
Compression and Progressive Visualization of
Geometric Models

Frutuoso G. M. Silva

IT - Networks and Multimedia Group
University of Beira Interior, Portugal

fsilva@di.ubi.pt

Pranjul Yadav
Indian Institute of Technology, Guwahati, India

pranjul@iitg.ernet.in

ABSTRACT

The maximum compression, efficient transmission and fast rendering of geometric models is a complex problem
for many reasons, thereby gaining a lot of attention from several areas, like compression and rendering of
geometric models. Normally, the stripification algorithms are used to speed up the rendering of geometric
models because they reduce the number of vertices sent to the graphics pipeline by exploiting the fact that
adjacent triangles share an edge.
In this paper, we present a new compression algorithm based on stripification of geometric models that enable us
a progressive visualization of the models during its transmission. It occurs because our algorithm encodes and
decodes the geometry and the connectivity of the model in an interwoven fashion.
The main purpose is the storage of object files as strips files in server computer, which enables faster
transmission and display of the models at client side. In fact, our compression algorithm achieves compression
ratios above 40:1 over ASCII encoded formats and the triangle strips improve rendering performance.

Keywords
Compression algorithms, Triangle strips, Progressive visualization, Mesh compression.

1 INTRODUCTION
The tremendous growth of computer graphics and
entertainment (e.g. online games and virtual
environments) over the Internet (LAN and WAN) has
increased the necessity of rapid transmission of 3D
models.

The increase in this area is fueled by the emerging
demand for interactive visualization of 3D models in
a network environment using several standard
formats, as VRML [Vrm97] and X3D [X3d04]. But
bandwidth over a network is a limited resource.
Thus, we need compression and decompression
algorithms for easy transmission and visualization of
3D models over the Internet, i.e. it is desired to
compress 3D models in order to reduce storage and
transmission time requirements. This is because these
3D models can be composed of millions of polygons,
which take a long time to transmit over the network

(e.g. Internet).

Besides, for interactive visualization not only the
speed at which a model can be received is important,
but also the speed at which it is displayed. One
popular approach for fast visualization of these types
of models is the conversion of a triangulated model
into strips of triangles. Such triangle strips are widely
supported by graphical hardware and software
[Woo96].

A sequential strip is a sequence of n+2 vertices that
represent n triangles where each triangle shares a
common edge. Sequential strips allow us to reduce
the transmit cost by a factor of three, from 3.n to n+2
vertices. But finding the minimum number of strips
to cover a given model is a NP-hard problem.
However, several heuristics have been proposed to
generate good triangle strips.

In this paper we present a new compression
algorithm based on stripification of geometric models
that enable us a progressive visualization of the
models during its transmission because our
algorithms encodes and decodes the geometry and
the connectivity of the model in an interwoven
fashion. On the contrary, most of the compression
methods proposed in the literature compress the
geometry and the connectivity separately. This in
fact, does not allow a progressive visualization of the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

models during its transmission without decoding its
geometry.

Section 2 presents a short overview of compression
and stripification algorithms. The compression and
decompression algorithms are described in Section 3.
Section 4 presents some comparisons and results.
Finally, Section 5 presents some conclusions and
future work.

2 RELATED WORK
There are several efficient compression schemes for
triangle meshes that encode the geometry and
connectivity separately [Tau98, Tou98, Ros99]. They
encode the mesh through a compact representation of
a vertex-spanning tree and its dual graph. However,
they are not adequate for progressive visualization
because it is necessary to decode all the geometry
first, to visualize the model based on its connectivity.

Bajaj et al. presented a compression algorithm that
also encodes the geometry, the connectivity and the
attributes separately. Besides he uses four geometric
primitives to encode the mesh that are: contours,
branching points, triangle strips and triangle fans. On
the contrary, we only use triangle strips and encode
the geometry and connectivity in an interwoven
fashion.

These compression methods are useful for encode
files, as for example VRML or X3D ASCII file
formats, which have the geometry and connectivity
separately.

For fast visualization of geometric objects the use of
triangle strips is common because the graphical
hardware widely supports it. The first algorithm
proposed for creating triangle strips is the SGI
algorithm [Ake90]. But other good algorithms
proposed so far are the STRIPE [Eva96] and the
FTSG [Xia99].

