outs of the same image portion. Fig. 1a
shows a codebook on level 0.
The result of the compression step is an array of
402×224×1297 = 116,792,256 index sets of 48 bits
each, for total size of 700,753,536 Bytes. Thus, the
entire compressed data set along with the codebooks
fits on a graphics card with 1GByte of video memory.
In this work we only consider the case that the com-
pressed dataset fits entirely into the video memory.
Otherwise swapping from main memory or even hard
disk would be required, which, however, would also
benefit from the high compression rate.

3.2 Rendering

In general, rendering is done by repeatedly decom-
pressing subvolumes of the compressed data set into
an intermediate 3D-texture in video memory, render-
ing this 3D-texture using a raycaster, and blending the
resulting images. The raycaster we use is supplied
with the SDK from NVidia. Classification using a 3D
lookup-table, and optionally gradient extraction and
shading, are integrated into the decompression step in
order to not slow down the raycaster. Early-ray-termi-
nation is included on a per-ray basis in this raycaster,
we added early-exit on a per-subvolume basis using
occlusion culling. Empty-space-skipping is applied to
subvolumes after classification, i.e., whenever the
visible contribution of a subvolume according to the
actual transfer function is below a user-supplied
threshold. Multi-resolution rendering can also be inte-
grated in an elegant way.

Fig. 1:a.) Codebook example on Level 0. b.) Original image. c.) Decompressed image.

a.) b.) c.)
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We will now discuss the individual steps in more
detail. A diagram depicting the overall flow is shown
in Fig. 2.

3.2.1 Decompression

We have implemented the decompressor as a CUDA
kernel, taking advantage of advanced features of the
NVidia GPUs. Most notably, we make heavy use of
the on-chip shared memory buffer. Processing is as
follows.
Decompression is done in units of 256 index sets
(worth 16k voxels), which are loaded into the shared
memory. Each index set consists of 6 Bytes, which
are unpacked into four 16-bit indices again into
shared memory. For each voxel to be generated, there
is one thread in the kernel. Each thread reads the
unpacked index set, and fetches from memory those
parts of the codevectors which it needs for its voxel.
After unpacking the codevector components (from
11-11-10-format, see Section 3.1), and accumulation,
the RGB-components of the voxel are written into
shared memory.
These quantities are also used to access a 3D lookup-
table which contains opacity (α) values. The a-value
is again written into the shared memory, which com-
pletes the voxel generation. The system keeps track of
the visible contribution of all voxels in a subvolume
(color components multiplied by alpha), if the contri-
bution of a subvolume to the final image is too low
after classification, the subvolume is excluded from
rendering (empty-space-skipping on the subvolume
level).
When a certain number of threads have finished their
voxel, the contents of the shared memory are written
to video memory, that is, to the intermediate 3D tex-
ture.
By means of this process order we can make sure that
memory transfers are mostly large bursts, and so
bandwidth is high. Decompression performance is
1.86G voxels/s on the GTX280, and 0.60G voxels/s
on the 8800GT.
Partitioning the volume into subvolumes always
causes problems at the subvolume boundaries. During
raycasting, the reconstruction filter (tri-linear interpo-
lation) is missing voxels from the neighboring sub-
volume, during gradient extraction (see Section
3.2.2), the kernel hits the same problem. Most often,
this problem is solved by using overlapping subvol-
umes, and we adopt this method. Each subvolume is
extended in x-, y- and z-direction by two layers of
4×4×4 voxels. Net subvolume size was chosen to be
1283, and so final subvolume size is 136×136×136.
The added overhead is about 20%. Decompression
performance for different levels of detail is summa-
rized in Table 2.

3.2.2 Gradient Extraction and Shading

Once a given subvolume has been decompressed, the
system can optionally perform gradient shading. In
this work, we derive the gradient from the opacity,
since steep changes in opacity represent the surfaces
of regions of interest.

For smooth surfaces, we use a variant of a 3×3×3
Sobel filter (see Fig. 2). Two problems need to be
addressed, however:
• high computation costs due to the large kernel,

• a certain amount of noise still in the image.

We solve both problems by using downsampled ver-
sions of the subvolume for gradient estimation (see
also section 3.2.5, Multi-Resolution Rendering). The
system generates two additional levels of detail: a
683, and a 343 subvolume. The gradients are com-
puted only on the lowest-resolution grid, again using
a CUDA-kernel. Performance is given in Table 3.

Gradient extraction and shading are done at the voxel
positions, the contributions from specular reflection
are added to the just decompressed RGB-quantities.
Thus, the operation of the raycaster is not at all
affected by the shading operation, and is therefore not
slowed down. On the other hand, decompression
speed does not suffer too much because of the still
regular memory access pattern.
For gradient extraction the system can use a Central
Difference (CD) operator, or a Gradient shading is
again implemented as a CUDA-kernel. As before,
each thread processes one voxel. Each thread reads a
certain subset of the required voxel neighborhood, so
that by the end of this step a large block of voxels
resides in shared memory. 
To speed up shading we assume light sources at infin-
ity, and a constant viewing direction throughout the
volume (only for the shading, not for the raycasting).
Thus, the halfway vectors are all constant, and don’t
need to be computed for each voxel. It is true that the
placement of the highlights will be incorrect, how-
ever, such artifacts are rarely disturbing. Exponentia-
tion is done by a look-up in a precomputed table.
Gradient shading speed for CD and one light source is
summarized in Table 4.

GPU Level Voxels/s Subvolumes/s

8800GT 0 0.60G 254

GTX280 0 1.86G 776

8800GT 1 0.20G 716

GTX280 1 0.72G 2463

8800GT 2 0.03G 841

GTX280 2 0.06G 1667

Table 2: Decompression Performance

GPU Gradients/s Subvolumes/s

8800GT 17.8M 570

GTX280 63.9M 2045

Table 3: Gradient Estimation Performance
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3.2.3 The Raycaster

As previously mentioned we use the raycaster in the
SDK from NVidia. Since it is not the focus of this
work, no attempt was made to optimize this code. 

On the GTX280 graphics card, the rendering time of
this raycaster was measured to be an average of
3.97ms per subvolume (early-ray-termination dis-
abled), and so to be about 4 times slower than the pure
decompression. Thus, rendering time is largely domi-
nated by raycasting; the time spent in the recurring
decompression can be tolerated fairly well.

3.2.4 Blending and Occlusion Culling

The subvolumes are rendered in front-to-back order,
according to their Manhattan Distance to the viewer.
The result of the rendering of one subvolume is a pri-
vate frame buffer of RGBα-values. This buffer is α-
blended with the compound frame buffer, which in
the end contains the final image.

GPU Level Voxels/s Subvolumes/s

8800GT 0 0.227G 111

GTX280 0 0.411G 201

8800GT 1 0.309G 966

GTX280 1 0.546G 1712

8800GT 2 0.271G 7426

GTX280 2 0.482G 13158

Table 4: Gradient Shading Performance (CD)

Fig. 2: Process Flow Diagram.
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During blending, the system also updates a Z-buffer.
Whenever the α-value of a pixel in the compound
frame buffer exceeds a threshold, the corresponding
entry in the Z-buffer is set to Z-front. This is then
used to exclude subvolumes which are occluded by
opaque structures in the data set from decompression
and rendering. To this end, an occlusion query is sub-
mitted with the bounding box of the subvolume,
which returns the number of visible pixels. Depend-
ing on a user-defined threshold, the subvolume is ren-
dered or rejected.
Occlusion queries can be accelerated by submitting a
batch of bounding boxes. In our system, all subvol-
umes with the same Manhattan Distance could be ren-
dered in parallel and in any order, so they are queried
in one batch. Subvolumes which are located at any of
the visible faces of the entire volume will be rendered
in any case and are excluded from occlusion query.

3.2.5 Multi-Resolution Rendering

To avoid subsampling of the data during raycasting,
and to speed up rendering of distant subvolumes, the
system can generate decompressed subvolumes at dif-
ferent resolutions. Here we can take advantage of the
fact that a downsampled version of the subvolume
can be generated from a downsampled version of the
codebooks. Thus there is no need to keep a separate
index set array for each level of detail in video mem-
ory, all we need is a small amount of extra memory
for the downsampled codebooks.
The system supports decompressed subvolumes with
136, 68, and 34 voxels along each axis. By the use of
normalized texture coordinates, the raycaster auto-
matically performs proper voxel access and filtering.
Only the opacity must be adjusted, we accomplish
this by using a separate 3D look-up table for each res-
olution.
During rendering, the proper resolution of each sub-
volume is selected according to the raypoint spacing
on neighboring rays, or, of course, according to user
input.

3.2.6 Parallel Rendering on the Cluster

In general, the work can be partitioned in two ways:
object-space partitioning (OSP), and screen-space
partitioning (SSP). In OSP, a workpackage consists of
a subvolume. This is rendered to a private frame buf-
fer including the alpha-channel. Since a subvolume
can project to any part of the global frame (spanning
all displays), at least a subset of pixels need to be sent
over the network for blending into the local com-
pound frame buffer at the receiving node. Depending
on how many subvolumes contribute to a given
screen pixel, each final pixel may have caused multi-
ple transfers over the network. Although sophisticated
schemes have been developed to optimize this opera-
tion [14],[23], this pixel traffic still represents a
severe bottleneck, especially over relatively slow
GBit Ethernet. The upside is, though, that any subvol-
ume is processed at most once.
In SSP, a workpackage consists of a rectangular
region on the screen (a tile). A machine having been
assigned a certain rectangle renders this tile to com-
pletion, and sends the final pixels to the destination

screen. Since the viewpoint can be at an arbitrary
location, each node needs a complete copy of the
data. Most obviously we have selected this method,
and use the RVQ-compression to fulfil this require-
ment.
In SSP, the view frustum of a given tile can intersect a
number of subvolumes, which contribute only par-
tially to the tile pixels. Such subvolumes need to be
processed again for neighboring tiles, which intro-
duces a certain overhead. Since the raycaster will not
process rays redundantly, but decompression will
only generate complete subvolumes, the overhead
mainly consists of redundant decompression (plus
redundant occlusion queries). Since the decompres-
sion is very fast, we opted for sacrificing GPU cycles
in favor of reduced network traffic.
Tiles are assigned dynamically on demand. Thus,
there is a scheduling thread in the system which hands
out tiles to requesting nodes. As a further optimiza-
tion, each requesting node first gets tiles from its own
display.

4. PERFORMANCE

A photo of the display wall showing a rendering of
the Visible Human Female is shown in Fig. 3. The
alpha-threshold for occlusion culling was set to 0.95.
Renderings like these rotating around the z-axis take
an average of 3.9 seconds per frame. If using only
downfiltered subvolumes, average rendering time
decreases to 2.8 or 2.3 seconds per frame, for 683 and
343 subvolumes, respectively. Tests have shown that
image completion time is reduced by roughly 50% if
empty pixel packets are transferred, i.e., only syn-
chronization messages are sent. This confirms our
choice of rendering mode, since the network is
already saturated with this minimal amount of pixel
data. We have included lossless image compression
before sending tile pixels (a LZW-variant), but coinci-
dentally the reduced transmission time was exactly
offset by compression and decompression times.
Thus, reducing network overhead remains a research
topic in this project.

