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ABSTRACT 

The maximum compression, efficient transmission and fast rendering of geometric models is a complex problem 
for many reasons, thereby gaining a lot of attention from several areas, like compression and rendering of 
geometric models. Normally, the stripification algorithms are used to speed up the rendering of geometric 
models because they reduce the number of vertices sent to the graphics pipeline by exploiting the fact that 
adjacent triangles share an edge. 
In this paper, we present a new compression algorithm based on stripification of geometric models that enable us 
a progressive visualization of the models during its transmission. It occurs because our algorithm encodes and 
decodes the geometry and the connectivity of the model in an interwoven fashion. 
The main purpose is the storage of object files as strips files in server computer, which enables faster 
transmission and display of the models at client side. In fact, our compression algorithm achieves compression 
ratios above 40:1 over ASCII encoded formats and the triangle strips improve rendering performance. 
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1 INTRODUCTION 
The tremendous growth of computer graphics and 
entertainment (e.g. online games and virtual 
environments) over the Internet (LAN and WAN) has 
increased the necessity of rapid transmission of 3D 
models.  

The increase in this area is fueled by the emerging 
demand for interactive visualization of 3D models in 
a network environment using several standard 
formats, as VRML [Vrm97] and X3D [X3d04]. But 
bandwidth over a network is a limited resource. 
Thus, we need compression and decompression 
algorithms for easy transmission and visualization of 
3D models over the Internet, i.e. it is desired to 
compress 3D models in order to reduce storage and 
transmission time requirements. This is because these 
3D models can be composed of millions of polygons, 
which take a long time to transmit over the network 

(e.g. Internet). 

Besides, for interactive visualization not only the 
speed at which a model can be received is important, 
but also the speed at which it is displayed. One 
popular approach for fast visualization of these types 
of models is the conversion of a triangulated model 
into strips of triangles. Such triangle strips are widely 
supported by graphical hardware and software 
[Woo96]. 

A sequential strip is a sequence of n+2 vertices that 
represent n triangles where each triangle shares a 
common edge. Sequential strips allow us to reduce 
the transmit cost by a factor of three, from 3.n to n+2 
vertices. But finding the minimum number of strips 
to cover a given model is a NP-hard problem. 
However, several heuristics have been proposed to 
generate good triangle strips. 

In this paper we present a new compression 
algorithm based on stripification of geometric models 
that enable us a progressive visualization of the 
models during its transmission because our 
algorithms encodes and decodes the geometry and 
the connectivity of the model in an interwoven 
fashion. On the contrary, most of the compression 
methods proposed in the literature compress the 
geometry and the connectivity separately. This in 
fact, does not allow a progressive visualization of the 
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models during its transmission without decoding its 
geometry. 

Section 2 presents a short overview of compression 
and stripification algorithms. The compression and 
decompression algorithms are described in Section 3. 
Section 4 presents some comparisons and results. 
Finally, Section 5 presents some conclusions and 
future work. 

2 RELATED WORK 
There are several efficient compression schemes for 
triangle meshes that encode the geometry and 
connectivity separately [Tau98, Tou98, Ros99]. They 
encode the mesh through a compact representation of 
a vertex-spanning tree and its dual graph. However, 
they are not adequate for progressive visualization 
because it is necessary to decode all the geometry 
first, to visualize the model based on its connectivity. 

Bajaj et al. presented a compression algorithm that 
also encodes the geometry, the connectivity and the 
attributes separately. Besides he uses four geometric 
primitives to encode the mesh that are: contours, 
branching points, triangle strips and triangle fans. On 
the contrary, we only use triangle strips and encode 
the geometry and connectivity in an interwoven 
fashion. 

These compression methods are useful for encode 
files, as for example VRML or X3D ASCII file 
formats, which have the geometry and connectivity 
separately. 

For fast visualization of geometric objects the use of 
triangle strips is common because the graphical 
hardware widely supports it. The first algorithm 
proposed for creating triangle strips is the SGI 
algorithm [Ake90]. But other good algorithms 
proposed so far are the STRIPE [Eva96] and the 
FTSG [Xia99].  

