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ABSTRACT 

In this paper we present a method for interactive rendering general procedurally defined functionally represented 

(FRep) objects using the acceleration with graphics hardware, namely Graphics Processing Units (GPU). We 

obtain interactive rates by using GPU acceleration for all computations in rendering algorithm, such as ray-

surface intersection, function evaluation and normal computations. We compute primary rays as well as 

secondary rays for shadows, reflection and refraction for obtaining high quality of the output visualization and 

further extension to ray-tracing of FRep objects. The algorithm is well-suited for modern GPUs and provides 

acceptable interactive rates with good quality of the results. A wide range of objects can be rendered including 

traditional skeletal implicit surfaces, constructive solids, and purely procedural objects such as 3D fractals.  

Keywords 

Functional Representation, FRep, Implicit Models, Interactive, Visualization, Ray tracing, Real Time, Rendering, 

GPU. 

 

1. INTRODUCTION 
In this paper we deal with the most general form of 

function-based (implicit) geometric models called the 

function representation (FRep). FRep defines a 

geometric object by a single continuous real function 

of point coordinates as: F(X) ≥ 0 [Pas95a], where the 

function is evaluated while traversing an underlying 

tree structure or by running a "black box" evaluation 

procedure, which makes this model cardinally 

different from purely analytically defined implicit 

surfaces. Methods of constructing such models are 

developed well enough; however, rendering of these 

models with interactive rates remains an open 

problem, leading to the lack of real-time modeling 

tools for FRep objects.  

In this paper, we present a method of ray shading 

accelerated using graphics hardware and specialized 

for rendering implicit models with interactive rates. 

We use the term ray shading to denote the technique 

of rendering based on ray-casting running on GPU 

and extended by processing secondary rays, shadow 

generation, reflection and refraction with 

environmental mapping. The computations take part 

in a special GPU programs called shaders, which 

allows us to change models on-the-fly during the 

rendering process and does not limit the CPU we use. 

Moreover, we only need to store ray data (two 

vectors) for each pixel, so our method is practically 

memoryless, thereby alleviating the large memory 

consumption problems essential to polygonization 

based rendering.  

By using the acceleration on GPU, we achieve 

ray-tracing performance acceptable for the real-time 

user interaction. We do not make assumptions and do 

not use a priori knowledge on the object’s defining 

function in our basic algorithm.  Therefore, it can 

render a wide range of objects including algebraic 

and skeletal implicit surfaces, constructive solids, and 

purely procedural objects such as 3D fractals. We 

also present techniques for additional accelerations of 

the ray-tracing algorithm that allow for further 

improving its performance. 

2. RELATED WORK 
At present, there are two ways to render general 

implicit models. The first one is the approximation of 

the surface by the set of polygons, namely 

polygonization [Blo87a], or by a set of other easy to 

render primitives. However, it is memory- and 

computationally expensive to generate polygonal 

meshes in real time and moreover it is not robust, 
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because features like spikes and sharp edges can be 

lost during the polygonal mesh generation. 

The second way is ray-tracing which is regarded 

as more precise method to visualize functionally 

represented models, but it is even more 

computationally expensive to perform in real time. 

Ray-tracing for visualization of functionally 

represented models is also a well-researched area. 

Traditional methods of ray-tracing implicit surfaces 

were summarized in [Har93a]. These methods can be 

applied to most of functionally represented objects, 

but they are generally very slow even on modern 

hardware. Recently a number of works appear with 

different approaches to acceleration, such as reducing 

the model complexity, reducing the number of 

processed rays and increasing the speed of 

calculations. 

The model complexity can be reduced by 

limiting the considered set of implicit surfaces by a 

particular type such as quadratic or higher degree 

surfaces and their piecewise combinations [Woo86a, 

Gol89a, Kan06a, Loo06a, Sto06a], blobby and other 

skeletal surfaces [Fox01a], or arbitrary implicit 

surfaces with known analytical definitions [Kno07a]. 

For constructive models, the complexity can be 

reduced by limiting a set of available operations, for 

example, by set-theoretic (Boolean) operations and 

linear transformations in Constructive Solid 

Geometry (CSG) models [Woo86a, Gol89a]. Another 

way of reducing complexity for constructive models 

is the simplification of the internal constructive tree 

structure or tree pruning [Woo80a, Fox01a].  

The number of processed rays intersecting 

function-based models can be reduced by the 

adaptive subdivision in the image plain as proposed 

in [Has03a] or progressive refinement [Gam06a].  