5. CONCLUSIONS

We have presented a parallel volume graphics system
for rendering very large data sets on a high-resolution
display wall. It provides the following features:
• Compression of the data set down to 0.75bpp,

thereby enabling data set replication on all nodes,
as well as placement of large data sets entirely in
fast video memory,

• fast and simple decompression, entirely handled
by the GPU,

• on-the-fly classification and gradient shading,
• empty-space-skipping on a per-subvolume basis,
• occlusion culling on a per-subvolume basis,
• multi-resolution rendering,
• and parallel rendering with screen-space parti-

tioning.
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The system can render our compressed version of the
Visible Human Female at interactive speed. Still fine
details of the anatomy, such as thin blood vessels, are
preserved. 
Future work will be directed at improving the image
quality, and at increasing the rendering speed.
Improving the image quality is not a matter of better
rendering in the first place, but of better compression.
Thus we will try to increase the PSNR and alleviate
the block artifacts in the decompressed image. As a
first step the use of even larger codebooks will be
investigated, which will most likely not affect render-
ing speed.
The latter can still be improved by further optimizing
the CUDA kernels. It is not always intuitive which
codes lead to a speed-up and why. Thus, kernel opti-
mization often means time-consuming try-and-error.
We are confident, however, that significant speed
gains can still be achieved.
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Fig. 3: The Display Wall.
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ABSTRACT
We present a system similar to Debevec’s Facade [DTM96] that improves the reconstruction of indoor scenes from
photographs. With confined spaces it is often impractical to use regular photos as the base of the reconstruction.
Combining pinhole cameras with fisheye shoots or photographs of any kind of reflective, parametrisable body
such as light probes eases this problem. We call the later camera setup an omni-camera, because it enables us to
acquire as much information as possible from a given viewpoint. Omni-cameras make it possible to reconstruct
the geometry of an entire room from just one view. Removing the pinhole camera constraint invalidates some key
assumptions made in Facade. This paper shows how to work around the problems arising from this approach by
adding scene specific knowledge as well as a genetic component to the solver. When using omni-cameras we can
no longer take advantage of a simple texture projection to obtain the materials for the scene. Instead we propose a
method for texture generation that is transparent to the camera setup used.
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1. INTRODUCTION
The reconstruction of shape from photographs is one
of the fundamental problems of computer vision and
computer graphics. It is used either to model important
present-day landmark architectural scenes and famous
buildings as well as in cultural heritage projects with
scientific background, e.g. aiming at digitally preserv-
ing a present state of conservation. In recent devel-
opment, textures and models produced by systems as
the one detailed in this paper can be used as the base
to retrieving grammars for procedural modelling ap-
proaches [MZWG07].
Image-based scene reconstruction under general cir-
cumstances with no a priori knowledge of the posi-
tion of cameras or any constraints on the geometry
of the real scene is an ill-posed problem. Several ap-
proaches have been proposed, dealing with a subset of
unknown and known factors. For very densely sam-
pled scenes traditional light field renderers can give
a very good approximation of the model and the re-
flectance. Global proxy geometries are extractable
by shape-from-silhouette methods from the visual hull
[GGSC96]. In most cases however, these methods are
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Figure 1: left Pinhole camera model; right Setting up
correspondences

only applicable to turntable setups of objects rather
small in size.
Another approach to the same problem is illustrated
in [KS00]. The positions of the cameras are known
and the underlying unknown scene is reconstructed
by a volumetric approach that discards all voxels that
are not mapped photo-consistently in all images. The
algorithm works well for lambertian scenes with an
extension to more complex colour models possible.
Global effects such as shadowing, transparency and
inter-reflections must be ignored and cannot be mod-
elled.

Modelling from a sparse set of photographs requires
additional constraints on the reconstruction algorithm.
One feasible way was presented in 1996 [DTM96]
where a user has to define a crude box-based geom-
etry (the base model) and manually find correspon-
dences between features in the images and features
in that base model. The reconstruction features used
are edges in the source camera images. When dealing
with situations where some parts of the model cannot
be seen, symmetries of the model are exploited to re-
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trieve information about the hidden surfaces or blocks.
Symmetries are also useful to reduce the dimension of
the reconstruction problem.

2. FACADE
Facade was restricted to a pinhole-camera model (see
Figure 1, left). Constraints imposed by this choice
were closely interwoven into the algorithms presented.
For example, setting up the feature correspondences
(see Figure 1, right) usually works like this:
1. Mark two points on an edge in a source image (projected

edge)

2. Construct a ray through the cameras focal point and each
of the previously marked points (point rays)

3. The focal point and the two point rays construct a plane
(reconstruction plane E)

4. The user chooses an edge (source edge) in the base
model and links it to the projected edge

The rays spanning the reconstruction plane are called
reconstruction rays r̃ in this paper. We need to find
the translation TK and rotation RK for each camera in
order to determine the position of the reconstruction
plane in world-coordinates. Using the fact that this
plane should contain the source edge we can derive
some simple formulas to find the camera rotation ma-
trix RK (see Figure 2).
Most edges in an architectural scene are axis aligned,
so we know that the reconstruction plane of those
edges should be parallel to a given axis dBK . In other
words the plane normal vector ~nE has to be perpendic-
ular to that axis. This gives the equation

~nE ∗RK ∗dBK = 0

Having multiple edges that are parallel to different
axes it is possible to build an objective function we can
use to obtain an initial estimate for the camera rotation
(for details see Section 5.1).
When the camera rotation is known the translation TK
is simultaneously reconstructed with all other param-
eters of the scene (size, location and rotation of the
blocks in the base model) in [DTM96]. When no ro-
tated block is present, the resulting functions are linear
and a result can be computed.
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Figure 2: Camera rotation estimation

Figure 3: Photo of a Light Probe

With rotations the task is not as easy. In Facade the
user needs to give an initial estimate for them. Since
the resulting functions are no longer linear, an objec-
tive function is generated once again and solved with
a Newton-Raphson algorithm (for details see Section
5.2).
At this stage we know the location and rotation of
each camera in world-space as well as every parame-
ter that defines our reconstructed model. The cameras
in world-space are used to project their corresponding
source images onto the blocks in the scene, allowing
the software to impose view dependent texturing onto
the scene in a very simple fashion, all possible because
of the pinhole camera constraint.

3. OUR CONTRIBUTION
When shooting scenes inside we have to deal with
confined spaces, where it is not feasible to take an
overview picture capturing more than a part of a wall
without using wide-angle lenses. To resolve this re-
striction we tried to use omni-camera setups like the
photograph of a light probe (Figure 3).
We introduced new problems when building the recon-
struction planes by removing the pinhole constraint
Facade relies on (see Section 2). Non-skew rays re-
flected on the sphere for example are skew in general.
Approximating a plane with those rays has the effect,
that the resulting reconstruction plane does not contain
the source edge. This renders the Newton-Raphson
optimizers used by Facade less stable. We propose
some additional enhancements to circumvent the loss
in robustness in Section 5.3.
Marking a projected edge in the camera images is also
no longer straight forward, as the source edge projects
onto a curve in some setups.
Since the projective texturing relied on the pinhole
camera model we can no longer use it for our omni-
camera setups. Instead we propose a simple ray cast-
ing approach, as detailed in Section 6. This enables
a texturing process independent of the camera setup
used. We employ the textures to export a complete
scene for use in other modelling or rendering applica-
tions or as a block replacement (Section 7) in a more
complex scene.
When reconstructing an indoor scene we need rotated
Blocks more frequently than with regular architec-
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tural outdoor settings. That circumstance forces us
to use non-linear optimization for almost every scene
we reconstruct, slowing down the process. We pro-
pose some enhancements to the classic Facade ap-
proach (Section 5.1) resulting in lower reconstruction
time and improved robustness that compensates for the
error introduced by approximating the reconstruction
plane.
The advantage of an omni-camera is obvious. With a
light probe setup we can gather almost a 360-degree
view of our room with only one shoot, often allowing
us to reconstruct the geometry of the scene from one
photograph.

In order to give the scenes some more depth and allow
easy incremental modelling, we also introduce the use
of block replacements to our system as discussed in
Section 7.

4. SCENE PREPARATION
Preparing a scene for reconstruction is predominantly
independent of the camera system used. We will high-
light everything that is different for sundries setups or
whenever the classic Facade setting is not applicable
to our omni-cameras.

4.1. Photographs
With a standard camera setup we have to consider
some constraints that arise from the pinhole assump-
tion. We need to set long focal lengths and a big aper-
ture value to gather results that match a photo taken by
an ideal pinhole camera as much as possible.
When shooting a light probe setup we direct the cam-
era towards the mirror ball in such a way that the centre
of the mirror ball lies on the optical axis of that cam-
era. The diameter of the light probe should be as small
as feasible compared to the focal length. We generally
work with focal lengths of 450mm and sphere diame-
ters of 80 to 150mm. With this setup the camera and its
supporting tripod obscure as little space on the image
as possible.
In a pre-process we mask unwanted geometry in the
obtained photographs. Omitting this step would result
in the camera and the tripod to get projected on the
textures in the final step.

4.2. Base Model
Every object in the scene has to be represented by a
crude approximating block (like a cube or a ramp) de-
fined by a type and a set of numeric parameters (like
width, height...).
By using constraints on the blocks (like symmetries)
we can reduce the number of parameters that have to
be determined during the reconstruction.
We would like to point out, that in contrast to Facade
our system does not rely on a crude approximation for

Figure 4: Link a curve in the source image to an edge in
the model. The crude model shows the cube for the room

itself and a door.

the block parameters given by the user. Our optimiza-
tion to the reconstruction process makes it more robust
than the original approach.

4.3. Adding Cameras
We have to create a camera for every taken image. Our
software allows us to mix cameras of different types.
We found that it simplifies the reconstruction process
if we use the omni-setups to reconstruct the geometry
of the room and its objects as well as a first and very
crude texture. Regular photographs are then used to
refine the visual quality of the result by adding addi-
tional images in a later iteration.
For each camera our system needs to know the follow-
ing intrinsic parameters: camera type (regular pinhole,
light probe setup...), film size and focal length. In case
of a light probe setup we additionally need the diame-
ter of the mirror ball and the distance of the focal point
to the balls centre.
If the images were taken digitally we can use the EXIF
information stored to automatically determine the film
size (by camera model) and the focal length. If the user
specifies the radius of the sphere we can also automati-
cally compute the distance between sphere and camera
(assuming the sphere completely fills the photograph).