Triangle stripification algorithms can be categorized 
in several different ways. For example, based on the 
type of input data and the type of optimization. In 
terms of optimization we are normally interested in 
the minimization of number of strips and vertices. 
Thus, Deering [Dee95] introduced the concept of 
generalized triangle strips in which the main 
objective was to reduce the number of strips. Based 
on Deering's work, Chow [Cho97] proposed a mesh 
compression scheme optimized for real-time 
rendering. Their algorithms achieved compression 
ratios below 37:1 over ASCII encoded formats. But, 
we will see in later sections that our algorithm 
achieves compression ratios above 40:1 over ASCII 
encoded formats. 

Furthermore it is also possible to encode strips files 
and further reduce the size of these files. But 
normally, the available connectivity compression 

techniques do not support the encoding of stripified 
models. However, more recently Isenberg [Ise01] 
proposed a simple and efficient scheme for coding 
the connectivity and the stripification of a triangle 
model. For example, the application of Isenberg's 
scheme in our case it is possible but only to compress 
the strip files, i.e. without connectivity. 

Recently, Kim et al. [Kim06] presented a 
compression method that enables a progressive 
decompression of an arbitrary portion of a model 
without decoding other non-interesting regions. This 
method is accomplished by adapting selective 
refinement of a multiresolution model to the model 
compression domain. 

For more details about several triangle strips 
algorithms see the recent work of Vanecek and 
Kolingerová [Van07] that presents a comparison of 
triangle strips algorithms and also the survey on 3D 
mesh compression presented by Peng et al. [Pen05].  

3 COMPRESSION AND 
DECOMPRESSION ALGORITHMS 

To better understand the compression and 
decompression algorithms we will first introduce the 
AIF data structure that supports their development. 

3.1 AIF Data Structure 
The data structure used in the compression algorithm 
is a version of AIF data structure [Sil03]. Figure 1 
presents the four relations explicitly represented in 
original AIF data structure.  

Basically, a 2-dimensional mesh in the AIF data 
structure is defined by the triple M={V,E,F}, where 
V is a finite set of vertices, E is a finite set of edges, 
and F is a finite set of simply connected faces. 

 

 

 

 

 

 

 

Figure 1.  AIF Data Structure Scheme. 
We create a new version of AIF data structure that 
represents 5 out of 9 relations between cells of a 2-
dimensional cell complex, namely three basic 
adjacency relations, V p E, V p F and E p F, and two 
inverse relations (or incidence relations) E f V and  
F f E. These five basic relations can be combined to 
form the nine-adjacency and incidence relations. 
Though this work can also be done using only the 
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four relations presented in original AIF data 
structure, but the fifth one is used to speed up the 
stripification process. 

Besides, the AIF data structure has a companion 
query operator for fast retrieval of adjacency and 
incidence information (i.e. topological information of 
a mesh). Note that the query operator does not handle 
all the data structure constituents at once. It handles a 
mesh locally by using the adjacency and incidence 
relations stored in the data structure. Thus, its time 
performance is independently of the mesh size. This 
is very important for handling large meshes 
efficiently. 

3.2 Compression Algorithm 
Our compression algorithm is based on the principle 
of converting a model into strips. The compressed 
model is not exactly a composition of many strips but 
a collection of many linking agents and vertices. 
Linking agents are special symbols, which will be 
used to make long strips. The entire algorithm has 
been divided into five elementary steps. These steps 
have been designed to cover models either with or 
without holes. The compression algorithm is the 
following:  

Algorithm 1 
INPUT: A mesh in AIF data structure 
OUTPUT: A strip file 

Begin 
While there are vertices with a degree greater than 
zero 
1.  First Vertex Selection 
2.  Intermediate Vertex Selection 
3.  Final Vertex Selection 
4.  Look Back 
5.  Dead Lock 

End 

In first step of Algorithm 1 we will select the vertex 
(v1) with the minimum vertex-degree in the mesh. 
The vertex-degree is the number of incident edges on 
a vertex. However, only the edges that have an edge-
status greater or equal to one are considered. The 
edge-status is the number of incident faces on it. For 
example, for a manifold mesh an edge has normally 
two incident faces. 