The speed of calculations can be increased by 

using specialized hardware or additional general 

processing or graphics processing units [Ben06a, 

Kno07a]. Wide development of the graphics 

hardware in the recent years leads to higher speed of 

traditional algorithms using programs for GPU. Ray-

tracing on GPU is quite well investigated; however, 

most of papers have been focused on polygonal 

meshes and parametric surfaces [Pur02a, Chr05a] and 

volumetric data [Kru03a, Ste05a]. GPU-accelerated 

ray-tracing for implicit surfaces was introduced only 

for several particular types of surfaces. The work 

[Cor05a] considered ray-tracing implicit surfaces 

defined by radial basis functions. Rendering of 

quadratic implicit surfaces on GPU was reviewed in 

[Les04a] and later in [Sto06a], and ray-tracing of 

discrete isosurfaces was introduced in [Had05a].  

Recently, in [Fry07a] GPU accelerated ray-

casting of general function-based models was 

introduced, where only primary rays were processed 

and higher quality effects such as shadows, 

reflections and refractions, environmental mappings 

were not considered. In this work, we present ray-

tracing techniques for the most general type of 

procedural function-based objects where primitives, 

operations, and the entire model are considered 

"black boxes" with unknown specific properties. We 

also consider both primary and secondary rays to 

achieve higher quality of rendering.  

3. ALGORITHMIC BACKGROUND 
In this section we briefly describe theoretical 

principles related to function-based geometric models 

and methods for ray-tracing such models. 

Function representation 
Geometric objects are defined in the function 

representation (FRep) as closed subsets of n-

dimensional Euclidean space E
n
 with the definition 

f (x1, x2, …, xn) ≥ 0 

where f is a real continuous function defined in E
n
. 

The function can have one of several possible 

definitions: analytical equation, function evaluation 

procedure, sampled function values at regular grid 

nodes or scattered points and an appropriate 

interpolation procedure. The only requirement to the 

function is to have at least C
0
 continuity. In 3D space, 

the boundary of such an object, where the function 

takes zero value, is a so-called implicit surface. 

For application software, an FRep object is given as a 

“black box” procedure for the function evaluation at 

the given point. In the extreme case, such a procedure 

can be implemented from the scratch in some 

programming language. A procedure generating 

fractal objects is a good example. Another approach 

is to build the procedure using provided library 

functions for simple geometric objects (primitives) 

and geometric operations. Each geometric primitive 

is described by a concrete type of a function chosen 

from the finite set of such types. Some examples of 

primitives are: quadratic and other algebraic 

primitives; skeleton-based primitives; voxel array 

with the trilinear or higher order interpolation; solid 

noise; objects reconstructed from scattered surface 

points using radial-basis functions. 

A complex geometric object is a result of 

applying operations to primitives.  There is a rich set 

of operations taking functions of arguments as input 

and resulting in a new continuous real-valued 

function as output. Unary operations include space 

mappings - transformations of point coordinates and 

function mappings (offsetting, solid sweeping, and 



projection). Binary operations include set-theoretic 

operations and their blending versions, Cartesian 

product, metamorphosis and others. 

The basic set-theoretic operations (union, 

intersection, difference) are implemented using 

Rvachev’s R-functions (see [Pas95a]), which allow to 

represent an arbitrary constructive object by a single 

function. The key point in constructive modeling is 

that the final object is internally represented by a tree 

structure with primitives as leaves and operations as 

nodes of the tree. An FRep modeling system provides 

a procedure which traverses this tree structure to 

calculate the function value at the given point. 

Ray-surface intersection for function-

based models 
The intersection test between a ray and an object 

surface is the core of the ray-tracing algorithm. The 

problem here is to find a ray-surface intersection 

point, which is nearest to the viewpoint. This problem 

can be reduced to zero-root finding for the function 

along the ray. We consider below methods that we 

have included in our implementation. 

3.1.1 Analytical methods 
The most common type of functions for analytical 

root finding is the polynomial function and CSG 

models built on polynomial primitives. For solving 

the equation for the defining function that represents 

the model, we should turn to the ray parameter space 

from the modeling space: 

f (X) = 0, X = X0 + t(X1 – X0) ⇒ g(t) = 0 

Polynomial equations of degree one can be 

solved using the laws of elementary algebra; for 

polynomials of degree two the roots of the quadratic 

equation are known; we solve polynomials of degree 

three using the Cardano's method and polynomials of 

degree four using the Ferrari's method. If the 

polynomial has degree higher than four, we cannot 

solve it analytically and need to use approximate 

methods. Once the polynomial solving procedure 

returns all the roots including those which are 

negative, duplicate, and beyond the bounds of the 

ray, additional filtering is usually needed. If the 

model is represented as a CSG-tree that is built from 

simple primitives (i.e., the roots for them can be 

found analytically), we take all the roots for the 

leaves of the CSG-tree and select the root that 

corresponds to the intersection point closest to the 

viewer and placed on the surface of the CSG solid. 