5. SCENE RECONSTRUCTION
We need to set up correspondences before we can re-
construct the camera transformation matrices RK and
TK or any other parameter. Section 2 already explained
how this is done for the pinhole camera. It also de-
tailed that we need to construct a reconstruction plane
for the Facade-algorithms to work properly.
When using a light probe setup, the user has to perform
the same basic steps. In this case however a line in
world space projects to a curve in image space. Mark-
ing two points on that curve is still enough to identify
a straight edge in world-space (see Figure 4).
For every point marked in the image we construct
point rays ~dc = BKF (see Figure 5). When using light
probes the point rays are not equal to the reconstruc-
tion rays r̃, as they do not intersect with the source
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Figure 5: Constructing the reflected ray from a selected
point BK in the image plane.

edge in global space. To obtain the reconstruction rays
we have to reflect them on the surface of the mirror
ball using:

~ns =
M−S
‖M−S‖

r̃ = ~dc− (2∗ (~dc ◦~ns)∗~ns)

As the rays r̃ are not guaranteed to be non-skew we
cannot create the plane E from them as easy as it is
done at this point in the process for the pinhole camera.
With the pinhole model we were able to use the focal
point (where the reconstruction rays intersect) and the
direction of the two reconstruction rays to construct
the reconstruction plane E.
We still use the directions of our two reconstruction
rays, but since they are skew, they do not intersect in
one point. We decided to use the average of the two
starting points of our reconstruction rays as an approx-
imation of an intersection point.
In contrast to the reconstruction planes obtained by the
pinhole model the orientation of this plane varies de-
pending on the points we select on the projection of
the edge in the source image. This obviously will be
a problem for a robust reconstruction. By adapting the
optimization strategies introduced in Facade we can
still obtain very good results, as we will describe in
detail in 5.1 and 5.2.

5.1. Camera Rotation
We proceed similar to the way suggested by Debevec
in [DTM96] by finding an appropriate objective func-
tion O = ∑(Erri)2 using the pseudo reconstruction
plane E instead of the ones described in the original
work. We use the square of this sum to better fit the
Newton-Raphson method that is used throughout the
paper.
An error or disparity function Erri can be set up to
calculate the rotation of each camera separately. The
camera rotation RK is processed in an upstream task, to
reduce the number of parameters that have to be esti-
mated, and to separate the error prone optimization of
the Euler rotations from the rest of the reconstruction.
For each correspondence we have one pseudo recon-
struction plane E. Together with the Euler camera ro-
tation matrix RK

−1 we can use that plane to formulate

the disparity function Erri. We choose RK
−1 such that

the normal ~nE of the reconstruction plane is perpendic-
ular to the desired direction ~dBK of the source edge in
the model. This corresponds to a rotation of the cam-
era around its pivot using RK

−1 (see Figure 2).

Erri = (~nE ◦ (RK ∗ ~dBK ))2 (1)

As we explained in the previous chapter, the pseudo
reconstruction plane E is only an approximation of a
plane that really contains the source edge. This renders
the Newton-Rhapson optimization less robust due to
the additional error. In order to compensate, we pro-
pose the use of a genetic algorithm to automatically
find crude initial values for the rotation matrix. The
one we used is a genetic algorithm based on an elite
selection strategy without crossovers [Mit98].
Every generation contains 1000 individuals. Each is
composed of the three Euler angles that determine the
rotation of one camera. The initial population samples
the cameras rotational space around its coordinate axes
equidistantly (10 degrees). Each individual is assigned
a quality, which corresponds to the square of the eval-
uation of the error function Erri using the angles spec-
ified by that individual.
With each iteration a new generation is created con-
taining the best 60% of parent individuals, and 40%
newly created ones. The new ones are built based on
the values of a chosen parent (an individual with high
quality is more likely to be chosen). Those values are
changed using a Gaussian distributed mutation. The
distribution is adapted by decreasing the variance of
the Gaussian in approximately every 20th generation
to achieve a very dense sampling around the individ-
uals of later generations. The iteration is stopped if
the best individual of a generation meets a predefined
criterion, or the 500th generation was spawned.
We find that the final result (the camera rotation) of
this genetic procedure is only marginally improved by
the following Newton-Raphson optimization.

5.2. Translation and Model Parameters
To obtain the global model parameters and the camera
translations, we have to build another objective func-
tion, that represents the distance of each edge from the
model to their corresponding reconstruction plane E
(see Figure 6) in world-space.

nE E

P1

P2

SE

e

Figure 6: Camera Translation and block parameters
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For two points P on a source edge e we can calculate
that error by

d(e) = ~nE ◦ (((R∗ (P−M))−SE) (2)

where SE is an arbitrary point on the reconstruction
plane. This is a slight difference compared to the im-
plementation in [DTM96]. We also have to take into
account, that our reconstruction plane E is not as stable
as the one used in a pure pinhole setup as we explained
in Section 5.1.
Using Equation 2, we can calculate the objective func-
tion for all images I and all line correspondences eI in
that image by:

O = ∑
I

∑
eI

d(eI)2 (3)

Minimizing this function yields the reconstruction of
the scene.

5.3. Improving Reconstruction Results
If all rotation matrices RB for all blocks in the scene are
constant, we can compute the solution by solving a lin-
ear equation system, which is simple and often appli-
cable when working with outdoor architecture. How-
ever, we found that indoor scenes tend to have a higher
quantity of rotated blocks.
Since the evaluation of a Newton-Raphson algorithm
can become slow, and might get caught in local min-
ima, we decided to split this process into two separate
tasks.
First we automatically select all base geometry blocks
that are rotated around a known angle (this, of course,
includes blocks not rotated) along with all camera
translations. We can solve the resulting linear equation
system comprised of the square of the distances d(e)2

define in equation 2 for all correspondences relating to
blocks not rotated.
As a result the camera translation and the fixedly ro-
tated blocks are now consistently set up. Only the pa-
rameters of blocks with an unknown rotation remain
unset. We build the same objective function as de-
scribed in equation 3 for all unset edges. Since we
do not include edges already computed in the linear
step, the dimension and complexity of the objective
function O is reduced.
At first we used a standard Newton-Raphson imple-
mentation that had to re-evaluate the hessian symboli-
cally in each step. This proved to be a very slow solu-
tion, as the terms that had to be optimized were rather
complex, and we had to tackle with big hessian matri-
ces comprised of the second derivate of those terms.
We changed that implementation to a quasi Newton-
Raphson algorithm, as described in [BNS94]. This
method has the advantage that we never have to com-
pute the hessian matrix, but can calculate an estimate
for it through the gradients of the objective function.

Figure 7: left Projecting source pixels into the recon-
structed scene; right Only the first surface hit by a ray

gets textured.

As a side note we would like to point to the fact that
the optimization over the SO(3) group [Kue03] that
is done for all camera and block rotation matrices is
often not enough. Special care has to be taken since
ambiguities can occur (for example positive or neg-
ative view directions) that can either be resolved by
user-interaction, reparameterization of the rotational
domain or specially adapted tests [ML03].
Our software automatically fixes the camera view di-
rection by checking if the intersection of any given re-
construction ray with the model object is located in the
expected octant of the cameras coordinate system.
In case of a light probe, the expected octant is deter-
mined by the location of the point that corresponds to
the reconstruction ray on the light probe. For a regu-
lar pinhole setup we simply check if the intersection is
located in front of or behind the camera.

In addition we added an extra phase into the Newton-
Raphson optimization that is evaluating the objective
function for different angles after each iteration.
After the result for one iteration is calculated, we
change the variables that represent angles in 45-degree
steps and calculate the error value achieved with the
altered angles. If the result is smaller than the one ob-
tained through the optimization step, we will use the
new angles in the following Newton-iteration.
This alleviates the user from the need to set an approx-
imate rotation for any block before starting the recon-
struction, as it was necessary with Facade. All in all
our changes made the reconstruction of rotated blocks
and the use of pseudo reconstruction planes more reli-
able.

6. TEXTURE GENERATION
With our omni-cameras we can no longer use the sim-
ple projective texturing approach, as it is used in Fa-
cade. We propose to use a ray-casting algorithm to
render the textures for a scene. This creates a layer
of abstraction between the camera model used and the
texturing process.

We build a reconstruction ray for each pixel in each
source image, constructing it the exact same way as it
is done for the points marked by the user during the
scene reconstruction. Reutilizing the code generating
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the reconstruction rays makes this process transparent
to the underlying camera type.
By intersecting those rays with our scene geometry we
obtain a list of points in world space that are visible
through a given pixel. Only the closest intersection in
front of the camera is coloured with the colour of the
source pixel (see Figure 7, right). We choose to use
forward ray tracing, because it is not always possible
(depending on the camera type used) to find a unique
ray from world space into the source images. Think
about the contour of a sphere. At this singularity, one
point in world-space is mapped to all points on that
contour.
To write colour values to the textures we apply a linear
interpolation of three projected neighbouring camera
rays to fill larger texture regions by rasterizing the re-
sulting triangle in object texture space (Figure 7 left).
The alpha mask provided for each image in the pre
process can be used to blend out regions that are defec-
tive. Furthermore, we calculate the scalar product of
the ray with the surface normal and weight the incom-
ing texels accordingly (similar to the blend field meth-
ods in [BBM+01]). This ensures that rays with grazing
angles contribute little to the resulting textures.
Another way for the user to interact with texture gen-
eration is to select a global weight for each texture. Es-
pecially in the presence of regular pinhole source im-
ages it may be advisable to discard any texture infor-
mation from the reflective sources where more detailed
source pictures are available. The pinhole source im-
ages have a far better local resolution and produce an
increased local texture quality. In Figure 11 such de-
tail images can be seen for the white radio on top of
the shelf and the cupboard on the floor.
Of course there are problems with regions that are not
seen from any of the source images. As they are never
hit by any ray, we can fill the missing texture regions
with a blank colour (see the greyish colour in Figure
8 on the floor projecting away from the chairs), fill it
by interpolation techniques from neighbouring texels
or by utilizing a texture synthesis approach [WL00].
Using this approach to generate textures allows our
system to export the result to a file (for example to
VRML), making the reconstructed scene independent
from a specialized viewer.

7. MODEL EXCHANGE
To alleviate the hassle for the user to work out
seemingly unnecessary details, we provide for an easy
model block exchange.
Instead of reproducing an indoor scene with every de-
tail, we use a bounding box as base geometry for an
object we want to replace with a more detailed version.
After scene reconstruction is finished any table model
from a 3D model library can be fitted into the scene
by applying the affine transformation that is available

from the reconstruction process for each block. In Fig-
ure 8 the bounding boxes are shown over the replaced
geometry.

Since we also allow the export of our scenes into ar-
bitrary formats (like VRML or XSI), the model ex-
change can be used to build a complex scene itera-
tively. With this system it is convenient to first model
some details of the scene using standard photographs
for higher resolution. When finished the results are ex-
ported to a file and (if necessary) refined in an external
editor.
In the next iteration we could start to model the room
itself, representing the previous reconstructed detailed
model with a simple block. When the reconstruction
of the entire room is finished, we simply fit the model
stored in the file into the bounding box of the block we
created as a placeholder.