Triangle stripification algorithms can be categorized
in several different ways. For example, based on the
type of input data and the type of optimization. In
terms of optimization we are normally interested in
the minimization of number of strips and vertices.
Thus, Deering [Dee95] introduced the concept of
generalized triangle strips in which the main
objective was to reduce the number of strips. Based
on Deering's work, Chow [Cho97] proposed a mesh
compression scheme optimized for real-time
rendering. Their algorithms achieved compression
ratios below 37:1 over ASCII encoded formats. But,
we will see in later sections that our algorithm
achieves compression ratios above 40:1 over ASCII
encoded formats.

Furthermore it is also possible to encode strips files
and further reduce the size of these files. But
normally, the available connectivity compression

techniques do not support the encoding of stripified
models. However, more recently Isenberg [Ise01]
proposed a simple and efficient scheme for coding
the connectivity and the stripification of a triangle
model. For example, the application of Isenberg's
scheme in our case it is possible but only to compress
the strip files, i.e. without connectivity.

Recently, Kim et al. [Kim06] presented a
compression method that enables a progressive
decompression of an arbitrary portion of a model
without decoding other non-interesting regions. This
method is accomplished by adapting selective
refinement of a multiresolution model to the model
compression domain.

For more details about several triangle strips
algorithms see the recent work of Vanecek and
Kolingerová [Van07] that presents a comparison of
triangle strips algorithms and also the survey on 3D
mesh compression presented by Peng et al. [Pen05].

3 COMPRESSION AND
DECOMPRESSION ALGORITHMS

To better understand the compression and
decompression algorithms we will first introduce the
AIF data structure that supports their development.

3.1 AIF Data Structure
The data structure used in the compression algorithm
is a version of AIF data structure [Sil03]. Figure 1
presents the four relations explicitly represented in
original AIF data structure.

Basically, a 2-dimensional mesh in the AIF data
structure is defined by the triple M={V,E,F}, where
V is a finite set of vertices, E is a finite set of edges,
and F is a finite set of simply connected faces.

Figure 1. AIF Data Structure Scheme.
We create a new version of AIF data structure that
represents 5 out of 9 relations between cells of a 2-
dimensional cell complex, namely three basic
adjacency relations, V p E, V p F and E p F, and two
inverse relations (or incidence relations) E f V and
F f E. These five basic relations can be combined to
form the nine-adjacency and incidence relations.
Though this work can also be done using only the

Vp E

Ef V

Ep F

Ff E

 Adjacency relations

Incidence relations

 V E F

four relations presented in original AIF data
structure, but the fifth one is used to speed up the
stripification process.

Besides, the AIF data structure has a companion
query operator for fast retrieval of adjacency and
incidence information (i.e. topological information of
a mesh). Note that the query operator does not handle
all the data structure constituents at once. It handles a
mesh locally by using the adjacency and incidence
relations stored in the data structure. Thus, its time
performance is independently of the mesh size. This
is very important for handling large meshes
efficiently.

3.2 Compression Algorithm
Our compression algorithm is based on the principle
of converting a model into strips. The compressed
model is not exactly a composition of many strips but
a collection of many linking agents and vertices.
Linking agents are special symbols, which will be
used to make long strips. The entire algorithm has
been divided into five elementary steps. These steps
have been designed to cover models either with or
without holes. The compression algorithm is the
following:

Algorithm 1
INPUT: A mesh in AIF data structure
OUTPUT: A strip file

Begin
While there are vertices with a degree greater than
zero
1. First Vertex Selection
2. Intermediate Vertex Selection
3. Final Vertex Selection
4. Look Back
5. Dead Lock

End

In first step of Algorithm 1 we will select the vertex
(v1) with the minimum vertex-degree in the mesh.
The vertex-degree is the number of incident edges on
a vertex. However, only the edges that have an edge-
status greater or equal to one are considered. The
edge-status is the number of incident faces on it. For
example, for a manifold mesh an edge has normally
two incident faces.

Note that our algorithm modifies the edge-status
during the creation of strips. Whenever a triangle is
included in a strip then the edge-status of its edges
will decrease by one. Thus an edge-status equal to
zero means that the strip already covers the edge.

If there exist several vertices having a minimum
vertex-degree then we will select any one of these.
We select a vertex that has a minimum vertex-degree
and not the maximum vertex-degree because if we
start with vertex having less degree then the number

of strips formed will be less. Otherwise we have to
create separate strips for isolated triangles that will
appear if we select the vertex with maximum degree.

