
Interactive ray shading of FRep objects

Oleg Fryazinov
National Centre for Computer Animation

Bournemouth University
 BH12 5BB, Poole, UK

ofryazinov@bournemouth.ac.uk

Alexander Pasko
National Centre for Computer Animation

Bournemouth University
BH12 5BB, Poole, UK

apasko@bournemouth.ac.uk

ABSTRACT

In this paper we present a method for interactive rendering general procedurally defined functionally represented

(FRep) objects using the acceleration with graphics hardware, namely Graphics Processing Units (GPU). We

obtain interactive rates by using GPU acceleration for all computations in rendering algorithm, such as ray-

surface intersection, function evaluation and normal computations. We compute primary rays as well as

secondary rays for shadows, reflection and refraction for obtaining high quality of the output visualization and

further extension to ray-tracing of FRep objects. The algorithm is well-suited for modern GPUs and provides

acceptable interactive rates with good quality of the results. A wide range of objects can be rendered including

traditional skeletal implicit surfaces, constructive solids, and purely procedural objects such as 3D fractals.

Keywords

Functional Representation, FRep, Implicit Models, Interactive, Visualization, Ray tracing, Real Time, Rendering,

GPU.

1. INTRODUCTION
In this paper we deal with the most general form of

function-based (implicit) geometric models called the

function representation (FRep). FRep defines a

geometric object by a single continuous real function

of point coordinates as: F(X) ≥ 0 [Pas95a], where the

function is evaluated while traversing an underlying

tree structure or by running a "black box" evaluation

procedure, which makes this model cardinally

different from purely analytically defined implicit

surfaces. Methods of constructing such models are

developed well enough; however, rendering of these

models with interactive rates remains an open

problem, leading to the lack of real-time modeling

tools for FRep objects.

In this paper, we present a method of ray shading

accelerated using graphics hardware and specialized

for rendering implicit models with interactive rates.

We use the term ray shading to denote the technique

of rendering based on ray-casting running on GPU

and extended by processing secondary rays, shadow

generation, reflection and refraction with

environmental mapping. The computations take part

in a special GPU programs called shaders, which

allows us to change models on-the-fly during the

rendering process and does not limit the CPU we use.

Moreover, we only need to store ray data (two

vectors) for each pixel, so our method is practically

memoryless, thereby alleviating the large memory

consumption problems essential to polygonization

based rendering.

By using the acceleration on GPU, we achieve

ray-tracing performance acceptable for the real-time

user interaction. We do not make assumptions and do

not use a priori knowledge on the object’s defining

function in our basic algorithm. Therefore, it can

render a wide range of objects including algebraic

and skeletal implicit surfaces, constructive solids, and

purely procedural objects such as 3D fractals. We

also present techniques for additional accelerations of

the ray-tracing algorithm that allow for further

improving its performance.

2. RELATED WORK
At present, there are two ways to render general

implicit models. The first one is the approximation of

the surface by the set of polygons, namely

polygonization [Blo87a], or by a set of other easy to

render primitives. However, it is memory- and

computationally expensive to generate polygonal

meshes in real time and moreover it is not robust,

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen, Czech

Republic.

because features like spikes and sharp edges can be

lost during the polygonal mesh generation.

The second way is ray-tracing which is regarded

as more precise method to visualize functionally

represented models, but it is even more

computationally expensive to perform in real time.

Ray-tracing for visualization of functionally

represented models is also a well-researched area.

Traditional methods of ray-tracing implicit surfaces

were summarized in [Har93a]. These methods can be

applied to most of functionally represented objects,

but they are generally very slow even on modern

hardware. Recently a number of works appear with

different approaches to acceleration, such as reducing

the model complexity, reducing the number of

processed rays and increasing the speed of

calculations.

The model complexity can be reduced by

limiting the considered set of implicit surfaces by a

particular type such as quadratic or higher degree

surfaces and their piecewise combinations [Woo86a,

Gol89a, Kan06a, Loo06a, Sto06a], blobby and other

skeletal surfaces [Fox01a], or arbitrary implicit

surfaces with known analytical definitions [Kno07a].