8. RESULTS

Figure 8: Reconstruction of a synthetic example from
one light probe image.

We tested our implementation with four different
scenes. The first one was a synthetic scene (Figure
8), to show the general usability of the algorithm.
The scene was generated with Blender, using a near
optimal light probe. Only half of the reconstructed
room is textured, as the image resolution of the light
probe is not high enough for the room behind the
probe.
The second scene contained two offices (Figures 9 and
10). The third one was a home office (Figure 11) and
the fourth a living room (Figure 12).
While a calibrated camera was used in [DTM96] to ac-
quire the photos for the reconstruction, all our results
were obtained with an uncalibrated one.

We compare the dimensions of the found parameters
to the ones in the real scene, which gives us a measure
for the quality of the reconstructed geometry. Since
the reconstructed width of the scene is always set to
1.0, we have to multiply all our values with the actual
width. However, the camera position and rotation in
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Figure 9: Reconstruction of a small office from two light
probes with 800x800 pixels each. This example shows the

projection of an unmodelled chair onto the desktop.

the real scene was not recorded, so we had to compare
those results visually.
The most challenging scene was the home office scene
(Figure 11), because the space in that room is quite
confined. The floor has a footprint of 12.5 m2. Just
considering the area of the room, that is more than
1m high, we get a size of about 9 m2. It was recon-
structed using a simple cube and an additional ramp
for the room model. In a room this small it would not
be practical to use regular photographs for the recon-
struction of the geometry.

Parameter Measurement Reconst. Result
Width 2.70m 1.000 2.70m
Height 2.30m 0.857 2.31m
Length 4.65m 1.718 4.64m

Table 1: Comparing reconstructed parameters to real
world measurements in the home office scene.

The results in Table 1 show, that the reconstructed di-
mensions are in good correspondence with the mea-

Figure 10: Another small office scene using a quite
bumpy light probe.

Figure 11: Confined space (9 m2) home office scene: 3D
view of extracted textures from light probe and detail

perspective images.

sured values. The size of the reconstructed scene is
only 1 cm off the real values.

We would like to point out, that we used the foot of
a lamp to reconstruct, which was a slightly flattened
sphere. This demonstrates that our method can gen-
erate robust results for the geometry with suboptimal
light probes. We gain this robustness through our ex-
tensions to the calculation of the reconstruction plane
(see Section 5) where we calculate the average of the
starting points of the skew reconstruction rays.
Using the deformed light probe the texture correspon-
dence was not always given. This became most obvi-
ous, if the surface projects to the outer regions of the
mirror ball (see Figure 11).
The reconstruction of the camera position was very
precise. We put the hemisphere we used as the light
probe on the door and the walls of the room. This po-
sition was reconstructed correctly.

In order to determine the influence of a deformed
sphere on the reconstruction results, we used a non de-
formed light probe for the living room scene in Figure
12. The results for the geometry was only marginally
better then the one in the home office scene, but the
textures were in better correspondence (except in the
outer regions of the mirror ball).

Figure 12: A living room reconstructed using 2 light
probe images and several pinhole shoots
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9. CONCLUSION
We showed how to reconstruct an indoor scene using
only one or very few images by applying a well-known
method to various omni-cameras. Texture generation
can be largely automated and yields atlas maps for sin-
gle objects or the whole scene exportable to any 3D
graphics format. Crude base blocks can be substituted
with complex 3D geometry reducing the amount of de-
tail work for the user while enhancing quality.
Allowing the usage of non-pinhole camera setups re-
vealed a series of difficulties with the existing ap-
proach we had to tackle. Most of them due to the ad-
ditional error introduced by the pseudo reconstruction
planes we have to use in omni-setups.
The use of a genetic algorithm to get a good ap-
proximation for the initial values of the camera rota-
tion used in the quasi Newton-Raphson minimization
proved to be very precise, and made the estimation
more robust compared to the original approach using
just a Newton-Raphson solver.
By splitting the following estimate of the camera trans-
lation and the model parameters in a step where all
non-rotated blocks are computed and a step that mini-
mizes the parameters for all rotated blocks, we gained
a big advantage in terms of speed and precision. It also
contributed to a more reliable reconstruction.
The most surprising result was, that our method could
robustly reconstruct a scene using non-optimal spheres
as light probes.

In the future, we would like to extend the presented
system by automatic edge detection in the source im-
ages that would speed up the scene preparations. Re-
constructing the illumination of the scene as detailed
in [SHR+99] from the generated textured objects is
another possible enhancement that would be very use-
ful when importing external geometry, as it allows
us to match the lighting of the loaded textures to the
scene.
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ABSTRACT 

Automatic gesture spotting and recognition is a challenging task for locating the start and end points that 

correspond to a gesture of interest in Human-Computer Interaction. This paper proposes a novel gesture spotting 

system that is suitable for real-time implementation. The system executes gesture segmentation and recognition 

simultaneously without any time delay based on Hidden Markov Models. In the segmentation module, the hand 

of the user is tracked using mean-shift algorithm, which is a non-parametric density estimator that optimizes the 

smooth similarity function to find the direction of hand gesture path. In order to spot key gesture accurately, a 

sophisticated method for designing a non-gesture model is proposed, which is constructed by collecting the 

states of all gesture models in the system. The non-gesture model is a weak model compared to all trained 

gesture models. Therefore, it provides a good confirmation for rejecting the non-gesture pattern. To reduce the 

states of the non-gesture model, similar probability distributions states are merged based on relative entropy 

measure. Experimental results show that the proposed system can automatically recognize isolated gestures with 

97.78% and key gestures with 93.31% reliability for Arabic numbers from 0 to 9. 

Keywords 
Gesture spotting, Gesture recognition, Pattern recognition, Computer vision, Application. 

 

1. INTRODUCTION 
The hand gesture recognition is an active area of 

research in the vision community, mainly Human- 

Computer Interaction (HCI). A gesture is spatio-

temporal pattern which may be static, dynamic or 

both. The goal of gesture interpretation is to push the 

advanced human-computer communication to bring 

the performance of HCI close to human-human 

interaction. In the last decade, several methods of 

potential applications [Dey06a, Elm08a, Kim07a, 

Mit07a, Yan07a] in the advanced gesture interfaces 

for HCI have been suggested but these differ from 

one another in their models. Some of these models 

are Neural Network (NN) [Dey06a], Hidden Markov 

Models (HMM) [Elm08a, Elm08b] and Dynamic 

Time Warping (DTW) [Tak92a]. One main concern 

of gesture recognition is how to segment some key 

gestures from a continuous sequence of motions. The 

gesture segmentation is also called gesture spotting. 

This is considered as a highly difficult process for 

two major problems, which arise in real-time gesture 

recognition system for continuous gesture to extract 

key gestures. The first problem is segmentation that 

means how to determine when a gesture starts and 

when it ends from hand motion trajectory. The 

second problem is caused by the fact that the same 

gesture varies in shape, trajectory and duration, even 

for the same person.  

To overcome these problems, HMM is used in our 

system because it is capable of modeling spatio-

temporal time series of gestures effectively and can 

handle non-gesture patterns. On the other hand, NN 

and DTW hardly represent the non-gesture patterns. 

Lee et al. [Lee99a] proposed an ergodic model based 

on adaptive threshold to spot the start and the end 

points of input patterns, and also classify the 

meaningful gestures by combining all states from all 

trained gesture models using HMM. Kang et al. 

[Kan04a] developed a method to spot and recognize 
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the meaningful movements where this method 

concurrently separates unintentional movements 

from a given image sequences. Alon et al. [Alo05a] 

proposed a new gesture spotting and recognition 

algorithm using a pruning method that allows the 

system to evaluate a relatively small number of 

hypotheses compared to Continuous Dynamic 

Programming (CDP). Yang et al. [Yan07a] presented 

a method for recognition of whole-body key gestures 

in Human-Robot Interaction (HRI) by HMM and 

garbage model for non-gesture patterns. Mostly, 

previous approaches use the backward spotting 

technique that first detects the end point of gesture by 

comparing the probability of gesture models and non-

gesture model. Secondly, they track back to discover 

the start point of the gesture through the optimal path 

using Viterbi algorithm [Law89a] and then the 

segmented gesture is sent to HMM for recognition. 

So, there is an inevitable time delay between the key 

gesture segmentation and recognition, where this 

time delay is not well for on-line gesture recognition.  

To treat this problem, we propose a forward gesture 

spotting system that executes gesture segmentation 

and recognition simultaneously. The system 

recognize the isolated and key gestures for Arabic 

numbers (0-9) in real-time from stereo color image 

sequences by the motion trajectory of a single hand 

using HMM. To spot key gesture accurately, a 

sophisticated method of designing a non-gesture 

model is proposed, which is constructed by collecting 

the states of all gesture models in the system. The 

non-gesture model is a weak model for all trained 

gesture models where its likelihood is smaller than 

that the dedicated model for a given gesture.  

The start and end points of gestures are based on the 

competitive differential observation probability 

value, which is determined by the difference of 

observation probability value of maximal gesture 

models and non-gesture model. The key gesture 

starts (ends) when the value of competitive 

differential observation probability changes from 

negative to positive (positive to negative). To reduce 

the states of the non-gesture model, model reduction 

which merges similar probability distributions states 

based on relative entropy is used [Cov91a]. 

Moreover, each isolated gesture number is based on 

60 video sequences (42 for training and 18 for 

testing) and the continuous gestures are based on 280 

video sequences for spotting key gestures and testing 

it. The achievement recognition rates on isolated and 

key gestures are 97.78% and 93.31% respectively. 

The organization of this paper is as follows; in 

section 2, hand tracking technique is introduced. 

Section 3 demonstrates the key gesture spotting 

system in three subsections. The experimental results 

are described in Section 4. Finally, Section 5 gives a 

few concluding remarks and refers to our future aims. 

2.  REAL-TIME HAND TRACKING 
The hand is tracked in our system by mean-shift 

algorithm, which is a non-parametric (i.e. kernel) 

density estimator that optimizes a smooth similarity 

function to find the direction of the hand target’s 

movement. We decide to use m-bin histograms as the 

representation of the object’s color probabilities 

density function (pdf’s), as they can satisfy the low-

cost requirement of real-time tracking. YCbCr color 

space is used, where Y channel represents brightness 

and (Cb,Cr) channels refer to chrominance. The 

segmentation of skin colored regions becomes robust 

if only the chrominance is used in analysis. 

Therefore, we ignore Y channel to reduce the effect 

of brightness variation and use only the chrominance 

channels, which fully represent the color information. 

The segmentation of the hand with complex 

background takes place using 3D depth map and 

color information, which is more robust to the 

disadvantageous lighting and partial occlusion. This 

is done using Gaussian Mixture Models (GMM). For 

more details, the reader refers to [Elm08a, Nie07a].  