Note that our algorithm modifies the edge-status 
during the creation of strips. Whenever a triangle is 
included in a strip then the edge-status of its edges 
will decrease by one. Thus an edge-status equal to 
zero means that the strip already covers the edge. 

If there exist several vertices having a minimum 
vertex-degree then we will select any one of these. 
We select a vertex that has a minimum vertex-degree 
and not the maximum vertex-degree because if we 
start with vertex having less degree then the number 

of strips formed will be less. Otherwise we have to 
create separate strips for isolated triangles that will 
appear if we select the vertex with maximum degree. 

In second step of the Algorithm 1, we will select a 
vertex (v2) that belongs to an edge (e) incident on v1, 
such that the status of e is different of zero. Once 
again, we will select the vertex that has the minimum 
degree (i.e. the same strategy used in step 1). 

In the step three, we will select the third vertex (v3) 
that forms the triangle defined by vertices v1, v2, v3. 
Thus the triangles that can share the edge e (i.e. the 
edge defined by the vertices v1 and v2) are two or one. 

If there exist only a triangle that share the edge e then 
the third vertex is automatically founded. In this case, 
the status of the selected triangle will be set to zero, 
so that it cannot be selected again. The status of a 
triangle is defined based on the status of its bounding 
edges. Thus the status will be decreased for all edges 
adjacent to triangle. 

If there exist more than one triangle adjacent to edge 
e we will select the triangle which has the minimum 
degree. If the triangles have the same degree we 
select one triangle arbitrarily. 

After selecting the third vertex (v3) it will be inserted 
in the compressed file (i.e. in strip). In this case it is 
necessary to check if v3 is already present in the 
compressed file or not. If not then the coordinates of 
the vertex will be placed in the compressed file. 
Otherwise, we will use the notion of dummy buffer 
by only placing the order number of the first 
occurrence of this vertex in the compressed file. The 
order number will be preceded by the linking agent 
'<'.  This linking agent denotes a vertex identifier. 

Finally, the total number of triangles uncovered in 
the mesh will decrease by one. 

 

 

 

 

 

 

 

Figure 2.  Example of step four. 
In the step four of the algorithm we shall look back 
for the triangle selected by previous step. Thus 
assuming that the triangle is defined by the vertices 
v1, v2, v3 and they appear in this order in compressed 
file (see the example in Figure 2). 

We will first check the edge status of the edge (e23) 
defined by vertices v2 and v3. If the edge e23 has a 
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status greater than zero then we will check the edge 
status of edges e13, formed by vertices v1 and v3. 

If edge e13 has a status equal to one then we will 
cover the triangle adjacent to this edge. Such 
triangles are called auxiliary triangles or side 
triangles because the front of the strip is the edge e23. 
This case will be marked using the linking agent '#'. 
Then the third vertex of this auxiliary triangle will be 
found (v4) and will be inserted in the compressed file. 
The status, degree of edges and vertices will be 
updated respectively. 

If the edge e13 has an edge-status equal to zero then 
there is no more triangles uncovered adjacent to edge 
e13. Thus the control flow will go to step three with 
vertex v3 becoming as v2 and vertex v2 becoming as 
v1 to find a new vertex v3, because the edge e23 has an 
edge-status greater than zero. 
If the edge-status of e23 is equal to zero then there are 
no more triangles uncovered adjacent to edge e23.  

Now if the edge-status of e13 is equal to one, then we 
will cover the triangle adjacent to this edge. In fact, 
our strip making process will have to change its 
direction in terms of leading edge. The leading edge 
was e23 but now it will be e13 or e31. Note that the 
edges e13 and e13 are different for creating a strip (i.e. 
the order of the vertices is important). 