For constructive models, the complexity can be

reduced by limiting a set of available operations, for

example, by set-theoretic (Boolean) operations and

linear transformations in Constructive Solid

Geometry (CSG) models [Woo86a, Gol89a]. Another

way of reducing complexity for constructive models

is the simplification of the internal constructive tree

structure or tree pruning [Woo80a, Fox01a].

The number of processed rays intersecting

function-based models can be reduced by the

adaptive subdivision in the image plain as proposed

in [Has03a] or progressive refinement [Gam06a].

The speed of calculations can be increased by

using specialized hardware or additional general

processing or graphics processing units [Ben06a,

Kno07a]. Wide development of the graphics

hardware in the recent years leads to higher speed of

traditional algorithms using programs for GPU. Ray-

tracing on GPU is quite well investigated; however,

most of papers have been focused on polygonal

meshes and parametric surfaces [Pur02a, Chr05a] and

volumetric data [Kru03a, Ste05a]. GPU-accelerated

ray-tracing for implicit surfaces was introduced only

for several particular types of surfaces. The work

[Cor05a] considered ray-tracing implicit surfaces

defined by radial basis functions. Rendering of

quadratic implicit surfaces on GPU was reviewed in

[Les04a] and later in [Sto06a], and ray-tracing of

discrete isosurfaces was introduced in [Had05a].

Recently, in [Fry07a] GPU accelerated ray-

casting of general function-based models was

introduced, where only primary rays were processed

and higher quality effects such as shadows,

reflections and refractions, environmental mappings

were not considered. In this work, we present ray-

tracing techniques for the most general type of

procedural function-based objects where primitives,

operations, and the entire model are considered

"black boxes" with unknown specific properties. We

also consider both primary and secondary rays to

achieve higher quality of rendering.

3. ALGORITHMIC BACKGROUND
In this section we briefly describe theoretical

principles related to function-based geometric models

and methods for ray-tracing such models.

Function representation
Geometric objects are defined in the function

representation (FRep) as closed subsets of n-

dimensional Euclidean space E
n
 with the definition

f (x1, x2, …, xn) ≥ 0

where f is a real continuous function defined in E
n
.

The function can have one of several possible

definitions: analytical equation, function evaluation

procedure, sampled function values at regular grid

nodes or scattered points and an appropriate

interpolation procedure. The only requirement to the

function is to have at least C
0
 continuity. In 3D space,

the boundary of such an object, where the function

takes zero value, is a so-called implicit surface.

For application software, an FRep object is given as a

“black box” procedure for the function evaluation at

the given point. In the extreme case, such a procedure

can be implemented from the scratch in some

programming language. A procedure generating

fractal objects is a good example. Another approach

is to build the procedure using provided library

functions for simple geometric objects (primitives)

and geometric operations. Each geometric primitive

is described by a concrete type of a function chosen

from the finite set of such types. Some examples of

primitives are: quadratic and other algebraic

primitives; skeleton-based primitives; voxel array

with the trilinear or higher order interpolation; solid

noise; objects reconstructed from scattered surface

points using radial-basis functions.

A complex geometric object is a result of

applying operations to primitives. There is a rich set

of operations taking functions of arguments as input

and resulting in a new continuous real-valued

function as output. Unary operations include space

mappings - transformations of point coordinates and

function mappings (offsetting, solid sweeping, and

projection). Binary operations include set-theoretic

operations and their blending versions, Cartesian

product, metamorphosis and others.

The basic set-theoretic operations (union,

intersection, difference) are implemented using

Rvachev’s R-functions (see [Pas95a]), which allow to

represent an arbitrary constructive object by a single

function. The key point in constructive modeling is

that the final object is internally represented by a tree

structure with primitives as leaves and operations as

nodes of the tree. An FRep modeling system provides

a procedure which traverses this tree structure to

calculate the function value at the given point.

Ray-surface intersection for function-

based models
The intersection test between a ray and an object

surface is the core of the ray-tracing algorithm. The

problem here is to find a ray-surface intersection

point, which is nearest to the viewpoint. This problem

can be reduced to zero-root finding for the function

along the ray. We consider below methods that we

have included in our implementation.