 

 

 

 

 

 

 

 

 

Figure 1. (a) First frame of video stream. (b) The 

Depth value of original image from a Bumblebee 

stereo camera. (c) Binary masked for left hand. 

 

The segmentation module detects and localizes our 

object of interest (left hand) in the first video frame 

and we know exactly its position, as well as its shape 

and dimension (Fig. 1) [Elm08a]. Therefore, before 

starting with tracking, we used a binary mask to 

extract our hand target from the initial frame and find 

its color histogram with Epanechnikov kernel 

(monotonic decreasing kernel profile k(x)) [Com00a, 

Com03a, Sco92a] (Fig. 2(b)). Epanechnikov kernel 

assigns smaller weights to pixels father from the 

center. Using these weights increases the robustness 

of the density estimation since the peripheral pixels 

are the least reliable, being often affected by 

occlusions. Let {xi
∗}, i=1…n be the normalized pixel 

locations in the region defined as the hand target 

model. The probability of the feature u=1…m in the 

hand target model histogram is computed as; 

𝑞𝑢 = 𝐹 𝑘  𝑥𝑖
∗ 2 𝛿[𝑏 𝑥𝑖

∗ − 𝑢]

𝑛

𝑖=1

 

 

(1) 

where δ is the Kronecker delta function, equal to 1 

only at u and 0 otherwise. The normalization constant 

   a. Original Image b. Depth Value c. Binary Mask 
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F is derived by imposing the condition   𝑞𝑢 = 1𝑚
𝑢=1 , 

where 

𝐹 =
1

 𝑘   𝑥𝑖
∗ 

2
 𝑛

𝑖=1

      
 

(2) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. (a) Gesture path for number 32 that is 

generated from connecting hand centroid points. 

(b) The Epanechnikov monotonically decreasing 

kernel for the hand target model of first image. 

 

For the hand target candidate in the next frame, Let 

{xi}, i=1…nh be the normalized pixel locations of the 

hand target candidate, centered at y in the current 

frame. Using the same kernel profile k(x), but with 

bandwidth h. The probability of the feature u=1…m 

in hand target candidate histogram is computed as;  

𝑝𝑢 𝑦 = 𝐹𝑕 𝑘  
𝑦 − 𝑥𝑖
𝑕

 
2

 

𝑛𝑕

𝑖=1

 𝛿[𝑏 𝑥𝑖 − 𝑢] 

 

(3) 

where 

𝐹𝑕 =
1

 𝑘   
𝑦 − 𝑥𝑖
𝑕

 
2

 
𝑛𝑕
𝑖=1

 
 

(4) 

Moreover, the Bhattacharyya coefficient [Kha06a] is 

more suitable to evaluate the similarity between the 

hand target model and the chosen candidate rather 

than many more commonly technique, such as 

histogram intersection. The maximization of the 

Bhattacharyya coefficient between the unit vectors 

 q and  p(y) that representing the hand target 

model histogram and candidate model histogram 

respectively takes the following form; 

𝜌 𝑝 𝑦0 , 𝑞 =   𝑝𝑢(𝑦0)𝑞𝑢

𝑚

𝑢=1

 

 

(5) 

To find the best match of our hand target in the 

sequential frames, the Bhattacharyya coefficient is 

maximized, which means that we need to maximize 

the term; 

 𝑤𝑖

𝑛

𝑖=1

𝑘( 
𝑦 − 𝑥𝑖
𝑕

 
2

) 

 

(6) 

where h is the kernel’s smoothing parameter or 

bandwidth and the weights wi is given by; 

𝑤𝑖 =   
𝑞𝑢

𝑝𝑢(𝑦0)

𝑛

𝑖=1

 𝛿[𝑏 𝑥𝑖 − 𝑢] 

 

(7) 

Mean shift iteration uses the gradient of this 

similarity function as an indicator of the direction of 

hand’s movement where the centroid point of hand 

candidate is shifted by Eq. 8; 

 

𝑦 =
 𝑥𝑖𝑤𝑖
𝑛
𝑖=1

 𝑤𝑖
𝑛
𝑖=1

 

 

(8) 

Thereby, the hand motion trajectory so-called gesture 

path is generated from connecting the centroid points 

of hand regions (Fig. 2(a)).  

3.  KEY GESTURE SPOTTING 
The task of locating key patterns from a stream of 

input signal is to find the start and end points of a 

meaningful gesture while ignoring the rest. Here, we 

discuss how to model gesture patterns discriminately 

and how to model non-gesture patterns effectively. 

Each reference pattern for Arabic numbers from 0 to 

9 is modeled by gesture HMM and all other patterns 

are modeled by a single HMM called a non-gesture 

model (garbage model) [Yan07a, Lee99a], however, 

it is not easy to obtain the set of non-gesture patterns 

because there are infinite varieties of meaningless 

motion. Fig. 3 represents a simplified gesture 

spotting structure where the hand gesture path is 

projected into 3D-plane.  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3. Gesture spotting structure, the dotted 

curve (Pre-and Post-) refer to non-gesture pattern 

and dark curve (Key-) represents gesture pattern. 

3.1 Gesture Model 
For each reference gesture model, each HMM state 

represents the local segmental part of it, while the 

states transition represent the sequential order 

structure in a gesture trajectory. The number of 

HMM states is an important parameter for each 

reference pattern because the excessive number of 

states can generate the over-fitting problem if the 
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number of training samples is insufficient compared 

to the model parameters. When there are insufficient 

number of states, the discrimination power of the 

HMM is reduced, since more than one segmented 

part should be modeled on one state. Moreover, the 

number of states in our gesture spotting system is 

based on the complexity of each gesture number and 

is determined by mapping each straight-line segment 

into a single HMM state (Fig. 4). In practice, we 

considered the Left-Right Banded topology (LRB) 

[Law89a] for the following reasons. Since each state 

in Ergodic topology has many transitions than Left-

Right (LR) and LRB topologies, the structure data 

can be lost easily. On the other hand, LRB topology 

has no backward transition where the state index 

either increases or stays the same as time increases. 

In addition, LRB topology is more restricted rather 

than LR topology and simple for training data that 

will be able to match the data to the model. 

Orientation dynamic features are obtained from 

spatio-temporal trajectories and then quantized to 

generate its codewords (1-18). The quantized vectors 

are trained by Baum-Welch (BW) re-estimation 

algorithm [Law89a] for the initialized HMM 

parameters λ= (Π, A, B). For more details, the reader 

can refer to [Elm07a, Elm08a, Elm08b]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The hand gesture paths and straight-line 

segmentation.  (a) The Gesture paths from hand 

motion trajectory for Arabic numbers (0-9) with 

its segmented parts. (b) The LRB topology with 

segmented line codewords for a gesture path 4. 

3.2 Non-gesture Model 
A non-gesture model represents any motion 

trajectory or any part of it other than gesture model. 

For correcting gesture spotting, the likelihood of a 

gesture model for a given pattern that is mentioned 

previously should be distinct enough. Unfortunately, 

the HMM recognizer selects a model with the best 

likelihood; we cannot ensure that the pattern is really 

similar to the reference gesture model unless the 

likelihood value is high enough. Thus, the non-

gesture model is proposed where it provides a good 

confirmation for rejecting the non-gesture pattern. 

The property of HMM internal segmentation denotes 

that each state with its self-transition represents a 

segmental pattern of a target gesture and the outgoing 

transitions represent a sequential progression of the 

segments in a gesture. With this property, we 

construct ergodic model with the states copied from 

all gesture models in our system, in addition two 

dummy states (Start state ST and End state ET), and 

then fully connect the states (Fig. 5). The dummy 

states are called null states, which observe no symbol 

and are passed without time delay [Yan07a, Pre98a]. 

We construct our non-gesture model as follows: 

 

1. Duplicate all states from all gesture models, each 

with output observation probabilities. Then, we 

re-estimate that probabilities with Gaussian 

distribution smoothing filter to make the states 

represent any pattern. 

2. Self-transition probabilities are kept as in the 

gesture models. 

3. All outgoing transitions are equally assigned as; 

 

𝑎𝑖𝑗
^ =

1 − 𝑎𝑖𝑗

𝑁 − 1
     ; 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗, 𝑖 ≠ 𝑗 

 

(9) 

where 𝑎𝑖𝑗
^  represents the transition probabilities of  

non-gesture model from state si to state sj, aij is the 

transition probabilities of gesture models from state si 

to state sj and N is the number of states in all gesture 

models. The non-gesture model is a weak model for 

all trained gesture models and represents every 

possible pattern where its likelihood is smaller than 

the dedicated reference model for a given gesture 

because of the reduced forward transition 

probabilities. Also, the likelihood of the non-gesture 

model provides a confidence limit for the calculated 

likelihood by other gesture models. Thereby, we can 

use confidence measures as an adaptive threshold for 

selecting the proper gesture model or gesture 

spotting. The number of states for non-gesture model 

increases as the number of gesture model increases. 

Furthermore, an increase in the number of states is 

nothing but dues to a waste time and space. To treat 

this problem, relative entropy [Cov91a] is used to 

reduce the non-gesture model states because there are 

many states with similar probability distribution. 

3.3 Key Gesture Spotting & Recognition  
In continuous hand motion, key gestures appear 

intermittently with transition connecting motion. To 

spot these key gestures in our system, we construct 

gesture spotting network as shown in Fig. 6. The 

gesture spotting network can be easily expanded the 

vocabularies by adding a new key gesture HMM 

model and then rebuilding a non-gesture model. This 

network contains ten gesture models for Arabic 

numbers from 0 to 9. These ten models are designed 

using LRB model with number of states ranging from 

3 to 5 based on its complexity.  
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Figure 5. The general non-gesture model, where the dotted arrows represent null transitions, Gi,j refers to 

the state j in gesture number i, ST and ET are the two dummy states for starting and ending, receptively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The gesture spotting network, where it contains ten Arabic number gesture models from 0 to 9 

that are designed by using LRB model with varying states from 3 to 5 and also contains the non-gesture 

model after states reduction by relative entropy. 

 

Also, it contains non-gesture model after states 

reduction by relative entropy function and the 

dummy start state S. The gesture spotting network 

finds the start and end points of key gestures that is 

embedded in the input stream and performs the 

segmentation and recognition tasks simultaneously. 

For forward spotting, we have defined a competitive 

differential observation probability value, which is 

determined by the difference observation probability 

value of maximal gesture models and non-gesture 

model (Fig. 7). The maximal gesture model is the 

gesture whose observation probability is the largest 

among all ten gesture p(O|λg). The transition from 

non-gesture to gesture occurs when the competitive 

differential observation probability value changes 

from negative to positive (Eq.10, then O can possibly 

as gesture g). Similarly, the transition from gesture to 

non-gesture occurs around the time that this value 

changes from positive to negative (Eq.11, then O 

cannot be a gesture). These observations can be used 

as a rule for detecting start and end point of gestures.  
 