In second step of the Algorithm 1, we will select a
vertex (v2) that belongs to an edge (e) incident on v1,
such that the status of e is different of zero. Once
again, we will select the vertex that has the minimum
degree (i.e. the same strategy used in step 1).

In the step three, we will select the third vertex (v3)
that forms the triangle defined by vertices v1, v2, v3.
Thus the triangles that can share the edge e (i.e. the
edge defined by the vertices v1 and v2) are two or one.

If there exist only a triangle that share the edge e then
the third vertex is automatically founded. In this case,
the status of the selected triangle will be set to zero,
so that it cannot be selected again. The status of a
triangle is defined based on the status of its bounding
edges. Thus the status will be decreased for all edges
adjacent to triangle.

If there exist more than one triangle adjacent to edge
e we will select the triangle which has the minimum
degree. If the triangles have the same degree we
select one triangle arbitrarily.

After selecting the third vertex (v3) it will be inserted
in the compressed file (i.e. in strip). In this case it is
necessary to check if v3 is already present in the
compressed file or not. If not then the coordinates of
the vertex will be placed in the compressed file.
Otherwise, we will use the notion of dummy buffer
by only placing the order number of the first
occurrence of this vertex in the compressed file. The
order number will be preceded by the linking agent
'<'. This linking agent denotes a vertex identifier.

Finally, the total number of triangles uncovered in
the mesh will decrease by one.

Figure 2. Example of step four.
In the step four of the algorithm we shall look back
for the triangle selected by previous step. Thus
assuming that the triangle is defined by the vertices
v1, v2, v3 and they appear in this order in compressed
file (see the example in Figure 2).

We will first check the edge status of the edge (e23)
defined by vertices v2 and v3. If the edge e23 has a

v1

v2 v3

e13 e12

e23

status greater than zero then we will check the edge
status of edges e13, formed by vertices v1 and v3.

If edge e13 has a status equal to one then we will
cover the triangle adjacent to this edge. Such
triangles are called auxiliary triangles or side
triangles because the front of the strip is the edge e23.
This case will be marked using the linking agent '#'.
Then the third vertex of this auxiliary triangle will be
found (v4) and will be inserted in the compressed file.
The status, degree of edges and vertices will be
updated respectively.

If the edge e13 has an edge-status equal to zero then
there is no more triangles uncovered adjacent to edge
e13. Thus the control flow will go to step three with
vertex v3 becoming as v2 and vertex v2 becoming as
v1 to find a new vertex v3, because the edge e23 has an
edge-status greater than zero.
If the edge-status of e23 is equal to zero then there are
no more triangles uncovered adjacent to edge e23.

Now if the edge-status of e13 is equal to one, then we
will cover the triangle adjacent to this edge. In fact,
our strip making process will have to change its
direction in terms of leading edge. The leading edge
was e23 but now it will be e13 or e31. Note that the
edges e13 and e13 are different for creating a strip (i.e.
the order of the vertices is important).

If we consider e13 as the new leading edge then we
mark this by linking agent '!' and the algorithm goes
to step three to find a new vertex v3. But if we
consider e31 as the new leading edge then we mark
this by linking agent '@' and the algorithm goes to
step three again.

If the edge e13 has a status equal to zero then there are
no more triangles uncovered adjacent to edge e13.
Thus the edge-status of all the three edges (e12, e13
and e23) is equal to zero.

But we will now check the vertex-status of our three
vertices (v1, v2, v3). If there is any one vertex has a
vertex-degree greater that zero then the algorithm
goes to step two with this vertex as v1 to find a new
vertex v2. Thus depending whether v1, v2, v3 is chosen
as the new v1 a linking agent 'A', 'B' or 'C' will be
inserted, respectively.

Otherwise, the control flow will go to the last step,
called dead lock. Entry in this step implies that our
current strip is concluded and it is necessary to start a
new strip. Then the control flow goes to step 1 to find
a new vertex that has a degree greater than zero.

Figure 3 shows a simple mesh with a hole that
exemplifies the use of linking agents 'C' and 'B'. This
mesh is encoded by our compression algorithm by
the following sequence: 6 5 4 B 1 2 C 4 3

Some other linking agents are also used in the
compression algorithm but they will be presented in
the context of the decompressed algorithm.