3.1.1 Analytical methods
The most common type of functions for analytical

root finding is the polynomial function and CSG

models built on polynomial primitives. For solving

the equation for the defining function that represents

the model, we should turn to the ray parameter space

from the modeling space:

f (X) = 0, X = X0 + t(X1 – X0) ⇒ g(t) = 0

Polynomial equations of degree one can be

solved using the laws of elementary algebra; for

polynomials of degree two the roots of the quadratic

equation are known; we solve polynomials of degree

three using the Cardano's method and polynomials of

degree four using the Ferrari's method. If the

polynomial has degree higher than four, we cannot

solve it analytically and need to use approximate

methods. Once the polynomial solving procedure

returns all the roots including those which are

negative, duplicate, and beyond the bounds of the

ray, additional filtering is usually needed. If the

model is represented as a CSG-tree that is built from

simple primitives (i.e., the roots for them can be

found analytically), we take all the roots for the

leaves of the CSG-tree and select the root that

corresponds to the intersection point closest to the

viewer and placed on the surface of the CSG solid.

3.1.2 Interval analysis
Interval analysis for ray-tracing was introduced in

[Mit90a]. The function is extended to operate on

intervals for input variables using the rules of interval

arithmetic. As for analytical methods we turn to the

ray parameter space from modeling space. The

function representation in the ray parameter space is

the base for the extension to the interval function.

Moore showed in [Moo66a] that the result interval F

includes f results. The root finding algorithm consists

in the recursive search of the interval [a, b] with

different signs of a and b. This method is considered

robust; however the main problem with this method is

the over-conservatism as the estimated intervals are

usually much wider than actual function range.

Another known problem of this method is the

problem with non-arithmetic operators such as

conditional operators and procedural loops.

3.1.3 Approximate numerical methods
In ray-tracing of general procedural functionally

represented models, which may contain conditional

operators, loops, recursive calls etc, we can not use

analytical methods and interval analysis is hard to

implement. However, the ray-surface intersection can

be found using an approximate search. First, we split

up the domain into chunks and find the first one

which contains at least one root, i.e., the sign of the

function differs at its ends. After that, we refine the

root using the regula-falsi or the Newton’s method.

4. IMPLEMENTATION
In our work we employ two main features in

rendering of functionally represented models. First of

all, we represent a complex object by a single

function and second, we perform all the computations

on the GPU.

Model representation
In FRep, any object can be described by a real-valued

function with real-valued arguments. A complex

scene consisting of several models also can be

described by a single function that describes the

union of these models. This function can be either

given by a text file describing a tree structure (as in

BlobTree [Fox01a]) or by an evaluation procedure in

a universal or a special-purpose language (HyperFun

[Hf]). In this work, we use HyperFun objects as the

source models, because this language can describe

arbitrarily complicated FRep models. The object

definition in the HyperFun language is presented as a

function with input of an array of coordinate

variables, an array of model parameters, and an array

of attribute variables. The output of the object

definition is the value of the function. Moreover, the

HyperFun language allows defining the color and

other photometric characteristics procedurally

through the attribute variables. In fact, the model is

described by a vector-function.

In our system we use the functions in the

OpenGL shading language (GLSL), which we obtain

using the conversion from HyperFun models. The

object geometry definition in GLSL is a function with

input of a vector of coordinate variables, a vector of

free variables and a vector of attribute variables.

Also, for shading we use the procedural color

definition, which is represented as a function with the

same parameters as the object geometry function, but

returns color vector instead of the real value for

geometry.

As HyperFun and GLSL are both C-like languages,

the conversion between them can be done easily. We

leave the details of the conversion between the

languages beyond this paper.

Visualization process
We use GPU for the most of calculations in the ray-

tracing algorithms adapted to function-based objects.

As in the most of GPU-based ray-tracing methods, all

the computations take place in the fragment shaders

and data transfers from and to a graphics card

through the textures. The main advantage of the GPU

is the possibility of the shader modifying on-the-fly.

Therefore it can be used for interactive rendering.

The scheme of our system is shown in Fig. 1.