∃𝑔 ∶ 𝑝 𝑜 𝜆𝑔 > 𝑝(𝑜|𝜆𝑛𝑜𝑛 −𝑔𝑒𝑠𝑡𝑢𝑟𝑒 ) (10) 

∀𝑔 ∶ 𝑝 𝑜 𝜆𝑔 < 𝑝(𝑜|𝜆𝑛𝑜𝑛 −𝑔𝑒𝑠𝑡𝑢𝑟𝑒 ) (11) 
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The proposed gesture spotting system contains two 

main modules (segmentation module and recognition 

module). In the gesture segmentation module, we use 

a sliding window technique, which calculates the 

observation probability of all gesture models and 

non-gesture model for observed segmented parts to 

spot the start point by competitive differential 

observation probability value. The optimal size of 

sliding window is determined empirically (equal 5 in 

our system) where the system is the best in term of 

results (Fig. 8(b)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  A block diagram shows how to calculate 

a competitive differential observation probability 

value between maximal gesture models for Arabic 

numbers from 0 to 9 and non-gesture model. 

 

After spotting a start point in a continuous image 

sequences, then it activates gesture recognition 

module, which performs the recognition task for the 

segmented part accumulatively until it receives the 

end signal of a gesture. At this point, the gesture 

recognition module decides the type of observed 

gesture segmentation (argmax P(O|λg)) by Viterbi 

algorithm [Law89a]. This procedure is repeated until 

no input images exist. The following steps show how 

Viterbi algorithm works on gesture model λg; 

 

1. Initialization: 

𝛿1
𝑔 𝑖 = 𝛱𝑖𝑏𝑖

𝑔 𝑜1 ;     𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑁 (12) 

2. Recursion (accumulative observation probability 

computation): 

𝑓𝑜𝑟 2 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑗 ≤ 𝑁 

𝛿𝑡
𝑔 𝑗 = 𝑚𝑎𝑥

𝑖
 𝛿𝑡−1

𝑔  𝑖 𝑎𝑖𝑗
𝑔
 . 𝑏𝑗

𝑔 𝑜𝑡 ;     

 

(13) 

3. Termination: 

𝑝(𝑜|𝜆𝑔) = 𝑚𝑎𝑥
𝑖
 𝛿𝑇

𝑔 𝑖   (14) 

where 𝑎𝑖𝑗
𝑔

 is the transition probability from state i to 

state j, 𝑏𝑗
𝑔 𝑜𝑡  refers to the probability of emitting o 

at time t  in state j, and 𝛿𝑡
𝑔 𝑗  represents the 

maximum likelihood value in state j at time  t. 

4. EXPERIMENTAL RESULTS 
Our proposed system showed good results to 

recognize Arabic numbers in real-time from stereo 

color image sequences via the motion trajectory of a 

single hand using HMM. The system was 

implemented in Matlab language and the input 

images were captured by Bumblebee stereo camera 

system that has 6 mm focal length for about 2 to 5 

second at 15 frames per second with 240×320 pixels 

image resolution. Our experiment is carried out an 

isolated gesture recognition test and key gesture 

spotting test.  

4.1 Isolated Gesture Recognition 
In our experimental results, each isolated gesture 

number from 0 to 9 was based on 60 video 

sequences, which 42 video samples for training by 

BW algorithm and 18 video samples for testing 

(Totally, our database contains 420 video sample for 

training and 180 video sample for testing). The 

gesture recognition module match the segmented 

gesture against database of reference gestures, to 

classify which class it belongs to. The higher priority 

was computed by Viterbi algorithm to recognize the 

numbers in real-time frame by frame over LRB 

topology with different number of states ranging 

from 3 to 5 based on its complexity. From table 1, the 

recognition ratio of isolated gestures achieved best 

results with 97.78%. The recognition ratio is the 

number of correctly recognized gestures over the 

number of input gestures (Eq.15). Fig. 8(a) shows the 

output of our system for isolated gesture number 8. 

 
𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜

=
# 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠

# 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠
× 100% 

  

(15) 

4.2 Key Gesture Spotting Test 
Our database includes on 280 video samples for 

continuous hand motion. Each video sample either 

contains one key gesture or more than one key 

gesture. Fig. 8(b) shows that the gesture spotting 

performance based on the size of sliding windows. 

So, we measure the gesture spotting accuracy 

according to different window size from 1 to 8. We 

noted that, the gesture spotting accuracy is improved 

initially as the sliding window size increase, but 

degrades as sliding window size increase further. 

Therefore, the optimal size of sliding window is 5 

empirically, where the reliability of automatic gesture 

spotting system is 93.31% (Table 1). In automatic 

gesture spotting task, there are three types of errors, 

namely, insertion, substitution and deletion. The 

insertion error occurs when the spotter detects a 

nonexistent gesture. A substitution error occurs when 
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Gesture 

path 
Train 

Data 

Isolated gestures results Key gestures spotting Results 

Test Correct Rec.(%) Test Insert Delete Substitute Correct Rel.(%) 

0 42 18 17 94.44 28 2 1 2 25 83.33 

1 42 18 18 100.00 28 0 1 1 26 92.86 

2 42 18 17 94.44 28 0 0 2 26 92.86 

3 42 18 18 100.00 28 0 0 0 28 100.00 

4 42 18 18 100.00 28 0 0 1 27 96.43 

5 42 18 18 100.00 28 0 1 1 26 92.86 

6 42 18 17 94.44 28 1 1 1 26 89.66 

7 42 18 18 100.00 28 0 0 0 28 100.00 

8 42 18 17 94.44 28 1 0 2 26 89.66 

9 42 18 18 100.00 28 0 1 0 27 96.43 

Total 420 180 176 97.78 280 4 5 10 265 93.31 

 

Table 1. Isolated gesture recognition and key spotting gesture results for Arabic numbers from 0 to 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                          

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The system outputs. (a) Isolated gesture 8. (b) Spotting accuracy for different sliding window 

size from 1 to 8.  (c) One key gesture spotting 3, where the start point at frame=19 and the end point at 

frame=51.  (d) The number of mean shift iterations function (to connect hand centroid points) of the 

frame index for gesture path 3 where the mean number of iteration is a 2.29 per frame. (e) Gesture 

spotting 62. (f) The number of mean shift iterations function is 2.38 per frame for gesture path 62. 
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the key gesture is classified falsely. The deletion 

error occurs when the spotter fails to detect a key 

gesture. The reliability of gesture spotting system in 

terms of these errors is measured by Eq. 16.  

 
𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

=
# 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠

# 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠 + # 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟𝑠
 

 

(16) 

 

Here, we note that some insertion errors cause the 

substitution errors or deletion errors where the 

insertion errors affect on the gesture spotting ratio 

directly. Fig. 8(c) and Fig. 8(e) show the results of 

key gesture spotting 3 and 62 respectively.  

5. SUMMARY AND CONCLUSION  
This paper proposes an automatic system that 

recognizes isolated gesture, in addition to key gesture 

spotting from continuous hand motion for Arabic 

numbers from 0 to 9 based on HMM. The proposed 

system describes the gesture spotting network, which 

finds the start and end points of key gestures that is 

embedded in the input stream by the difference 

observation probability value of maximal gesture 

models and non-gesture model. Our system uses 

forward spotting technique that performs the 

segmentation and recognition tasks simultaneously. 

This technique is suitable for real-time applications 

and solves the issues of time delay between 

segmentation and recognition tasks. Our results show 

that; an average recognition rate is 97.78% and 

93.31% for isolated and key gestures spotting, 

respectively. In future, our research focuses on the 

motion trajectory will carried out by a fingertip using 

multi-camera system over combined features. 
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ABSTRACT 
We present a simple user interface combining h-Anim with Perlin’s face. The main application is  for exploring 

virtual environments especially those representing real environments with places, buildings or objects that 

belong to cultural heritage or those with historical past, famous story or something interesting. Therefore, 

information about them should be delivered to user. This kind of information is usually full of emotions and that is  

why the most suitable way (from user interface point of view) is to deliver it with emphatic storytelling. We are 

introducing our simple emphatic system (implementation uses ActiveX objects, VRML, ECMA Script, Java Script) 

that uses simple hardware configuration with web cams used for capturing user’s presence and his/her head 

movements and if possible capturing position of some facial features, defined in MPEG-4 standard, and used to 

recognize user’s simple emotions. User presence, head movements , and simple emotions are used to create simple 

emphatic user interface. In this paper we present our results already used in some application projects  for virtual 

museums. 

Keywords 
Virtual environments, user interface, storytelling, emphatic, autonomous agents, capture, interaction 

1. INTRODUCTION 
We present a simple user interface combining 

h-Anim with Perlin’s face. The main application is  for 

exploring virtual environments  (VEs) especially those 

representing real environments with places, buildings 

or objects that belong to cultural heritage or those 

with history, famous story or something interesting. 

This information is also usually full of emotions and 

that is why the most suitable way (from user interface 

point of view) is to deliver it with emphatic 

storytelling to user or visitor.  

In the real world it would be a real person that is 

telling a story, answering questions, expressing 

emotions that come with story and also creating 

emotions that are arising from a simple conversation 

with a visitor. Emphatic communication between a 

storyteller and a visitor is in real world set very 

naturally this way.  

 

 

 

 

 

 

 

However, VEs [QVO01,QVO02] it is not so easy to set 

up this kind of emphatic communication. We are 

introducing our simple emphatic system that uses 

simple hardware configuration with web cams used 

for capturing user’s presence and his/her head 

movements (position and orientation) and if possible 

capturing position of some of his/her facial features, 

defined in MPEG-4 standard, and used to recognize 

user’s simple emotions. According captured 

information like user presence, head movements and 

simple emotions, our simple emphatic interface is 

creating actions and reactions  (eg. starts/stops 

presentation) and introducing simple empathy this 

way. To achieve this emphatic feeling we are also 

using human-like autonomous agents as a part of this 

user interface. At this time we are working on middle 

precision autonomous agent based on minimal 

Perlin’s face [PER00] structure and structure of its 

body is H-Anim 200x [HAnim] compatible with few 

extensions.  

The rest of the paper is organized as follows. In 

background section some parts of recent project are 

described in more detail. We briefly describe previous 

work. Than we present our recent work and project in 

which recent results are applied. Finally, we outline 

future work. 

Permission to make digital or hard copies of all or part of 

this work for personal or classroom use is granted without 

fee provided that copies are not made or distributed for 

profit or commercial advantage and that copies bear this 

notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to 

redistribute to lists, requires prior specific permission 

and/or a fee. 
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2. BACKGROUND  

Emphatic autonomous agents 
Trying to construct empathic autonomous agents, we 

have to consider the immersion of a guest in VE and 

the immersion of the autonomous  agent into the 

feelings of real visitors of VEs. Our idea is to limit the 

empathy of an avatar with respect to the well-known 

contexts. If the guest is very distant, no empathy 

makes sense. Strictly speaking, there are two sources 

of avatar’s “emotionality”. It is the message itself 

(sad story, ballad, funny paradox, irony…) and the 

guest’s reactions. The first layer of emotions is ready 

in advance, say, off-line. We will use it for message 

presentation, e.g. while looking and pointing at the 

Crowning Tower of Bratislav Castle [VHCE04]. 