Our compression algorithm encodes a mesh file in a
strip file reducing its size by 40% in average, as we
will see in next Section.

Figure 3. A mesh with an hole.

3.3 Decompression Algorithm
The decompression algorithm is just the reverse of
the compression algorithm. However in the
compression algorithm we need to make queries to
find the adequate vertices to construct the strips. On
the contrary, the decompression algorithm only
decodes the strips, which contains only vertices and
some linking agents. Thus the time consumed by the
decompression algorithm is very small in comparison
with the compression algorithm.

The decompression algorithm is the following:

Algorithm 2
INPUT: A strip file
OUTPUT: A SMF file

Begin
1. Read the lines of strip file to a string
2. Create a list of vertices and put the first three
vertices there
3. While not reach the end of the string
 (a) Read a new character 'c' from the string
 (b) switch ('c')

 case: '/'
 case: '#'
 case: '!'
 case: '@'
 case: 'A'
 case: 'B'
 case: 'C'
 case: '<'
 default - it is a vertex

4. Create the SMF file
End

The decompression algorithm starts by reading the
strip file for a string. Then it creates the list of
vertices and inserts the first three vertices that appear
always in the beginning of the strip file. After this we
have a loop until the end of the string is reached.
Then we read a character ('c') from the string for each

v1 v2 v3

v4 v5

v6

iteration and process it. But the character 'c' can only
be a linking agent or a vertex.

If the character 'c' is the linking agent '/' this means
that the current strip is concluded. Then it is
necessary to start a new strip. But we have to be
careful in reading the vertices because there are two
ways of representing a vertex, i.e. by their three
coordinates or by an identifier.

If the character 'c' is the linking agent '#' this means
that we found an auxiliary triangle. In this case the
next entry (character) in compressed file will be a
vertex. Note that the concept of auxiliary triangle is
already defined in the compression algorithm.

The linking agent '!' implies a change in the order of
the last three vertices to continue the strip. Thus the
shared edge will be the edge defined by the vertices
v1 and v3 and not the edge defined by the vertices v2
and v3 as normally. In this case the next entry in the
compressed file will be the third vertex.

The linking agent '@' also implies also a change in
the order of the last three vertices to continue the
strip. Thus the shared edge will be the edge defined
by the vertices v3 and v1 and not the edge defined by
the vertices v2 and v3 as normally. In this case also
the next entry in the compressed file will be the third
vertex.

The linking agent 'A' is used for the case where the
strip will continue based on first vertex only (v1) and
not based on an edge. Then the next entries in
compressed file will be two vertices.

The linking agent 'B' denotes the case where the strip
will continue based on the vertex v2 and the next
entries in the compressed file will also be two
vertices.

The linking agent 'C' is used for the case where the
strip will continue based on last vertex (v3) and the
next two entries in compressed file will be vertices.

If the linking agent is equal to '<' then we will read a
identifier of a vertex, which is already in memory
(i.e. in the buffer).

Finally, if the character 'c' is not a linking agent then
we are reading a vertex (i.e. the coordinates that
define the vertex).

At the end of the loop we create the decompressed
file in the SMF file format.

4 RESULTS AND COMPARISONS
Table 1 presents a comparison between the size of
the original ASCII files and compression files for
seven different models pictured in Figure 4. It
provides also the compression ratio achieved by our
algorithm.

Table 1 contains the model name, the original file
size (Server), the compressed file size (Client) and
the compression ratio. Note that, the compression
ratio is calculated as follows

Ratio = (initial file size - compressed file size) /
initial file size

The initial files are in SMF file format, which have a
similar structure to, that the OBJ file format. The
wireframe models pictured in Figure 4 was converted
to X3D file format for visualization purposes at client
side.

As we can see, the compression ratio of our
algorithm is about 0.40 in average.

Figure 4. Models used for compression and
decompression. From top-left: Cow, Genus3,
Eight, Ellipsoid, Fandisk, Torso and Bunny.

However, another layer of compression is possible if
the server zipping the compressed file before
transmitting it. This layer of compression (i.e.
zipping) will further increase the compression factor.
For example, the size of the compressed file for

Bunny model is 1413 KB and the size of the
compressed zipped file is 518 KB.