3.1.2 Interval analysis 
Interval analysis for ray-tracing was introduced in 

[Mit90a]. The function is extended to operate on 

intervals for input variables using the rules of interval 

arithmetic. As for analytical methods we turn to the 

ray parameter space from modeling space. The 

function representation in the ray parameter space is 

the base for the extension to the interval function. 

Moore showed in [Moo66a] that the result interval F 

includes f results. The root finding algorithm consists 

in the recursive search of the interval [a, b] with 

different signs of a and b. This method is considered 

robust; however the main problem with this method is 

the over-conservatism as the estimated intervals are 

usually much wider than actual function range. 

Another known problem of this method is the 

problem with non-arithmetic operators such as 

conditional operators and procedural loops. 

3.1.3 Approximate numerical methods  
In ray-tracing of general procedural functionally 

represented models, which may contain conditional 

operators, loops, recursive calls etc, we can not use 

analytical methods and interval analysis is hard to 

implement. However, the ray-surface intersection can 

be found using an approximate search. First, we split 

up the domain into chunks and find the first one 

which contains at least one root, i.e., the sign of the 

function differs at its ends. After that, we refine the 

root using the regula-falsi or the Newton’s method. 

4. IMPLEMENTATION 
In our work we employ two main features in 

rendering of functionally represented models. First of 

all, we represent a complex object by a single 

function and second, we perform all the computations 

on the GPU. 

Model representation 
In FRep, any object can be described by a real-valued 

function with real-valued arguments. A complex 

scene consisting of several models also can be 

described by a single function that describes the 

union of these models. This function can be either 

given by a text file describing a tree structure (as in 

BlobTree [Fox01a]) or by an evaluation procedure in 

a universal or a special-purpose language (HyperFun 

[Hf]). In this work, we use HyperFun objects as the 

source models, because this language can describe 

arbitrarily complicated FRep models. The object 

definition in the HyperFun language is presented as a 

function with input of an array of coordinate 

variables, an array of model parameters, and an array 

of attribute variables.  The output of the object 

definition is the value of the function. Moreover, the 

HyperFun language allows defining the color and 

other photometric characteristics procedurally 

through the attribute variables. In fact, the model is 

described by a vector-function. 



In our system we use the functions in the 

OpenGL shading language (GLSL), which we obtain 

using the conversion from HyperFun models. The 

object geometry definition in GLSL is a function with 

input of a vector of coordinate variables, a vector of 

free variables and a vector of attribute variables. 

Also, for shading we use the procedural color 

definition, which is represented as a function with the 

same parameters as the object geometry function, but 

returns color vector instead of the real value for 

geometry. 

As HyperFun and GLSL are both C-like languages, 

the conversion between them can be done easily. We 

leave the details of the conversion between the 

languages beyond this paper.  

Visualization process 
We use GPU for the most of calculations in the ray-

tracing algorithms adapted to function-based objects. 

As in the most of GPU-based ray-tracing methods, all 

the computations take place in the fragment shaders 

and data transfers from and to a graphics card 

through the textures. The main advantage of the GPU 

is the possibility of the shader modifying on-the-fly. 

Therefore it can be used for interactive rendering. 

The scheme of our system is shown in Fig. 1. 

For our implementation of rendering, we also use 

GLSL. Note that we should bear in mind current 

GPU restrictions such as inability to use recursion or 

early breaks in functions, and the limit on the number 

of operations within one shader. Hardware 

restrictions depend on currently available graphics 

hardware and in this paper we mention restrictions 

that we have met during the implementation.  

The conversion from HyperFun to GLSL is a 

part of pre-procession stage, which also includes the 

generation of the set of shaders based on an initial 

model and setting of values to the parameters to the 

shader, such as bounding box of the scene, time-

dependent parameters and additional information if 

required.  

 

 

Figure 1. Visualization scheme. 

 

 

Figure 2. Rendering process diagram. 

 

At the stage of rendering a frame, we take the set 

of shaders and apply one after another to the window-

sized polygon. The data is transferred between 

shaders through the texture memory. The first shader 

should provide the search for the intersection point 

and the last shader should have the color of the pixel 

as the output. The process of rendering is shown in 

Fig. 2. 

Implementation of the ray-surface 

intersection on GPU 
Depending on the model type we can use different 

methods for calculation of the ray-surface intersection 

point. In our implementation we use analytical 

methods for objects that can be represented as CSG-

trees of polynomial primitives with maximum degree 

of four and approximate numerical methods in other 

cases. Also, we use interval analysis for several 

models. 