If we consider e13 as the new leading edge then we 
mark this by linking agent '!' and the algorithm goes 
to step three to find a new vertex v3. But if we 
consider e31 as the new leading edge then we mark 
this by linking agent '@' and the algorithm goes to 
step three again. 

If the edge e13 has a status equal to zero then there are 
no more triangles uncovered adjacent to edge e13. 
Thus the edge-status of all the three edges (e12, e13 
and e23) is equal to zero. 

But we will now check the vertex-status of our three 
vertices (v1, v2, v3). If there is any one vertex has a 
vertex-degree greater that zero then the algorithm 
goes to step two with this vertex as v1 to find a new 
vertex v2. Thus depending whether v1, v2, v3 is chosen 
as the new v1 a linking agent 'A', 'B' or 'C' will be 
inserted, respectively. 

Otherwise, the control flow will go to the last step, 
called dead lock. Entry in this step implies that our 
current strip is concluded and it is necessary to start a 
new strip. Then the control flow goes to step 1 to find 
a new vertex that has a degree greater than zero. 

Figure 3 shows a simple mesh with a hole that 
exemplifies the use of linking agents 'C' and 'B'. This 
mesh is encoded by our compression algorithm by 
the following sequence: 6 5 4 B 1 2 C 4 3 

Some other linking agents are also used in the 
compression algorithm but they will be presented in 
the context of the decompressed algorithm. 

Our compression algorithm encodes a mesh file in a 
strip file reducing its size by 40% in average, as we 
will see in next Section. 

 

 

 

 

 

 

Figure 3.  A mesh with an hole. 

3.3 Decompression Algorithm 
The decompression algorithm is just the reverse of 
the compression algorithm. However in the 
compression algorithm we need to make queries to 
find the adequate vertices to construct the strips. On 
the contrary, the decompression algorithm only 
decodes the strips, which contains only vertices and 
some linking agents. Thus the time consumed by the 
decompression algorithm is very small in comparison 
with the compression algorithm. 

The decompression algorithm is the following: 

Algorithm 2 
INPUT: A strip file 
OUTPUT: A SMF file 

Begin 
1. Read the lines of strip file to a string 
2. Create a list of vertices and put the first three 
vertices there 
3. While not reach the end of the string 
   (a) Read a new character 'c' from the string 
   (b) switch ('c') 

 case: '/'  
 case: '#'  
 case: '!'  
 case: '@'  
 case: 'A'  
 case: 'B'  
 case: 'C' 
 case: '<' 
 default - it is a vertex 

4. Create the SMF file 
End 

The decompression algorithm starts by reading the 
strip file for a string. Then it creates the list of 
vertices and inserts the first three vertices that appear 
always in the beginning of the strip file. After this we 
have a loop until the end of the string is reached. 
Then we read a character ('c') from the string for each 
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iteration and process it. But the character 'c' can only 
be a linking agent or a vertex. 

If the character 'c' is the linking agent '/' this means 
that the current strip is concluded. Then it is 
necessary to start a new strip. But we have to be 
careful in reading the vertices because there are two 
ways of representing a vertex, i.e. by their three 
coordinates or by an identifier. 

If the character 'c' is the linking agent '#' this means 
that we found an auxiliary triangle. In this case the 
next entry (character) in compressed file will be a 
vertex. Note that the concept of auxiliary triangle is 
already defined in the compression algorithm. 

The linking agent '!' implies a change in the order of 
the last three vertices to continue the strip. Thus the 
shared edge will be the edge defined by the vertices 
v1 and v3 and not the edge defined by the vertices v2 
and v3 as normally. In this case the next entry in the 
compressed file will be the third vertex. 

The linking agent '@' also implies also a change in 
the order of the last three vertices to continue the 
strip. Thus the shared edge will be the edge defined 
by the vertices v3 and v1 and not the edge defined by 
the vertices v2 and v3 as normally. In this case also 
the next entry in the compressed file will be the third 
vertex. 