For our implementation of rendering, we also use

GLSL. Note that we should bear in mind current

GPU restrictions such as inability to use recursion or

early breaks in functions, and the limit on the number

of operations within one shader. Hardware

restrictions depend on currently available graphics

hardware and in this paper we mention restrictions

that we have met during the implementation.

The conversion from HyperFun to GLSL is a

part of pre-procession stage, which also includes the

generation of the set of shaders based on an initial

model and setting of values to the parameters to the

shader, such as bounding box of the scene, time-

dependent parameters and additional information if

required.

Figure 1. Visualization scheme.

Figure 2. Rendering process diagram.

At the stage of rendering a frame, we take the set

of shaders and apply one after another to the window-

sized polygon. The data is transferred between

shaders through the texture memory. The first shader

should provide the search for the intersection point

and the last shader should have the color of the pixel

as the output. The process of rendering is shown in

Fig. 2.

Implementation of the ray-surface

intersection on GPU
Depending on the model type we can use different

methods for calculation of the ray-surface intersection

point. In our implementation we use analytical

methods for objects that can be represented as CSG-

trees of polynomial primitives with maximum degree

of four and approximate numerical methods in other

cases. Also, we use interval analysis for several

models.

4.1.1 Approximate root search
We use this method for complicated models, when

the speed is more preferable than the quality of the

image. In our current implementation we use an

iterative search of the interval with different signs of

the function combined with the Newton method for

refining the root estimation. Thus, during the

generation of the fragment shader, we add the ray-

surface intersection part that finds the interval where

the sign of the function differs at the ends and then

refine the solution with the Newton method using the

following algorithm:

- calculate the function value at the first point

of the ray

- subdivide the ray into intervals

- for each interval

o calculate the function value at the

end of the interval

o compare signs of the function at the

beginning of the interval and at the

end

o if signs are different, set the flag of

the found root as true

- if the interval with a root is not found, return

the no-intersection flag

- depending on the interval tolerance calculate

the number of iterations for the Newton

method

- at each iteration refine the root with the

Newton method

- return the intersection point coordinates

The length of the interval and all needed

tolerances are set manually by the user. Input data for

the ray-surface intersection are given for each pixel

and include the ray origin vector of coordinates and

the ray direction. However, for the primary rays input

data can be reduced up to just the ray beginning

vector, because the ray direction is the same for all

primary rays.

4.1.2 Analytical root search
In the general case of purely procedural models exact

roots cannot be found. Even a relatively simple object

such as blended union between two cylinders leads to

the root search for polynomials of the degree five.

However, if we have a model defined as a CSG-tree

over polynomial primitives of degree four and lower,

we can find exact roots using analytical methods. On

the pre-processing stage we generate polynomial

functions for each leaf in the CSG-tree and insert this

information in the shader. In this case, the root search

algorithm is as follows:

- set the root found flag to false

- for each polynomial

o calculate the roots using analytical

polynomial solving

o if there are roots in the search area 0 ≤ t ≤ 1,

select the minimal one, and set the root

found flag to true

- calculate the intersection point based on the found

t value and return the intersection point

coordinates.

4.1.3 Root search using interval analysis
Although interval analysis is the most accurate way to

calculate ray-surface intersection points, it is very

computationally expensive even for current graphics

hardware. In our implementation we use the search

for the interval including a function root using

dichotomy. As we cannot use recursion on GPU, we

have to use a loop with a stack or a similar data

structure. Moreover, at the pre-procession stage we

have to include the implementation of interval

arithmetic functions and interval version of the source

function. In our work we use the following algorithm:

- Calculate the interval function for interval

[0, 1], check the signs of the interval

function, return no root if the signs are the

same at the ends of the interval.

- Calculate interval functions for [0, 0.5] and

[0.5, 1].

- If the signs differ for the first interval, push

it to the stack with the first part flag; if the

signs differ for the second interval, push it to

the stack with the second part flag, otherwise

return no root.

- While (stack depth more than maximum or

stack is empty)

o Pop interval and its flag from the

stack

o If interval has the first part flag,

calculate the second part and push

it to the stack

o Split interval into two, calculate

interval functions for both parts

o If the signs differ for the first

interval, push it to the stack, if the

signs differ for the second interval,

push it to the stack.