Another communication layer - guest’s reactions - are 

available on-line only. They can be derived from the 

distance, head movements and facial expressions. 

This can be subdivided to data from user profile (ID, 

gender, etc. – data record) and guest behavior 

(navigation, exploration, interaction, cooperation, 

expressions, emotions …).  

The two layers of emotionality are combined using 

the algebra of facial expressions. We will weight the 

importance of the on-line layer. To clarify this we give 

two examples. Both start when tourist guide explains 

a story of a castle.  

1. When a guest rotates his/her head, then the 

guiding autonomous agent will nonverbally respond 

to this. She/he will add to her/his head movement a 

half-way angle rotation. For this we have a metaphor 

of a delayed and lazy mirror.  

2. When a guest quits his/her tour, then the guiding 

autonomous agent has to cancel the original role by 

saying “Goodbye and See you soon here in our 

castle”. 

The difference between the two examples is in a 

different use of the signal from guest. In the first case 

the response is added, whereas in the second case 

the importance of a signal is absolute and there is 

nothing to combine.  

We will limit the movement of the guest and guiding 

avatar. The inspiration arose from Virtual Old Prague 

project [ŽÁRA02], where the city sectors are 

separated by invisible walls. Their touching works as 

sensors for fetching of another part of VRML/MySQL 

database. This improves the real-time rendering 

budget. Our idea is to surround visible objects 

(autonomous agents  included) by multiple glass 

walls. The closest of them will prevent unreal close-

ups and thus limit the needs for texture storage and 

processing. The area between two glass walls 

surrounding the autonomous agent can be 

characterized in terms of rendering speed. The 

information tells to avatar which precision of empathy 

is practically needed. E.g. for a very distant user no 

facial expressions are needed. The middle distance 

signalizes the need for voice and simplified (Perlin) 

face. The nearest level of detail will start the complete 

use of MPEG-4 complaint full emphatic functionality.  

The feasible combination of levels of details is under 

study (stories, photorealism, and autonomous agents 

empathy). 

Modeling autonomous agents  
The whole model of autonomous agent is hierarchical, 

segmented structure defined by joints and segments 

as specified in H-Anim standard representation for 

humanoids [HAnim]. So, the position and possible 

transformations per every segment using its joint are 

defined. For every segment there are defined also 

deformations that are used to create expressions of 

the segment. 

Using Perlin’s face we are able to create all basic 

facial expressions defined in MPEG-4 standard (anger, 

fear, sadness, surprise, joy and disgust) ([ABR99], 

Figure 1). Perlin’s face uses minimal structure needed 

to create readable basic facial expressions. In the 

current work we are more concerned to create facial 

expressions and head movements in real-time for VE 

and that is why Perlin’s minimal face is useful for us. 

It can be said that this face is defined, so to say, from 

approximate subset of feature points defined in 

MPEG-4 standard and that is why we refer to it as 

medium precision. We are planning for the future to 

extend this face to high precision face that will be 

compatible with MPEG-4 definitions and will contain 

all feature points defined in MPEG-4. Perlin’s face 

structure in our application is transformed to satisfy 

H-Anim standard (consists of segments, joints, …) 

Facial expression defined in Perlin’s face model is 

transformed to deformations of face segments in H-

Anim representation. And body structure also 

satisfies H-Anim standard. So our model is created as 

H-Anim humanoid model.  

Using H-Anim standard for body representation 

allows us to use also body language to extend facial 

expressions with whole body expressions and also 

allows us this way to extend facial emphatic 

communication with emphatic communication created 

with body movements (for example head movements 

or hand gestures).  The structure and functionality of 

body parts can be also referred to as a medium 

precision, because in high precision also their 

deformations and more complex structure will be 

considered. Using this standard it is also helpful for 

creating simple motions and emotions. Also the 
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application of pre-captured or real-time captured 

motion data is not complex. At this moment we are 

using pre-captured motions and expressions stored in 

a motions and expressions library.  

VRML prototypes 
We are concerned to VRML virtual environments and 

our autonomous agent is also VRML model and it 

uses H-Anim prototypes. We implemented in VRML 

its functionality (scripting with ECMA Script) using 

structure expressions that are created using other 

structure expressions or deform expressions or 

rotation expressions. Because model of autonomous 

agent is a hierarchical VRML structure consisting of 

segments that are substructures of the structure and 

any segment can have defined any expressions, we 

created functional prototypes for any type of 

expression. The prototypes are defined for 

reusability.   We use these prototypes for export of 

created model to VRML file supporting defined 

functionality of the autonomous agent.  

For our purposes we also extended H-Anim standard 

prototypes with some VRML nodes to achieve 

needed functionality. We introduced some extensions  

to Joint and Displacer prototypes that are parts of 

Humanoid prototype defined in H-Anim  

As for the Segment node in H-Anim is defined 

Displacer node we introduced Rotator node for Joint 

node in H-Anim.  

 

PROTO Joint [ …  

# Extended with: 

exposedField MFNode rotators [ ] 

exposedFieldSFNode rotationControler NULL 

exposedField MFNode StructureExpressions [ ] 

exposedField MFNode Sounds [ ] 

] 

 

PROTO Displacer [ …  

# Extended with: 

field SFNode Segment Segment {} 

field MFNode DeformExpressions [] 

eventIn SFNode set_DeformExpressionState 

] 

 

PROTO Rotator [ 

exposedField SFString name “” 

exposedField SFInt32 ID -1 

exposedField SFRotation rotation 0 0 1 0 

exposedField SFFloat weight 0 

exposedField MFFloat weight_ranges [-1 0 1]  

exposedField MFRotation orientations [ ]  

field MFNode RotationExpressions [ ] 

eventIn SFNode set_RotationExpressionState 

… 

] 

 

Prototypes RotationExpressions are used to create 

body and head motions and emotions (body 

language) applying rotational transformations to 

joints of avatar’s body structure. Prototypes 

DeformExpressions are used to create facial 

expressions applying translation transformations to 

points of segments (segment deformations) of 

avatar’s body structure. For example, 

DeformExpressions are also used to create mouth 

movements corresponding to actual words of an 

autonomous agent. At least to each phoneme defined 

in MPEG-4 there is corresponding DeformExpression.  

Sound node in Joint node is used to correctly localize 

voice of an autonomous agent (it has to come from its 

mouth and if the avatar is far away, you are not able 

to hear it, but if you get closer to it you will hear the 

words it is saying.  This functionality comes from 

specification of VRML files and using audio in VRML 

environments.). 

Because of reusability with setting only some 

parameters we also created new prototypes 

StoryTeller, Timeline, TimelineAction and 

ActionEvent. Using these prototypes we are defining 

functionality that is needed to tell a story to a user. 

That means that these prototypes are used to store 

what to say, how to say it and when to say it. They 

are also taking care about all synchronizations and 

especially they are taking care about 

synchronizations of voice with lips, facial and body 

expressions.  

This way, having textual representation of the audio 

with story, we have information about the mouth 

deformation sequence in time. Additionally we have 

to synchronize this deformation sequence with 

storytelling audio. So storytelling timeline has defined 

marks for this synchronization. Definition of these 

marks is at this moment done manually with only a 

simple automatic processing, but this will become 

automatic with integration with system for facial 

feature capturing. 

All prototypes are defined so that we are able to do 

simple combinations (or interpolations) of any 

expressions.  
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We created this “language” also because we need to 

combine different motions that can be divided into at 

least two layers of motions respectively expressions 

or emotions. The first layer of motions and emotions 

is defined with the content of the story. The second 

one is defined by the environment in which the 

storytelling avatar actually is. This second layer also 

consists of motions and expressions that are created 

according to given information about position in 

environment and for example also information about 

position of an object that it is actually speaking 

about. To the second layer belong also expressions 

and movements created as reactions to captured and 

recognized expressions of user if capturing system is 

working. 

All defined prototypes are using advantages of 

TimeSensors and ROUTEs that are defined in VRML 

specification. 

3. PREVIOUS WORK 
Our work is still in progress but some achieved partial 

results are already used in some projects. Final results 

will be used in many other running projects 

presenting real environments using its virtual 

approximation and each of these projects needs 

storytelling in VE.  

Older results are already used in international project 

[VHCE04] that is dealing with cultural heritage in 

different countries. Our autonomous agents are in 

this project used as emphatic virtual storytellers or 

emphatic tour guides, telling stories with emotions 

achieved with body and head motions, facial 

expressions and with speech synchronized lips 

movements. 

We created simple user interface for VEs that offers to 

see predefined viewpoints and predefined guided 

tour to user. Our autonomous agent is a key object in 

this interface. On the figure 1 you can see an example 

of created user interface used in VHCE project and 

description of it. Using this interface user can switch 

between predefined viewpoints, call storyteller, and 

turn on and off its emotions (humanlike behavior) and 

also to view predefined guided tour. Predefined 

guided tour is made of motion trajectory used as 

guide for flying around, close to or inside of 

presented objects and during this fly the storyteller is 

telling interesting story. This guided tour can be 

stopped, paused or played again at any time. 

Emotional layer of autonomous agent is created in 

two sub layers. First one is defined by the story and 

its emotions and that is why these emotions are the 

same each time the storyteller is telling the story. We 

use predefined body and head expressions defined 

by rotations and facial expressions with moving lips 

synchronized to speech defined by deformations and 

time stamps. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Second layer is independent of the storytelling. It 

represents emotions according to situation in which 

the storyteller actually is (eg. position in VE or in the 

future also movements and emotions of visitor in VE). 

These emotions are created by applying facial 

expressions (deform expressions) and head and body 

expressions (rotational expressions) in time with 

weight that is processed with Perlin’s noise and that 

is why it look so random and natural. This second 

layer helps us to create autonomous agent that  acts 

approximately like a real human. 

For user interface in VE we created also graphical and 

functional prototypes that can be used to create 

custom interfaces depending on application or type 

of VE. All these prototypes are also used for creating 

of user interface for prototype GuidedTour in VHCE 

project that has integrated our empathic autonomous 

agent. These prototypes  are nowadays used and 

extended to fulfill functionality needed for virtual 

museums (see next section). 

Subtitles for storytelling Storytelle
r 

Figure 1. UI for VRML worlds with avatar 

(functionality description), 

 Screenshot from project VHCE [VHCE]. 

 

. 