The linking agent 'A' is used for the case where the 
strip will continue based on first vertex only (v1) and 
not based on an edge. Then the next entries in 
compressed file will be two vertices. 

The linking agent 'B' denotes the case where the strip 
will continue based on the vertex v2 and the next 
entries in the compressed file will also be two 
vertices. 

The linking agent 'C' is used for the case where the 
strip will continue based on last vertex (v3) and the 
next two entries in compressed file will be vertices. 

If the linking agent is equal to '<' then we will read a 
identifier of a vertex, which is already in memory 
(i.e. in the buffer). 

Finally, if the character 'c' is not a linking agent then 
we are reading a vertex (i.e. the coordinates that 
define the vertex). 

At the end of the loop we create the decompressed 
file in the SMF file format. 

4 RESULTS AND COMPARISONS 
Table 1 presents a comparison between the size of 
the original ASCII files and compression files for 
seven different models pictured in Figure 4. It 
provides also the compression ratio achieved by our 
algorithm.  

Table 1 contains the model name, the original file 
size (Server), the compressed file size (Client) and 
the compression ratio. Note that, the compression 
ratio is calculated as follows 

Ratio = (initial file size - compressed file size) / 
initial file size 

The initial files are in SMF file format, which have a 
similar structure to, that the OBJ file format. The 
wireframe models pictured in Figure 4 was converted 
to X3D file format for visualization purposes at client 
side. 

As we can see, the compression ratio of our 
algorithm is about 0.40 in average. 

  

  

  

 
Figure 4.  Models used for compression and 
decompression. From top-left: Cow, Genus3, 
Eight, Ellipsoid, Fandisk, Torso and Bunny. 

However, another layer of compression is possible if 
the server zipping the compressed file before 
transmitting it. This layer of compression (i.e. 
zipping) will further increase the compression factor. 
For example, the size of the compressed file for 



Bunny model is 1413 KB and the size of the 
compressed zipped file is 518 KB. 

Table 2 presents a comparison between the size of 
the original SMF files and the corresponding 
decompressed files for the several models used. Note 
that, the decompressed files are smaller than original 
files, but both files represent the same geometric 
model. This means that the simple fact that 
compressing and decompressing an object file 
reduces its size, because some unnecessary symbols 
are removed, for example, some blank spaces.  

Model Original 
File 

Compressed 
File Ratio 

Cow 183 KB 106 KB 0.42 

Bunny 2507 KB 1413 KB 0.43 

Eight 47 KB 29 KB 0.38 

Ellipsoid 212 KB 118 KB 0.44 

Fandisk 493 KB 311 KB 0.37 

Genus3 438 KB 253 KB 0.42 

Torso 469 KB 268 KB 0.43 
Table 1. Compression Results. 

Table 3 presents a comparison between the number 
of vertices in strips and the number of vertices per 
triangle. The number of vertices in strips determines 
the amount of data sent to graphical pipeline. In this 
case, our algorithm achieved good results comparing 
with the results presented by Vanecek and 
Kolingerová [Van07] for several stripification 
algorithms. For example, for the Cow model we 
achieved 6637 vertices in strips while all other 
algorithms achieved results between 7000 and 8000. 
For Bunny model we achieved 79920 vertices in 
strips while all other algorithms achieved results 
between 82000 and 102000 vertices. 

Model Original File Decompressed 
Cow 183 KB 177 KB 

Bunny 2507 KB 2438 KB 
Eight 47 KB 44.8 KB 

Ellipsoid 212 KB 204 KB 
Fandisk 493 KB 475 KB 
Genus3 438 KB 424 KB 
Torso 469 KB 454 KB 

Table 2. Compression and Decompression Results. 
The number of vertices per triangle shows the 
efficiency of the algorithm because it determines the 
ratio of number of vertices per triangle. In this case, 
once again, our algorithm achieved better results than 
all other algorithms according to Vanecek and 
Kolingerová [Van07] results (i.e. for common 
models Cow and Bunny). 