Table 2 presents a comparison between the size of
the original SMF files and the corresponding
decompressed files for the several models used. Note
that, the decompressed files are smaller than original
files, but both files represent the same geometric
model. This means that the simple fact that
compressing and decompressing an object file
reduces its size, because some unnecessary symbols
are removed, for example, some blank spaces.

Model Original
File

Compressed
File Ratio

Cow 183 KB 106 KB 0.42

Bunny 2507 KB 1413 KB 0.43

Eight 47 KB 29 KB 0.38

Ellipsoid 212 KB 118 KB 0.44

Fandisk 493 KB 311 KB 0.37

Genus3 438 KB 253 KB 0.42

Torso 469 KB 268 KB 0.43
Table 1. Compression Results.

Table 3 presents a comparison between the number
of vertices in strips and the number of vertices per
triangle. The number of vertices in strips determines
the amount of data sent to graphical pipeline. In this
case, our algorithm achieved good results comparing
with the results presented by Vanecek and
Kolingerová [Van07] for several stripification
algorithms. For example, for the Cow model we
achieved 6637 vertices in strips while all other
algorithms achieved results between 7000 and 8000.
For Bunny model we achieved 79920 vertices in
strips while all other algorithms achieved results
between 82000 and 102000 vertices.

Model Original File Decompressed
Cow 183 KB 177 KB

Bunny 2507 KB 2438 KB
Eight 47 KB 44.8 KB

Ellipsoid 212 KB 204 KB
Fandisk 493 KB 475 KB
Genus3 438 KB 424 KB
Torso 469 KB 454 KB

Table 2. Compression and Decompression Results.
The number of vertices per triangle shows the
efficiency of the algorithm because it determines the
ratio of number of vertices per triangle. In this case,
once again, our algorithm achieved better results than
all other algorithms according to Vanecek and
Kolingerová [Van07] results (i.e. for common
models Cow and Bunny).

The number of strips and the average length of strips
created by our algorithm are presented in Table 4. In
terms of the number of strips our algorithm produces
more strips than the other algorithms. Thus the
average length of strips is normally inferior to the
average length of strips produced by other algorithms
(see Vanecek and Kolingerová results [Van07]).
However, the number of vertices per triangle in strips
for our algorithm is smaller (see Table 3) than the
number of vertices per triangle in strips for other
algorithms. This means that other algorithms produce
fewer strips but with more number of vertices per
triangle, i.e. they produce strips with more repeated
vertices than our algorithm.

Model # Triangles Vert. in
Strips

Vert.
per 

Cow 5804 6637 1.14

Bunny 69473 79920 1.15

Eight 1535 1699 1.11

Ellipsoid 6923 7793 1.12

Fandisk 12946 15042 1.16

Genus3 13311 15117 1.13

Torso 14451 16389 1.13
Table 3. Number of vertices in strips.

Therefore our algorithm is better to compression and
visualization purposes.

Model Number of
strips

Average length
of strips

Cow 231 28.71
Bunny 2645 30.21
Eight 42 40.45

Ellipsoid 246 31.67
Fandisk 544 27.65
Genus3 469 32.23
Torso 617 26.56
Table 4. Number of strips achieved by our

algorithm.

4.1 Progressive Visualization
When a client asks the server for a particular file, the
server will send the compressed model in packets of
small bits. In other compression algorithms these
initial packets consist of vertex position information
only. Information about connectivity generally
appears in later packets. Hence the application client
has to wait until it receives all information about
vertices. This is a very worse situation leading a lot
of latency because the user cannot have early
information about the model.

Whereas the compression of geometry and
connectivity in our algorithm is made by interwoven
fashion, thus each strip is self-sufficient in terms of

visualization. If the client uses our algorithms then as
soon as it will receive the first packet or rather the
first full strip from the server the visualization
process can be started. This early visualization is
advantageous because it give the user early
information about the model.

Figure 5. From top-left: Cow in 20, 40, 60, 80 and
100 percent of its size.Figure 5 and Figure 6 show
two examples of progressive visualization effect for
Cow and Ellipsoid models. The compressed files
have been divided into small fractions of their total
file size to simulate their transmission, namely 20,
40, 60 and 80 percent of its size.