4.1.1 Approximate root search 
We use this method for complicated models, when 

the speed is more preferable than the quality of the 

image. In our current implementation we use an 

iterative search of the interval with different signs of 

the function combined with the Newton method for 

refining the root estimation. Thus, during the 

generation of the fragment shader, we add the ray-

surface intersection part that finds the interval where 

the sign of the function differs at the ends and then 

refine the solution with the Newton method using the 

following algorithm: 

- calculate the function value at the first point 

of the ray 

- subdivide the ray into intervals 

- for each interval 

o calculate the function value at the 

end of the interval 



o compare signs of the function at the 

beginning of the interval and at the 

end 

o if signs are different, set the flag of 

the found root as true 

- if the interval with a root is not found, return 

the no-intersection flag 

- depending on the interval tolerance calculate 

the number of iterations for the Newton 

method 

- at each iteration refine the root with the 

Newton method 

- return the intersection point coordinates 

The length of the interval and all needed 

tolerances are set manually by the user. Input data for 

the ray-surface intersection are given for each pixel 

and include the ray origin vector of coordinates and 

the ray direction. However, for the primary rays input 

data can be reduced up to just the ray beginning 

vector, because the ray direction is the same for all 

primary rays. 

4.1.2 Analytical root search 
In the general case of purely procedural models exact 

roots cannot be found. Even a relatively simple object 

such as blended union between two cylinders leads to 

the root search for polynomials of the degree five. 

However, if we have a model defined as a CSG-tree 

over polynomial primitives of degree four and lower, 

we can find exact roots using analytical methods. On 

the pre-processing stage we generate polynomial 

functions for each leaf in the CSG-tree and insert this 

information in the shader. In this case, the root search 

algorithm is as follows: 

- set the root found flag to false 

- for each polynomial 

o calculate the roots using analytical 

polynomial solving 

o if there are roots in the search area 0 ≤ t ≤ 1, 

select the minimal one, and set the root 

found flag to true 

- calculate the intersection point based on the found 

t value and return the intersection point 

coordinates. 

4.1.3 Root search using interval analysis 
Although interval analysis is the most accurate way to 

calculate ray-surface intersection points, it is very 

computationally expensive even for current graphics 

hardware. In our implementation we use the search 

for the interval including a function root using 

dichotomy. As we cannot use recursion on GPU, we 

have to use a loop with a stack or a similar data 

structure. Moreover, at the pre-procession stage we 

have to include the implementation of interval 

arithmetic functions and interval version of the source 

function. In our work we use the following algorithm: 

- Calculate the interval function for interval 

[0, 1], check the signs of the interval 

function, return no root if the signs are the 

same at the ends of the interval. 

- Calculate interval functions for [0, 0.5] and 

[0.5, 1]. 

- If the signs differ for the first interval, push 

it to the stack with the first part flag; if the 

signs differ for the second interval, push it to 

the stack with the second part flag, otherwise 

return no root. 

- While (stack depth more than maximum or 

stack is empty)  

o Pop interval and its flag from the 

stack 

o If interval has the first part flag, 

calculate the second part and push 

it to the stack 

o Split interval into two, calculate 

interval functions for both parts 

o If the signs differ for the first 

interval, push it to the stack, if the 

signs differ for the second interval, 

push it to the stack. 

- If the stack is not empty, pop an interval 

from the stack, return the middle of the 

interval as the root. 

Shading 
For shading we need to have the color function 

applicable to any visible surface point. It means that 

this function should return color value for any point 

in the modelling space. In the general case we can 

evaluate the color function along with the shape 

defining function using a point attribute model. The 

methods of modeling procedural textures as point 

attributes are described in detail in [Shm01a]. After 

defining the color for the model, the shading is 

performed using the Phong method or a similar one. 

In our implementation we use the Blinn-Phong 

shading model.  

Prior to performing shading operations, we should 

calculate the normal vector at the ray-surface 

intersection point on the surface of the FRep object. 

In the general case, when we consider the function of 

the object as the "black box", we can calculate the 

normal only approximately. The simplest way to 

obtain the normal is to apply the finite differences.  

Secondary rays 
To increase the quality of the visualization, we need 

to calculate the secondary rays for ray-tracing of the 

model. Due to limitation of graphics hardware such 

as inability to perform a recursion, we cannot use the 



classical recursive ray tracing algorithm. However, 

we can set the fixed depth for the ray processing and 

calculate secondary rays within this depth. For simple 

models, several rays can be calculated within one 

shader. In our implementation, we separated the 

rendering tasks and implemented them as several 

shaders. The first shader should calculate the first 

intersection. After that, we apply secondary ray 

shaders and in the last shader, that should perform 

surface shading, we sum up all the information. 