The number of strips and the average length of strips 
created by our algorithm are presented in Table 4. In 
terms of the number of strips our algorithm produces 
more strips than the other algorithms. Thus the 
average length of strips is normally inferior to the 
average length of strips produced by other algorithms 
(see Vanecek and Kolingerová results [Van07]). 
However, the number of vertices per triangle in strips 
for our algorithm is smaller (see Table 3) than the 
number of vertices per triangle in strips for other 
algorithms. This means that other algorithms produce 
fewer strips but with more number of vertices per 
triangle, i.e. they produce strips with more repeated 
vertices than our algorithm. 

Model # Triangles Vert. in 
Strips 

Vert. 
per   

Cow 5804 6637 1.14 

Bunny 69473 79920 1.15 

Eight 1535 1699 1.11 

Ellipsoid 6923 7793 1.12 

Fandisk 12946 15042 1.16 

Genus3 13311 15117 1.13 

Torso 14451 16389 1.13 
Table 3. Number of vertices in strips. 

Therefore our algorithm is better to compression and 
visualization purposes. 

Model Number of 
strips 

Average length 
of strips 

Cow 231 28.71 
Bunny 2645 30.21 
Eight 42 40.45 

Ellipsoid 246 31.67 
Fandisk 544 27.65 
Genus3 469 32.23 
Torso 617 26.56 
Table 4. Number of strips achieved by our 

algorithm. 

4.1 Progressive Visualization 
When a client asks the server for a particular file, the 
server will send the compressed model in packets of 
small bits. In other compression algorithms these 
initial packets consist of vertex position information 
only. Information about connectivity generally 
appears in later packets. Hence the application client 
has to wait until it receives all information about 
vertices. This is a very worse situation leading a lot 
of latency because the user cannot have early 
information about the model. 

Whereas the compression of geometry and 
connectivity in our algorithm is made by interwoven 
fashion, thus each strip is self-sufficient in terms of 



visualization. If the client uses our algorithms then as 
soon as it will receive the first packet or rather the 
first full strip from the server the visualization 
process can be started. This early visualization is 
advantageous because it give the user early 
information about the model. 

Figure 5.  From top-left: Cow in 20, 40, 60, 80 and 
100 percent of its size.Figure 5 and Figure 6 show 
two examples of progressive visualization effect for 
Cow and Ellipsoid models. The compressed files 
have been divided into small fractions of their total 
file size to simulate their transmission, namely 20, 
40, 60 and 80 percent of its size.   

  

  

 
Figure 5.  From top-left: Cow in 20, 40, 60, 80 and 

100 percent of its size. 
Note that each fraction of the strip file can be 
visualized separately and it gives an idea to user of 
the shape of the model. This allows the user to cancel 
a transfer before whole object is received. For 
example, when the object is not what the user 
expected. 

5 CONCLUSIONS 
Our compression algorithm was developed for 
compression and visualization purposes. Thus, it 
produces normally more strips than other algorithms 
but with less number of vertices per triangle. Besides, 
it allows a progressive visualization of models during 

its transmission over the network. This means that 
segments of the compressed file are self-sufficient in 
terms of visualization. 

Our algorithm uses an efficient technique to 
compress a file. In most of the compression 
strategies, compressed file consists of geometry (i.e. 
vertices) followed by connectivity. In our case the 
compressed file, consist of combinations of vertices 
and linking agents, i.e. the geometry and connectivity 
are compressed in an interwoven fashion. This 
combination helps us to achieve a compression factor 
above 40 percent over ASCII encoded formats. 

  

  

 
Figure 6.  From top-left: Ellipsoid in 20, 40, 60, 80 

and 100 percent of its size. 
The future work will concentrate on improving the 
strip making process. The main idea is to reduce the 
number of strips created by our algorithm but 
maintaining the number of vertices per triangle. 
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