- If the stack is not empty, pop an interval

from the stack, return the middle of the

interval as the root.

Shading
For shading we need to have the color function

applicable to any visible surface point. It means that

this function should return color value for any point

in the modelling space. In the general case we can

evaluate the color function along with the shape

defining function using a point attribute model. The

methods of modeling procedural textures as point

attributes are described in detail in [Shm01a]. After

defining the color for the model, the shading is

performed using the Phong method or a similar one.

In our implementation we use the Blinn-Phong

shading model.

Prior to performing shading operations, we should

calculate the normal vector at the ray-surface

intersection point on the surface of the FRep object.

In the general case, when we consider the function of

the object as the "black box", we can calculate the

normal only approximately. The simplest way to

obtain the normal is to apply the finite differences.

Secondary rays
To increase the quality of the visualization, we need

to calculate the secondary rays for ray-tracing of the

model. Due to limitation of graphics hardware such

as inability to perform a recursion, we cannot use the

classical recursive ray tracing algorithm. However,

we can set the fixed depth for the ray processing and

calculate secondary rays within this depth. For simple

models, several rays can be calculated within one

shader. In our implementation, we separated the

rendering tasks and implemented them as several

shaders. The first shader should calculate the first

intersection. After that, we apply secondary ray

shaders and in the last shader, that should perform

surface shading, we sum up all the information.

Depending on the shader type, information between

shader passes is transferred either as one four-

component vector (three components for the new ray

direction and one for the root from the previous ray-

surface intersection in the ray parameter space) or as

two four-component vectors with entire information

from the previous intersection.

5. EXPERIMENTAL RESULTS
We tested our method by rendering several function-

based models with different degrees of complexity

(Fig. 3). In the performance results shown below, we

use models from the Virtual Shikki project and

models from the HyperFun gallery including

procedural fractal models.

Performance characteristics of our implementation

were measured on a PC with a two SLI-combined

NVIDIA GeForce 7900 cards and an Intel Pentium 4

3.20GHz CPU. All models were rendered on a

256X256 viewport. For comparison with CPU-only

methods, we have also measured speed characteristics

of a software implementation of our method on the

same processor. We provide the results in the

following table, where the performance is measured

in frames per second (bigger fps means higher

rendering speed). The Cup model was rendered using

the analytical ray-surface intersection method; the

Noise model was rendered using interval analysis.

Other models were rendered using the approximate

ray-surface intersection method.

 GPU (P) GPU (S) CPU

Cup 120 60 0.41

Metamorphosis 30 20 0.3

3D fractal 17 8 0.12

Noise with CSG 60 30 0.35

Virtual shikki 4 3 <0.01

Table 1. Performance characteristics for selected

models. GPU(p) denotes using of only primary

rays on GPU, GPU(s) denotes using of secondary

rays as well as primary rays, CPU denotes

implementation on CPU.

It can be seen from the table that with GPU-based

rendering we can achieve interactive visualization of

functionally based models and scenes. By defining

the function in the shader we can change the body of

the function in real-time. We can visualize

interactively not only simple implicit objects, but also

the procedural objects, such as procedurally defined

3D fractals and dynamic objects in real-time (Fig. 4).

In the case when the speed is more important that the

quality, we can use approximate methods and obtain

interactive rates even for complicated scenes. Also, if

the model represents a CSG-tree with polynomial

primitives of degree four and less, we can use

analytical methods for rendering, and obtain better

quality of the visualization with better speed.

In our tests we use not only primary rays for

rendering, but secondary rays also. This allowed us to

obtain interactive rates for functional-based scenes

with such effects as shadows, reflection and

refraction (Fig. 5). Also, the procedural shading and

texturing can be used for functionally-based scenes

(Fig. 6).

6. CONCLUSION
In this paper we presented a method of high-quality

visualization of general procedural function-based

(implicit) models with GPU-accelerated ray tracing.