Depending on the shader type, information between 

shader passes is transferred either as one four-

component vector (three components for the new ray 

direction and one for the root from the previous ray-

surface intersection in the ray parameter space) or as 

two four-component vectors with entire information 

from the previous intersection. 

5. EXPERIMENTAL RESULTS 
We tested our method by rendering several function-

based models with different degrees of complexity 

(Fig. 3). In the performance results shown below, we 

use models from the Virtual Shikki project and 

models from the HyperFun gallery including 

procedural fractal models.  

Performance characteristics of our implementation 

were measured on a PC with a two SLI-combined 

NVIDIA GeForce 7900 cards and an Intel Pentium 4 

3.20GHz CPU. All models were rendered on a 

256X256 viewport. For comparison with CPU-only 

methods, we have also measured speed characteristics 

of a software implementation of our method on the 

same processor. We provide the results in the 

following table, where the performance is measured 

in frames per second (bigger fps means higher 

rendering speed). The Cup model was rendered using 

the analytical ray-surface intersection method; the 

Noise model was rendered using interval analysis. 

Other models were rendered using the approximate 

ray-surface intersection method. 

 GPU (P)  GPU (S) CPU 

Cup 120 60 0.41 

Metamorphosis 30 20 0.3 

3D fractal 17 8 0.12 

Noise with CSG 60 30 0.35 

Virtual shikki 4 3 <0.01 

Table 1. Performance characteristics for selected 

models. GPU(p) denotes using of only primary 

rays on GPU, GPU(s) denotes using of secondary 

rays as well as primary rays, CPU denotes 

implementation on CPU. 

It can be seen from the table that with GPU-based 

rendering we can achieve interactive visualization of 

functionally based models and scenes. By defining 

the function in the shader we can change the body of 

the function in real-time. We can visualize 

interactively not only simple implicit objects, but also 

the procedural objects, such as procedurally defined 

3D fractals and dynamic objects in real-time (Fig. 4). 

In the case when the speed is more important that the 

quality, we can use approximate methods and obtain 

interactive rates even for complicated scenes. Also, if 

the model represents a CSG-tree with polynomial 

primitives of degree four and less, we can use 

analytical methods for rendering, and obtain better 

quality of the visualization with better speed.  

In our tests we use not only primary rays for 

rendering, but secondary rays also. This allowed us to 

obtain interactive rates for functional-based scenes 

with such effects as shadows, reflection and 

refraction (Fig. 5). Also, the procedural shading and 

texturing can be used for functionally-based scenes 

(Fig. 6). 

6. CONCLUSION 
In this paper we presented a method of high-quality 

visualization of general procedural function-based 

(implicit) models with GPU-accelerated ray tracing. 

It was shown that we obtain the good quality of 

visualization along with good interactive rates by 

representing scene by a single function and by 

processing it using programs for GPU. In our work 

we presented different algorithms for intersecting a 

ray with a function-based model, and in our 

experiments different methods were tested for 

different objects. Depending on the algorithm, we can 

obtain higher speed with lower quality, however for 

several models higher speed can be obtained using 

analytical methods. In addition, in this work we 

process secondary rays in the ray-tracing procedure 

that allows us to obtain better image quality than by 

pure ray-casting.  

However, our method has some limitations, most 

of them related to restrictions of the current graphics 

hardware. The first limitation is restriction on the 

program size and instructions number. We decrease 

the quantity of calculations using separation over the 

several shaders. However, sometimes the problem of 

precision appeared, because there is the lack of 

precision during data transfers from and to the texture 

memory. Also, recursively defined models and 

models that require dynamic arrays can not be 

converted to current graphics hardware without the 

substitution to conditional operators and static arrays 

that is not always can be made easily. The removal of 

these limitations and further optimization of the 

proposed method are the subjects for future research 

and development. 
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Figure 3. Various FRep models rendered with our method w, from left to right: cup (from virtual shikki 

project) with self-shadows, solid noise with CSG-hole (formula that describes the object is given at the  

right side). 

 
Figure 4. Rendering a dynamic model: metamorphosis from a rabbit to a sandbox (models from 

HyperFun gallery) 

 

    
Figure 5. Procedural 3D fractals (models available in the HyperFun gallery, courtesy of F. Delhoume) 

rendered with reflection and refraction (the textured box is used as an environment). 

 

 
Figure 6. Virtual Shikki: real-time (4 frames per second) rendering of a functionally based scene with 

procedural shading. 
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