 

 

Stop/Restart 
storytelling 

Play/Pause 
storytelling 

Guided tour 
view point 

Controller for 
predefined view points 

 

On/Off noise for 
humanlike 
behavior 

Show /Hide Storyteller 
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4. VIRTUAL MUSEUM 
The latest results of our research are planned to be 

used and implemented in many project. We will 

describe our latest results by describing the project 

“Považské múzeum 3D” where these results are 

implemented.  

Project description 
This project is dealing with creating virtual 

representation of a real museum called “Považské 

múzeum“ [PMZ08]. For this project we created special 

hardware configuration or “hot spot” or as we are 

saying “well of knowledge” where people can 

virtually visit this museum and get a lot of information 

about this museum (see Figure 2). 

This design for the “hot spot” in this project has 

triple metaphorisation - a drop of water falling up 

combined with the view through a locked door, using 

just the keyhole into the 13th chamber, where the 

source of knowledge is hidden.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The third metaphor is inside - the source of living 

water. The virtual water has sound rendering, as well, 

and after double-click it metamorphoses into a book, 

symbolic source of knowledge. The drop falling up 

symbolizes the visit of a museum. Go back in the time  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Gateway to virtual museum  

or “hot spot” or “well of knowledge”.  

(photos by Ela Šikudová) 
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w eb cam 2 

w eb cam 1 

Figure 3. Design metaphors and screenshots from 

presentation layer. 
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and causality and refresh your memory. The UNESCO 

page mission is credited here “Heritage is our legacy 

from the past, what we live with today, and what we 

pass on to future generations.” (see Figure 3) 

Functionality 
This “hot spot” is a gateway to virtual museum and is 

created for any kind of user and that is why the user 

interface should be as simple as possible. And also to 

be able to deliver information about this museum in a 

natural way we are introducing emphatic user 

interface achieved with built-in web cams that are 

capturing and monitoring situation close to display 

part. (see Figure 2.) In this hardware configuration 

according to captured space in front of the hot spot 

web cams have these three main functionalities: 

1. Identify presence of a possible user 

2. Identify head of a user and capture its 

movements 

3. If possible identify facial features and try to 

identify users emotions 

First two main functions are already working. First 

one is used to send presentation into a sleeping mode 

(like screensaver with black screen, in this project 

there is just a simulation of a well with water and with 

pure lighting) when there is no user detected (no 

motion is detected) or it will “wake up” presentation 

(starts displaying presentation on the screen, in this 

project it means that a simulation of a well with water 

and lighting is displayed) when there is a possible 

user detected.  

Second one is used to identify that a person is 

present and that a book of knowledge should be 

rendered inside of the well under the water waiting for 

next interaction through touch display.  

Touching the display is just simulating touching of 

water. This part is created with flash technology and 

ActionScript. After double-click on the top of the 

water it brings the book of knowledge in front of the 

water and user can choose from topics that he/she is 

interested in. Available topics are information about 

project partners and presentations about museum 

with simple user interface for choosing a 

presentation, to play and stopping, moving forward 

or back slides in presentation. Presentation and its 

slides are predefined and can consist of images and 

videos.  

One of those presentations is created as a VE with 3D 

model of a castle where the museum is placed and our 

emphatic autonomous agent with predefined guided 

tour is ready to tell a simple story about this museum 

(Figure 4.). In this part second and third web cam 

functionalities are mainly used. Because we are using 

web cams with low resolution, nowadays we are not 

successful with automatic facial features extraction 

and that is why we have also problem with 

identification of any simple emotion of present user.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

System functionality 
In this section we will simply describe functionality of 

our system.  

There is a simple block diagram of our system on the 

figure 5. We are using a web browser (Internet 

Explorer or Firefox) for which ActiveX objects are 

created and used. It is because in the future this 

system should be placed and work on the Internet. 

For VEs created in VRML [VRML97] we use viewer 

Cortona (www.parallelgraphics.com) as ActiveX 

component in browser. It is used as one of many 

viewers for VEs created in VRML. We use it because 

it is also viewer that is commonly used. We created 

VRML prototypes for our user interface between user 

and VE (see VRML prototypes). Guided tour that 

consists of predefined viewpoints and autonomous 

agent is part of this interface.  

There is another ActiveX object in browser created 

by VideoForge system [KUB06] that is responsible 

for capturing and analyzing captured data from 

cameras. VideoForge is working in real time and it 

should have actual information about presence of a 

user, his/her head movements and in the future also 

movements of facial features of the user. It is using 

simple and complex filter sequences for detection and 

features tracking. We created an Interface as a 

communication bridge between VideoForge and 

Cortona. This interface is nowadays for our testing 

Figure 4. Guided tour. Virutal environment 

without textures. 
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purposes just a simple set of JavaScript functions. 

VideoForge and Cortona are working separately. 

Interface is generating questions to Videoforge about 

user and answers to this questions are analyzed and 

the results are sent to Cortona where Guided tour 

respectively autonomous agent is responding to this 

results. Interface is also asking question to Guided 

tour and autonomous about actual viewing situation 

and depending on answer it is needed or not to send 

results or ask questions to VideoForge.  

 

 

 

 

 

 

 

 

 

 

 

 

 

5. CONCLUSIONS 
We are introducing our working results used in 

projects dealing with delivering information to users 

through virtual environments. Our work is still in 

progress and some work has to be done to fulfill our 

final aim to create fully working emphatic user 

interface. Here we presented only our partial working 

results, but those already used in practice. 

We are planning for the future to extend this face to 

high precision face that will be compatible with 

MPEG-4 definitions and will contain all feature points 

defined in MPEG-4. 

Now we already know that to successfully capture 

main feature points on user face we need to use 

cameras with higher resolution. This way we will need 

to have bigger processing power to work in real time. 

In the future this system should be placed and work 

on the Internet. We expect sending huge amount of 

data to users over Internet or establishing distant 

communication between users . 

There is a group of people dealing with similar ideas 

how to extend user interface for viewing virtual 

environments with cultural heritage and they are also 

using capturing system. Their work is presented in 

[FRAN08]. Hopefully in close future we will exchange 

useful information and we will try to cooperate with 

this group on a project dealing with user interfaces 

for virtual environments with cultural heritage.  

6. ACKNOWLEDGMENTS 
The authors gratefully acknowledge the Scientific 

Grant Agency VEGA for supporting this work under 

the contract “Complexity of Geometric Algorithms for 

Real time rendering in Virtual reality” No. VEGA 

1/3083/06. 

7. REFERENCES 
[ABR99] ABRANTES, G. - PEREIRA, F. 1999. MPEG-

4 Facial Animation Technology: Survey, 

Implementation and Results. IEEE CSVT vol. 9, 

no. 2, pp. 290-305, 1999. 

 [HAnim] H-ANIM. Humanoid ANIMATION WORKING 

Group. http://www.h-anim.org/ [online] Accessed 

October 23, 2008. 

[FER04] Ferko, A. et AL..  2004. Virtual Heart of Central 

Europe. CORP 2004. www.corp.at. Vienna: TU 

Wien 2004. [online] Accessed October 23, 2008. 

[GEJ04] GEJGUŠ, P. – KUBÍNI, P. 2004. Face tracking 

using convolution filters and skincolor model. In 

Proceedings of International Conference on 

Computer Vision and Graphics. Berlin:Springer, 

2006. ISBN 1-4020-4178-0. pp. 721-726. Warsaw, 

22.-24.9.2004. PL 

[KUB06] KUBÍNI, P. 2006. VideoForge - An image 

processing system. In Proceedings of Spring 

Conference on Computer Graphics 2006 : 

Conference Materials Posters. Bratislava: 

Comenius University, 2006. pp. 69-70 SCCG Častá-

Papiernička , 20.-22.4.2006. 

[PAR96] PARKE, F. I. – WATERS, K. 1996. Computer 

Facial Animation, ISBN 1-56881-014-8, A K 

Peters. Ltd. 1996.  

[PER00] PERLIN, K. 2003. Face demo applet using 

noise. SIGGRAPH 2000. [online] 

http://mrl.nyu.edu/~perlin/facedemo. Accessed 

October 23, 2008.  

[PMZ08] PAGE OF Považské MÚZEUM ŽILINA. 2008. 

www.pmza.sk [online] Accessed October 23, 2008. 

[QVO02] QVORTRUP, L. ed. 2002. Virtual 

Interaction: Interaction in Virtual Inhabited 3D 

Worlds. London Berlin Heidelberg:  Springer-

Verlag 2002. ISBN 1-85233-516-5. 

[QVO01] QVORTRUP, L. ed. 2001. Virtual Space: 

Spatiality in Virtual Inhabited 3D Worlds. 

London Berlin Heidelberg: Springer-Verlag 2001. 

ISBN 1-85233-331-6. 

[STA02] STANEK, S., FERKO, A. 2002. Navigation 

and Interaction in Cyber Cities: Head Motions and 

Figure 5. Simple block diagram of the system. 

 

. 

 

 

Journal of WSCG 103 ISSN 1213 – 6972 

http://www.h-anim.org/
http://www.corp.at/
http://mrl.nyu.edu/~perlin/facedemo


Facial Expressions. Pp.75-78 in Proceedings of 

Symposium on Computational Geometry SCG 

2002. Slovak University of Technology in 

Bratislava 2002. ISBN 80-227-1773-8 

[STA03] STANEK, S. - FERKO A. - KUBINI, P. 2003. 

Real-time Virtual Storytelling for Augmented 

Cultural Heritage: Message & Empathy. Pp. 45-46 

in MAGNENAT-THALMANN, N. ed. 

Proceedings for the first Research Workshop on 

Augmented Virtual Reality. Organized by 

MIRALab, University of Geneva, September 18th-

19th 2003, Geneva 

[VHCE04] International EC Culture 2000 project: 

Virtual Heart of Central Europe. www.vhce.info. 

[online] Accessed October 23, 2008.  

[VRML97] The Virtual Reality Modeling Language, 

VRML97. Functional specification and VRML97 

External Authoring Interface (EAI) International 

Standard. ISO/IEC 14772-1:1997 and ISO/IEC 

14772-2:2002.  

[ŽÁRA02] ŽÁRA, J. 2002. Concise Tour to the Virtual 

Old Prague.,. EUROGRAPHICS 2002, Short 

Presentations, Saarbrucken:. Eurographics 

Association, 2002, pp. 191-198. 

[FRAN08] FRANGESKIDES, F., LANITIS, A. and 

PAPANTONIOU, G. 2008.A contact-less 

interactive tool for exploring archaeological data. 

pp. 307-310 in Digital Heritage - Proceedings of 

the 14th International Conference on Virtual 

Systems and Multimedia. October 20th-25th 2008, 

Limassol, Cyprus  

 

Journal of WSCG 104 ISSN 1213 – 6972 

http://www.vhce.info/

	!_J_WSCG2009_Numbered.pdf
	A13-full
	A43-full
	A61-full
	A79-full
	B17-full
	B23-full
	B31-full
	B41-full
	C11-full
	C43-full
	D19-full
	D53-full
	D61-full