It was shown that we obtain the good quality of

visualization along with good interactive rates by

representing scene by a single function and by

processing it using programs for GPU. In our work

we presented different algorithms for intersecting a

ray with a function-based model, and in our

experiments different methods were tested for

different objects. Depending on the algorithm, we can

obtain higher speed with lower quality, however for

several models higher speed can be obtained using

analytical methods. In addition, in this work we

process secondary rays in the ray-tracing procedure

that allows us to obtain better image quality than by

pure ray-casting.

However, our method has some limitations, most

of them related to restrictions of the current graphics

hardware. The first limitation is restriction on the

program size and instructions number. We decrease

the quantity of calculations using separation over the

several shaders. However, sometimes the problem of

precision appeared, because there is the lack of

precision during data transfers from and to the texture

memory. Also, recursively defined models and

models that require dynamic arrays can not be

converted to current graphics hardware without the

substitution to conditional operators and static arrays

that is not always can be made easily. The removal of

these limitations and further optimization of the

proposed method are the subjects for future research

and development.

7. REFERENCES
[Adz99a] Adzhiev, V., Catwright, R., Fausett, E.,

Ossipov, A., Pasko, A., Savchenko, V. HyperFun

project: Language and Software tools for F-rep

Shape Modelling. Computer Graphics &

Geometry, vol. 1, No 10, 1999.

[Ben06a] Benthin, C., Scherbaum, M., and Friedrich,

H. Ray Tracing on the CELL Processor. In

Proceedings of the 2006 IEEE Symposium on

Interactive Ray Tracing, pp 15–23.

[Blo87a] Bloomenthal, J. Polygonization of Implicit

Surfaces. Computer Aided Geometric Design, vol.

5, pp 341-355, 1988.

[Chr05a] Christen, M. Ray Tracing on GPU. Master's

thesis, Univ. of Applied Sciences Basel (FHBB),

2005.

[Cor05a] Corrigan, A., Quynh Dinh, H. Computing

and Rendering Implicit Surfaces Composed of

Radial Basis Functions on the GPU. International

Workshop on Volume Graphics, June 2005.

 [Fox01a] Fox, M., Galbraith, C., Wyvill, B..

Efficient Use of the BlobTree for Rendering

Purposes. Proceedings of the International

Conference on Shape Modelling & Applications,

2001, p 306.

[Fry07a] Fryazinov, O., Pasko, A. GPU-based real

time FRep ray casting. In Proceedings of

Graphicon-2007, pp. 69-74.

[Gam06a] Gamito, M., Maddock, S. A Progressive

Refinement Approach for the Visualisation of

Implicit Surfaces. Proc. 1st International

Conference on Computer Graphics Theory and

Applications (GRAPP 2006), Setúbal, Portugal,

25-28 February 2006, pp. 26-33

[Gol89a] Goldfeather, J., Monar, S., Turk, G.,

Fuchs, H.. Near Real-Time CSG Rendering Using

Tree Normalization and Geometric Pruning. IEEE

Comput. Graph. Appl. Vol. 9, No 3, 1989, pp 20-

28.

[Had05a] Hadwiger, M., Sigg, C., Scharsach, H.,

Bühler, K., Gross, M. Real-Time Ray-Casting and

Advanced Shading of Discrete Isosurfaces. In

Eurographics, Blackwell Publishing, M. Alexa

and J. Marks, Eds., vol. 24.

[Har93a] Hart, J. C. Ray Tracing Implicit Surfaces.

Siggraph 93 Course Notes No 25, pp 1-15.

[Has03a] Hašan, M. An Efficient F-rep Visualization

Framework. Master thesis, Faculty of

Mathematics, Physics and Informatics, Comenius

University, Bratislava, Slovakia, August 2003.

 [Kan06a] Kanai, T., Ohtake, Y., Kawata, H., Kase,

K. GPU-based rendering of sparse low-degree

implicit surfaces. In Proceedings of the 4th

international Conference GRAPHITE '06. ACM

Press, New York, NY, 165-171.

 [Kno07a] Knoll, A., Hijazi, Y., Hansen, C., Wald, I.,

Hagen, H. Interactive Ray Tracing of Arbitrary

Implicits with SIMD Interval Arithmetic.