Figure 5. From top-left: Cow in 20, 40, 60, 80 and

100 percent of its size.
Note that each fraction of the strip file can be
visualized separately and it gives an idea to user of
the shape of the model. This allows the user to cancel
a transfer before whole object is received. For
example, when the object is not what the user
expected.

5 CONCLUSIONS
Our compression algorithm was developed for
compression and visualization purposes. Thus, it
produces normally more strips than other algorithms
but with less number of vertices per triangle. Besides,
it allows a progressive visualization of models during

its transmission over the network. This means that
segments of the compressed file are self-sufficient in
terms of visualization.

Our algorithm uses an efficient technique to
compress a file. In most of the compression
strategies, compressed file consists of geometry (i.e.
vertices) followed by connectivity. In our case the
compressed file, consist of combinations of vertices
and linking agents, i.e. the geometry and connectivity
are compressed in an interwoven fashion. This
combination helps us to achieve a compression factor
above 40 percent over ASCII encoded formats.

Figure 6. From top-left: Ellipsoid in 20, 40, 60, 80

and 100 percent of its size.
The future work will concentrate on improving the
strip making process. The main idea is to reduce the
number of strips created by our algorithm but
maintaining the number of vertices per triangle.

6 ACKNOWLEDGMENTS
The second author wants to thank to Prof. Abel
Gomes and the Institute of Telecommunications (IT)
by the grant that supported his work.

7 REFERENCES
[Ake90] K. Akeley, P. Haeberli, and D. Burns.

tomesh.c: C program on sgi developer’s toolbox
cd, 1990.

[Baj99] C. L. Bajaj, V. Pascucci and G. Zhuang.
Single resolution compression of arbitrary
triangular meshes with properties, Computational
Geometry, Vol. 14(1), pages 167–186, 1999.

[Cho97] M. M. Chow. Optimized geometry
compression for real-time rendering. In
Proceedings of Visualization ’97, pages 347–354,
1997.

[Dee95] Michael Deering. Geometry compression.
Computer Graphics Forum, Vol. 29, pages13–20,
1995.

[Eva96] Francine Evans, Steven S. Skiena, and
Amitabh Varshney. Optimizing triangle strips for
fast rendering. IEEE Visualization ’96, pages
319–326, 1996.

[Ise01] Martin Isenburg. Triangle strip compression.
Computer Graphics Forum, 20(2), 2001.

[Kim06] Junho Kim, Sungyul Choe, and Seungyong
Lee. Multiresoluion random accessible mesh
compression. Computer Graphics Forum, Vol.
25(3), pages 323–332, 2006.

[Pen05] Jingliang Peng, Chang-Su Kim, and C. Jay
Kuo. Technologies for 3d mesh compression: A
survey. Journal of Visual Communication and
Image Representation, Vol. 16(6), pages 688–
733, 2005.

[Ros99] Jarek Rossignac. Edgebreaker: Connectivity
compression for triangle meshes. IEEE
Transactions on Visualization and Computer
Graphics, Vol. 5(1), pages 47–61,1999.

[Sil03] Frutuoso G. M. Silva and Abel J. P. Gomes.
AIF - A data structure for polygonal meshes.
Lecture Notes in Computer Science, Vol. 2669,
Part III, pages 478–487, 2003.

[Tau98] Gabriel Taubin and Jarek Rossignac.
Geometric compression through topological
surgery. ACM Transactions on Graphics,
Vol.17(2), pages 84–115, 1998.

[Tou98] Costa Touma and Craig Gotsman. Triangle
mesh compression. Proceedings of Graphics
Interface, pages 26–34, 1998.

[Van07] Petr Vanecek and Ivana Kolingerov.
Comparison of triangle strips algorithms.
Computer & Graphics, Vol. 31(1), pages100–118,
2007.

[Vrm97] VRML. The virtual reality modeling
language (vrml) - iso/iec 14772-1, 1997.

 http://www.web3d.org/x3d/specifications/vrml/

[Woo96] M. Woo, J. Neider, and T. Davis. OpenGL
Programming Guide. Addison-Wesley, 1996.

[X3d04] X3D. X3d international standards - iso/iec
19775, 2004.

 http://www.web3d.org/x3d/specifications/

[Xia99] Xinyu Xiang, Martin Held, and Joseph S. B.
Mitchell. Fast and effective stripification of
polygonal surface models. In ACM Symposium
on Interactive 3D Graphics, pages 71–78, 1999.