Proceedings of the 2nd IEEE/EG Symposium on

Interactive Ray Tracing, Ulm, Germany, 2007,

pp. 11-17.

[Kru03a] Kruger, J., Westermann, R. Acceleration

Techniques for GPU-based Volume Rendering.

Proceedings of the 14th IEEE Visualization 2003,

pp 38.

[Les04a] Lessig, C. Interactive Ray Tracing and Ray

Casting on Programmable Graphics Hardware.

Bachelor Thesis, Bauhaus University Weimar,

December 2004.

[Loo06a] Loop, C., Blinn, J. Real-Time GPU

Rendering of Piecewise Algebraic Surfaces.

Proceedings of Siggraph 2006. pp 664-670.

[Mit90a] Mitchell, D. P. Three applications of

interval analysis in computer graphics. In

Frontiers in Rendering course notes, pages 14-1 -

14-13. SIGGRAPH'91, July 1991.

[Moo66a] Moore, R.E., Interval Analysis, Prentice-

Hall, New York, 1966.

[Pas95a] Pasko, A., Adzhiev, V., Sourin, A.,

Savchenko, V. Function representation in

geometric modeling: concepts, implementation

and applications, The Visual Computer, vol.11,

No.8, 1995, pp. 429-446.

[Pur02a] Purcell, T. J., Buck, I., Mark, W. R.,

Hanraham, P. Ray Tracing on Programmable

Graphics Hardware. ACM Transactions on

Graphics, Vol.21, Issue 3 (July 2002), pp 703-

712.

[Shm01a] Shmitt, B., Pasko, A., Adzhiev, V.,

Schlick, C. Constructive texturing based on

hypervolume modelling. Journal of Visualization

and Computer Animation, John Wiley & Sons,

Vol. 12, No. 5, 2001, pp. 297-310.

[Ste05a] Stegmaier, S., Strengert, M., Klein, T., and

Ertl, T. A simple and flexible volume rendering

framework for graphics-hardware-based

raycasting. In Volume Graphics, pages 187–195,

2005.

[Sto06a] Stoll, C., Gumhold, S., Seidel, H.

Incremental Raycasting of Piecewise Quadratic

Surfaces on the GPU. In: Proc. IEEE Symposium

on Interactive Raytracing, 141-150, 2006

[Woo80a] Woodwark, J., Quinlan, K. The derivation

of graphics from volume models by recursive

division of the object space, Proceedings of the

Computer Graphics 80 Conference, Brighton,

UK, pp 335-343.

[Woo86a] Woodwark, J., Bowyer, A. Better and

faster pictures from solid models, Computer-

Aided Engineering Journal 3,1, pp 17-24,

February 1986.

Figure 3. Various FRep models rendered with our method w, from left to right: cup (from virtual shikki

project) with self-shadows, solid noise with CSG-hole (formula that describes the object is given at the

right side).

Figure 4. Rendering a dynamic model: metamorphosis from a rabbit to a sandbox (models from

HyperFun gallery)

Figure 5. Procedural 3D fractals (models available in the HyperFun gallery, courtesy of F. Delhoume)

rendered with reflection and refraction (the textured box is used as an environment).

Figure 6. Virtual Shikki: real-time (4 frames per second) rendering of a functionally based scene with

procedural shading.

))*9.0sin(*4.135.1/)*9.0sin(sin(*8.1

)),sin(*4.135.1/)*9.0sin(sin(*8.1

)),*9.0sin(*4.135.1/)sin(sin(*8.1

),)*9.0sin(*8.1(*))*9.0sin(*8.1(

*))sin(*8.1(

),1(\)81(22222

yzsz

xysy

zxsx

szzsyy

sxxnoise

zynoisezyxf

+=

+=

+=

++

+=

−−+−−−=

22
2

22
2

222

222

4

)2.4(
2

4

)4.5(
1

91.302

18.331

),2\

))6.2(&)95.1(&1((

|)\)2\1((

zx
y

conus

zx
y

conus

zyxsphere

zyxsphere

conus

yyconus

yspherespheref

−−
−

=

−−
−

=

−−−=

−−−=

+−−

=

